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Abstract

Recent advances in mobile robotics and an increasing development of affordable au-
tonomous mobile robots have motivated an extensive research in multi-robot systems. The
complexity of these systems resides in the design of communication, coordination and control
strategies to perform complex tasks that a single robot can not. A particularly interesting
task is that of persistent coverage, that aims to maintain covered over time a given environ-
ment with a team of robotic agents. This problem is of interest in many applications such
as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environ-
mental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs)
has encouraged the application of the coverage problem to surveillance and monitoring.

This thesis focuses on the problem of persistently covering a continuous environment in
increasingly more difficult settings. At first, we propose a receding-horizon optimal solution
for a centralized system in a convex environment using dynamic programming. Then we look
for distributed solutions, which are more robust, scalable and efficient. To deal with the lack
of global information, we present a communication-effective distributed estimation algorithm
that allows the robots to have an accurate estimate of the coverage of the environment even
when they can not exchange information with all the members of the team. Using this
estimation, we propose two different solutions based on coverage goals, which are the points
of the environment in which the coverage can be improved the most. The first method is
a motion controller, that combines a gradient term with a term that drives the robots to
the goals, and which performs well in convex environments. For environments with some
obstacles, the second method plans open paths to the goals that are optimal in terms of
coverage. Finally, for complex, non-convex environments we propose a distributed algorithm
to find equitable partitions for the robots, i.e., with an amount of work proportional to their
capabilities. To cover this region, each robot plans optimal, finite-horizon paths through a
graph of sweep-like paths.

The final part of the thesis is devoted to discrete environment, in which only a finite set of
points has to be covered. We propose a divide-and-conquer strategy to separate the problem
to reduce its complexity into three smaller subproblem, which can be optimally solved. We
first plan closed paths through the points, then calculate the optimal coverage times and
actions to periodically satisfy the coverage required by the points, and finally join together
the individual plans of the robots into a collision-free team plan that minimizes simultaneous
motions. This solution is eventually used for a novel application that is domestic induction
heating with mobile inductors. We adapt it to the particular setting of a domestic hob and
demonstrate that it performs really well in a real prototype.
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Chapter 1

Introduction

In recent years, the popularity of robots in our society has increased significantly thanks
to the variety of task that they are capable of performing. The range of applications in
which they are used has increasingly expanded from the traditional assembly-line robotic
arms to the trendy household cleaning robots. In every case, robots are intended to carry
out tasks that are tedious, dangerous or even impossible for humans. They are capable of
assembling components tirelessly, deactivating explosives in adversarial environments, lifting
heavy loads or operating with exceptional precision, as shown in Fig. 1.1. In fact, one of the
most interesting capabilities of the robots is mobility, due to the possibilities that it offers
for transportation, surveillance, agriculture, search and rescue or assistance. Research in
mobile robotics is currently a very active field and addresses a diversity of subjects such as
mapping, localization, path planning or motion control.

(a) Bosch Rooxter.1 (b) Talon 3B.2 (c) Da Vinci Surgical System.3

Figure 1.1: Examples of commercial robots for different task: (a) vaccuming, (b) demining
and (c) surgery.

In many situations, a single robot is not capable of carrying out a task on its own. In
other scenarios, a cooperative work between several robots produces a better result. In these
cases, multi-robot teams become much more efficient and reliable and can complete the tasks

1Image obtained from thesinsamode.com/2017/07/bosch-presents-first-robot-vacuum-cleaner/.
2Image obtained from army-technology.com/features/featurewinning-the-war-on-landmine-casualties-

4569412/.
3Image obtained from radianceiitb.org/blog/da-vinci-robot/.
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in less time [1]. On the downside, they require more sophisticated control strategies and pose
new challenges for researchers and developers.

To perform a task as a team, all the members require a common knowledge or, at least,
enough information to play their part. This can be achieved either through a centralized
scheme or a distributed one [2]. In the first option, a central node gathers the information
coming from all the robots, makes the decisions and assigns to each member of the team a
simpler task. In the latter, each robot is capable of making its own decision based on its own
information and the information received from its neighbors. Centralized approaches are
easier to design and implement and can make better decisions based on global information.
However, they are difficult to scale and become unsuitable when the number of robots is
large. On the other hand, distributed approaches, that rely only on local information, are
harder to devise but are generally lighter in terms of computation. The main advantage of
these approaches is that they are robust to single agent failures, since no central node is re-
quired, and they can adapt to changes in the communication network. Although distributed
approaches attract more attention than centralized ones, especially for applications which
are inherently distributed in space, time or functionality, centralized approaches usually offer
optimality guarantees in a more natural way. Depending on the application, the size of the
team, the scalability or the communication and computational constraints one alternative
may be preferable to the other.

The novel research challenges that multi-robot systems introduce include among others
cooperative map building and localization [3], formation control [4], collaborative manipu-
lation [5] and coverage problems [6]. This thesis focuses on this last kind of problems, in
particular, in persistent coverage problems.

