6,837 research outputs found

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Ancient and historical systems

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Enhancements of MEMS design flow for Automotive and Optoelectronic applications

    Get PDF
    In the latest years we have been witnesses of a very rapidly and amazing grown of MicroElectroMechanical systems (MEMS) which nowadays represent the outstanding state-of-the art in a wide variety of applications from automotive to commercial, biomedical and optical (MicroOptoElectroMechanicalSystems). The increasing success of MEMS is found in their high miniaturization capability, thus allowing an easy integration with electronic circuits, their low manufacturing costs (that comes directly from low unit pricing and indirectly from cutting service and maintaining costs) and low power consumption. With the always growing interest around MEMS devices the necessity arises for MEMS designers to define a MEMS design flow. Indeed it is widely accepted that in any complex engineering design process, a well defined and documented design flow or procedure is vital. The top-level goal of a MEMS/MOEMS design flow is to enable complex engineering design in the shortest time and with the lowest number of fabrication iterations, preferably only one. These two characteristics are the measures of a good flow, because they translate directly to the industry-desirable reductions of the metrics “time to market” and “costs”. Like most engineering flows, the MEMS design flow begins with the product definition that generally involves a feasibility study and the elaboration of the device specifications. Once the MEMS specifications are set, a Finite Element Method (FEM) model is developed in order to study its physical behaviour and to extract the characteristic device parameters. These latter are used to develop a high level MEMS model which is necessary to the design of the sensor read out electronics. Once the MEMS geometry is completely defined and matches the device specifications, the device layout must be generated, and finally the MEMS sensor is fabricated. In order to have a MEMS sensor working according to specifications at first production run is essential that the MEMS design flow is as close as possible to the optimum design flow. The key factors in the MEMS design flow are the development of a sensor model as close as possible to the real device and the layout realization. This research work addresses these two aspects by developing optimized custom tools (a tool for layout check (LVS) and a tool for parasitic capacitances extraction) and new methodologies (a methodology for post layout simulations) which support the designer during the crucial steps of the design process as well as by presenting the models of two cases studies belonging to leading MEMS applications (a micromirror for laser projection system and a control loop for the shock immunity enhancement in gyroscopes for automotive applications)

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact
    • …
    corecore