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Abstract

Reconfigurable Systems-on-a-Chip (SoC) architectures consist of microprocessors
and Field Programmable Gate Arrays (FPGAs). In order to implement runtime re-
configurable systems, these SoC devices combine the ease of programmability and
the flexibility that FPGAs provide. One representative of these is the new Xil-
inx Zynq-7000 Extensible Processing Platform (EPP), which integrates a dual-core
ARM Cortex-A9 based Processing System (PS) and Programmable Logic (PL) in
a single device. After power on, the PS is booted and the PL can subsequently be
configured and reconfigured by the PS.

Recent FPGA technologies incorporate the dynamic Partial Reconfiguration (PR)
feature. PR allows new functionality to be programmed online into specific regions
of the FPGA while the performance and functionality of the remaining logic is
preserved. This on-the-fly reconfiguration characteristic enables designers to time-
multiplex portions of hardware dynamically, load functions into the FPGA on an
as-needed basis. The configuration access port on the FPGA can be used to load
the configuration data from memory to the reconfigurable block, which enables the
user to reconfigure the FPGA online and test runtime systems.

Manufactured in the advanced 28 nm technologies, the modern generations of
FPGAs are increasingly prone to latent defects and aging-related failure mecha-
nisms. To detect faults contained in the reconfigurable gate arrays, dedicated on
and off-line test methods can be employed to test the device in the field. Adaptive
systems require that the fault is detected and localized, so that the faulty logic unit
will not be used in future reconfiguration steps.

This thesis presents the development and evaluation of a self-test wrapper for the
reconfigurable parts in such hybrid SoCs. It comprises the implementation of Test
Configurations (TCs) of reconfigurable components as well as the generation and
application of appropriate test stimuli and response analysis. The self-test wrapper
is successfully implemented and is fully compatible with the AMBA protocols.

The TC implementation is based on an existing Java framework for Xilinx Virtex-
5 FPGA, and extended to the Zynq-7000 EPP family. These TCs are successfully
redesigned to have a full logic coverage of FPGA structures. Furthermore, the
array-based testing method is adopted and the tests can be applied to any part of
the reconfigurable fabric.

A complete software project has been developed and built to allow the recon-
figuration process to be triggered by the ARM microprocessor. Functional test of
the reconfigurable architecture, online self-test execution and retrieval of results are
under the control of the embedded processor. Implementation results and analysis
demonstrate that TCs are successfully synthesized and can be dynamically recon-
figured into the area under test, and subsequent tests can be performed accordingly.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reliability Challenges . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Online Test Strategies . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Goal and Outline . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Reconfigurable architectures are often considered to be able to offer cost saving by
time-multiplexing hardware resources that are contained within them. The recon-
figuration includes the alteration of the complete system or part of it. However,
there is always a trade-off among performance, overhead and efficiency. The most
popular reconfigurable architecture is the Field Programmable Gate Array (FPGA),
with the dynamic Partial Reconfiguration (PR) enabled in the newer series [6].

Contemporary FPGAs are more prone to aging effects, latent defects and tran-
sient effects. The runtime system has to ensure a reliable reconfiguration process,
and achieve dynamic adaptability to defective parts in the fabric. To detect the
defective fabric in the field, requires part of the logic area to be reprogrammed for
testing, while the remaining part of the logic is kept functioning as usual. Once the
faulty area is detected, the logic functions can be swapped out from the defective
region to a partition where the functionality is tested and known to be good.

With the availability of PR, it is feasible to allow specific regions of the FPGA
to be evaluated while the remaining function of the device is preserved. PR per-
forms hardware reconfiguration by dynamically modifying parts of logic blocks in
an FPGA, and allows unmodified logic blocks to continue to operate as before [7].
Hence, the defective area in the FPGA can be avoided, a reliable runtime reconfig-
uration system can be accomplished.

FPGA test includes the Pre-configuration Test (PRET) of unprogrammed logic
cells and functional post reconfiguration test. The reconfiguration process can be
handled by either an external controller or an embedded processor [3]. This work
focuses mainly on online PRET controlled by an on-chip processor core. An embed-
ded processor contained in a runtime system can access the FPGA reconfigurable
space by downloading configuration data via the configuration access port [8], and

1



1.2. Reliability Challenges 2

is capable of controlling the execution of Built-In Self Test (BIST) online. This en-
ables the user to implement the reconfigurable architecture by modifying the circuit
structure and changing the functionality through software control. Test Configura-
tions (TCs) can be scheduled on a regular basis, and loaded into partitions which
are currently not in use. Tests are performed accordingly.

The Xilinx Zynq-7000 SoC leverages the strengths of an ARM processor core
and a Xilinx FPGA, it combines ARM cores with 28 nm programmable logic on a
single chip, and delivers a reconfigurable embedded processing platform [9]. This
core-centric architecture offers processing capability, the ease of programmability
and the flexibility of an FPGA [10]. Furthermore, Xilinx embedded solution offers
not only a tool to synthesize, place and route the design, but also enables the man-
agement of reconfigurable modules; it provides an easy way to floor plan, and acts
as the overall project manager when instantiating the embedded systems.

1.2 Reliability Challenges

Aggressive low cost requirements and spatial constrains continuously drive tran-
sistor scaling, which results in higher on-chip integration and faster operating fre-
quency. Consequently, FPGAs have enhanced system performance. To stay within
certain power budgets, the latest 28 nm FPGA platforms include low power process
innovations and stacked silicon interconnects.

However, due to the complexity of the manufacturing process, process variations
and latent defects are introduced in these high-end FPGAs. On top of that, envi-
ronment variations and different life spans of the silicon change the behavior of the
device as well [11]. Normal production test and burn-in test are no longer able to
capture these transient and aging effects. Performance degradation and erroneous
behavior lead to reliability threats, and even critical safety concerns.

To improve the reliability of FPGAs and build a fault-tolerant platform, online
testing becomes necessary for these reconfigurable systems.

1.3 Online Test Strategies

The aforementioned reliability issues raise the test requirements for reconfigurable
architectures. Prior to reconfiguring with new functions, the FPGA fabric needs
first to be validated with self-test. Based on the previous work implemented for
the Xilinx Virtex-5 FPGA family [3], this thesis extends the structural online test
method [4] to the Xilinx 7 Series programmable logic family. The PRET process can
be triggered through either a hardware state machine or software control from an
embedded processor. In addition, this thesis develops a self-test wrapper in a hybrid
SoC platform, the reconfiguration process as well as the self-test are triggered by
the microprocessor.

The reconfigurable partition (container) and test benches are integrated into the
self-test wrapper, the wrapper is then connected to a Advanced Microcontroller
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Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) bus interconnect.
The full implementation extends the flexibility of the PR by allowing the software
running in the microprocessor to control the loading of TCs. Figure 1.1 shows the
target reconfigurable SoC with the developed self-test wrapper.

Figure 1.1: Online Self-test Wrapper

Similar approaches have been adopted to develop the TCs for 7 Series FPGA,
built on top of the RapidSmith java framework [12]; where code is modified and
reused to certain extend, to suit the Configuration Logic Block (CLB) architecture
of the 7 Series. Chapter 2 describes the detailed structural differences between
Virtex-5 and 7 Series CLBs.

After the corresponding reconfiguration container is configured as a test array
with a TC and is ready to be tested, the Test Pattern Generator (TPG) generates
input stimuli to the container and the Output Response Analyzer (ORA) analyzes
the outputs from the container. The programmable part of the device consists
of a PR module and the static logic; after it is fully configured with a complete
bitstream, the partial bitstreams can be downloaded to modify the reconfigurable
portion, and change the TC design.

1.4 Thesis Goal and Outline

The main purpose of this thesis is to develop and evaluate a self-test wrapper for
such a on-line reconfigurable system. The purpose of the wrapper is to encapsulate
a block of reconfigurable logic and implement an interface to connect the self-test
hardware via the AMBA AXI4-Lite bus interconnect to the ARM microprocessor.
The generation of test stimuli and analysis of responses can be performed under
the software control, as well as functional evaluation. The tool chains used are
introduced and the implementation details are presented.

After a brief introduction, this thesis first introduces FPGA-based reconfigurable
systems and partial reconfiguration. It goes on to compare the basic architectural
differences between Virtex-5 and 7 Series CLBs. Then in Chapter 3, based on the
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comparison results, it describes the test requirements and implementation of TCs
for the targeted hardware. Followed by design of TPG and ORA for each TC using
hardware description language. Chapter 4 gives the detailed information about
designing the self-test wrapper, including an overview of the processor architecture,
the AXI interface protocol and requirements.

The remainder of the report is organized as follows. Chapter 5 presents the tool
chain for the TC generation, the embedded development tool suite and the steps
for partial reconfiguration of a processor peripheral. Chapter 6 demonstrates the
design of a software project based on the software development platform, which
enables the integration of hardware and software components. Software-controlled
TCs reconfiguration and tests execution are also explained. It is followed by the
validation and implementation results in Chapter 7. This thesis is concluded in
Chapter 8 with a summary and possible further tasks.



Chapter 2

FPGA-based Reconfigurable

Systems

Contents

2.1 Introduction to FPGAs . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Configurable Logic Block . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Switch Matrix and Interconnect . . . . . . . . . . . . . . . . . 7

2.1.3 IOBs, Memory and Clock Management . . . . . . . . . . . . 7
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2.2.1 Coarse-grained Reconfigurable Architectures . . . . . . . . . 8

2.2.2 Fine-grained Reconfigurable Architectures . . . . . . . . . . . 8
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2.4 Target Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.4.2 Virtex-5 CLB Architecture . . . . . . . . . . . . . . . . . . . 12
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2.1 Introduction to FPGAs

Field Programmable Gate Arrays (FPGAs) are silicon devices that are based upon
an array of Configurable Logic Blocks (CLBs) connected together through pro-
grammable switch interconnects. An FPGA has much more logic resources com-
pared with Programmable Logic Device (PLD) and its programmable nature dis-
tinguishes it from Application Specific Integrated Circuit (ASIC); it outperforms an
ASIC in the way of dynamical reconfiguring tasks from one to the other at runtime.

A brief overview of the FPGA architecture gives a basic understanding to the
testing of reconfigurable systems. The fundamental FPGA building blocks include
CLBs, block RAMs, DSP slices and IO logic resources. CLBs communicate with
each other through the programmable switch matrices (PSMs) and interconnect
wires. Input/Output Blocks (IOBs) are used to connect the FPGA to the out-
side world [3]. Figure 2.1 represents the basic FPGA block structure. Due to

5



2.1. Introduction to FPGAs 6

reprogrammable capabilities, SRAM-based FPGAs are the dominant type. The
following subsections describe the basic components in an FPGA.

Figure 2.1: FPGA basic building Blocks

2.1.1 Configurable Logic Block

The CLB is the basic logic unit and the foundation of an FPGAs; it is essential
for re-programmable digital logic design. A CLB consists of Lookup Tables (LUTs)
with 4 to 6 inputs, selection circuitry (Multiplexers, XOR) and sequential elements
such as Flip-Flops (FFs). The LUTs act as function generators, and can be flexibly
configured as combinatorial logic, shift registers or RAM. Multiplexers are used to
specify the signal connections inside the CLB; signals from the logic input portion
of a slice are routed through to the sequential elements. The sequential elements
can be configured as either a FF or a latch to implement edge or level sensitive
designs.

A LUT realizes combinatorial logic functions through SRAM configuration, the
SRAM cells store the truth table values based on the logic operation specified. A
multiplexer inside the LUT selects the appropriate truth table value for the LUT
output depending on the number and combination of LUT inputs. For example,
a multiplexer of a 6-input LUT can select from 32 configurable SRAM cells, the
SRAM cells are connected to the data inputs of the multiplexer while the 6 inputs
act as the functional selection inputs. In this way, the logic function is implemented.
The configuration remains stable when a circuit is online and no reconfiguration is
performed [3].

The above three subcomponents are combined to form an entire CLB, providing
the logic capability of FPGA.
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2.1.2 Switch Matrix and Interconnect

Interconnect routing is another essential factor for FPGAs. CLBs interconnect
to each other and to IOBs using programmable switch boxes. The flexibility of
switch matrices allows any point in the circuitry to be able to be connected to
another point. Interconnect wires route the signals between CLBs by horizontal
and vertical lines crossing over the device, while clock and global signals are routed
by global routing. The design tool takes care of the interconnect routing tasks, user
interaction is not required.

Routing is determined by configuration, and carried out by interconnect wires
and programmable switches, which route the signals into their correct path. The
interconnects between the CLB pins are programmable switches, they are grouped
together to form the PSM. The PSM makes connections between the various pins
attached to it, as such it connects CLB pins to interconnects. The connections
that exist within the same CLB (intra-tile connections) are programmable, they
are called Programmable Interconnect Points (PIPs). PIPs establish the possible
connection between two local wires by using programmable switches [3].

The programmable switches and interconnect wires are organized in a way to
realize unique functions specified.

2.1.3 IOBs, Memory and Clock Management

Contemporary FPGAs support many different Input/Output standards, they pro-
vide compatible interface for the system. IO Blocks are grouped into banks, each
bank is able to support different I/O standards independently.

Most FPGAs contain embedded blocks of RAM memory, which are connected to
form a large on-chip memory. For instance, the processing system contained in the
Xilinx Zynq family provides instruction and data L1 cache, shared L2 cache and
on-chip RAM memory, which can be included in the design to support low-latency
memory access.

The advanced FPGAs also offer digital clock management, this feature provides
precise clocks with less deviation from a reference clock and filtering, allows com-
plete clock management.

2.2 Reconfigurable Architectures

Reconfigurable Architectures (RAs) are the devices with programmable logic blocks
and programmable interconnects between them. RAs perform computational tasks
with logic blocks instead of instruction sets, which avoids the overhead for load-
ing/decoding of instructions and dependence on the sequential execution nature of
the application. The programmability and efficiency make RAs a promising solution
to bridge the gap between application specific and general purpose architectures for
reconfigurable computing [13].

Fine-grained and coarse-grained architectures are the two basic categories of
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RAs. RAs can be implemented using FPGAs; the logic elements and interconnects
of FPGA are operating at bit-level, they are able to realize applications with arbi-
trary word-lengths. Therefore, FPGAs are considered as fine-grained reconfigurable
architectures. In contrast, coarse grained reconfigurable architectures provide wide-
width configurability; increase the granularity (the size of elements can be explicitly
reconfigured) of functional blocks and interconnect structures, create less overhead
[14].

This section discusses the differences between these two RAs and their major
advantages and disadvantages, then comes to the conclusion that tightly coupled
hardware architecture with processor and reconfigurable hardware integrated into
the same chip gives the most advantage in particular applications.

2.2.1 Coarse-grained Reconfigurable Architectures

When implementing word level operations, coarse-grained RAs use multiple-bit
wide datapaths instead of bit-level operations. The wide datapath allows efficient
implementation of complex operators; avoids the large routing overhead introduced
by bit-level processing units, which need to compose complex operators. Coarse-
grained RAs consist of higher granularity of computational elements, typically, the
volume of configuration data needed is several orders of magnitude lower than
that in an fine-grained FPGA. Therefore, the reconfiguration time is reduced. In
addition, the interconnects between processing elements have a wider bit-width,
which implies a higher area usage for a single line. Hence, fewer number of lines are
required, this results in less area usage for global routing. These devices provide
efficient performance, high area utilization and reduced power consumption [15].

2.2.2 Fine-grained Reconfigurable Architectures

There are several disadvantages for fine granularity to perform computational tasks.
Due to bit-level operations, operators for wide data sources have to be processed
by several processing units, leading to large routing overhead and low silicon area
efficiency. Also, the switched routing wires generate high power dissipation. In
addition, the high volume of configuration data needed for the large number of pro-
cessing units and interconnects requires a long configuration time. On top of this,
FPGAs are programmed using a high-level language, the operation at bit-level does
not match the functions specified in the high level language, therefore the synthesis
process takes a long time [15].

These fine-grained reconfigurable hardware architectures consist of processing
elements, which communicate with each other via the programmable interconnects.
Theoretically, any computation can be implemented on these fine-grained devices,
since they are operating at a bit-level. However, they require more reconfigura-
tion data and longer reconfiguration time compared to coarse-grained RAs, which
leads to inefficient usage of the reconfigurable hardware. Furthermore, using pure
reconfigurable hardware architectures, the reconfigurable hardware usually is not
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large enough to load the entire program, reconfiguration may be needed for runtime
execution of the application. In this case, the code that is rarely used will also be
mapped onto the reconfigurable hardware, which leads to inefficient usage of the
reconfigurable hardware and slowdown the program execution [13].