1.1 The Coverage Problem in Multi-Robot Systems

The coverage problem aims to cover a given environment with a team of mobile robots.
This problem can be considered as a general framework that includes a great variety of
problems such as locational optimization [7], wireless sensor networks [8], the art gallery
problem [9], exploration [10], mapping or sweeping [11].

The coverage problem in itself appears in the literature in three different approaches
depending on the coverage capabilities of the robots and on the coverage objective: static,
dynamic and persistent coverage. In this thesis we focus on the third problem and propose
different solutions to it. However, the three of them are closely related, in many cases
solutions can be extended from one to the others with slight adaptations and most of the
tools are useful for the three of them. For instance, this classification could be extended
with a fourth category, persistent static coverage, that shares some properties of static and
persistent coverage. In the following subsections we elaborate on each subproblem to give an
overview of the approaches proposed in the literature and the common tools that are used
in the end to solve the persistent coverage problem.
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1.1.1 Static coverage

The most traditional approach to coverage is static coverage, typically known as the
deployment problem. It seeks to determine the optimal static positions of a group of robots
to cover an environment, optimizing a certain utility function. Most solutions to this problem
are distributed and based on classic Lloyd algorithms with Voronoi partitions, although
different approaches are also investigated [12, 13]. In [6], robots compute their own Voronoi
regions and move towards its center of mass. They demonstrate that the final set of centroidal
Voronoi configurations maximizes the probability of detecting an event that takes place in the
environment. Other Voronoi-based strategies are presented with anisotropic sensors [14] or
in non-convex environments [15] for finite-size, heterogeneous robots [16]. The same notion
of optimal sensing configuration is also used in [17] with an adaptive control law that learns
the density function through sensor measurements. In [18], the robots follow the gradient
of the energy to deploy minimizing the energy expenditure. Different partitioning schemes
have also been used as in [19], where a gradient-descent is applied with a power diagram.

Static coverage has also been addressed in discrete spaces represented as graphs, us-
ing Voronoi tesellations via pairwise optimal gossiping [20] or via asynchronous greedy up-
dates [21] and, alternatively, in a game theoretic framework [22].

In this context of static coverage, some traditional problems have been revisited and
extended taking advantage of mobile robots. In locational optimization [7,23] the objective
is to allocate resources in an area according to a fixed criterion, e.g., placing mail boxes in
a city [24] to minimize distances from inhabitants. The main difference is that locational
optimization solves off-line a limited problem while a robotic network relies on a generally
distributed, on-line computation with reduced communication capabilities. Other revisited
problems are coverage in wireless sensor networks [8], that is usually defined as a measure
of how well and for how long the sensors are able to observe the physical space, and the art
gallery problem [9], that aims to find how many (robotic) guards are necessary, and how
many are sufficient to surveil the paintings and works in an art gallery with a finite number
of walls.

Persistent static coverage

Static coverage may need to be adapted or repeated if the environment or the network
changes, that is, the robots must change their positions to the new optimal ones when a
change occurs. Therefore, static coverage can be extended to persistent static coverage in
the sense that new sets of static positions have to be obtained over time. In [25] the robots
deploy to cover an environment with a certain density function as in [6] and a single human
is capable of changing this function to control the behavior of the team and get the robots
relocated to optimize the coverage with the new density. In [26] a similar approach, that
is aware of the energy remaining on each robot, is followed. When one of the robots leaves
the coverage task for refueling, the others relocate to the optimum coverage and they do the
same when the agent rejoins the coverage.
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1.1.2 Dynamic coverage

The second approach is dynamic coverage, in which the robots must cover all the points
of the environment at least once or until a desired coverage level is reached. After that, the
task is considered complete. The goal of this approach is to minimize the time and energy
consumption needed to complete the task. Some applications of this problem are exploration,
mapping, search and rescue, demining, harvesting, car painting or snow removal. In Fig. 1.2
we show the paths followed by a single robot to complete the dynamic coverage of two
different domestic environments. In this case, the task is to clean the floor and no repetition
is required.

(a) (b)

Figure 1.2: Paths followed by a single robot to complete the coverage of two domestic
environments.

Two different types of approaches to dynamic coverage appear in the literature. The
first one consists in planning paths that allow the robots to cover the entire environment
by following them. In [27] a review of path planning algorithms for complete coverage is
presented and four categories are established based on the decomposition of the environment:
heuristic, approximate, partial-approximate and exact cellular decompositions. In [28] a
convex polygonal environment is covered following its boundary and its subsequent scaled
inner polygons and an upper bound on the completion time is given. The authors of [29]
propose the construction of spanning trees to create coverage paths that cover the whole
terrain and minimize the time to complete coverage. A neural network is used in [30] to plan
paths for nonholonomic robots that avoid collisions with both static and moving obstacles.

