1,094 research outputs found

    A DoG based Approach for Fingerprint Image Enhancement

    Get PDF
    Fingerprints have been the most accepted tool for personal identification since many decades. It is also an invaluable tool for law enforcement and forensics for over a century, motivating the research in Automated fingerprint-based identification, an application of biometric system. The matching or identification accuracy using fingerprints has been shown to be very high. The theory on the uniqueness of fingerprint minutiae leads to the steps in studying the statistics of extracting the minutiae features reliably. Fingerprint images obtained through various sources are rarely of perfect quality. They may be degraded or noisy due to variations in skin or poor scanning technique or due to poor impression condition. Hence enhancement techniques are applied on fingerprint images prior to the minutiae point extraction to get sure of less spurious and more accurate minutiae points from the reliable minutiae location. This thesis focuses on fingerprint image enhancement techniques through histogram equalization applied locally on the degraded image. The proposed work is based on the Laplacian pyramid framework that decomposes the input image into a number of band-pass images to improve the local contrast, as well as the local edge information. The resultant image is passed through the regular methodologies of fingerprint, like ridge orientation, ridge frequency calculation, filtering, binarization and finally the morphological operation thinning. Experiments using different texture of images are conducted to enhance the images and to show a comparative result in terms of number of minutiae extracted from them along with the spurious and actual number existing in each enhanced image. Experimental results out performs well to overcome the counterpart of enhancement technique

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Nigeria Paper Currency Serial Number Pattern Recognition System for Crimes Control

    Get PDF
    Only secured and conducive environment void of robbery, kidnapping, fake currency and all forms of insurgencies will foster production and distribution of goods, investment and saving that enhance national economic growth and development. This is a mirage in a country generally believed and tagged the giant of African; Nigeria. Crime, in whatever name or nomenclature, has a significant negative impact on the welfare and economy prosperities of our society. The urge to get rich promotes Crime like armed robbery, kidnapping for ransom and production of counterfeit banknotes to mention but a few. Innocent people have suffered psychological distress, fear, anger, depression, physical harm, financial loss and in most cases untimely death during the operations by these hoodlums. Banks, Cash-In-Transit Vehicle, and ATM points are often robbed by gangs in search for paper currency. Kidnappers as well demand for paper currency as ransom while some other gangs are involved in the production of counterfeit banknotes so as to enrich themselves no minding the negative effect on the nation’s economy.  The banknotes collected during the operations by the hoodlums are taken to banks. Yet, the banks will not detect or recognize any of these notes which attest to the fact that our system lacks check and balance. The system is very porous without a recourse to this era of technology when machine is trained to do virtually everything for our convenience. Currency as an entity has a unique identification number. The identification number is an alphanumeric currency issuance of about 10 digits comprises two (2) capital letters and eight (8) numbers usually positioned at a strategic location on either front or back of the 5, 10, 20, 50, 100, 200, 500 and 1000 naira notes. It is a reliable and intelligent system developed to track banknotes unique identifiers numbers- serial numbers, in order to control financial related crimes. Keywords: Nigeria Paper Currency Serial Number, Pattern Recognition DOI: 10.7176/IKM/11-3-04 Publication date: April 30th 202

    Biometric Applications Based on Multiresolution Analysis Tools

    Get PDF
    This dissertation is dedicated to the development of new algorithms for biometric applications based on multiresolution analysis tools. Biometric is a unique, measurable characteristic of a human being that can be used to automatically recognize an individual or verify an individual\u27s identity. Biometrics can measure physiological, behavioral, physical and chemical characteristics of an individual. Physiological characteristics are based on measurements derived from direct measurement of a part of human body, such as, face, fingerprint, iris, retina etc. We focussed our investigations to fingerprint and face recognition since these two biometric modalities are used in conjunction to obtain reliable identification by various border security and law enforcement agencies. We developed an efficient and robust human face recognition algorithm for potential law enforcement applications. A generic fingerprint compression algorithm based on state of the art multiresolution analysis tool to speed up data archiving and recognition was also proposed. Finally, we put forth a new fingerprint matching algorithm by generating an efficient set of fingerprint features to minimize false matches and improve identification accuracy. Face recognition algorithms were proposed based on curvelet transform using kernel based principal component analysis and bidirectional two-dimensional principal component analysis and numerous experiments were performed using popular human face databases. Significant improvements in recognition accuracy were achieved and the proposed methods drastically outperformed conventional face recognition systems that employed linear one-dimensional principal component analysis. Compression schemes based on wave atoms decomposition were proposed and major improvements in peak signal to noise ratio were obtained in comparison to Federal Bureau of Investigation\u27s wavelet scalar quantization scheme. Improved performance was more pronounced and distinct at higher compression ratios. Finally, a fingerprint matching algorithm based on wave atoms decomposition, bidirectional two dimensional principal component analysis and extreme learning machine was proposed and noteworthy improvements in accuracy were realized

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Improved methods for finger vein identification using composite median-wiener filter and hierarchical centroid features extraction

    Get PDF
    Finger vein identification is a potential new area in biometric systems. Finger vein patterns contain highly discriminative characteristics, which are difficult to be forged because they reside underneath the skin of the finger and require a specific device to capture them. Research have been carried out in this field but there is still an unresolved issue related to low-quality data due to data capturing and processing. Low-quality data have caused errors in the feature extraction process and reduced identification performance rate in finger vein identification. To address this issue, a new image enhancement and feature extraction methods were developed to improve finger vein identification. The image enhancement, Composite Median-Wiener (CMW) filter would improve image quality and preserve the edges of the finger vein image. Next, the feature extraction method, Hierarchical Centroid Feature Method (HCM) was fused with statistical pixel-based distribution feature method at the feature-level fusion to improve the performance of finger vein identification. These methods were evaluated on public SDUMLA-HMT and FV-USM finger vein databases. Each database was divided into training and testing sets. The average result of the experiments conducted was taken to ensure the accuracy of the measurements. The k-Nearest Neighbor classifier with city block distance to match the features was implemented. Both these methods produced accuracy as high as 97.64% for identification rate and 1.11% of equal error rate (EER) for measures verification rate. These showed that the accuracy of the proposed finger vein identification method is higher than the one reported in the literature. As a conclusion, the results have proven that the CMW filter and HCM have significantly improved the accuracy of finger vein identification

    Fingerprint comparison by template matching

    Get PDF
    corecore