Coupling a general-purpose processor with reconfigurable hardware on the same
chip, can result in optimal flexibility and efficiency. Code regions that are frequently
used to be mapped onto the reconfigurable hardware, can have faster program ex-
ecution. Some reconfigurable architectures like RISPP (Rotating Instruction Set
Processing Platform) [13], introduces the concept of special instructions (SI) and
instruction rotation. A single SI can have multiple implementation instances and
the runtime system decides which instance should be loaded onto reconfigurable
hardware. At design time, multiple implementations are composed, and at run-
time, the RISPP system controls the infrastructure of the reconfigurable fabric and
realizes runtime adaptive execution [13].

It concludes that integrating a fine-grained reconfigurable fabric with a proces-
sor on the same chip, and utilizing reconfigurable hardware for mapping special
instructions, can achieve runtime adaptability, better performance and speed up.

2.3 Partial Reconfiguration

An FPGA has the flexibility of being configured and reconfigured after manufac-
turing, which allows the user to change the functions of the device without re-
fabricating it. The Partial Reconfiguration (PR) feature goes one step further, it
allows us to modify a subset of the resources on an operating FPGA by loading the
reconfiguration bit file. After downloading the full bit file to configure the FPGA,
the design of an operating FPGA can be dynamically modified by loading the par-
tial bitstream in the reconfigurable logic blocks, while the application running on
the remaining logic is not interrupted [8]. The overall concept of PR action is de-
picted in Figure 2.2.

Partial
Bit Files

FPGA ICAP

MEM
Reconfig
Block

Function A
Function B

Function C
Function D

Figure 2.2: Partial Reconfiguration

To date, devices with hardware support for PR have existed for quite a long time.
Now with the software and tool support, PR is widely adopted for reconfigurable
systems. PR enables specific regions of the FPGA to be tested without compro-
mising the device operation, it brings flexibility, cost and power reduction to the
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overall system.

2.3.1 Partial Reconfiguration of a Processor Peripheral

In this thesis, the reconfiguration process as well as the self-test are supposed to be
triggered by the embedded processor. In order to perform partial reconfiguration in
a system with a microprocessor during runtime, each partial configuration file is first
converted into a partial bitstream, and then stored in the memory. The runtime
reconfigurable system fetches the partial bitstream out of the memory and sends it
through the Internal Configuration Access Port (ICAP) or Processor Configuration
Access Port (PCAP) interface into the reconfigurable partitions. After the PR
flow loads the partial bits to the reconfigurable region, the content of that region
in the FPGA is modified. The AXI Hardware Internal Configuration Access Port
(HWICAP) core for the AXI Interface enables an embedded processor to read and
write the FPGA configuration space via the ICAP, it supports data reading and
partial bitstream loading through AXI4-Lite Interface [16]. This enables the user
to write software programs to modify the circuit structure and functionality during
runtime, so PR can be conducted for the reconfigurable system under software
control.

2.3.2 ICAP versus PCAP

This thesis is based on an evaluation board of the Zynq-7000 device. PCAP is
the recommended reconfiguration mechanism for Zynq-7000 designs [7]. At power
on, the processor selects PCAP as the configuration interface to the Programmable
Logic (PL) and configuration is performed by the processor through PCAP to the
PL. After configuration, the processor may switch the configuration interface to
ICAP (internal to PL) by writing the control bit through an instruction executed on
the processor, the control is then passed over to ICAP. PCAP configuration belongs
to the processor, while ICAP belongs to the PL [7]. The processor may take over
the control of PCAP back at any time. ICAP does not have security management.
PCAP and ICAP are mutually exclusive, and cannot be used concurrently.

2.4 Target Hardware

The targeted hardware platform of this work is the Xilinx Zynq-7000 SoC. The
Zynq family consists of a dual-core ARM Cortex-A9 processor based processing
system and PL built on 28 nm process technology. The PL of Zynq device on
ZedBoard is an Artix-7 based FPGA, which belongs to 7 Series FPGA. To test the
programmable part of this SoC device, we need to know the structure of 7 Series
FPGA. DSP blocks, block RAM and IOB are not taken into consideration, they
are out of the scope of this thesis. The main logic components in the FPGA are
the CLBs, this work will focus only on CLB tests.

In the previous work for Virtex-5 (refer to [3]), the test configurations were
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developed based on the RapidSmith Java framework. For porting the existing CLB
test designs from Virtex-5 to the programmable resources on the Zynq-7000 device,
first let us take a close look at both CLBs.

2.4.1 Common Features between Virtex-5 and 7 Series CLBs

There are many similar aspects between Virtex-5 and 7 Series CLBs. Each CLB
contains a pair of logic slices, the two slices in the same CLB have no direct con-
nections to each other. Slices are organized as columns and form independent carry
chains [1] [2]. See figure 2.3 below for the arrangement of CLBs and slices for both
Virtex-5 and 7 Series.

Figure 2.3: Arrangement of CLBs and Slices

Slices have unique names in the form of XnYn: the X number denotes the col-
umn position of the slice, whereas the Y number denotes the row position, the Y
number remains the same within a CLB. Starting from the bottom left of the die,
the number counts up in sequence from X0Y0. Thus, the position of the slice is
identified. Figure 2.3 illustrates how the slices are defined for four CLBs with start
point in the bottom-left corner of the die.

A CLB can have two types of logic slices: SLICEL and SLICEM. Each CLB
contains either two SLICELs or one SLICEL and one SLICEM. Every slice con-
tains LUTs, multiplexers, carry chain logic and storage elements. These elements
provide logic, arithmetic, and memory functions. In addition to LUT functionality,
SLICEM LUTs can also be configured as storage elements using distributed RAM
and shift registers. SLICEL does not support these additional functions. Therefore,
SLICEM represents a superset among all slices [1] [2].

Each slice has 4 basic LUTs, each of which can implement an arbitrarily defined
6-input or 5-input Boolean function. When implemented as a 6-input function, the
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LUT has only one output. When implemented as dual 5-input LUTs, these two
functions share common inputs, and both outputs can be used. In this case, the
most significant input bit is driven high by the software. There is no difference
in propagation delay through a LUT for a 6-input or 5-input LUT. Refer to fig-
ure 2.4 and figure 2.5. Signals that exit from the outputs of a LUT, feed into a
multiplexer and finally reach a storage element, which can be configured as either
edge-triggered D-type FFs or level-sensitive latches. When configured as a latch,
the latch is transparent when the clock signal is low [1]. The carry chain runs up-
ward and has a height of four bits per slice. For each bit, there is a carry multiplexer
and a dedicated XOR gate which runs through the middle of the slice to perform
fast carry computations. The carry path and multiplexers can also be used with
LUTs to implement more logic functions [1] [2].

There are several configuration options for the four sequential storage elements,
they can be configured as either FFs or or latches, initialized to “0” or “1”, and the
reset (SR) can be set as either active-high or active-low. The set and reset func-
tion for the slice has several options, such as no set/reset, synchronous set/reset or
asynchronous set/reset, the work in this thesis always selects asynchronous reset.

In addition to the LUTs, slices contain three additional multiplexers to combine
with the four LUTS to provide seven- or eight-input functions in a slice. These
multiplexers will not be tested in the scope of this work, this can be considered for
future work. Functions with more than eight-input can also be implemented using
multiple slices, in this case, there are no direct fixed connections between slices.

A LUT in both SLICEM and SLICEL can implement a 64 x 1-bit Read Only
Memory (ROM), three configuration options are available which depend upon the
number of LUTs used. ROM contents are loaded during device configuration. Refer
to table 2.1 for details. The number of LUTs needed and associated multiplexers
for the implementation are also shown. A LUT in SLICEMs can also be configured
as distributed RAM elements and shift registers.

416:1256 x 1

28:1128 x1

14:164 x 1

Number of LUTsMultiplexerROM

Table 2.1: ROM and Multiplexer versus Number of LUTs

2.4.2 Virtex-5 CLB Architecture

In Virtex-5 CLB, each slice consists of 4 LUTs and 4 FFs. Table 2.2 shows the logic
resources within one Virtex-5 CLB.
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Slices LUTs Flip-Flops Arithmetic and 

Carry Chains 

Distributed RAM 

(SLICEM only) 

Shift Registers 

(SLICEM only) 

2 8 8 2 256 bits 128 bits 

 

Table 2.2: Logic resources in one Virtex-5 CLB

Figure 2.4 shows a SLICEM of Virtex-5. It consists of a circuit repeated four
times. This circuit consists of a LUT connected to multiplexers and finally a se-
quential element.

Every other CLB column contains a SLICEM. In addition, the two CLB columns
to the left of the DSP48E columns both contain a SLICEL and a SLICEM.

Note that the control signal reverse (REV) is not present in a 7 Series slice
(function equals to REV=0 in Virtex-5).

2.4.3 7 Series CLB Architecture

Given the above mentioned Virtex-5 CLB architecture, the main difference in the 7
series CLB is that each slice contains 4 LUTs but 8 storage elements (one additional
storage element per LUT). Figure 2.5 shows a 7 Series SLICEM and the differences
to Virtex-5 SLICEM. Only four of the eight storage elements can be configured
as either edge-triggered FFs or level-sensitive latches. The other four additional
storage elements can only be configured as FFs, and the D input can be driven
by the output of 5-input LUT (O5) or the BYPASS slice inputs via AX, BX, CX,
or DX input. When the original four of the eight storage elements in a slice are
configured as latches, the remaining four storage elements in that slice must remain
unused.

The multiplexers and arithmetic carry logic are the same as Virtex-5 CLB. LUTs
can be used for random logic implementation or distributed memory, and can be
configured as either one 6-input LUT (64-bit ROMs) with one output, or as two
5-input LUTs (32-bit ROMs) with separate outputs but common addresses or logic
inputs. When memory LUTs are configured as 64x1 or 32x2 bit RAM or shift
register, the data inputs are ‘I’ in 7 Series SLICEM instead of ‘X’ in Virtex-5
SLICEM. Each LUT output can optionally be registered in a flip-flop. See table
2.3 below for reference.

Slices LUTs Flip-Flops Arithmetic and 

Carry Chains 

Distributed RAM 

(SLICEM only) 

Shift Registers 

(SLICEM only) 

2 8 16 2 256 bits 128 bits 

 

Table 2.3: Logic resources in one 7 Series CLB

Based on the above CLB structural comparison results, the test approach and
methodology for testing Virtex-5 CLBs can be leveraged for configuring and testing
of 7 Series CLB components.
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Figure 5-3: Diagram of SLICEM
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This chapter discusses FPGA testing. After presenting fault models and FPGA
test methodologies, CLB subcomponent tests are introduced. Then based on the
previous work on Virtex-5 FPGA, the chapter describes the design of Test Config-
urations (TCs) for the target hardware of this thesis, as well as the Test Pattern
Generation (TPG) and the Output Response Analysis (ORA).

3.1 Fault Models and Principles of Test

Modern FPGAs are more prone to latent faults and aging defects. For performing
online test of FPGAs in the field, external equipment is not available. It is necessary
to perform on-chip self testing, i.e., Built-In Self Test (BIST). By applying test
patterns at the inputs and comparing output responses with the expected values,
one can tell if the test is a pass or fail [3].

For testing FPGAs, it is required that the structural knowledge of the circuit
to be tested. As mentioned in the last chapter, CLB testing is the main focus
of this work. To evaluate each subcomponent of CLB, several TCs need to be
established to ensure the testability of the circuit, corresponding test stimuli must
be applied and outputs need to be analyzed. FPGAs are reprogrammable, so the
circuit to be tested can be reconfigured by multiple TCs. Each TC targets a subset
of components. It is also required to test the interconnects, however, many of
the interconnects are already tested during CLB testing [17]. In addition, due to

17
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complexity, the number of TCs required for interconnect testing is much higher.
The number of TCs determines the test speed, because the configuration time is
several orders of magnitude higher than that of test application [4]. To minimize the
test execution time, this work focuses only on CLB structural testing, interconnect
testing is not described here.

3.1.1 Fault Models

To detect CLB structural defects, the Stuck-At Fault (SAF) model is the most
commonly employed for fault derivation [18]. However, CLBs consist of logic gates,
memory elements, multiplexers and storage elements, the implementation details
of most CLB subcomponents are unknown. To derive a more accurate list of fault
models, additional functional faults have to be accounted for a specific set of com-
ponents. For instance, to detect defects in the RAM and combinational faults in
the Lookup Table (LUT), respective fault models are used.

This subsection describes the fault models used for each CLB subcomponent.
Figure 3.1 provides an overview of complete CLB fault models for easy understand-
ing.

4.5. Complete CLB Fault List 39

Figure 4.7: 2-input multiplexer stuck-at faults

It is assumed that all faults on the wires entering a component are dominated
by the faults in the component itself. At fanouts, the faults have to be accounted
for separately as shown in Fig. 4.8. At buffers, faults at the input and output are
also considered equivalent.

Figure 4.8: Stuck-at faults in fanouts

4.5 Complete CLB Fault List

Fig. 4.9 gives an overview of the hybrid fault model assumed for the FPGA logic
elements. The stuck-at fault model is used for modeling structural faults. Func-
tional faults are also accounted for using a set of component specific functional fault
models. The CFM is used for exhaustively modeling combinational faults in the
LUT whereas more specific fault models are used to abstract defects in the RAM
and flip-flops.
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Hybrid Fault 

Model

Figure 4.9: Overview of the hybrid fault modelFigure 3.1: Complete list of CLB Fault Models (from [3])

This thesis is under the presumption of the single SAF model. In this fault model,
one of the signal lines in the circuit under test is stuck at a fixed logic value, either
“0” or “1”, no matter what combination of inputs is applied. Therefore, a circuit
with total of n signal lines, the maximum possible number of single stuck-at faults
is 2n.

3.1.1.1 LUT in Functional Mode

Under the assumption that the internal structure of the unit under test (black box)
is unknown, to test LUTs in combinational function mode, the Cell Fault Model



3.1. Fault Models and Principles of Test 19

(CFM) [19] is applied. By thoroughly applying any of the input combinations to
the black box and comparing the results received from outputs with the expected
values, any mismatch is considered as a cell fault. The CFM is a more extensive
functional fault model, compared to the SAF [19], for it models any fault that
deviates a cell from the correct behavior. All single and multiple stuck-at faults
that may occur are covered for the cell under test.

The drawback of CFM is that all of the input combinations must be exercised
and the total number of cell faults can be huge for cells with a large number of
input and output lines.

3.1.1.2 LUT in RAM Mode

When a LUT is configured as RAM, the functional faults associated are similar
to classic memory testing faults, which can be categorized as the following fault
models:

1. Address decoder Faults (AFs): The faults in the address decoder cause an
incorrect address access.

2. Stuck-At Faults (SAFs): A memory cell is stuck at either a “0” or “1” value.
3. Transition Faults (TFs): A cell is incapable of switching from “0” to “1” or

from “1” to “0” promptly.
4. Coupling Faults (CFs): Memory cells undertake a wrong value due to the

switching activity in neighbouring cells.
5. Data Retention Faults (DRFs): A memory cell is unable to retain its data

value after a certain period.

In this work, to reduce the hardware overhead, only reduced fault sets are taken
into consideration. These are AFs, SAFs and TFs. Besides, these three faults
predominate all defects in RAM modules [3]. An existing memory test algorithm
is used in this work to test RAM faults.

3.1.1.3 LUT in Shift Register Mode and Sequential Elements

When a LUT is in Shift Register (SR) mode, the connection between the SRAM
cells in a LUT is similar to Flip-Flops (FFs) connected in series. When testing
interconnection of the LUT SRAM cells connected in series, the functional faults
detected are the same as the faults occurred during testing FFs. For all sequential
elements in a slice, such as the storage elements configured as FFs or latches and
LUTs in SR mode, the SAFs (stuck at “0” or stuck at “1”) and transition faults
(slow to rise or slow to fall) are the four dominant faults [3].

3.1.1.4 Structural Stuck-At Fault Model

The faults in the aforementioned three modes belong to functional faults. For
the remaining subcomponents in a CLB, such as the multiplexers, XOR cells and
interconnect wires in a CLB, structural faults are targeted, SAFs are used to model
the structural faults [3].



3.1. Fault Models and Principles of Test 20

3.1.2 Principles of CLB Test

As presented in the last chapter, CLB components can be divided into three main
subsets, which can be tested separately. These are LUTs, multiplexers and the
sequential elements. Different test approaches are applied for each of the CLB sub-
component. The next section explains the underlying test methodology in detail.