In the second type of solutions the key idea is to move the robots to the unexplored regions
that provide more benefit. Hussein et al. [31] propose a control law based on the gradient
of the coverage error that ensures that the error converges to zero for fully and partially
connected networks. A similar approach is followed in [32] with anisotropic sensors and
pairwise collision avoidance. In [33] a centralized coverage control law ensures the coverage
task is done until the agents end up in local minima and then, a global trajectory tracking
control law ensures that the agents are deployed to uncovered regions. In the work from
Burgard et al. [34] a group of robots coordinately explore an unknown environment and try
to minimize the overall exploration time by calculating an utility metric in the unexplored
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areas and assigning targets to the robots. Over a receding horizon an integer programming
planning is applied in [35] to maximize spatio-temporal coverage and comply with collision
avoidance restrictions.

1.1.3 Persistent coverage

The last type of coverage problems is persistent coverage, in which this thesis focuses.
The aim of persistent coverage is to maintain a desired coverage level over the environment
with a group of mobile robots. Persistent coverage differs from static and dynamic coverage
in that the coverage of the environment persistently decays, which requires the robots to
continually move in order to maintain the desired level. Therefore, as opposed to dynamic
coverage, in this case the task is never completed.

Many applications arise from this problem. Autonomous vacuum cleaners [36] or lawn
mowers [11, 37], either alone or as members of a team, are ready to automate these tedious
and time-consuming tasks (Fig. 1.3a). Cleaning a place where dust is continuously settling
also includes oil spill confrontation [38]. Heating buildings, watering crops or monitoring the
environment can also experience a considerable increase in efficiency if they are performed by
autonomous robots [39]. In this sense, this problem is often addressed as persistent surveil-
lance or environmental monitoring [40, 41]. In fact, the development of useful unmanned
aerial vehicles (UAV) has encouraged the application of the coverage problem to surveillance
and patrolling [42] (Fig. 1.3b). In addition, new applications in which the robots directly
help people have arisen recently, for instance giving information in a touristic place [43] or
edutainment in a pediatric hospital [44].

(a) Vacuuming of a building. (b) Surveillance of a city.

Figure 1.3: Examples of persistent coverage applications with a team of mobile robots.

Three important aspects of persistent coverage formulations, which are actually greatly
influenced by the application, define the settings of the problem that must be solved:

• Coverage level and deterioration of the coverage:

From a practical point of view, the coverage level can be seen as the amount of dust
while vacuuming, the accumulated heat or the temperature while heating a place, or
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the time since a point was last visited while surveying an area. These magnitudes
deteriorate over time due to physical phenomena as dust settling or cooling, or due to
an increase of the observation uncertainty.

Different deterioration models are used in different approaches depending on the appli-
cation. The most common formulation is a constant decay rate, that is, a deterioration
proportional to the coverage level and, thus, exponential with time. This formulation is
well suited for the settling of dust or the growth of lawn. Using this model, a saturation
is applied to a maximum or a minimum level in some cases as in [45]. In surveillance
applications, where the coverage level is usually equal to the time since the last visit
to each point, its deterioration is linear with time. Apart from these two alternatives,
other models can be used based on the uncertainty of measurements for monitoring
applications or on heat transfer equations for heating applications. However, these
models usually become complicated and do not provide additional advantages to the
algorithms that solve the persistent coverage problem.

• Importance function:

When covering an environment with a team of mobile robots, some points may be
more important to cover than others. For instance, keeping a public building clean
with mopping robots requires the entrance, the main corridors or the events room
to be always cleaner than the basement and, therefore, they must be visited more
frequently. This is expressed as a function of the environment that is called importance
function. It has many interpretations such as the probability of an event taking place
at a particular location as in [6] or a sensory function in [46].

• Performance Metrics:

There are many variations in the way in which the persistent coverage objective is
defined. In the broadest framework, the goal is to keep the coverage level as close
as possible to a desired level over time and, as a consequence, a good metric can be
the integral over time of the quadratic difference between the desired and the actual
levels. The quadratic difference encodes that overcovering a point is as undesirable as
undercovering it. For instance, it is necessary to square the difference in applications
such as painting, since overcovering a point is a waste of resources, or heating, where
a higher temperature than required is as bad a lower one. In the context of persistent
surveillance [42] the objective usually is to minimize the maximum time that a point
remains unvisited. Another alternative is to guarantee that every region is patrolled
with a shorter period than the time needed by an intruder to cross a border.

Finally, one of the key and more challenging features of persistent coverage is that finding
the optimal solution is NP-hard. Although there are many references in which this fact is
proven [47, 48], it is fairly intuitive to see that it requires the solution of an instance of the
Travelling Salesman Problem (TSP), which is a classical NP-hard problem. This property
influences greatly the solutions proposed in the literature, that we analyze in detail in the
following section.
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1.2 State of the Art in Persistent Coverage

In this section we classify current state-of-the-art solutions to persistent coverage accord-
ing to different criteria and pay special attention to the most important aspects of these
solutions in the different categories that we provide.

1.2.1 Classification

A unique classification of solutions to persistent coverage is not possible due to the
diversity of approaches to it. For this reason, we propose different categories to classify
current solutions and to give the reader some understanding on how the scientific community
is approaching the problem.

