18,180 research outputs found

    Cut Size Statistics of Graph Bisection Heuristics

    Full text link
    We investigate the statistical properties of cut sizes generated by heuristic algorithms which solve approximately the graph bisection problem. On an ensemble of sparse random graphs, we find empirically that the distribution of the cut sizes found by ``local'' algorithms becomes peaked as the number of vertices in the graphs becomes large. Evidence is given that this distribution tends towards a Gaussian whose mean and variance scales linearly with the number of vertices of the graphs. Given the distribution of cut sizes associated with each heuristic, we provide a ranking procedure which takes into account both the quality of the solutions and the speed of the algorithms. This procedure is demonstrated for a selection of local graph bisection heuristics.Comment: 17 pages, 5 figures, submitted to SIAM Journal on Optimization also available at http://ipnweb.in2p3.fr/~martin

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    Sonet Network Design Problems

    Full text link
    This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results
    corecore