It is important to mention the term of C-testability in the context of CLB testing.
An array of logic circuits that can be tested using a fixed number of TCs, irrelevant
of array size [3], is called C-testable. The structure of FPGA is fairly homoge-
neous, CLBs are arranged in a regular array architecture, repeatedly throughout
the FPGA. In order to perform an array-based CLB test, a container is set up. The
logic elements are configured into an iterative C-testable array inside the container.
To have a full-coverage test, the container requires an appropriate number of TCs,
each of them targeting specific CLB subcomponents.

When a TC is configured into a dedicated test container, the corresponding TPG
for that TC is applied, and ORA is captured at the output accordingly. Figure 3.2
shows the CLBs configured as a C-testable array in a container with external TPG
and ORA, it is based on the similar picture taken from [4].
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Figure 3.2: Container in a C-testable array with external TPG and ORA

A C-testable CLB array can be fully tested by applying exhaustive test patterns
at the input of the first cell in an array, and obtaining the output responses at the
last cell of the array, no matter how long the array is. However, to avoid long timing
critical paths when the array becomes deep, the CLB subcomponents are pipelined.
This is achieved by including the sequential element the sequential element of CLB
into the path and connecting the CLBs in an interleaved way [4]. The structure for
an interleaved CLB array is shown in figure 3.3.

3) Sequential elements: CLBs in an FPGA may contain
additional separate sequential elements such as flip-flops,
latches, or LUTs in shift register mode. For these elements,
the considered faults are stuck-at and transition faults (slow-to-
rise, slow-to-fall). The four faults per flip-flop dominate stuck-
at faults on the interconnection between flip-flops.

B. CLB Test Principle and Architecture
The CLB test approach presented in this and the following

section is applicable to different types of FPGAs since the
internal CLB structure is typically similar. The approach is
applied to the Virtex-5 target architecture as described in
section V-A.

The complexity of a CLB requires multiple TCs to exercise
all components. Full coverage of faults inside the logic is
ensured by deterministic design of the TCs and of the test
stimuli applied to exercise the configured components. As
shown in fig. 2, the CLBs are connected in a C-testable array
for low test time. The TPG and ORA may differ between
TCs. They are external to the container under test as shown in
fig. 1. The TPG provides input stimuli to the container under
test and the ORA receives its response via the inter-container
buses, respectively.
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Fig. 2: Container configured into a C-testable array with external test
pattern generator and output response analysis (connected via inter-
container buses)

To avoid a long critical path and its dependence on the
container size, the tested subcomponents are pipelined to test
at system speed. Logic tests are pipelined by utilizing the
sequential elements included in each CLB. To test for all
faults, the unregistered outputs of CLBs must also be tested.
An interleaving array scheme [28] as shown in fig. 3 is used.
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Fig. 3: CLB in fully interleaved/pipelined array configuration

C. Test Methods for CLB Subcomponents
1) Lookup Table - Function mode: All cell faults are tar-

geted to cover all single and all multiple internal combinational
faults. The exhaustive set of test patterns is applied to the
inputs (2n test patterns for an n-input LUT).

A LUT is configured with two complementary functions
in order to test for all stuck-at faults in the configuration bits.
It would suffice to use the tautology and its inverse (all 1’s
and all 0’s) for testing a single LUT. However, XOR/XNOR
configurations are used instead since they can be connected
into C-testable arrays [30].

2) Lookup Table - Shift Register Mode: In shift register
mode, the flip-flops are configured into a long shift register.
In addition to stuck-at faults, transition faults are tested for by
applying standard scan chain test patterns [31]. The “01100”
test pattern is used because it contains the two transitions
between 0 and 1.
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Fig. 4: Carry chain test architecture: (a) Two-stage chain under test
(b) Pipelined test setup

The LUTs in shift register mode are connected into multi-
ple scan chains of which the outputs are compared against one
another for response evaluation. To minimize test configura-
tions, separate flip-flops in each CLB can be simultaneously
tested in the same TC by including them into the chain.

3) Lookup Table - RAM mode: Each n-input LUT can
implement a 2n-bit RAM. Test patterns are generated at a
global TPG implementing the MATS++ [10] algorithm to
ensure coverage of all stuck-at faults, address decoder and
transition faults. Note that only 5 × 2n March operations are
required since the initialization step is specified directly in the
TC.

Each CLB contains multiple RAM modules. Test response
analysis is done by comparing the output of these RAM blocks
and aggregating the results into the global ORA, which will
detect multiple errors as long as there is at most one error per
CLB.

4) Multiplexer: Multiplexers are tested by applying all
possible configurations to exercise all select combinations. The
data path is tested for stuck-at faults by applying the 0 and
1 stimuli. Multiplexer testing is often included in other tests
since they are on the sensitized path used for testing other
subcomponents.

5) Fast Carry Chain: Many FPGA architectures contain
dedicated carry chains. An example is given in fig. 4 (a),
consisting of multiplexers and XOR cells. To test for all the
stuck-at faults in the carry chain efficiently, the elements must
also be configured into pipelined C-testable arrays. Two TCs
are required to fully test the carry chain.

The first TC shown in fig. 4 (a) tests for faults in the XOR
gates and a subset of the faults in the multiplexers. The inputs
(X) are driven with identical values and propagated through the
multiplexer to the XOR gate. In this scenario the multiplexers
are transparent and the carry-chain blocks are configured into
XOR arrays. The test signals are generated in the LUTs and
the outputs S0, S1 are compared and pipelined using the CLB
flip-flops.

In the second TC shown in fig. 4 (b), the carry-in and
carry-out pins are tested by connecting the chain elements in
a long carry chain and propagating the 0 and 1 values through
it to test for both stuck-at faults. A flip-flop is used at the end
of each column to pipeline the test.

6) Latches and Flip-Flops: Flip-flop testing is identical to
testing the LUT in shift register mode. If sequential elements
can be configured as level sensitive latches, a separate test
is required to guarantee proper latch function. To test for the
correct function of the latches, including all stuck-at faults and

Figure 3.3: CLB in a fully interleaved array (from [4])
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3.1.3 Test Flow for FPGAs

The first step is to define the location and size of the container by the two coordi-
nates. The CLBs to be tested are connected in a C-testable array. The appropriate
number of TCs needs to be defined and implemented to have a full coverage of the
CLB test. Finally the partial bitstreams containing the TCs set-up for the container
are generated. For test execution, the container is subsequently configured with all
TCs following the Partial Reconfiguration (PR) process, with each TC enabling test
of a subset of complete logic elements.

Each TC has its own specific TPG, whereas ORA design is the same among all
different TCs, it is implemented with XOR gates providing the required comparison
[3]. The TPG applies the suitable test patterns to the CLB array, its responses are
captured and evaluated by the ORA. The final test result is then obtained from the
output of the ORA. The steps of partially reconfiguring the container followed by
the test execution are repeated throughout all TCs to ensure the full coverage of
CLB faults.

3.2 Design of Test Configurations

In previous work [3], the CLB structural self-test was evaluated on a Virtex-5 evalu-
ation board. It includes 9 test configurations to perform a full structural test of the
Virtex-5 CLB. TCs were developed on RapidSmith java framework, the techniques
covered the following CLB subcomponents:

• Lookup Table - Function mode

• Lookup Table - Shift Register mode

• Lookup Table - RAM mode

• Multiplexer

• Fast Carry Chain

• Flip-Flop or Latch

Based on Virtex-5 TCs design, this work extends the development of TCs for
7 Series CLBs. For the evaluation of the concepts in real hardware, an evaluation
and development board based on the Xilinx Zynq-7000 SoC - ZedBoard is used.
The Artix-7 CLBs are the main logic elements inside the programmable logic part
of the Zynq device on that board. In addition, the TPGs and ORAs are taken
out from java implementation, which were included in Virtex-5 TCs design [3], and
are designed separately together with the static logic. This eliminates the BIST
hardware overhead from the test architecture.

3.2.1 CLB Subcomponent Tests

In this subsection, the test for each of the subcomponents of CLB is presented.
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3.2.1.1 LUT - Function mode

LUTs are the main functional elements in CLBs. When a LUT is configured as
a combinational function mode, to cover all single or multiple internal faults, all
cell faults are targeted. An exhaustive set of input patterns is applied as the test
patterns. A LUT is configured with either an XOR or XNOR configuration to
ensure C-testability.

3.2.1.2 LUT - Shift Register Mode

The FFs are configured into a long shift register, both SAFs and TFs are targeted.
The scan chain test pattern “01100” is applied, because it contains the transitions
from “0” to “1” and from “1” to “0”.

The LUTs in SR mode are connected into multiple scan chains. For response
analysis, the outputs of the scan chains are compared with each other. To reduce
the number of required TCs, the FF in the CLB is included into the scan chain. By
placing FFs in-between SRs, these FFs are tested simultaneously with the SR test.
Hence, two CLB subcomponents are tested in a single TC.

3.2.1.3 LUT - RAM mode

Test patterns are generated based on the MATS++ algorithm to ensure coverage of
all SAFs, AFs and TFs. The response analysis is performed by mutually comparing
the outputs of these RAM blocks and aggregating the results into the global ORA.

3.2.1.4 Multiplexer

The MUX is tested by applying all possible configurations to exercise all combina-
tions of the selected inputs. SAFs are tested by applying both ‘0’ and ‘1’ stimuli
for data inputs. Multiplexer testing is often included in other tests since they are
used for internal routing of subcomponents in a slice.

3.2.1.5 Fast Carry Chain

The carry chain consists of multiplexers and XOR cells, for which SAFs are targeted.
To test carry chain elements effectively, they must be connected in pipelined C-
testable arrays. Two TCs are required for a full coverage of carry chain test. In one
of the TCs, the multiplexers are transparent and the carry chains are configured
into XOR arrays. In the other TC, the carry-out pin has a dedicated interconnect
to the carry-in pin of the neighboring slice. The chain elements are connected in a
long carry chain and “0” and “1” values are propagated through to test for SAFs.
A FF at the end of each column is used to pipeline the test.
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3.2.1.6 Latches and Flip-Flops

As described in LUT in SR mode section, testing of the edge sensitive FFs is
performed together with the test of the SRs. If sequential elements are configured
as level sensitive latches, a separate test is required for the proper latch function.
For testing the targeted SAFs and TFs, two non-overlapping clocks are required as
input to the scan chain. The same test pattern “01100” is used for both FF and
latch testing.

3.2.2 Extension for 7 Series TCs

The number of required TCs can be different for different FPGA families, because
the CLB architecture might differ from one to the other. However, after analyzing
the architectural comparison results between Virtex-5 and 7 Series CLBs from chap-
ter two, it turns out that CLB test for the target 7 Series hardware can be achieved
with the same number of configurations. The test for the four additional FFs in
a slice can be integrated into existing TCs. The following subsections explain in
detail the changes made to the Virtex-5 TCs for testing 7 Series CLBs.

The additional 4 storage elements can only be configured as edge-triggered D-type
FFs. The D input can be driven by the O5 output of the LUT or the BYPASS slice
inputs via AX, BX, CX, or DX input. When the original four storage elements are
configured as latches, they can not be used [2]. Besides the four additional storage
elements, the different input ports for SR and RAM testing of SLICEM must also
be considered

After carefully evaluating all the TCs for the possibility to add the tests for the
additional 4 FFs, the final decision is to integrate the tests into the TCs for xor test
and xnor test. There is no increase in the number of TCs, so the impact on test
time is minimized.

The xor test and xnor test for the Virtex-5 are somewhat redundant. The 6-bit
counters is driving the LUT, the only difference between xor test and xnor test is
the inverted MSB bit of the input. In the modification for the 7 Series, xor test has
only one output from 5-input LUT configured as an XOR function, which drives
the D input of the additional 4 FFs to test the D input path. Xnor test tests full
6-input XNOR function as in the Virtex-5, with additional input to X input to test
the BYPASS slice input to the 4 additional FFs. For xor test, 6-input LUT XOR
function is covered by 6-input xnor test.

7 Series CLBs have an irregular numbering scheme compared to Virtex-5 CLBs
and affect SLICEM Test. Especially for ram test, the code for creating the TC has
to be changed substantially, to address the numbering differences between CLBLM
of the Virtex-5 and CLBLM L/CLBLM R of the 7 Series. Figure 3.4 and figure 3.5
illustrate the different numbering scheme of these two CLBLMs.

The TCs are developed using java programming, generated with RapidSmith
framework. Chapter 5 will give an inside view of the RapidSmith tool flow for TC
generation.
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Figure 3.4: Slice arrangement of Virtex-5 CLBLM

Figure 3.5: Slice arrangement of 7 Series CLBLM L and CLBLM R

3.2.3 Design of TPG and ORA

The TPGs generate input stimuli to the reconfigurable modules. The ORAs are
used to analyze results by mutually comparing corresponding outputs of similarly
configured logic under test. In previous Virtex-5 related work, the TPG and ORA
for each TC were designed using java programming, this work moves the testbench
design for respective TC out of Java implementation to eliminate PRET overhead.
As such, TPGs and ORAs are designed using HDL (Hardware Description Lan-
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guage) instead. Java codes for Virtex-5 are analyzed and interpreted to create
VHDL designs for TPGs and ORAs, to realize the equivalent functions. TPGs
output test done signal, ORAs give error flag if there is any fault detected.

The ORAs are carried out by mutually comparing the output responses from
identically configured C-testable arrays, the result of the comparison is then cap-
tured in a storage element (flip-flop) for tracing back. Since ORA is common for
all TCs, the implementation is briefly described here. As illustrated in Figure 3.6
below, the outputs are compared with each other using XOR gates, when an error
is detected, the last XOR gate outputs a ‘1’ when the test is done [3].

46 Chapter 5. CLB Test

for the most part. Comparison-based ORAs are implemented using XOR gates for
detecting single errors. For an even number of arrays, the outputs are compared
using an XOR gate. For an odd number of outputs, a combination of XOR/OR
gates are used as shown in Fig. 5.3 to avoid masking of errors.

D Q
+

D Q D Q

a)

b) c)

Comparison Storage

Figure 5.3: a) Comparison-based ORA for b) four and c) three array outputs

The comparator must only ensure that a “0” is output when all array outputs
are identical and “1” otherwise. The logic circuit can then easily be derived from
the truth table describing that functionality. After the comparison stage, there is
a storage stage as shown in Fig. 5.3. This makes sure that each result is saved in
the ORA flip-flop to have a single value at the end of a test-run indicating whether
a fault is detected.

5.1.2.2 Test Pipelining

Configuring CLBs into arrays can lead to a very long critical path for large con-
tainer sizes. This dictates the use of very slow test clocks which are additionally
dependent on the container size. To avoid these limitations, the test configurations
are pipelined, allowing tests to run at system speed (MHz) instead of kHz. This is
demonstrated in the results section to provide an increase in test speed in the order
of 1000− 10000.

The way to pipeline logic tests is by utilizing the sequential elements included
in each logic slices. For an exhaustive test, the unregistered outputs must also be
tested. To allow that, an array interleaving scheme such as that shown in Fig. 5.4
is used [20].

5.1.3 Testing Iterative Logic Arrays

The concept of testing arrays is very old [38]. It has been shown in [24, 38] that
upon the fulfillment of some conditions. An array of arbitrary size is fully tested
by applying exhaustive test patterns at the inputs of the first cell and observing

Figure 3.6: ORA for all TCs

The TPGs for all 9 TCs are outlined as follows.

3.2.3.1 TPG for xor test and xnor test

To test all transition faults, the LUTs are configured as XOR or XNOR. An ex-
haustive set of test patterns is applied for this combinational logic. The TPG to
5-input or 6-input LUT is basically implemented by a 5-bit counter or 6-bit counter
respectively. The counter increases from 0 to the full value to switch each bit.
The BYPASS slice inputs ‘X’ is implemented using toggle flip-flop to provide the
transitions for single bit from “0” to “1” and from “1” to “0”.

3.2.3.2 TPG for carry test cout and ff

The TPG input to both ‘A4’ and ‘X’ is from the same source, it is implemented by
a toggle flip-flop as well to switch single bit.

3.2.3.3 TPG for sr test

Both the clock enable input and the stimuli signal input are implemented using
toggle flip-flops, with 180 degree phase difference between them.