Computation

The first criterion, as for every multi-robot system, classifies the solutions to persistent
coverage depending on how the information is exchanged and who makes the decisions:

• Centralized solutions: these approaches are usually needed to plan closed periodic
paths for the robots and to be able to give some optimality measures [49].

• Distributed solutions: these are usually preferred for their adaptability, scalability,
robustness and low communication bandwidth requirements [50] although in many
cases it is difficult to guarantee optimality and the robots need a mechanism to retrieve
or estimate the coverage of the entire environment

Environment

The second criterion that differentiates the proposed solutions is the nature of the envi-
ronment at which persistent coverage is aimed:

• Continuous environments: these environments are usually a closed subset of R2,
that is, they are considered planar even for applications with UAVs. We also include
in this category those who, aiming to cover a continuous environment, discretize it in
cells [51].

• Discrete environments: approaches in this category only require to maintain covered
a finite set of interest points [52] although the robots can move in the continuous space.

Task Division

The third criterion distinguishes the different solutions depending on how the robots
divide the coverage workload:

• Partitioning: the most basic approach to multi-robot coverage is to partition the
environment in as many regions as robots and assign each one to a single robot, that
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is responsible of covering it [53, 54]. Once the division has been made, each robot can
act individually on its assigned region regardless of the other robots.

• Cooperation: although all the multi-robot solutions to persistent coverage are inher-
ently cooperative, we use the term cooperation here to express that all the robots cover
the entire environment together [33], i.e., they are not restricted to particular areas,
as in the previous partition-based solutions.

Robot Motion

Eventually, in each of the aforementioned scenarios, several possibilities exist to define
the motion of the robots:

• Infinite horizon path planning: the objective is to find, usually offline, one or
more closed paths that the robots follow and periodically repeat to cover the entire
environment [55] and maintain the coverage level. It is important to remark that these
solutions are intrinsically periodic and the paths are required to be closed.

• Finite horizon path planning: at particular times the robots plan open paths from
their current position. In addition to strictly receding horizon approaches [35], here
we also include event-triggered planning to certain spatial goals [56].

• Feedback control: instead of a path planning algorithm, a motion controller is deve-
loped such that the robots decide at each time which is the best direction to move [57]
according to the evolution of the coverage. It could be considered as a particular case of
the previous one with a planning horizon equal to one. However, we separate because
of the amount of solutions and techniques proposed for it.

In the following sections we provide detailed explanations on the important aspects of
each category and reference the current solutions that can be included in them.

1.2.2 Centralized and Distributed Solutions

The differences between these two types of solutions are basically the same for persistent
coverage as for any other multi-robot problem. Centralized solutions, which are usually
used to plan periodic paths offline [58], often allow some kind of theoretical optimality
guarantees at the expense of being computationally intensive and hardly scalable. When
used as online strategies, they have the risk associated with a failure of the central node. On
the contrary, distributed approaches are adaptable to failure of single agents, easily scalable
and usually not computationally complex. However, it is generally more difficult to achieve
global optimality with them. In between these two types, there are hybrid solutions such
as [59] in which the robots make decisions distributedly but with some sort of coordination
achieved through a central supervisor.
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Coverage Estimation

A typical assumption in the approaches to the coverage problem is the exact knowledge
of the coverage levels of the whole environment, that permits the calculation of the motion
of the robots. In centralized solutions, such global information is available at the central
node since it can communicate with all the robots of the team. Nevertheless, in distributed
solutions it has to be retrieved locally from the information that only the neighboring robots
communicate. One alternative to collect this information is to communicate each production
or measurement of every robot through the network labeled with a robot identifier and a time
stamp. Routing and communication protocols [60] allow each robot to receive information
and propagate it through the network. Then, each robot is capable of retrieving the actual
coverage map using all the received information. However, this knowledge can be challeng-
ing when dealing with large environments, changing robotic networks or when the team of
robots has limited communication capabilities. Therefore, distributed estimation strategies
where the information is synthesized instead of accumulated become more appropriate for
this problem. In terms of estimation, in [61] the environment is parameterized by a set of
basis functions, which are estimated by using a continuous time PI-consensus algorithm [62].
Additionally, the uncertainty of the estimation is reduced moving the robots so as to max-
imize their sensory information. A distributed interpolation scheme is used in [63] with a
Kalman-like formulation and compression of the data, since the load of information to be
transmitted between vehicles increases as more measurements are taken.

1.2.3 Solutions for Continuous and Discrete Environments

In continuous environments, an infinite amount of points require coverage. In many
cases, these environments are restricted to be convex in order to simplify the solution but,
in general, they can contain obstacles and be non-convex [35]. Some works discretize them
in cells [51] to propose solutions based on graphs or on dynamic programming but, since
they are designed to cover continuous environments, they are still considered as approaches
for them. The strategy to control the coverage of these environments it to develop velocity
controllers to spend more time covering the points where the coverage is bad or changes
quickly. In [45] the moving speed of the robots and their initial locations on the path are
optimized while in [64] the speed of each robot along its path is controlled to prevent the
coverage from growing unbounded at any location.

