328 research outputs found

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Adaptive reconfigurable voting for enhanced reliability in medium-grained fault tolerant architectures

    Get PDF
    The impact of SRAM-based FPGAs is constantly growing in aerospace industry despite the fact that their volatile configuration memory is highly susceptible to radiation effects. Therefore, strong fault-handling mechanisms have to be developed in order to protect the design and make it capable of fighting against both soft and permanent errors. In this paper, a fully reconfigurable medium-grained triple modular redundancy (TMR) architecture which forms part of a runtime adaptive on-board processor (OBP) is presented. Fault mitigation is extended to the voting mechanism by applying our reconfiguration methodology not only to domain replicas but also to the voter itself. The proposed approach takes advantage of adaptive configuration placement and modular property of the OBP, thus allowing on-line creation of different medium-grained TMRs and selection of their granularity level. Consequently, we are able to narrow down the fault-affected area thus making the error recovery process faster and less power consuming. The conventional hardware based voting is supported by the ICAP-based one in order to additionally strengthen the reconfigurable intermediate voting. In addition, the implementation methodology ensures using only one memory footprint for all voters and their voting adaptations thus saving storing resources in expensive rad-hard memories

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Using Relocatable Bitstreams for Fault Tolerance

    Get PDF
    This research develops a method for relocating reconfigurable modules on the Virtex-II (Pro) family of Field Programmable Gate Arrays (FPGAs). A bitstream translation program is developed which correctly changes the location of a partial bitstream that implements a module on the FPGA. To take advantage of relocatable modules, three fault-tolerance circuit designs are developed and tested. This circuit can operate through a fault by efficiently removing the faulty module and replacing it with a relocated module without faults. The FPGA can recover from faults at a known location, without the need for external intervention using an embedded fault recovery system. The recovery system uses an internal PowerPC to relocate the modules and reprogram the FPGA. Due to the limited architecture of the target FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be demonstrated. However, the various components needed to do this type of recovery have been implemented and demonstrated individually

    Online self-test wrapper for runtime-reconfigurable systems

    Get PDF
    Reconfigurable Systems-on-a-Chip (SoC) architectures consist of microprocessors and Field Programmable Gate Arrays (FPGAs). In order to implement runtime reconfigurable systems, these SoC devices combine the ease of programmability and the flexibility that FPGAs provide. One representative of these is the new Xilinx Zynq-7000 Extensible Processing Platform (EPP), which integrates a dual-core ARM Cortex-A9 based Processing System (PS) and Programmable Logic (PL) in a single device. After power on, the PS is booted and the PL can subsequently be configured and reconfigured by the PS. Recent FPGA technologies incorporate the dynamic Partial Reconfiguration (PR) feature. PR allows new functionality to be programmed online into specific regions of the FPGA while the performance and functionality of the remaining logic is preserved. This on-the-fly reconfiguration characteristic enables designers to time-multiplex portions of hardware dynamically, load functions into the FPGA on an as-needed basis. The configuration access port on the FPGA can be used to load the configuration data from memory to the reconfigurable block, which enables the user to reconfigure the FPGA online and test runtime systems. Manufactured in the advanced 28 nm technologies, the modern generations of FPGAs are increasingly prone to latent defects and aging-related failure mechanisms. To detect faults contained in the reconfigurable gate arrays, dedicated on and off-line test methods can be employed to test the device in the field. Adaptive systems require that the fault is detected and localized, so that the faulty logic unit will not be used in future reconfiguration steps. This thesis presents the development and evaluation of a self-test wrapper for the reconfigurable parts in such hybrid SoCs. It comprises the implementation of Test Configurations (TCs) of reconfigurable components as well as the generation and application of appropriate test stimuli and response analysis. The self-test wrapper is successfully implemented and is fully compatible with the AMBA protocols. The TC implementation is based on an existing Java framework for Xilinx Virtex-5 FPGA, and extended to the Zynq-7000 EPP family. These TCs are successfully redesigned to have a full logic coverage of FPGA structures. Furthermore, the array-based testing method is adopted and the tests can be applied to any part of the reconfigurable fabric. A complete software project has been developed and built to allow the reconfiguration process to be triggered by the ARM microprocessor. Functional test of the reconfigurable architecture, online self-test execution and retrieval of results are under the control of the embedded processor. Implementation results and analysis demonstrate that TCs are successfully synthesized and can be dynamically reconfigured into the area under test, and subsequent tests can be performed accordingly

    Mapping Framework for Heterogeneous Reconfigurable Architectures:Combining Temporal Partitioning and Multiprocessor Scheduling

    Get PDF
    corecore