3.2.3.4 TPG for ram test

For testing memories, March tests are used [18]. Same as sr test, ram test is target-
ing on SLICEM. On the other hand, RAM testing is more complicated. To test the
LUT as a 64-bit RAM, the MATS++ algorithm is used to ensure full test coverage.
A 6-bit counter is used as an address input and a test pattern is applied to the data
input. Table 3.1 describes the detail MATS++ algorithm.
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3.1.2   carry_test_cout_and_ff  
 
TPG input to both A4 and X with the same source, it is implemented by toggle flip-flop 
as well.  
 
3.1.3   sr_test 
 
Both Clock Enable input and stimuli signal input use toggle flip-flop, with 180 degree 
phase difference. 
 
3.1.4   ram_test 
       
Same as sr_test, ram_test is aiming on SliceM, on the other hand, RAM testing is much 
complicated. Each LUT implements a 64-bit RAM, uses 6-bit counter as address input, 
test patterns implement the MATS++ algorithm to ensure full test coverage. Table 3-1 
below describes the detail MATS++ algorithm. 
 

MATS++ algorithm: 
 

{ ↑(w0); ↑(r0,w1); ↓(r1,w0,r0)} 
  

For i=0 to n-1 
Write 0 in cell Ci 

For i=0 to n-1 
Read cell Ci and check its content (0 expected) 

Write 1 in cell Ci 

For i=n-1 to 0 
Read cell Ci and check its content (1 expected) 

Write 0 in cell Ci 

Read cell Ci and check its content (0 expected) 
 

Table 3-1:  MATS++ Algorithm 
 
The VHDL code used to implement the algorithm is displayed below: 
 
-- MAT++ algorithm 
MATS: process(clk, rst, STATE) 
begin 
if rst = '1' then   --asynchronous reset 
    count <= "000000";   --RAM address 
    cq <= '0';           --WE signal='0', read 
    aq <= '1';           --write bit '1' to RAM cell 
    STATE <= S1; 
elsif clk'event and clk = '1' then 
case STATE is 
when S1 => 

Table 3.1: MATS++ Algorithm

3.2.3.5 TPG for latch test cy and latch test o5

Toggle flip-flop is used as stimuli for ‘X’ input. These two TCs require two non-
overlapping clock signals, depending on the quantity of total slices, respective clock
is provided to TPG and ORA. If the total number of slices is modulo 4, then
different clock sources are applied to TPG and ORA; otherwise, TPG and ORA
use the same clock source.

3.2.3.6 TPG for carry test sum ff and carry test sum mux

Each slice contains a four-stage fast carry chain. It consists of static multi-
plexers and XOR cells. For both carry test sum ff and carry test sum mux test
configurations, the same input stimulus are applied. Figure 3.7 shows how test
patterns connected to ‘A’ or ‘X’ are generated, with both initial value equals to “0”.

3.2.4 Test Hardware Design

In the previous subsection we have created the TPG and ORA for each TC, here we
link them up to form the test hardware to test the container. The container interface
module is the wrapper for the partially reconfigurable module, i.e., the container.
Multiplexers are used for select input stimuli and output response for respective
TC, they belong to the static logic. There are variations in the number of inputs
and outputs for different TCs, however the container for the TC must have a com-
mon test interface. The defined container interface consists of follows: one system
clock input, two non-overlapping clock inputs (clk 0 and clk 1), one reset input,
two 32-bit inputs from TPG or functional test data input, and two 32-bit outputs
to the ORA or functional test result output. Refer to figure 3.8 for details.
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Figure 3.7: TPG for CarrySumFF and CarrySumMux

Figure 3.8: Overview of User logic structure

The container communicates with TPG and ORA via this I/O interface. Each
TC uses only lower 8 bits of one of the two 32-bit inputs to get input signals from
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the TPG and lower 8 bits of one of the two 32-bit outputs to output to the ORA.
The container interface is therefore a superset of the signals needed by the TPGs
and ORAs.

The two non-overlapping clocks for the latch tests are generated from the system
clock. The clock generator is used to create the two clocks with a 25% duty cycle
and 180 degree phase shift, it is assigned as a sub-module under top-level user logic
module. Figure 3.9 shows the two non-overlapping clocks generated from system
input clock.

CLK

Figure 3.9: Two non-overlapping Clocks based on System clock

The port names and designators have been consolidated in Java codes to match
with the port names of container interface module. Table 3.2 shows the one-to-one
matching between the port names of the TCs and the container interface module.
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The two non-overlapping clocks for the latch tests are generated from system clock 
with 25% duty cycle and 180 degree phase shift, it is assigned as a sub-module under top-
level user_logic. 

 

Figure 3-3:  Two non-overlapping clocks based on system clock 
 

    The port names and designators have been changed in Java codes to match with the 
names of interface signals. Table 3-2 shows the matching between the port names in 
XDL files for each TC and the container interface: 
  

clk                     => clk 
clk_0                 => clk_0 
clk_1                 => clk_1 
rst                      => rst 
en                      => ain(7) 
in_tpg               => ain(6) 
in_tpg5             => ain(5) 
in_tpg4             => ain(4) 
in_tpg3             => ain(3) 
in_tpg2             => ain(2) 
in_tpg1             => ain(1) 
in_tpg0             => ain(0) 
out_ora0           => result_lsb(0) 
out_ora1           => result_lsb(1) 
out_ora2           => result_lsb(2) 
out_ora3           => result_lsb(3) 
out_oraMUX0  => result_lsb(4) 
out_oraMUX1  => result_lsb(5) 
out_oraMUX2  => result_lsb(6) 
out_oraMUX3  => result_lsb(7) 

Table 3-2:  Port Map 
 

Some errors encountered during implementation, solutions provide as follows.  
ERROR:Xst:2035 – Port<clk> has illegal connections. This port is connected to an input 
buffer and other components. 

Table 3.2: Port Map
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Some errors encountered during implementation, such as “Clk port has illegal con-
nections, this port is connected to an input buffer and other components”, “Clock
buffers are lined up in series” and “Input pad net is driving non-buffer primitives”.
Solutions to these kinds of problems are as follows:

1. Adding global clock buffer to the top level module, eliminate I/O buffers
insertion when generating the sub-module netlist.

2. If the IBUF/OBUFs are instantiated in the sub-module, need to manually
remove the input clock buffering instantiation from the sub-module and instantiate
it in the top level.

The user logic top module contains four sub-modules: clock generator,
datain mux, container interface and dataout mux. The datain mux is used to se-
lect the input stimuli to the container whereas the dataout mux is to choose the
output analyzer module into which the output from container goes based on the
test selection.

The sources for datain mux are the TPG for each TC described in the last sub-
section. The ORA are the same for all TCs, except that TCs have variable numbers
of outputs, as a consequence, the dataout mux has to cater for the differences.

In addition to TC tests, there is an option for the functional test, which uses
two 32-bit inputs and two 32-bit outputs of the container interface. The functional
test tests the container when it is configured as either an inverter or an adder. The
overall architecture of the user logic module is shown in figure 3.8.
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This chapter presents the design of a self-test wrapper for the reconfigurable
test hardware, elaborates the wrapper design in a hybrid SoC. The wrapper is to
be connected to a standard bus interconnect, so the reconfiguration process and
self-test can be triggered by the microprocessor.

4.1 Overview

To design a self-test wrapper in a hybrid reconfigurable SoC, we need to consider
the type of application processor unit, the bus system that the wrapper is connected
to, and the functions for the wrapper to accomplish.

4.1.1 General Descriptions

The wrapper is for the self-test hardware, which contains a Built-In Self Test (BIST)
enabled reconfigurable block, and local TPG and ORA; it includes a bus protocol
compatible logic, so it can be connected to a microprocessor via a standard bus
interface. For our targeted hardware, we can choose either the soft-core MicroB-
laze processor or one of dual Cortex-A9 hard-core processors. The bus interconnect

31
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system can be the traditional Processor Local Bus (PLB) v46 or the Advanced
Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI),
it will determine the later base system build. The PLB v46 is supported for the
MicroBlaze processor only, while the AXI is supported for both the Cortex-A9 and
MicroBlaze processors.

Through the self-test wrapper, the embedded processor can access to the recon-
figurable block instantiated in the fabric, perform functional online tests to validate
the bus connection and the implementation of partial reconfiguration.

TC tests can be performed offline. The configuration access port inside the FPGA
allows the TCs to be fetched from memory and loaded to the the reconfigurable
block, which makes it possible for fabric internal reconfiguration. The TPG gen-
erates input stimuli to the reconfigurable block, the ORA mutually compares the
corresponding outputs from that block under test. The application of appropriate
TPG and retrieval of ORA result can be controlled by a hardware state machine.

On the other hand, the embedded processor based online self-test is also possible,
with the availability of respective TPG and ORA. This approach stores the partial
configuration data in the embedded processor’s program memory. The embedded
processor controls and executes the self-test sequence, including reconfiguration of
the resources under test with subsequent TCs and retrieval of self-test results.

4.1.2 Implementation Details

The self-test wrapper is implemented on the Xilinx Zynq-7000 Extensible Process-
ing Platform (EPP), it combines the Processing System (PS) with the tightly inte-
grated Programmable Logic (PL) in the same chip. The PS consists the dual ARM
Cortex-A9 processors and multiple peripherals. The PL is a Artix7-based FPGA.
In this thesis, we choose one of the ARM cores to be the processor and the AMBA
AXI to be the bus system.

For the wrapper design, first we define and create registers to add into the
user logic module. The two most important registers are Control register and Sta-
tus register. We have designed test hardware in chapter 3, together with the recon-
figurable module and registers, they are integrated into the user logic. The wrapper
contains the user logic and AMBA interface logic for being connected to the AXI
interconnect, it is operating in two modes:

• Functional mode

• TC test mode

When the wrapper is operating in the functional mode, the reconfigurable block is
configured with a functional TC. The processor sends two 32-bit input data through
the AXI interconnect to the reconfigurable container inside the user logic, and the
two 32-bit results are read back by the processor. The purpose of functional test is
to check the AXI interface connections and reconfigurability of the self-test wrap-
per, figure 4.1 depicts the functional test.
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Figure 4.1: Functional Test

When the wrapper is operating in TC test mode, the reconfigurable block is con-
figured with a specific TC, and the respective TPG and ORA are applied. When
the test is done, the output from ORA is fetched by the processor through the
Status register.

The embedded processor performs reconfiguration of TCs via Processor Config-
uration Access Port (PCAP) interface, controls test executions and retrieval of test
results. Thereby, the self-test can be performed online for a fault-tolerant reconfig-
urable system, when fault detection is desired.

4.1.3 Wrapper Design Approaches

The subject of wrapper designs can be found in several past research literature,
where the various approaches are reviewed and compared. In order to choose the
most suitable methodology for our particular application, the AMBA AXI specifi-
cation and several papers related to the AMBA compatible wrapper are explored.

The design of a wrapper connecting a special core to the AMBA bus is presented
in [20]. By studying and comparing the two different bus protocols, the mapping
relationship between them is established. Based on the outcome of analysis, the in-
ternal functional structure of the wrapper is described, which includes the ABMA
initiator and target wrapper. The initiator wrapper consists of request and re-
sponse machine, FIFO and AMBA master engine. The target wrapper is composed
of various control logic, data paths, buffers, and various registers for dynamic con-
figuration. This paper provides the fundamental steps in designing a wrapper.

AMBA compatible wrappers are proposed in [21], which allow the AMBA com-
patible IPs with different clock frequencies to be synchronized with a common clock.
These wrappers use combinational circuits to avoid the latency, and are designed
to minimize bus speed slow down, for instance, to insert latches or a bus arbiter.
This kind of wrapper models a bus synchronized wrapper.

Article [22] describes the design methodology for a WISHBONE to AMBA in-
terface wrapper. It illustrates the detailed interconnection signals of master and
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slave wrapper interface, reveals the timing analysis for data, control and address
signals. And in [23], model data transaction on SoC bus with AXI4 protocol, depict
the signals in a AXI4 module and read/write channels. State machine structure is
explained in [24]. Last but not least, the first embedded soft core processor based
FPGA BIST approach is presented in paper [25]. Some other articles address bus
signal comparison, control logic and automatic generation of a wrapper as well.

All of the above provide good guidelines for designing a AMBA wrapper.

4.2 Self-test Wrapper Architecture

Designing a self-test wrapper in an embedded system could be a very complicated
process, it requires more effort than a logic only FPGA design. One needs to ana-
lyze AXI bus specification, gets the hardware and software portions of an embedded
design to work together. However, Zynq-7000 SoC presents a new paradigm in em-
bedded design, combines the PS, which is built around Cortex processors, with the
integrated PL. Moreover, Xilinx tool chain offers a integrated design environment
with sets of development tools for the embedded system design, simplifies the de-
sign process. This work expedites the complicated design process by adding user
required logic functions into the mixed wrapper design project.

In order to conduct reconfiguration during runtime, each TC packed as a par-
tial bitstream is stored in the memory, the runtime system of the reconfigurable
architecture fetches the partial bit file out of the memory and sends it over to the
configuration access port. The corresponding container is then configured as a test
array and ready for being tested. Figure 4.2 represents the general architecture of
self-test wrapper in an embedded processor system with a partially reconfigurable
container.

ARM embedded processors, AMBA bus system with the available AMBA com-
patible IP cores is today’s most popular SoC architecture. In our design case, we
have the following particulars:

- CPU : ARM Cortex-A9 processor
- BUS : AMBA AXI
- Wrapper : Self-test

4.3 Design of Self-test Wrapper

This section provides the detailed self-test wrapper design in a SoC system and the
implementation methodology.

Take the advantage of the processor-centric platform, we create a specific wrapper
design in the Xilinx Integrated Software Environment (ISE). The embedded version
of ISE can be used for the Zynq-7000 EPP architectural development; for software
development, a Zynq-based Software Development Kit (SDK) project needs to be
built. With the available AMBA compatible IP cores, the design can achieve max-
imum design reuse and save development time [9]. ISE design suite 14 introduces
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Figure 4.2: Architecture of Self-test Wrapper

Partial Reconfiguration (PR) support for the Zynq-7000 device, the standard PR
flow generates the partial bitstreams, and the configuration access port on device is
used to load the partial bitstream. PlanAhead is used as the tool to synthesize and
place and route the design, it enables the management of reconfigurable modules
and provides an easy way to floorplan.

4.3.1 ARM

ARM stands for Advanced RISC Machine. The ARM architecture describes a
RISC-based processor family. It was first developed in the 1980s, now it becomes
the main stream of 32-bit instruction set architecture. ARM-based processors and
SoCs are used in the market for smartphones, digital televisions, and mobile com-
puters, etc.

When designing a computer, the RISC-based ARM processors require signifi-
cantly fewer logic elements, compared with traditional processors. The advantages
of ARM processors are lower cost, less heat dissipation and lower power consump-
tion, which makes them suitable for use in light, portable, battery-powered devices
such as smartphones and tablet computers. The reduced complexity allows the
developers to design and build a low-power SoC for an embedded system, which
comprises memory, interfaces, videos and more.

ARM provides 16-bit and 32-bit embedded RISC microprocessor solutions, cur-
rent widely adopted ARM cores use 32-bit instructions with 32-bit address space.
Recently, ARM has included 64-bit architecture versions.
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4.3.2 AMBA AXI Interconnect

The AMBA protocol is a widely-used open bus standard proposed by ARM, it
specifies on-chip interconnect. 10 years ago, ARM announced the release of the AXI
standard, a protocol that is part of the AMBA specifications. The goal is to meet
the requirements of high performance and complex SoC designs. The AXI Protocol
represents the third major generation of AMBA protocols which includes APB,
AHB and AXI. The AXI specification describes an interface and communications
protocol, it is a point-to-point interconnect architecture, not a bus. Broad IPs are
available for AXI interconnect. AMBA 4 standard introduces new AXI4 protocol
with three variances:

• Enhanced Interface Performance - AXI4-Full

• Streaming - AXI4-Stream

• Lightweight - AXI4-Lite

In this work, the AXI4-Lite version of protocol is chosen, because it is simple
and sufficient for the design purpose. In order to connect the self-test Wrapper to
AXI interconnect as a slave, first we have to know the signal transactions on the
AXI4-Lite interface.

ARM defines the functionality and signal requirements of AXI4-Lite components.
The key aspects of AXI4-Lite operation [5]) are as follows:

- All transactions are with burst length of 1, data interleaving is not supported.
- All transactions are of the same width as the data bus.
- All data accesses use a fixed data bus width, either 32-bits or 64-bits, with 32-

bit mostly used.
- All accesses are non-modifiable, non-bufferable, no exclusive accesses.
Table 4.1 shows the required signals on an AXI4-Lite interface:
(* The AXI4-Lite interface does not fully support RRESP, BRESP)

B1 AMBA AXI4-Lite 

B1.1 Definition of AXI4-Lite

B1-122 Copyright © 2003, 2004, 2010, 2011 ARM. All rights reserved. ARM IHI 0022D

Non-Confidential ID102711

B1.1 Definition of AXI4-Lite

This section defines the functionality and signal requirements of AXI4-Lite components.