As approaches for discrete environments we consider those which aim to maintain covered
a finite amount of discrete points of interest such as [65]. Most of these works do not consider
the times required to complete the coverage task at each point or assume that they are known.
The former is acceptable in monitoring or surveillance applications [42], since the information
gathering can be considered instantaneous, but the same does not hold in problems such as
heating or watering, where the coverage action of the robots requires some time. The problem
of calculating those times that the robots have to spend at each point to satisfy the coverage
objective has not been deeply studied in the literature. In [66] they translate the problem
of finding the coverage times of a single robot into a discrete-time dynamic system whose
underlying continuous dynamics converge to a periodic cycle with a fixed period. A market-
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based approach is presented in [67], where the robots locally calculate the cost of covering
each point of interest and bid for it. Without a desired coverage level to accomplish, in [65]
a single agent obtains a reward depending on the time that it covers each point and a path
is calculated to obtain the maximum reward with a limited amount of fuel.

1.2.4 Partition-based and Cooperative Solutions

Partition-based Solutions

There are many works that address the persistent coverage problem with a divide-and-
conquer strategy, in the sense that they partition the environment and assign each partition
to a robot that becomes responsible of developing the coverage on it.

The most well-known partition approach for coverage in multi-robot systems is the one
from Cortés et al. using centroidal Voronoi tesellations [6]. Although different partition
strategies for coverage had been previously proposed [68], the Voronoi partition has been the
most used, specially for static coverage [20, 69, 70]. Voronoi partitions are purely geometric
and perform quite well in convex environments or environments with few obstacles. However,
in complex environments, such as office-like ones, they may result disconnected. This entails
that a robot needs to cross the regions of others robots to reach a part of its own, as shown in
Fig. 1.4. Therefore, the coverage share-out is no longer maintained and a collision avoidance
policy is needed. A workaround proposed in [71] is to repartition the non-reachable areas
with other robots.

Figure 1.4: Voronoi partition with disconnected regions. The black robot has to cross the
region of the red and green robots to reach the gray areas of its own region. The same
happens to the red robot to reach the orange area of its own region.

In the case of persistent coverage, the most common approach is to initially find the
partition and maintain it over time. This partition has to be equitable, i.e., each robot must
be assigned to a region in which the workload is proportional to its capabilities with respect
to rest of the team.
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Equitable partitions for convex environments are usually calculated in a centralized fash-
ion for teams of UAVs. In [72] a line in the optimal sweeping direction is moved along the
environment to slice it each time the area on one of the sides is the same as any required
partition. A polygon decomposition is applied in [53] with the restriction of including the
robot position inside its partition and in [49] an algorithm handles sporadic communication
between each robot and a central base to update the partition. In a distributed way, Pavone
et al. [73] compute equitable partitions using power diagrams.

For ground vehicles, the vast majority of environments are non-convex and the assump-
tion of convex environments is not reasonable. Therefore, different approaches have been
proposed in these type of environments. A Voronoi-based load-balancing using the geodesic
distance over a graph is presented in [74] and distributed vertex substitution is used in [21]
with two-hop communication to guarantee convergence to the locally optimal configura-
tion. A solution based on Lloyd’s algorithm with power diagrams appears in [16] to deal
with heterogeneous robots. Complete coverage and minimum coverage paths without any
preparatory stage is guaranteed in [75] with an algorithm based on spanning trees. In [76]
the feature of online obstacle and decay learning is added to a decentralized partitioning of
the target area on the basis of the robot performances.

There is also an interesting open problem in which, instead of initially fixing static parti-
tions, the partitions are updated over time to adapt to the progress of the coverage task or the
energy reserves of the robots. In an application to persistent static coverage [26], a Voronoi
partition is updated every time a robot needs to leave the environment for recharging.

Cooperative Solutions

As opposed to partition-based solutions, we refer as cooperative solutions to those in
which the robots share the entire environment and every one is allowed to move to every
point. Cooperation appears in the sense that the robots have to reach an agreement on
where each individual goes to provide the optimal coverage.

In this context, some works plan a single closed path that covers the entire environment
and is followed by all the robots of the team [77]. Then, the robots are distributed along
the path to minimize the time between consecutive visit to every point [45]. An alternative
is to plan a single path for each robot with the objective of covering the entire environment
as in [48]. Also a single path for each robot can be planned but allowing them to overlap
at the same points to ensure the optimal coverage of the regions of interest [46]. The last
option presented in the literature is to perform a team-optimal assignment of spatial goals
that the robots follow over the entire environment [57].

