6,310 research outputs found

    Sequentializing Parameterized Programs

    Full text link
    We exhibit assertion-preserving (reachability preserving) transformations from parameterized concurrent shared-memory programs, under a k-round scheduling of processes, to sequential programs. The salient feature of the sequential program is that it tracks the local variables of only one thread at any point, and uses only O(k) copies of shared variables (it does not use extra counters, not even one counter to keep track of the number of threads). Sequentialization is achieved using the concept of a linear interface that captures the effect an unbounded block of processes have on the shared state in a k-round schedule. Our transformation utilizes linear interfaces to sequentialize the program, and to ensure the sequential program explores only reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348

    Reachability and Termination Analysis of Concurrent Quantum Programs

    Full text link
    We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli's probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.Comment: Accepted by Concur'12. Comments are welcom

    Petri Games: Synthesis of Distributed Systems with Causal Memory

    Full text link
    We present a new multiplayer game model for the interaction and the flow of information in a distributed system. The players are tokens on a Petri net. As long as the players move in independent parts of the net, they do not know of each other; when they synchronize at a joint transition, each player gets informed of the causal history of the other player. We show that for Petri games with a single environment player and an arbitrary bounded number of system players, deciding the existence of a safety strategy for the system players is EXPTIME-complete.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    A Process Calculus for Expressing Finite Place/Transition Petri Nets

    Full text link
    We introduce the process calculus Multi-CCS, which extends conservatively CCS with an operator of strong prefixing able to model atomic sequences of actions as well as multiparty synchronization. Multi-CCS is equipped with a labeled transition system semantics, which makes use of a minimal structural congruence. Multi-CCS is also equipped with an unsafe P/T Petri net semantics by means of a novel technique. This is the first rich process calculus, including CCS as a subcalculus, which receives a semantics in terms of unsafe, labeled P/T nets. The main result of the paper is that a class of Multi-CCS processes, called finite-net processes, is able to represent all finite (reduced) P/T nets.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape
    • …
    corecore