The key functionality of AXI4-Lite operation is:

• all transactions are of burst length 1

• all data accesses use the full width of the data bus

— AXI4-Lite supports a data bus width of 32-bit or 64-bit.

• all accesses are Non-modifiable, Non-bufferable

• Exclusive accesses are not supported.

B1.1.1   Signal list

Table B1-1 shows the required signals on an AXI4-Lite interface.

AXI4 signals modified in AXI4-Lite

The AXI4-Lite interface does not fully support the following signals:

RRESP, BRESP 

The EXOKAY response is not supported on the read data and write response channels.

AXI4 signals not supported in AXI4-Lite

The AXI4-Lite interface does not support the following signals:

AWLEN, ARLEN The burst length is defined to be 1, equivalent to an AxLEN value of zero.

AWSIZE, ARSIZE All accesses are defined to be the width of the data bus.

Note

 AXI4-Lite requires a fixed data bus width of either 32-bits or 64-bits.

AWBURST, ARBURST 

The burst type has no meaning because the burst length is 1.

AWLOCK, ARLOCK 

All accesses are defined as Normal accesses, equivalent to an AxLOCK value of zero.

AWCACHE, ARCACHE 

All accesses are defined as Non-modifiable, Non-bufferable, equivalent to an AxCACHE 

value of 0b0000.

Table B1-1 AXI4-Lite interface signals

Global
Write address 

channel

Write data 

channel

Write response 

channel

Read address 

channel

Read data 

channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

 AWADDR WDATA BRESP ARADDR RDATA

 AWPROT WSTRB  ARPROT RRESP

Table 4.1: AXI4-Lite interface signals (from [5])

The AXI4-Lite protocol supports WSTRB (write strobes). This means registers
can be implemented with different sizes, and memory structures that require 8-bit
and 16-bit accesses are also supported.



4.3. Design of Self-test Wrapper 37

The master interfaces and interconnect components must provide correct write
strobes, the slave component can choose whether to use the write strobes or not.
The permissible options are [5]:

- Fully use of the write strobes
- Ignore the write strobes and treat all write accesses with the full data bus width
- Detect write strobe that is not supported and responses with an error
- Slaves in the memory map support only a limited write strobe option.

AXI4-Lite requires that all transactions are in sequential order, and every access
has its own fixed ID value. Optionally, AXI4-Lite also supports multiple outstand-
ing transactions, but a slave can restrict this by using proper handshake signals. In
addition, an AXI4-Lite slave can optionally support AXI ID signals, so that it can
be connected to a AXI4-Full interface without modification [5].

4.3.3 Xilinx AXI4-Lite Interconnect

In this work, the design is based on an evaluation board from Xilinx. It is imperative
to have a look at specific Xilinx AXI interface. The Xilinx AXI interfaces conform
to the AMBA AXI4 version, include the subset of AXI4-Lite control register in-
terface. AXI4-Stream transfers are not supported. The AXI4-Lite interconnect is
intended for memory-mapped transfers only, has no burst transfer, with traditional
32-bits width for both interface data and address [26]. Figure 4.3 and figure 4.4
exhibit simple read and write communication from AXI4-Lite master to AXI4-Lite
slave, and handshake signals between them.

Master
Interface

Slave
Interface

Adress
and

control

Read
data

Read address channel

Read data channel

Figure 4.3: AXI4-Lite Read

The AXI interconnect core connects the memory-mapped master devices to sev-
eral memory-mapped slave devices. The Xilinx Platform Studio (XPS) tool flow
provides access to features of AXI Interconnect core for the embedded designs. In
Zynq SoC architecture, the PS provides hardware access to memories and com-
munication to its peripherals. This allows the PS to be the master device and
can operate on its own without powering up or configuring the PL. The Self-test
Wrapper belongs to the PL, it is connected to AXI interconnect as a slave device
through the AXI4-Lite slave interface. In addition, the slave interfaces include a
direct link to on-chip memory and AXI Hardware Internal Configuration Access
Port (HWICAP) as well.
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Master
Interface

Slave
Interface

Adress
and

control

Write
data

Write
response

Write adress channel

Write data channel

Write response channel

Figure 4.4: AXI4-Lite Write

4.3.4 Definition of Registers

The first thing to start the embedded wrapper design is to determine the num-
ber of registers required. After carefully reviewing the interface requirements and
TCs needed to be loaded to the partial reconfiguration partition, we decide to have
six 32-bit software accessible registers to be included in the user logic. The ad-
dresses of the internal registers inside the user logic are offset from the base address
C BASEADDR, start with 0x66E00000. At reset, all registers hold the value of 0.
The self-test wrapper internal register set is described in table 4.2 below:
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Write Register 2
The Write Register 2 (WR2) is a 32-bit register, the bit definitions are shown in
table 4.4 with the offset from C BASEADDR value and accessibility of this register.
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Table 4.5: Result LSB Register (C BASEADDR + 0x08)

Result MSB Register
The Result MSB Register (RM) is a 32-bit register, the bit definitions are shown in
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Bit Mnemonic Access Code Equivalent 
31 - 0 RM R slv_reg3 

 
 

Control Register 
The Control Register (CR) is a 32-bit register, the bit definitions are shown in Table 4-7 
with the offset from C_BASEADDR value and accessibility of this register. 

Table 4-7:  Control Register (C_BASEADDR + 0x10) = slv_reg4 

Bit Mnemonic Access Description 
31:5 Reserved N/A Reserved bits 
4:1 MUX_ctrl R/W Mux control for test selection 
 0 Start R/W Start bit to enable test   

 
Status Register 
The Status Register (SR) is a 32-bit register, the bit definitions are shown in Table 4-8 
with the offset from C_BASEADDR value and accessibility of this register. 

Table 4-8:  Status Register (C_BASEADDR + 0x14) = slv_reg5 

Bit Mnemonic Access Description 
31:2 Reserved N/A Reserved bits 

1 Flag R Error flag bit, ‘1’ =  error encountered 
 0 Done R Bit to indicate test done, ‘1’ = done   

 

4.3 EDK tools 

The Xilinx Embedded Development Kit (EDK) simplifies embedded processor design 
[18], it includes Xilinx Platform Studio (XPS) and Software Development Kit (SDK). 
XPS is used for embedded processor hardware system development, specifies the 
embedded processor, peripherals, and the interconnection among its components. The 
detailed configurations of these components are taken place in XPS as well. SDK is used 
for software development, it is based on the Eclipse open source framework. In this work, 
based on Zynq SoC platform, with EDK design approach, in the present of planAhead 
design tool, the development is not as difficult as one might think.  
    EDK tools streamline the entire system design, implementation, simulation, and debug, 
simplifies the embedded design process, outperform a conventional FPGA design. 
Indeed, being one of the most efficient designs with no loss in performance. 

Three architectural modules are presented, which are combined to form top-level 
selftest_wrapper design: 

Table 4.6: Result MSB Register (C BASEADDR + 0x0C)
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Bit Mnemonic Access Code Equivalent 
31 - 0 RM R slv_reg3 

 
 

Control Register 
The Control Register (CR) is a 32-bit register, the bit definitions are shown in Table 4-7 
with the offset from C_BASEADDR value and accessibility of this register. 

Table 4-7:  Control Register (C_BASEADDR + 0x10) = slv_reg4 

Bit Mnemonic Access Description 
31:5 Reserved N/A Reserved bits 
4:1 MUX_ctrl R/W Mux control for test selection 
 0 Start R/W Start bit to enable test   

 
Status Register 
The Status Register (SR) is a 32-bit register, the bit definitions are shown in Table 4-8 
with the offset from C_BASEADDR value and accessibility of this register. 

Table 4-8:  Status Register (C_BASEADDR + 0x14) = slv_reg5 

Bit Mnemonic Access Description 
31:2 Reserved N/A Reserved bits 

1 Flag R Error flag bit, ‘1’ =  error encountered 
 0 Done R Bit to indicate test done, ‘1’ = done   

 

4.3 EDK tools 

The Xilinx Embedded Development Kit (EDK) simplifies embedded processor design 
[18], it includes Xilinx Platform Studio (XPS) and Software Development Kit (SDK). 
XPS is used for embedded processor hardware system development, specifies the 
embedded processor, peripherals, and the interconnection among its components. The 
detailed configurations of these components are taken place in XPS as well. SDK is used 
for software development, it is based on the Eclipse open source framework. In this work, 
based on Zynq SoC platform, with EDK design approach, in the present of planAhead 
design tool, the development is not as difficult as one might think.  
    EDK tools streamline the entire system design, implementation, simulation, and debug, 
simplifies the embedded design process, outperform a conventional FPGA design. 
Indeed, being one of the most efficient designs with no loss in performance. 

Three architectural modules are presented, which are combined to form top-level 
selftest_wrapper design: 

Table 4.7: Control Register (C BASEADDR + 0x10) = slv reg4

Status Register
The Status Register (SR) is a 32-bit register, the bit definitions are shown in table
4.8 with the offset from C BASEADDR value and accessibility of this register.
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Indeed, being one of the most efficient designs with no loss in performance. 

Three architectural modules are presented, which are combined to form top-level 
selftest_wrapper design: 

Table 4.8: Status Register (C BASEADDR + 0x14) = slv reg5
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4.3.5 Wrapper Design Process

In order to create a base system with an embedded processor, first we have to create
a new RTL project in PlanAhead, add processing sub-system to it. Having Zed-
Board as the evaluation board, the ZedBoard definition file needs to be downloaded;
it is an XML (EXtensible Markup Language) file, contains the information needed
to configure the ARM sub-system.

The Base System Builder (BSB) wizard within XPS is utilized to create the base
system. Since the ARM processing sub-system uses the AXI standard to communi-
cate to its peripherals, we choose AXI based design and the default peripherals to
create the design, and select ZedBoard as the base configuration board. A new XPS
project is then created for the PS sub-system which holds the name as what we
provide to it. Afterwards, the ARM processor is added to the design by importing
the ZedBoard definition XML file, the new configuration is then loaded in XPS. The
PS sub-system is eventually created. A graphical representation of the PS within
the Zynq device is illustrated in figure 4.5, this is the screenshot taken from Xilinx
XPS.

Figure 4.5: Zynq System Assembly View

Running the Design Rule Check (DRC) allows us to make sure there is no errors
up to this moment. When exit from XPS, we will go automatically back to PlanA-
head.

The Create Top HDL option in PlanAhead lets us generate the RTL netlist for
the PS sub-system. The tool creates a VHDL file for the processor module, this
is the wrapper to instantiate the XMP (Xilinx Microprocessor Project) file that
describes the PS. Up to now, we have the base system with only the processor



4.3. Design of Self-test Wrapper 41

sub-system instantiated, there is nothing from the PL portion of the Zynq device
included in the code. At this step, the Generate Bitstream option in PlanAhead
can be used to create the bit file for describing the PS only sub-system.

To create the self-test wrapper as an AXI4-Lite compliant slave peripheral of
the PS sub-system, we use the Create or Import Custom Peripheral (CIP) wizard
in XPS. In this work, we have decided to include 6 registers in the user logic to
cater for the two functional tests (adder and inverter) and TC tests. We set the
AXI4-Lite as the interface for the ARM core to talk to the wrapper peripheral.
Three architectural modules are created through that, they are combined together
to form the top-level self-test wrapper design. These are:

1) AXI4-Lite IPIF module: Connect the wrapper peripheral to AXI interconnect
2) Soft Reset module: Reset the peripherals via software control
3) User logic module: Allow software to access the registers within the peripheral

In order to accomplish the design, the files created in the XPS have to be modified
accordingly to suit the user’s required functionality. The two particular HDL tem-
plates have to be modified, one is user logic.vhd, the other is selftest wrapper.vhd.
They are located at VHDL directory of selftest wrapper folder. The user logic con-
nects to the self-test wrapper peripheral through the AXI4-Lite slave interface mod-
ule. The user logic module is equivalent to the ‘Custom Functional Block’, while
the selftest wrapper module is equivalent to the ‘AXI4-Lite slave’. The self-test
wrapper connects to AXI4-Lite interconnect with Intellectual Property Interface
(IPIF), which provides a point-to-point two directional connection. The user logic
interfaces with the self-test wrapper by the Intellectual Property Interconnect In-
terface (IPIC IF) module, which comprises logic to acknowledge the write and read
transactions initiated by the selftest wrapper module. The self-test wrapper block
diagram is shown in figure 4.6, it is based on a diagram in [16].

The user logic module is the primary focus in this work. In the further partial
reconfiguration design flow, it will be modified for our specific application. For right
now, we do not change it. The reset input to the reconfigurable part is a software
reset, generated by a soft reset block inside the self-test wrapper peripheral. The
software reset is necessary, since it is used to reset the reconfigurable logic after re-
configuration. When there is a need to connect a port to the other parts on board,
such as buttons and LEDs, the parameters in the selftest wrapper module have to
be modified as well. Besides, the MPD (Microprocessor Peripheral Definition) file
must be updated to reflect these changes.

The AXI4-Lite slave interface communicates with the user logic through the bus
protocol ports listed in table 4.9.

The ARM processor acts as an AXI master, it sends command to the its AXI
slave peripheral by writing and reading values to the defined registers inside the
user logic module. The self-test wrapper is the the AXI slave. As an example, the
processor writes to write registers to provide the input data for the functional test,
and read back from result registers to get the answers. In order to test and debug
design, software application programs need to be developed using SDK. Below lists
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1) AXI4-Lite IPIF module 
2) Soft Reset module 
3) User Logic module   

Next charter will demonstrate the detail to create an AXI4-Lite compliant slave 
peripheral IP framework using the Create Import Peripheral (CIP) wizard. The files 
generated by the CIP wizard which have to be modified according to the user required 
functionalities to complete the design are two HDL template files: user_logic.vhd and 
selftest_wrapper.vhd, they are located in the /edk/proc_modules/pcores /selftest_wrapper 
_v1_00_a/hdl/vhdl directory. The user_logic connects to the AXI peripheral using the 
AXI slave core configured in selftest_wrapper.vhd. The user_logic.vhd file is equivalent 
to the “Custom Functional Block” while the selftest_wrapper.vhd file is equivalent to the 
“AXI4-Lite slave”. The Self-test Wrapper block diagram is shown in Figure 4-3. The 
selftest_wrapper connects to AXI4_Lite interconnect with IPIF (Inteellectual Property 
Interface) signals, the user_logic interfaces with AXI4_Lite Slave Interface using the 
IPIC_IF (Intellectual Property Interconnect Interface) signals.  