1.2.5 Path Planning and Feedback Control Solutions

The positions of the robots at every time instant are one of the two principal outcomes of
any persistent coverage algorithm. These positions can be obtained in two ways: by control-
ling the motion direction online or by planning the paths of the robots and following them.
Many path planning methods have been proposed in the literature and two interesting re-
views of methods for coverage applications are [27] and [78]. Regarding persistent coverage,
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two different options appear at the time of planning the robots’ trajectories: planning perio-
dic closed paths over an infinite time horizon or planning open paths over a finite horizon.
Most solutions to persistent coverage have focused on the first planning alternative but in
the following we review the approaches with the three strategies. Since in all cases they have
to be aware of collisions, energy depletion and time constraints, we also include a subsection
discussing them.

Infinite Horizon Path Planning

The first and most commonly selected option to obtain the positions of the robots consist
in planning a priori closed paths that cover the entire environment and the robots periodically
follow. The objective is to minimize some metric, preferably related to coverage, while
periodically visiting all the points of the environment.

Some approaches obtain lawn-mower-like trajectories by finding straight paths and min-
imizing the number of turns. In [79] they compute a tour of minimum cost in the convex
decomposition of a non-convex environment. A Zamboni pattern in the optimal sweep di-
rection is modified in [72] to minimize turns and a sweeping pattern in such direction is
followed in [53] for convex regions. A slightly different solution is proposed by Hokayem
et al. [77] over-approximating the environment by a convex polygon and creating a spiral
path with said polygon and its inner level sets. Using the same paths, [45] guarantees that
full awareness is eventually reached in some interest points. These solutions are sufficient
to provide the optimal coverage to environments where the decay and the importance are
uniform.

Spanning tree coverage (STC) is also used for closed path planning under the assumption
that the operation area does not get more narrow than two times the size of the robot. In [51]
the minimum frequency of visits is obtained following a single STC path with all the robots
in the team. A polynomial-time coverage algorithm is designed in [48] based on the single-
agent STC introduced in [80]. In [29] they tackle the problem of constructing a STC that
minimizes the time to complete coverage. In [81] a STC with backtracking is proposed and
STC paths are found for each robot in regions of equal area in [75].

Apart from the previous ones, many other methods have been proposed to plan paths
over an infinite time horizon. The authors in [82] and [83] aim to minimize the time between
visits regions of interest that are represented by the vertices of a graph. In [84], Lin et al.
formulate a parametric optimization to determine a set of elliptical trajectories for the robots,
extending their previous work [58] to a two-dimensional space. Rapidly-exploring Random
Cycles are used in [85] to sense a dynamic gaussian random field of the environment that
evolves over time. The trajectories aim to minimize the covariance of the estimation of
such field. In [86] a utility metric is maximized through a quadratic mixed integer program
(MIP) to find the best tours for the agents when correlation between the points of interest is
considered. A linear MIP is solved in [87] to obtain the optimal routes for a fleet of vehicles
to periodically visit a set of targets while minimizing the energy consumption. Soltero et al.
develop in [46] an online adaptive path planning algorithm based on gradient descent of a
Voronoi-based cost function.

The vast majority of these solution do not allow that two robots cover the same area
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at different points of their paths. These non-redundant paths have a worst-case coverage
equal to the single robot case. On the other hand, the worst-case performance of redundant
algorithms is a half of that time as shown in [81]. The advantages of these paths is that
they are much easier to find than redundant ones. With respect to other solutions, they only
have to be computed once and the robots just follow them. They also offer optimality guar-
antees for static and uniform environments. On the downside, they are limited in changing
environments. If an obstacle blocks a single path or an agent fails, a replanning of the whole
team is needed, typically resulting in a high computational cost and a centralized solution.
They are also limited in environments where the decay or the importance is not constant for
all the points. In those cases, it is not possible to reach the optimal coverage since all the
points have the same visitation frequency regardless of their importance or coverage level.

Finite Horizon Path Planning

The second option to obtain the desired positions for the robots consists in planning
online open paths that optimize the coverage along them over a finite time horizon. They
lead the robots through the worst covered areas at that time or, at least, to the worst
covered areas. This alternative has the potential to practically overcome all the limitations
of closed paths at the only expense of changing global optimality guarantees for local ones.
This is most likely the reason why this approach has received little attention in the context
of persistent coverage. Nevertheless, many approaches to static coverage apply this tool.
An integer program applied over a receding planning horizon is solved in [35] to find the
paths that maximize spatio-temporal coverage. In [88] they solve approximately a dynamic
program over a finite time horizon, which optimization criterion is the minimum uncertainty
of a field estimate. The local path planning algorithm TangentBug is used in [56] to plan
the trajectories to the Voronoi centroids in a non-convex environment.

Feedback Control

In order to obtain the positions of the robots over time an alternative to path planning is
to use a controller that drives the robots according to the coverage level of the environment.
This alternative allows to find the locally optimal directions of motion and can be easily
distributed and scaled. On the downside, it does not guarantee global optimality and suffers
from local minima. In [57] a gradient descent method is used to locally optimize the coverage
and a centralized assignment of objectives leads the robots to undercovered areas and avoids
local minima. In [89] a control policy decides to which cell move next to minimize the
maximum time between visits to all cells. Hubel et al. [90] propose a control law based on
the gradient of a cost function that penalizes the lack of coverage weighted according to the
importance of each point. These methods behave well in the long term but may overcover
areas locally and waste some time and energy.

