6 research outputs found

    Cooperative Periodic Coverage With Collision Avoidance

    Get PDF
    In this paper, we propose a periodic solution to the problem of persistently covering a finite set of interest points with a group of autonomous mobile agents. These agents visit periodically the points and spend some time carrying out the coverage task, which we call coverage time. Since this periodic persistent coverage problem is NP-hard, we split it into three subproblems to counteract its complexity. In the first place, we plan individual closed paths for the agents to cover all the points. Second, we formulate a quadratically constrained linear program to find the optimal coverage times and actions that satisfy the coverage objective. Finally, we join together the individual plans of the agents in a periodic team plan by obtaining a schedule that guarantees collision avoidance. To this end, we solve a mixed-integer linear program that minimizes the time in which two or more agents move at the same time. Eventually, we apply the proposed solution to an induction hob with mobile inductors for a domestic heating application and show its performance with experiments on a real prototype. IEE

    Finding optimal routes for multi-robot patrolling in generic graphs

    No full text

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en rob贸tica m贸vil y un creciente desarrollo de robots m贸viles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el dise帽o de estrategias de comunicaci贸n, coordinaci贸n y controlpara llevar a cabo tareas complejas que un 煤nico robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiraci贸n o limpieza de lugares en los que la suciedad se acumula constantemente, corte de c茅sped o monitorizaci贸n ambiental. Adem谩s, la aparici贸n de veh铆culos a茅reos no tripulados ampl铆a estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una soluci贸n 贸ptima para un entorno convexo con un sistema centralizado, utilizando programaci贸n din谩mica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son m谩s robustas, escalables y eficientes. Para solventar la falta de informaci贸n global, presentamos un algoritmo de estimaci贸n distribuido con comunicaciones reducidas. 脡ste permite a los robots teneruna estimaci贸n precisa de la cobertura incluso cuando no intercambian informaci贸n con todos los miembros del equipo. Usando esta estimaci贸n, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que m谩s se puedemejorar dicha cobertura. El primer m茅todo es un controlador del movimiento que combina un t茅rmino de gradiente con un t茅rmino que dirige a los robots hacia sus objetivos. Este m茅todo funciona bien en entornos convexos. Para entornos con algunos obst谩culos, el segundom茅todo planifica trayectorias abiertas hasta los objetivos, que son 贸ptimas en t茅rminos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a trav茅s de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que 煤nicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separ谩ndolo en tres subproblemas: planificaci贸n de trayectoriascerradas, c谩lculo de tiempos y acciones de cobertura y generaci贸n de un plan de equipo sin colisiones. Estos subproblemas m谩s peque帽os se resuelven de manera 贸ptima. Esta soluci贸n se utiliza en 煤ltimo lugar para una novedosa aplicaci贸n como es el calentamiento por inducci贸n dom茅stico con inductores m贸viles. En concreto, la adaptamos a las particularidades de una cocina de inducci贸n y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /
    corecore