 

Figure 4-3:  The Self-test Wrapper Block Diagram 
Figure 4.6: The Self-test Wrapper Block Diagram
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The system automatically generated the user logic bus protocol ports: 

 

Bus protocol ports Description 

Bus2IP_Clk AXI4_Lite to user_logic clock 

Bus2IP_Resetn                AXI4_Lite to user_logic reset 

Bus2IP_Addr                   AXI4_Lite to user_logic address bus 

Bus2IP_CS                      AXI4_Lite to user_logic chip select 

Bus2IP_RNW                AXI4_Lite to user_logic read/not write 

Bus2IP_Data                   AXI4_Lite to user_logic data bus 

Bus2IP_BE                     AXI4_Lite to user_logic byte enables 

Bus2IP_RdCE                 AXI4_Lite to user_logic read chip enable 

Bus2IP_WrCE                 AXI4_Lite to user_logic write chip enable 

IP2Bus_Data                   User_logic to AXI4_Lite data bus 

IP2Bus_RdAck               User_logic to AXI4_Lite read transfer acknowledgement 

IP2Bus_WrAck               User_logic to AXI4_Lite write transfer acknowledgement 

IP2Bus_Error                  User_logic to AXI4_Lite error response 

 

 

 

    Bus2IP_Clk                     (Bus to IP clock) 
    Bus2IP_Resetn                (Bus to IP reset) 
   Bus2IP_Addr                   (Bus to IP address bus) 
    Bus2IP_CS                      (Bus to IP chip select) 
    Bus2IP_RNW                 (Bus to IP read/not write) 
    Bus2IP_Data                   (Bus to IP data bus) 
   Bus2IP_BE                      (Bus to IP byte enables) 
    Bus2IP_RdCE                 (Bus to IP read chip enable) 
    Bus2IP_WrCE                 (Bus to IP write chip enable) 
    IP2Bus_Data                    (IP to Bus data bus) 
    IP2Bus_RdAck                (IP to Bus read transfer acknowledgement) 
    IP2Bus_WrAck                (IP to Bus write transfer acknowledgement) 
    IP2Bus_Error                   (IP to Bus error response) 
 
    The user_logic.vhd file has been modified, add new modules to the template design to 
realize the functions required for TCs and functional tests. When need to bring a port out 
to the outside world, the selftest_wrapper.vhd file has to be modified, in a manner like 
modifying the ports or parameters, then the MPD (Microprocessor Peripheral Definition) 
file must be updated to reflect these changes. As explained in section 4.1, the 

Table 4.9: User logic bus protocol ports
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the relevant information abstracted from the CIP tool, which are useful for the rest
of design:

top name : selftest wrapper
top entity : selftest wrapper.vhd
user logic : user logic.vhd
type : AXI4-LITE slave

Address block:
user logic slv : C BASEADDR + 0x00000000 - C BASEADDR + 0x000000FF
soft reset : C BASEADDR + 0x00000100 - C BASEADDR + 0x000001FF

Driver source : /sources 1/edk/proc module/drivers/selftest wrapper v1 00 a/src
header : selftest wrapper.h
source : selftest wrapper.c
selftest : selftest wrapper selftest.c

After the self-test wrapper peripheral is created and connect to the AXI4-Lite in-
terconnect, we add AXI HWICAP peripheral and connect it via the AXI4-Lite bus
as well. The HWICAP core provides the interface to transfer bitstreams through
the Internal Configuration Access Port (ICAP) for PR. Figure 4.7 shows the pe-
ripherals and bus connections in the base system, it is the screenshot taken from
Xilinx XPS.

Figure 4.7: Bus Connections

When the selected peripherals are added to the system and interface connections
are established, the addresses are assigned automatically. Figure 4.8 shows the ad-
dress map of the instances, it is the screenshot taken from Xilinx XPS. One can see
from it that the self-test wrapper has a C BASEADDR of 0x66E00000.

The system clock is the PL fabric clock FCLK CLK0, the default value is 100
MHz, it can be changed. The PL is running at this single clock speed. The con-
nected clock, ports and their direction are shown in figure 4.9, it is the screenshot
taken from Xilinx XPS.

We perform another DRC in XPS to check that the system design is correct at
this point. If the console window shows design is done with ‘no error’, denotes that
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Figure 4.8: Address Map

Figure 4.9: Ports and Clock Connection

the design is correct. The Generate Bitstream option allows us to create the bit file
for reflecting the PS sub-system and its peripherals, including the self-test wrapper.

4.3.6 Wrapper Communication

Having created the custom peripheral of the PS, i.e., the self-test wrapper, natu-
rally, we want to talk to our wrapper peripheral. For doing that, we need to launch
a software project.

At the last step of creating the base system with ARM processor in PlanAhead,
the bitstream for the PS hardware platform is generated and is ready to be exported
to SDK. We launch SDK with the exported hardware information. SDK window is
loaded with the embedded processor PlanAhead bit file output.

We need to create a new standalone Board Support Package (BSP) to be used by
the tools to interface to our hardware. We select one of the ARM cores for the code
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to run on, and the libraries we need that are included in the SDK tools. We pick
the default Hello World template to create a new C project, targeting the created
BSP.

The selftest wrapper.h located in the PS drivers folder, that is the source di-
rectory of self-test wrapper, is needed for the software program. We import self-
test wrapper.h to the source folder of the SDK project. This is a simple driver that
handles the communication to the self-test wrapper hardware peripheral through
registers.

Now a new C program is created and it can be modified with the included driver to
suit for our special application, such as executing the registers reading and writing
functions within it. Figure 4.10 shows the SDK project explorer, it is the screenshot
taken from Xilinx SDK. Chapter 6 will describe the detailed software development
flow.

Figure 4.10: SDK Project Explorer
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This chapter describes the flows for the tools used in this thesis. After the Test
Configurations (TCs) are created in RapidSmith framework, they are imported to
the Xilinx development environment. Several Xilinx development tools are utilized
in this work, the embedded edition of the Integrated Software Environment (ISE)
design suite comprises [27]:

• ISE tools

• PlanAhead design software

• Embedded Development Kit (EDK)

In ISE, we design the static logic and instantiate the container interface module
as a black box. The EDK is a set of tools used for a embedded processor system
development, a broad range of Intellectual Properties (IPs) are available [27]. In
EDK, we configure the self-test wrapper as the peripheral for the Processing System
(PS). Back to PlanAhead, in a RTL project, we generate the bitstream for the PS
hardware platform, and export the hardware information to Software Development
Kit (SDK) and launch a software project. Then, we follow the Partial Reconfig-
uration (PR) design flow in PlanAhead to generate full and partial bitstreams to
dynamically reconfigure the area under test. Finally we test both hardware and
software design in a evaluation board. Figure 5.1 depicts the overall flow chart for
the entire design.

47
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Figure 5.1: Overall design Flow Chart

5.1 RapidSmith for TC Generation

The implementation of a structural test for CLBs requires low level access to the
FPGA circuitry and generates TCs. A suitable implementation platform is needed
to achieve this objective. Xilinx provides the Xilinx Design Language (XDL) which
is in a human readable format. It describes the configuration and placement infor-
mation of each building block (primitive), as well as the interconnections between
these instances [12]. The XDL is equivalent to the more widely used Netlist Circuit
Description (NCD) format, both represent a Xilinx design in a development status
from un-placed and un-routed to fully placed and routed [12]. Xilinx also provides
an executable script to convert XDL to the NCD format, and vice versa [28]. The
provided information in a XDL file is sufficient to have low level access to the inter-
nal structure of the FPGA and to configure the CLB subcomponents in a proper
way for performing tests [3].

In addition, the RapidSmith design tool provides a framework for low level FPGA
circuit manipulation performed in XDL. In RapidSmith, each device structure is
specified in a unique XDLRC file, which contains the subcomponents, input and
output ports as well as the interconnection between them. The XDLRC file is a
human readable file as well, it has huge file size, provides extreme detail informa-
tion on the structure of a specific Xilinx FPGA. RapidSmith can parse and extract
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device information from it, compact it and generate much smaller files out of it.
These compact files represent the basic elements form a particular FPGA and can
be loaded and executed much more quickly. Since there is no need to perform
synthesis and mapping steps, RapidSmith brings the advantages of fast design im-
plementation and the optimized design flow [28].

5.1.1 XDL Design Flow

The first step to implement tests for the target FPGA is to get the specific XDLRC
description, parse it and create from it a more compatible data formation that can
be used in the design flow. This had already been done in the RapidSmith tools
[12]. All of the test configurations are manipulated in XDL format and are built on
the RapidSmith framework.

Both NCD and XDL files can represent a design in phase between MAP and
PAR. Figure 5.2 based on [28] shows where a NCD file can be directly converted
into XDL format and vice versa in the FPGA design flow. It also illustrates that
RapidSmith tools use XDL as the interface to perform a rapid design implementa-
tion at different points in the design flow.

.vhd
.v XST

XDL XDL XDL

.ngc NGD
Build

.ngd MAP

.ncd .ncd .ncd .bitPAR -r PAR -p
(route only)

.xdl .xdl .xdl

RapidSmith    Tools

BitGen(place only)

Figure 5.2: Where XDL fits in the FPGA design flow

For testing the internal logic cells of the FPGA, a set of TCs has to be first
developed based on the test templates provided in RapidSmith framework. The
outputs are XDL files that will be used for the generation of test configurations [3].
Manipulation of these XDL files are performed accordingly using Java program-
ming, the eventual XDL representations depict the pre-placed and partially routed
hard macros. Hard macros are conventionally defined as pre-placed and routed
modules, due to the homogeneous structure of the FPGA, they can be placed vir-
tually anywhere on the device. The hard macro methodology allows rapid design
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implementation.
The NCD format can not be used for hard macros; the NMC format is used

instead, which is the hard macro counterpart format to NCD. In order to instan-
tiate the hard macro in a VHDL entity with a wrapper, the XDL files have to be
converted into NMC format. The same executable script is used to convert files
from XDL to NMC, except that the output file name is specified with an NMC
extension. The wrapper with the enclosed hard macro is then provided as an input
source for the Xilinx tool, together with the static logic design, they are integrated
into the design flow. The placement and routing information are contained in the
XDL description specified for each unit. Finally, the full and partial bitstreams
are generated for the implemented TCs, and are ready to be used for the run-time
reconfigurable system.

5.1.2 TC Implementation for Target Device

The Programmable Logic (PL) of the Zynq device on the evaluation board is an
Artix-7 FPGA. This device family is currently not supported by RapidSmith.
RapidSmith tools depend on Xilinx XDLRC files for describing the devices. The
XDLRC file for the Artix-7 has to be imported to the framework. In addition,
there is no RapidSmith test templates available for testing Artix-7 CLBs in
the RapidSmith library. Furthermore, there is neither documentation for XDL
description nor official support from Xilinx. Lastly, some of the new features for 7
Series CLBs are not clearly documented. All of these obstacles have to be resolved
to generate TCs with correct XDL syntax for Artix-7 CLBs.

To test the target subcomponents of the CLB, a proper VHDL file has to be
created to instantiate the particular CLB primitive. A special Xilinx script is used
to convert the generated NCD file into the XDL representation. Based on that,
the correct XDL syntax information for CLB primitives is obtained, and is used
for the TC implementation. FPGA editor, a graphical tool that can be used for
viewing the configuration and the nets connection of interested logic elements, also
provides useful data for the slice. For specific port names and naming convention
of a particular configuration options, special HDL instantiations are required to
get the correct syntax for configuring the slice. Xilinx documentation [29] helps
to accomplish the low level configuration. Appendix A shows code segments of a
Artix-7 slice low level configuration written in XDL. XDL files for all TCs have
been generated and are successfully converted to hard macros in NMC format.

FPGA editor can be used to view the NMC representation of hard macro
based TCs, figure 5.3 shows a snapshot of a TC taken from the FPGA Editor.
Since the hard macros are black boxes instantiated in the VHDL wrapper (con-
tainer interface), there is neither real synthesis nor mapping or packing performed.
The final synthesis, place and route are happened in the Xilinx PlanAhead design
flow.
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Figure 5.3: Close view of Hard Macro from FPGA editor

5.2 Xilinx Embedded Design Flow

The Xilinx EDK supports the integrated design of both hardware and software
components, so that they function as a whole. To create a Zynq SoC design, the
following tools are needed: ISE Design Suite, PlanAhead, Xilinx Platform Studio
(XPS), SDK and iMPACT for programming.

5.2.1 EDK tool

EDK is a set of tools suited for the development of in most cases embedded
processor-centric SoC designs. By comparison, the EDK approach outperforms
the traditional implementation by being more efficient. If processors are deployed,
naturally the task of building an embedded system can be split into two funda-
mental base jobs. First, the configurable hardware has to be specified in terms of
embedded processors, peripherals and interconnects among its components. This
hardware-centric tool component is called XPS. Its main alleviation to the designer
is the graphical systems editor which ultimately generates Register Transfer Level
(RTL) code from the graphical description of the SoC. The detailed configurations
of the hardware components take place in XPS as well. In addition, XPS provides
all the required information to set up a software project under the SDK tool. SDK
is based on the open source standard Eclipse framework [27], it provides all the state
of the art software development tools via plug-ins (compiler, debugger, source code
revision control, etc.) to create, verify and debug embedded software. On top of
this core functionality for hardware and software development, EDK also provides
a tool-set for simulation of the embedded system on both behavioral and gate level.
A lot of lower level FPGA tasks can also be done in EDK, like generating specific
bit files for non volatile configuration devices. Moreover, hardware and software
development can be done concurrently. Hence, the EDK tool suite simplifies and
streamlines the embedded design, and accelerates the development speed [30].

In addition to floor planing, the PlanAhead tool plays as a rule of overall project
manager, it is capable of integrating all tools. The entire design implementation
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flow is centrally launched by PlanAhead, after creating a RTL PlanAhead project
with the embedded processor, XPS is launched to create a new sub system, specific
IPs are available for hardware development. After that, the hardware design is
exported to SDK to create a software project. Refer to figure 5.1 for the detail.

5.2.2 Creation of a Hardware System with Embedded Processor

As described in the previous chapter, the PL part of the overall design is combined
with the PS part within a XPS project. The new RTL project is first created in the
PlanAhead, from where the XPS design environment launches. The next step is to
import the correct peripheral configuration file describing the target board. The PS
sub-system is then created based on this information. It is highly recommended to
perform DRC at the various steps of the design flow to isolate errors early. Closing
the XPS environment will bring PlanAhead back. In PlanAhead, we create a VHDL
wrapper for instantiating the PS sub-system, the final bitstream for the PS sub-
system is generated there as well. The bit file can be used with the iMPACT tool
to configure target hardware directly, or exported to a SDK project to reflect the
hardware platform.

The custom peripheral implemented in the PL of the Zynq device has to be added
to the embedded system. The CIP (Create or Import Custom Peripheral) wizard in
XPS is utilized for this task. It is possible to create a new peripheral or import an
existing one by adding the available code to the design. The connection to the PS
is achieved with the AXI bus interconnect. The proper AXI interface between the
ARM Core and the custom peripheral has to be chosen, and the registers required for
the peripheral have to be set. XPS generates automatically a system address map
for the registers of all the peripheral components connected to the AXI interface.
In addition, the associated device driver templates can be created providing an
interface for the user software to the embedded system.

5.2.3 Software Project Creation

Having defined the processor sub-system, we can now create a software project
that is running on the PS. In order to do so, SDK, the environment of software
development, needs to be launched. For SDK to be aware of the hardware system
and to generate the correct software, we need to export hardware configuration in
PlanAhead to SDK. When launching SDK from PlanAhead, check all three options
to include the bitstream, export the hardware, and launch SDK, as shown in figure
5.4. Once the hardware specification is changed for the project in PlanAhead, SDK
project has to be re-targeted and re-built to reflect the new specification.

Upon opening the SDK project, the hardware specification is imported to SDK.
The next step is to create a board support package (BSP) for the hardware. This
BSP is hardware specific, it contains the peripheral drivers within the system as
well as numerous C header files, such as platform.h, which defines basic functions
for the implementation and platform initialization, xparameter.h defines memory
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Figure 5.4: Launch SDK from PlanAhead

map of the system and hardware configuration parameters, etc.
We create a new software application project by using the existing BSP for the

target hardware. Figure 5.5 shows the screenshot for creating a new SDK project.
There are two choices to implement the project, either based on a bare-metal

system, which is the one without operating system, or with the Linux OS. Once the
SDK project is created, we can write code for the intended application. Compile
the program and download the ELF (Executable and Linkable Format) file to the
board to test the application. Refer to figure 5.1 as well.

5.3 Partial Reconfiguration Flow

PlanAhead tool is used to control the PR flow, it defines a Reconfigurable Partition
(RP) in the reconfigurable region, creates multiple Reconfigurable Modules (RMs)
and guides the PR implementation flow. At the end, full and partial bit files are
generated.

The PR flow requires the input sources to PlanAhead to be netlist files in NGC
format. Whereas TCs are pre-mapped and pre-placed hard macros in NMC for-
mat converted from XDL, they describe the low-level configuration of the CLB
primitives. Special handling is required for TCs before they can be integrated into
PlanAhead for further processing [4]. TCs are regarded as reconfigurable modules
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Figure 5.5: Create a new Project in SDK

in PR flow, they need to be wrapped into a VHDL top-level entity, so that they have
a common interface to other modules in the static logic, and can be instantiated
with the same wrapper interface. Even though each TC has specific connections to
its TPG and ORA, these discrepancies are masked by the wrapper, so that all the
TCs have the common interface to the static logic of the design [4].

SDK is used to create a software application program that enables the PR. PL of
the Zynq device can share memory with PS, which allows fine-grained interaction
between the processor and user logic. In the tool flow, each TC is instantiated in
a separate design, and is then integrated into RP as a RM in the design. Finally a
partial bitstream is generated. This section demonstrates the steps to create a PR
design with a embedded processor [8].