It is important to differentiate this type of control from the low level control of the robots,
that in the case of path planning is used to follow the paths. With the term feedback control,
we refer to the higher level that decides the best direction of movement using the coverage
of the environment as feedback.
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Collision avoidance and other constraints

Each of the three previous methods to calculate or control the positions of the robots must
be aware of the constraints imposed by the environment, the network and the application.
These constraints include collisions with obstacles and other robots, connectivity, energy
depletion or time requirements. Some of them have been addressed directly in persistent
coverage; some others, more broadly in the context of general coverage problems; and others
still represent open problems.

Most path planners provide closed trajectories that are collision-free with respect to static
obstacles [82]. These paths are followed using low-level controllers that, at the same time,
avoid collisions with other robots and moving obstacles while trying to follow the paths
as close as possible [91]. A Dynamic Window Approach (DWA) finds at each time the
optimal velocity in the space of discretized feasible velocities [92]. The resulting paths are
safe but may no longer be the best possible for the same planning method. The problem
of collision avoidance has also been considered in the planning of open paths [93]. It has
been addressed by introducing time delays at the beginning of the paths [94] or solving a
Mixed-Integer Linear Program (MILP) [95]. In [96] they also assign goals to interchangeable
agents to minimize the maximum cost over all trajectories. In [97] robots decide the optimal
assignment of objectives and activate a family of Lyapunov functions to guarantee safety.
In [35] they compute trajectories that maximize spatio-temporal coverage while satisfying
collision avoidance constraints. Motion controllers can also include terms to avoid collisions,
as in [98], where a bounded potential repulsion is used.

Energy and time constraints such as autonomy and refueling [99] are also important
in multi-robot persistent coverage. To find a closed path to visit all the points of the
environment with a single UAV, heuristic solutions are presented with refueling depots [100]
and with revisit constraints [52]. In [101] a MILP and a genetic algorithm are compared for
the scheduling of mission trajectories with automated refueling stations. Another MILP is
solved in an application to persistent people tracking [102] with automated logistics support.
In [87], they seek the optimal routing strategy with a MILP that allows a fleet of vehicles to
periodically visit a set of targets while trying to minimize the energy consumption. Similarly,
in [103] they maximize the frequency of task completion allowing online calculation of task
costs to avoid energy depletion. In [104] they schedule and plan the paths for a second
team of recharging robots using both a MILP and a transformation to the TSP. A feedback
controller for multiple quadrotors with charging constraints is generated in [105] to meet a
complex temporal logic specification.

An additional problem that constrains persistent coverage is connectivity maintenance.
It has not been addressed specifically but applicable solutions have been proposed [106,107]
and it has been deeply studied for multi-robot systems in general [108,109].

1.2.6 Coverage Control

The coverage actions of the robots are the second principal outcome of any persistent
coverage algorithm. The energy expended by these coverage actions performed by the robots
in the environment is a common aspect that all the possible solutions introduced before share
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and that has received very little attention in the literature.
In applications such as surveillance or sensing, the range of the coverage actuators can

be modified to save energy and improve the system efficiency. This issue has been widely
studied in the context of wireless sensor networks for static coverage, where the range of
the sensor is adapted to save energy while they are placed strategically in the environment
optimizing the coverage [110,111].

In applications in which the robot actions have an effect on the environment, the coverage
action can be controlled and adapted to the needs of the environment at each time and point.
The idea is to provide more coverage in the undercovered areas and less, or even nothing,
in the already covered areas. This is essential in applications such as heating or watering,
to avoid over-heating or flooding, respectively, or to save power or resources in the case of
vacuuming, cleaning or painting. Only one approach to persistent coverage takes this into
account, [59], where the coverage action and the coverage radius are controlled to reduce the
consumption of energy and improve the coverage performance.

1.3 Mobile Induction Heating and Persistent Coverage

In recent years, there has been an increasing tendency in research and innovation to
increase convenience and quality of life of people and to alleviate the workload, making
everyday tasks easier. Induction technology for domestic cooking [112] is experiencing lately
an important turn towards flexibility, to transform everyday cooking to an amusing and
entertaining experience in itself and, at the same time, compatible with other tasks. Such
transformation started with induction hobs that provide the user with increasingly more
freedom to place any kind of pot in any place of the hob to cook. In the first place, inductors
with concentric rings allowed different diameters of pots in the same place (Fig. 1.5a). The
next step was to provide rectangular areas where different shapes and sizes were allowed
(Fig. 1.5b) and the last one, that is already in the market, is a totally flexible hob in which
any pot can be placed anywhere (Fig. 1.5c).

(a) Tradditional cooktop with
concentric rings.

(b) Flexible induction. (c) Totally active induction cooktop.