5.3.1 Creation of PlanAhead Partial Reconfiguration Project

This time, We create a new PR project in PlanAhead, select post-synthesis project
as the project type, and enable the PR option. In the RTL PlanAhead project,
we have created the base system targeting ZedBoard evaluation platform. We
now import all the netlist files generated from the base system build to the new
PR project, and specify the top-level design. Optionally, we can create an user
constrain file. Figure 5.6 shows the NGC files required by the PR project.

New modules have been added as sub-modules to the user logic design to achieve
the functions required for TCs and functional tests. The user logic contains a
reconfigurable component called ‘container interface’, this is the VHDL wrapper
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Figure 5.6: All NGC files for new PR Project

entity for all the TCs. The port map declaration of this component defines the
common interface of all TCs. It is also the reconfigurable partition inside the PL.

5.3.2 Definition of Reconfiguration Partition and Region

To define a RP in PlanAhead, we set the physical size of the reconfiguration par-
tition to include the required resources. Some overhead should be accounted for
routing resources when setting the partition size. It should be bigger than the hard
macro size. To obtain the best place and route results, align the RP vertically to
clock region boundaries, draw a box that includes the physical location of the hard
macro and contains the region from Slice X12Y0 to Slice X19Y37, as demonstrated
in figure 5.7. The resulting RP physical region (Pblock area) will be stored in the
primary UCF file as AREA GROUP RANGE constraints.

Then we add the 9 TCs plus two functional TCs RMs to the RP, and run the
specific DRC by selecting only Partail Reconfig option, de-select all the rest. At
this step, a fatal violation was encountered:

Partition Reconfigurable Module ‘adder’ contains BUFGP symbol

‘clk\_ BUFGP’ that cannot be reconfigured. Please redefine your

Reconfigurable Module to remove the illegal logic.

Solution to this problem is: Redesign the functional test modules, avoid BUFGP
during synthesize. Refer to figure 5.8. Warnings about the reconfigurable instances
that do not affect the configuration process normally can be ignored.

While loading the TCs as RMs, they are treated as black boxes as there is no
netlist associated with them.
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Figure 5.7: Closer view of Pblock area

Figure 5.8: Without BUFGP

5.3.3 Creation of Configuration

When the synthesized design is opened, we need to add more option for translate
(ngdbuild). The -bm option is used to point to the BMM (Block Ram Memory
Map) file for the new strategy, as illustrated in figure 5.9.

When creating and implementing the inverter as the first configuration, 160 trans-
late errors were encountered. They were caused by latches, which were synthesized
on the output signals of the combinational logic, due to an incomplete assignment.

Solution: Create a default assignment to every variable and signal in the process
before any of the normal functional code in the process.

After successfully implementing the first configuration, we promote it, so that the
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Figure 5.9: Add -bm option for Translate (ngdbuild)

implementation result of the static logic can be reused for the subsequent configu-
rations. To create additional configurations and implement them, we select Create
Runs option from Flow menu, and change the name of configuration from default to
the name of added configuration. Clicking on More and repeating the steps allow us
to add more runs. In the Partition Action field, by extending the Module Variant,
we can select the proper variant respectively.

The PR verification utility is used to validate the implemented configurations.
We employ PR verification utility to all of the implemented configurations. The
utility runs and reports no errors found.

5.3.4 Bit Files Generation

As the last step, we generate bit files for the entire project. The Generate Bit-
stream option runs the bitstream generation process and generates full and partial
bitstreams. All the bitstreams are generated successfully, figure 5.10 show the re-
sults.

Figure 5.10: Bitstram generation successfully completed

The bit files are located in the respective folder for each individual run. Archive
the full bit file for the first configuration and partial bit files for the rest of config-
urations for further processing.

In the Zynq system, the PS is the master and boots following a normal boot
process. It loads the application from non-volatile memory and executes in place.
The PL of the Zynq loads both partial and full configuration via the Processor
Configuration Access Port (PCAP). As an alternative, the iMPACT tool allows the
user to program the bit file into the system via a JTAG chain.
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This chapter introduces the use of software-controlled Partial Reconfiguration
(PR) to dynamically control the runtime system reconfiguration process. The Pro-
cessing System (PS) is a processor and software-centric paradigm and boots itself
immediately after power on. The tightly integrated PS and Programmable Logic
(PL) structure of Zynq allows the peripherals to be dynamically enabled or disabled
through software control. The embedded processor carries out PR by sequentially
loading the TCs to the Reconfigurable Partition (RP), performs PRET during run-
time and displays the test results on the console screen.

6.1 Functional Test of Self-test Wrapper

To validate the correct behaviour of the self-test wrapper, the RP in PL is first
configured with a functional TC, which is either an inverter or an adder. A
bare-metal application is then developed to write to and read back the registers
in the user logic module via the AXI4-Lite bus interconnect. Bare-metal refers to
a software application without an operating system (OS), typically this type of
system does not require numerous features provided by an OS. Using OS consumes
certain amount of processor throughput and also creates overhead to the system
comparing with simple bare-metal systems without OS. The design of this work
does not necessarily include Linux OS, for the sake of simplicity, bare-metal is
chosen as the embedded solution.
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6.1.1 Create a Bare-metal Application

Based on the Eclipse framework, the SDK uses a C/C++ development environ-
ment to create software applications for the targeted ARM processor. It is the
supplementary to the XPS [27]. In XPS, the self-test wrapper peripheral of PS
was created and connected to the AXI4-Lite bus interface utilizing the CIP option.
The XPS also provides PS hardware platform information, including configuration
settings, the address map of peripheral registers, and the platform initialization bit
file. These information are exported to SDK when SDK is launched.

In the EDK flow stated in Chapter 5, we have created a C bare-metal project
to interface with the hardware. For targeting the existing evaluation board, the
default standalone Board Support Package (BSP) is selected. For the C program,
any code written in the main should be between init platform and cleanup platform
functional calls. These two functions handle all of the register initialization and
cleanup. After the code is written, the linker script is created to determine the
location to place the executable file, can be either the internal memory of one of
the processor cores or the DDR memory. If the code can be successfully compiled,
the project is built. The next stage is to set up the run configurations to test the
application on the board.

6.1.2 Test on Board

The jumpers on the ZedBoard need to be configured in the right position. Once
they are correctly setup, a terminal window is used to monitor the test results.
The logic implemented in the PL portion of the Zynq device represents the specific
hardware properties, needs first to be programmed into the board. We launch
iMPACT programming tool from PlanAhead, select the full bit file of one TC, and
download it to the board. We can also do it with SDK, but it hangs up sometimes.
When the PL is properly configured, it is ready to be tested. In addition, the ELF
file needs to be created before loading it to the board via the JTAG chain. We
select C/C++ ELF as option to run configurations and execute the test.

During the test execution, an unexpected error was encountered while launching
program, refer to figure 6.1.

Figure 6.1: Unexpected error while Launching program
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The SDK error log shows java.lang.RuntimeException:

at com.xilinx.sdk.targetmanager.internal.TM.downloadELF(Unknown Source)

at com.xilinx.sdk.debug.core.internal.AppRunner.run(Unknown Source)

The solution is to totally delete the standalone bsp imported from PlanAhead
in SDK, including even the contents in the harddisk. A new BSP is recreated to
be loaded within the hardware platform. The test is successfully executed with the
results shown on the screen.

6.2 Device Configuration

In this work, only the AXI-PCAP bridge of the Device Configuration (DevC) in-
terface is used for non-secure PL configuration. Figure 6.2 illustrates the flow for
device configuration after boot and PR, it is based on the similar picture in [31].
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Figure 6.2: Device Configuration and Partial Reconfiguration Flow
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The software-controlled partial reconfiguration is carried out through DevC and
Processor Configuration Access Port (PCAP) interface [31]. The AXI-PCAP bridge
converts 32-bit AXI data to the format compatible to the PCAP protocol. A DMA
engine handles the data movement between TX/RX FIFO and DDR memory. The
device configuration function needs to be programmed, and be called by the embed-
ded processor. The operating frequency of PCAP interface is 100 MHz, so 32-bit
PCAP can have 400 MB/s download throughput for configuring PL in non-secure
mode [31]. The DevC driver first clears up DMA and PCAP done interrupt bits
to start a new transfer; then configures the PCAP mode and initiates the DMA
engine for transferring the bitstream from DDR into PL; finally it polls for DMA
and PCAP done bits to trigger an interrupt.

6.2.1 Generate Bin File

The partial bitstreams for test configurations generated in PlanAhead cannot be
directly used to configure the PL through PCAP transfer. When Zynq is booted,
the online test system is first configured with the full bitstream of the first TC
through the boot path. In order to perform tests for different TCs, the partial
bit files for the subsequent TCs must be first converted into binary format using
PROMGen tool at TCL console, and then they can be used by PCAP to transfer
to the PL reconfigurable region. Figure 6.3 shows the screenshot of the command
used for converting bit files to the bin files.

Figure 6.3: Convert Partial bitstreams to Binary format

Note that the length of binary file is in bytes, the driver expects the data transfer
in double words (32-bit), that means bin file size is four times that of the param-
eter of bitstream size for PCAP transfer. PROMGen also reports the size of the
generated partial bin files, which is required by DevC driver when transmitting the
reconfiguration data through the AXI-PCAP bridge to the PL.

6.2.2 XMD Programming

There are several ways to store the bin file into the DDR memory. One way is
to open the XMD from XPS, select Launch XMD from Debug menu, go to the
directory where the partial binary files located. Program the .bin file by typing:

dow -data filename_partial.bin 0x01000000
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01000000 is the hex format of start address in the DDR memory. The address
can be anywhere that is within the address range of DDR. Figure 6.4 shows the
screen shot of XMD command.

Figure 6.4: Load the Bin File into DDR Memory

The alternative way is to open up the XMD through the SDK. We can also place
the bin file at SDK when set up the device initialization, specify the bin files to be
added and provide the address locations. The bin file will be automatically loaded
into the DDR memory during the initialization phase.

6.2.3 PL Reconfiguration Driver

The Zynq EPP extends the capability of the PR, after the PL is configured with
the full bitstream, part of the PL can be reconfigured with ICAP or PCAP. PCAP
allows the software running on the PS to partially reconfigure the PL [31]. For
preparing to configure the fabric over the PCAP interface, the partial bitstreams
containing TC information are first loaded into specified DDR memory locations,
this gives the maximum configuration throughput and shortens the configuration
time. Together with the imported hardware platform data and the created stan-
dalone BSP, a DevC driver program is developed in SDK using bare-metal appli-
cation, it enables software-controlled partial bitstream to be transferred from DDR
to the PL via PCAP. The software control flow for PR through DevC/PCAP is as
follows [32]:

1. Initialize the DevC interface driver. For the first time AXI (Advanced eX-
tensible Interface) access to the DevC interface block, it is necessary to write to
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the Unlock register with the value of 0x757BDF0D. At power on, the boot ROM
will unlock the DevC interface by writing the same value to this Unlock Register.
This step has to be done after reset, the subsequent AXI accesses can be carried on
after this. The Unlock register is used to protect the DevC interface configuration
registers from corrupted ROM code.

2. Set PCAP PR (Control Register bit [27]) and PCAP MODE (Control Regis-
ter bit [26]) to High. Because power-on reset default value of both bits are equal to
1, this step is optional.

3. Clear the previous configuration from the PL, this step is also optional. For
doing that, global reset is provided to PL by setting PCFG PROG B (Control Reg-
ister bit [30]) to High and then Low. Check if PCFG INIT (Status Register bit[4])
is equal to 0, which indicates the PL is busy doing housecleaning and is not ready
to receive PCAP data. After that, clear PCFG DONE INT by writing a 1 to In-
terrupt Status Register bit [2], to indicate that PL configuration is cleared and not
in user mode.

4. Check if PCFG INIT (Status Register-bit[4]) is set to High by the PL, which
denotes the PL housecleaning is done, the previous configuration is cleared and PL
is ready to receive next PCAP data.

5. Clear D P DONE INT by writing a 1 to Interrupt Status Register bit [12],
to clear DMA (Direct Memory Access) and PCAP transfers done bit, declare the
start of a new transfer.

6. To initiate a DevC DMA transfer, provide the source address as the location
of new partial bitstream in the DDR memory and source length to be the total
number of 32-bit words in the new bitstream. Set the destination address to be
0xFFFF FFFF and destination Length to be the same as the source length, the
total number of 32-bit words in the new bitstream.

7. In this bare-metal case, polling is used for DevC interface Interrupt Status
Register bit [13] (DMA DONE INT) and bit [12] (D P DONE INT), to determine
if the DMA and PCAP transfer are completed.

8. Check if PCFG DONE INT (Interrupt Status Register bit [2]) is set to low
by the PL, which means the PL is programmed.

To initialize the DMA transfer, the source address in the DDR memory where
each partial bitstream is stored and the size of the bitstream need to be passed
over to the DevC driver. A functional call is used to transfer the partial bitstream,
polling is used to indicate that DMA and PCAP transfer are done. The functional
call returns when the transfer is finished [31].

As an additional feature for an overall DMA transfer, to differentiate the last
transfer, we can set the two LSBs of the source and destination address to 2’b01.
The DMA controller will take this information to provide the DMA DONE inter-
rupt. For the last DMA transfer, only when both the AXI and PCAP transfers
are done, the DMA DONE interrupt is triggered. For all other DMA transfers, the
DMA DONE interrupt is triggered after the AXI transfers are done, nevertheless,
the PCAP transfers might still be carrying on. This allows overlapped AXI and
PCAP transfers, except for the last DMA transfer [32].
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6.3 Automated Tests Selection and Execution

To allow the configuration of TCs, generation of test stimuli and analysis of re-
sponses to be controlled by software, a SDK project is developed, which combines
the driver program with the control logic accessing the user logic. So the vari-
ous test configurations can be scheduled to be downloaded to the reconfigurable
partition of PL; TPG and ORA are applied accordingly; tests are performed auto-
matically; results are printed on screen. It delivers the capability of PCAP control
and provides the flexibility of test selection with minimum user interaction.

Once the start-up initialization phase is finished, the software application dis-
plays the options to be selected on screen, and waits for the user’s input through
the command line. Once an option is selected, the designated TC is configured into
RP region of the PL through DevC/PCAP. The TPG and ORA for each TC are
external to the RP, they are applied after the TC is reconfigured, this is done by
writing a specific value to the control register. After the test is executed, the output
result is written to the status register or output registers (for functional tests), and
finally gets printed on screen.

The dynamic reconfiguration of the logic function in the PL and execution of the
selected test are fully automated through software control. Figure 6.5 shows the
software control flow of this bare-metal application. The yellow boxes are related
to the partial reconfiguration flow for transferring a partial bitstream across the
PCAP interface.

The Self-test Wrapper has an AXI4-Lite interface that is used by the PS to con-
figure TCs and control the execution of the tests. Before starting a transfer, the
interrupt handler has to be disabled, otherwise the PR process could generate a
fake interrupt to the ISR (Interrupt Status Register). Such an interrupt triggers
false access to RP of the PL which has not been fully configured yet, and in turn
causes the system hang up. In order to prevent the above stated scenario, software
control is used to decouple the interface. For ensuring the TC is successfully re-
configured to the RP, a PL reset is asserted before the reconfiguration process to
disable the AXI interconnect [31]. After the reconfiguration is finished, the FPGA
reset signal is de-asserted, the AXI connection is thereafter enabled, testing is ready
to be performed with the configured TC.

6.3.1 Standalone Boot Image Creation

If required, a standalone boot image can be created. After power-on, the ARM
processor will first boot from the BootROM which determines the external memory
interface; then based on the boot mode, it reads the PS boot image from the external
boot device (SD card). When BootROM shuts down, PS hands over the control to
the First Stage Bootloader (FSBL). The FSBL image is loaded from external non-
volatile device into the On-Chip Memory (OCM) after boot. FSBL can fetch the
configuration data from flash memory, automatically load the first full bitstream to
configure the PL via PCAP, load the user application code into DDR memory and
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Figure 6.5: Software Control Flow

execute. SDK includes integrated applications for boot image creation, the FSBL
project and the flash programmer [33].

A program called Bootgen can be utilized to create a boot image file. It builds
the required boot header; provides partition tables; and processes the input data
files. The input files include the ELF file for the software project, the first full
configuration bitstream and the partial binary files. Bootgen consists of additional
features like allocating destination memory location or providing alignment required
by each partition. The input source to this utility is a configuration file with BIF
(Boot Image Format) extension, it comprises BootROM header, FSBL image and
partition images. The header is required by the BootROM loader to load the FSBL
image, the partition images are handled by the FSBL [33]. The output BIN file
contains the boot header and the data partitions derived from the input BIF file
[33]. Below is an example of using the Bootgen command line to create the boot
image:

bootgen -image Design.bif -o i DesignImage.bin
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To create the boot image for the FSBL application at SDK, select Create Boot
Image option and follow the procedures below:

1. Take the default BIF file
2. Locate the FSBL elf file
3. Use the full hardware bitstream to program the PL
4. Specify BOOT.BIN as output file to create boot image
Once the boot image is created, it can be used for programming the flash and

running the application.

6.3.2 Booting From the SD Card

Booting the Zynq SoC device in non-secure mode can also use flash memories.
After power-on reset, the boot mode strapping pins on ZedBoard determine the
external memory interface. Since the procedure for booting from QSPI flash is
more complicated, we can select to boot the system from the Secure Digital (SD)
card. The procedure to prepare the SD Card as boot flash is as below:

1. Insert the SD card in a SD card slot on PC, backup the SD card contents,
delete all files from the SD card.

2. Copy the created BOOT.BIN file from the PC to /boot image folder on the
SD card.

3. Turn ZedBoard off. Set the configuration mode jumpers for SD card MODE
pins as described below:

MODE3 (JP10) is shunted to 3.3V

MODE2 (JP9) is shunted to 3.3V

All other MODE pins (JP7, JP8 and JP11) are shunted to GND

4. Remove the SD card from the PC and insert it into the SD card slot on the
ZedBoard.

5. Power on board, a green LED will illuminate immediately to indicate ‘power
good’ and a blue LED will light up to signal ‘Done’ after the processor has been
initialized and the PL is configured.

The booting process from SD card will take only few seconds.
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This chapter contains the validation steps and obtained results. The evaluation
of the implemented self-test wrapper includes carrying out the TC configuration
and test execution. In addition, the implementation of software-controlled recon-
figuration and test execution is also discussed.

7.1 Validation

7.1.1 Functional Test of Self-test Wrapper

Having written the code for functional tests and successfully compiled it, we can now
download the application to the board to test the operation of self-test wrapper with
partial reconfiguration. To do this, first we need to create a linker script file that
defines the location of the executable in the system memory. Since this application
program is small, we put it within the on-chip memory. While it is often the best
to place the program in the DDR memory, so we can determine if this interface
is configured correctly. We use Generate Linker Script option to create a linker
script, and run the application. The figure 7.1 shows the result of the functional
test Inverter. The figure 7.2 shows the result of the functional test Adder.

7.1.2 Configuration Time

The configuration time scales approximately linearly with the bitstream size. It
grows with the number of reconfigurable cells with small variances towards the
location and the configurations of the cells. The PCAP interface is operated at
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Figure 7.1: Result of the Functional test Inverter

Figure 7.2: Result of the Functional test Adder

100MHz, for a 32-bit wide transfer, it can achieve 400MB/s throughput for non-
secure PL configuration in a standalone application [31]. Each partial bitstream has
the size of 59196 bytes, in theory, it takes about 150 us to configure through the
PCAP interface. The actual configuration time is measured between the start and
the end of the DevC DMA and PCAP transfer driver function call, which includes
interrupt handling, the time measured by software is around 276 us.
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7.1.3 TC Tests

When implementing partial reconfigurable design in PlanAhead, the first configu-
ration is fully implemented and the static logic is promoted to be used for the rest
of configurations. We choose the XOR TC to be the first configuration, and the
test is running at 100 MHz PL clock, which is the default value provided by the PS
clock generator. The PlanAhead tool automatically ensures that the resources for
each TC configuration are contained within the defined RP region and do not cross
over the static portion of the design. After successfully implementing the XOR con-
figuration, we promoted its static implementation results to be reused by the rest
configurations. Finally, the full and partial bitstreams are successfully generated
for all TCs, and are ready to be used for partially reconfiguring the test container.

When the container is configured sequentially by individual TC, and it is tested
by applying respective TPG and ORA for each TC. By default, when the test is
done, should be no error flag turned on, since the fabric is error-free. However,
during software-controlled test executions, we found some tests were failing.

One observation is that PL clock frequency and board temperature affect the
test results. Therefore, we adjusted the clock speed for PL at XPS, and generated
20 MHz FCLK0 from PS clock generator to be used as PL clock, reset the output
products from PlanAhead after having changed the clock frequency. We set the
period constrain and rebuild the system, and regenerate full and partial bitstreams
for all TCs. Each time the changes made to the the hardware have to be exported
to SDK. For SR and RAM test, retry is required if the first time test fails.

7.2 Wrapper synthesis Result

7.2.1 Resource usage and CLB count

The resources utilization for the whole design including each TC implementation
is listed in table 7.1, the resources utilization for static portion are the same for all
TCs, there are slight differences in Registers and LUTs counts for different TCs.

  
  

Xor_Latch_ 
CarryCoutFF 

Xnor SR RAM CarrySum 

Resource Available Util %Util Util %Util Util %Util Util %Util Util %Util 
Register 106400 2449 2% 3249 3% 1649 1% 1749 1% 2049 1% 

LUT 53200 2708 5% 2708 5% 2708 5% 2408 4% 2708 5% 
Slice 13300 1186 8% 1186 8% 1186 8% 1186 8% 1186 8% 
IO 200 13 6% 13 6% 13 6% 13 6% 13 6% 

RAMB36E1 280 32 11% 32 11% 32 11% 32 11% 32 11% 
RAMB18E1 280 2 1% 2 1% 2 1% 2 1% 2 1% 

ICAP 2 1 50% 1 50% 1 50% 1 50% 1 50% 
BUFG 32 5 15% 5 15% 5 15% 5 15% 5 15% 

BUFGCTRL 32 1 3% 1 3% 1 3% 1 3% 1 3% 
 

Table 7.1: Resources utilization for all TCs
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7.2.2 Timing Result

Timing constraint:

TS_processing_system7_0_FCLK_CLK0 = PERIOD

TIMEGRP "processing_system7_0_FCLK_CLK0" 50 ns HIGH 50\%;

The implemented timing results and the derived constraint report for clocks is
shown in figure 7.3.

Figure 7.3: Derived Constraints Report for TS PS7 FCLK0

7.3 Evaluation of Standalone Software Application

During the execution of TC tests, we encountered test flow hangs, most of time
happened at second TC test when the program tries to access the PL peripheral
via the AXI port. The error message is showed in figure 7.4.

Figure 7.4: Error encountered during Software execution
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SDK includes Xilinx Microprocessor Debugger (XMD) to debug the software
project. We launch SDK debug by selecting Debug As function and run debug on
hardware. Step through, we find that it hangs within a call to ‘Xil In32’, it is a
register read function call. Try to call ‘Xil In16’ and ‘Xil In8’, get the same error
result. When we force the program to terminate, typically we not only have to
power cycle the board, but also have to close SDK completely and open again to
start another execution. Without the ‘Xil In32’ call, the program runs smoothly.
Figure 7.5 is the screen shot during software debug, it shows the program stops at
0x00100a44 when it executes the Xil In32 command.

Figure 7.5: Unknown error occurred during Debug

Finding: Starting from EDK Design Suite 14.2, the TCL (Tool Command Lan-
guage) file for PS initialization does not enable the level shifters. Also, in version
2 silicon, the boot ROM does not bring the PL out of reset state. The user has
to enable the level shifter and to bring the PL out of reset after the bitstream is
downloaded in the XMD flow.

Solution to this problem is to enable the level shifters for a non-PS instantiated
bitstream and enable the AXI interface after the download of the bitstream. Cer-
tain steps in the driver flow have to be disabled to have a smooth transfer.

All the online self-tests can now be executed without hanging.
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Conclusion and Outlook
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8.1 Summary

This work presents the design and evaluation of a self-test wrapper in a runtime
reconfigurable architecture. The purpose of the wrapper is to encapsulate a block
of reconfigurable logic, provide a well-defined interface, and support self-test. The
self-test wrapper allows to test the reconfigurable logic by TCs. The wrapper is
controlled by an embedded processor.

The BIST enabled reconfigurable architectures ensures the reliability of the run-
time reconfigurable systems. Once a fault is detected in the area under test, an
alternative solution can be employed to salvage the operation from the failing part,
thereby guaranteeing the correct behavior of the system. One important aspect to
the BIST is the embedded processor based BIST approach. The software running
on the embedded processor can efficiently control the reconfiguration process and
test execution.

The Xilinx Zynq SoC provides a processing system and programmable logic part.
The embedded processor inside the PS performs the partial reconfiguration of the
reconfigurable region inside the PL with the prebuilt TCs, each TC is associated
with a particular partial bitstream. The processor takes over the control of tests,
application of input stimuli, and retrieval of the ORA contents through the self-test
wrapper. The entire design is based on tools from the Xilinx tool chain, for the
development of test configurations, the static logic part and software, as well as the
overall system integration.

The CLBs in the reconfigurable region are thoroughly tested by the selectable
test sessions online. The impact of tests to the overall system operation is min-
imal. The reconfiguration process together with the testing of the reconfigurable
architecture is fully automated under software control, and requires minimal user
interaction. Since the TPG and ORA are moved out from the reconfigurable area,
there is no hardware overhead incurred. The execution of the complete test suite
takes only a small amount of time.

The self-test wrapper has been successfully implemented, the functionality of
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the self-test wrapper is validated by both functional tests and TC tests. All test
configurations have been designed to achieve full logic fault coverage of the Artix-7
CLBs. Since the download of partial bitstreams requires much shorter time than full
bitstreams, partial reconfiguration reduces test time by reconfiguring only the re-
sources under test, once the full configuration has been downloaded into the fabric.
In addition, the use of the PCAP interface for reconfiguration provides a consid-
erable speed-up over the serial Boundary Scan interface (JTAG). JTAG mode can
also be used to configure the PL, however, it is here mainly used for development
and debug. The maximum achievable operating frequency is 50 MHz.

The online self-test wrapper is implemented on the Zynq-7000 EPP with ARM
Cortex-A9 processor cores. However, the CLB structural test method and EDK
approach are applicable to different reconfigurable architecture that contains an
embedded processor. Utilizing the core-centric approach greatly maximizes the
design reuse, and reduces the amount of time required for the development.

8.2 Further Tasks and Outlook

As stated in chapter 6, the Zynq device can boot from external flash memory, for
example, from an SD card. To extend the system in that way, first the ELF file
is to be generated from First Stage Bootloader; then it is combined with the full
bitstream from the first configuration, and ELF file from standalone software ap-
plication to create the boot image. Finally, the standalone SD-card image can be
built to be loaded to the SD card, which should include the boot image and all
partial bitstreams.

Another extension is to develop a Linux software application for partial recon-
figuration. In order to achieve that, one can use the Linux device configuration
driver, built on top of a virtual file system provided by Linux, export devices and
drivers information from kernel to the user space. To develop the Linux driver
to transfer the partial bitstreams over the PCAP interface, a device configuration
driver is needed to write to the device configuration space; it initiates the DMA
transaction, and waits for an interrupt signaling the completion of the transfer.
Partial reconfiguration can also be initiated from a shell.



Appendix A

Artix-7 XDL Code

Listings A.1 illustrates a XDL code example for Hard Macro xnor test as test con-
figuration, it indicates the input and output ports, the reference point unit 17 and
the configuration string specifies the detail slice programming for unit19. It is a
SLICEL, placed in CLB “CLBLM R X11Y0” and slice name is “SLICE X15Y0”.

1 des ign ” XILINX NMC MACRO” xc7z020−1c lg484 ;

2

3 module ” xno r t e s t ” ” unit17 ” , c f g ” SYSTEM MACRO: : FALSE ” ;

4 port ” c l k ” ” uni t0 ” ”CLK” ;

5 port ” in tpg ” ” uni t0 ” ”AX” ;

6 port ” in tpg5 ” ” uni t0 ” ”A6” ;

7 port ” in tpg1 ” ” uni t0 ” ”A2” ;

8 port ” in tpg2 ” ” uni t0 ” ”A3” ;

9 port ” in tpg3 ” ” uni t0 ” ”A4” ;

10 port ” in tpg4 ” ” uni t0 ” ”A5” ;

11 port ” in tpg0 ” ” uni t0 ” ”A1” ;

12 port ” r s t ” ” uni t0 ” ”SR” ;

13 port ” out ora0 ” ” unit11 ” ”DQ” ;

14 port ” out ora3 ” ” unit23 ” ”DMUX” ;

15 port ” out ora1 ” ” unit23 ” ”DQ” ;

16 port ” out ora2 ” ” unit11 ” ”DMUX” ;

17 i n s t ” unit19 ” ”SLICEL” , p laced CLBLM R X11Y0 SLICE X15Y0 ,

18 c f g ” AOUTMUX: :A5Q AFFINIT : : INIT0 CLKINV : :CLK DFF::#FF A5FFMUX: :

19 IN B BFFSR : :SRLOW DFFINIT : : INIT0 B6LUT: XORB unit19:#LUT:O6=

20 (A1@(A2@(A3@(A4@(A5@˜A6 ) ) ) ) ) AFFSR : :SRLOW BOUTMUX: : B5Q D5FFINIT : : INIT0

21 D6LUT: XORD unit19:#LUT:O6=(A1@(A2@(A3@(A4@(A5@˜A6 ) ) ) ) ) C5FFSR : :SRLOW

22 BFFINIT : : INIT0 BFFMUX: : O6 BFF::#FF D5FFSR : :SRLOW B5FFSR : :SRLOW

23 CFFINIT : : INIT0 CFF::#FF DFFSR : :SRLOW A6LUT: XORA unit19:#LUT:O6=

24 (A1@(A2@(A3@(A4@(A5@˜A6 ) ) ) ) ) AFFMUX: : O6 SYNC ATTR: :ASYNC DOUTMUX: :D5Q

25 A5FFSR : :SRLOW DFFMUX: : O6 CFFSR : :SRLOW COUTMUX: :C5Q A5FFINIT : : INIT0

26 SRUSEDMUX: : IN C6LUT: XORC unit19:#LUT:O6=(A1@(A2@(A3@(A4@(A5@˜A6 ) ) ) ) )

27 D5FFMUX: : IN B B5FFINIT : : INIT0 C5FFMUX: : IN B CFFMUX: : O6 AFF::#FF

28 B5FFMUX: : IN B C5FFINIT : : INIT0 ” ;

29 net ” rst IBUF” ,

30 inp in ” unit19 ” SR , ;

31 net ”clk BUFGP” ,

32 inp in ” unit19 ” CLK , ;

33 net ” stim<1>” ,

34 inp in ” unit19 ” A2 , ;

35 endmodule ” xno r t e s t ” ;

Figure A.1: XDL code example for HM xnor test
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Listing A.2 reveals the detail slices configuration for Hard Macro as ram test.

1 i n s t ” unit19 ” ”SLICEL” , p laced CLBLM R X11Y0 SLICE X15Y0 ,

2 c f g ” A6LUT: ora19 :#LUT:O6=A1+(A2@(A3@(A4@A5) ) ) SRUSEDMUX: : IN

3 AFFMUX: : O6 SYNC ATTR: :ASYNC AFFINIT : : INIT0 CLKINV : :CLK

4 CEUSEDMUX: : IN AFF: o r a f f 1 9 :#FF AFFSR : :SRLOW ”

5 ;

6 i n s t ” unit18 ” ”SLICEM” , p laced CLBLM R X11Y0 SLICE X14Y0 ,

7 c f g ” DUSED: : 0 CUSED: : 0 A6LUT: RAMA unit18:#RAM:

8 O6=0x0000000000000000 A6RAMMODE: : SPRAM64 SYNC ATTR: :ASYNC

9 CLKINV : :CLK BUSED: : 0 B6LUT: RAMB unit18:#RAM:O6=0x0000000000000000

10 B6RAMMODE: : SPRAM64 D6LUT: RAMD unit18:#RAM:O6=0x0000000000000000

11 D6RAMMODE: : SPRAM64 ADI1MUX: : AI C6LUT: RAMC unit18:#RAM:

12 O6=0x0000000000000000 AUSED: : 0 WEMUX: :CE C6RAMMODE: : SPRAM64

13 BDI1MUX: : BI CDI1MUX: : CI ”

14 ;

15

16 endmodule ” ram test ” ;

Figure A.2: XDL code example for HM ram test



Appendix B

Device Configuration Driver

Code

Figure B.1 discloses the C code segment for using PCAP to configure the PL in
zynq device, to transfer the partial bitstream from DDR to PL via PCAP interface.

Figure B.1: DevC/PCAP driver code
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