Figure 1.5: Evolution of commercial induction cooktops in the search for flexibility.

In the near future, the evolution tends to increasingly bigger hobs that do not sacrifice
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space in the countertop by being integrated under a unique countertop surface. This surface
is intended to cook, to prepare the food that has been or will be cooked, to have lunch or
even to carry out other tasks like children doing homework while their parents are cooking.
It can even be placed in the living room table as illustrated in Fig. 1.6. In this context,
induction heating with mobile inductors appears as an appropriate solution to the challenge.
The key idea is that the inductors are attached to robotic arms to be able to move under
the countertop, instead of being fixed in a particular position. In this configuration, they
can automatically position themselves under the pots that the user wants to be heated.
Additionally, the ability to move allows the inductors to heat pots of different sizes and
shapes, located in very different positions, or even to maintain more than one pot heated
at the same time by repeatedly moving from one to another. This problem is an specific
application of the persistent coverage problem with some particularities.

Figure 1.6: Illustration of the possibilities of induction in the near future. The living room
table includes an induction hob and makes cooking an amusing family experience.

1.3.1 State of the Art in Mobile Induction

This work arises from a long-term research that BSH Electrodomésticos España is carry-
ing out in collaboration with the University of Zaragoza. Some important results have been
obtained in this research, specially in the design and construction of robotic arms capable
of holding and moving the inductors under the countertop.

One of the most important results is the construction of a prototype of a domestic hob
with three mobile inductors [113], that is shown in Fig. 1.7. The size of the hob is 726× 482
mm. The inductors have a double coil that allows the activation of an inner circle of 12 cm
of diameter or of an outer ring of 18 cm of diameter. Each inductor is attached to a robotic
arm with two parallel rotational joints, each one actuated by a stepper motor, and the arms
are clamped to the inner chassis of the hob. The movements of each inductor are controlled
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by an Arduino board, capable of receiving orders from a computer, planning paths in the
arm coordinates and command the actions of the motors.

Figure 1.7: Top view of the prototype of mobile induction.

The decision on the diameters of the inductor coils was made thanks to the results in
other research in this line [114]. It proves that an inductor of 18 cm of diameter can heat
pots of up to 21 cm of diameter. In a similar way, an inductor of 12 cm can heat pots of
up to 14 cm. These sizes fit with the size of the hob and with the vast majority of pots
currently in the market.

On the other hand, since the positions, sizes and shapes of the pots are free, a pot detec-
tion system is needed to determine these properties and, consequently, locate the inductors
under the pots. In this sense, two different systems have already been designed and tested.
The first one [115] is based on computer vision techniques and uses a commercial color and
depth camera situated above the hob. The second one [116] consists of a layer of capacitive
sensors that can be incorporated under the countertop. Another issue that must be taken
into account is that flexible cooktops should not have a fixed user interface since the main
objective is to provide freedom to the user. To this end, a generic hand gesture recognition
system was developed in [117].

All these innovations are important steps towards the final solution. However, the main
remaining challenge is a strategy to plan the movements and the actions of the inductors
which guarantees that the power requirements established by the user are satisfied. This
strategy is the solution to a persistent coverage problem in a discrete environment shared
between the robots where the probability of collisions is a decisive factor.

1.4 Objectives

In the context of the multi-robot persistent coverage problem, the first objective of this
thesis is to improve existing methods and propose new algorithms to extend the state-of-
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the-art solutions in continuous environments. This includes investigating the optimality and
suitability of finite-horizon-planning and feedback-control solutions and applying them to
increasingly more complex environments, from obstacle-free, convex ones to complex, non-
convex ones, where the decay and the importance of the coverage are not uniform. An
important focus of this first objective is on the applicability of these solutions to distributed
systems, which have proven their advantages for this problem.

The second objective of this thesis is to develop an application of the persistent coverage
problem to the open problem of domestic induction heating with mobile inductors. This
requires a method for discrete environments, that is capable of calculating the coverage
time of each robot at each point and that guarantee collision avoidance between robots in a
constrained space.

1.5 Contributions

The contributions of this thesis focus on the two objectives: investigating solutions to
the open problems in persistent coverage with special attention to the application to mobile
induction heating. In particular, the first contribution is an optimal centralized solution
based on finite horizon planning in a continuous environment. In the same type of scenario,
we move to a distributed solution which requires a distributed estimation of the coverage.
We propose several solutions in this context: the first one based on a feedback controller, the
second one in finite horizon planning for environments with obstacles and the third one in an
equitable partition of complex environments. After that, we present an optimal, centralized
solution for general discrete environments that is particularized for the application of mobile
induction in the final part.

Now we detail these main contributions and how they are structured in this dissertation:

• A centralized, finite-horizon-path-planing solution for convex, continuous
environments [118]. We consider a cost function that quantifies the quality of the
coverage of a continuous environment in a finite prediction horizon. We transform the
problem of planning the optimal open paths in such horizon into a discrete optimization
problem with constraints that we solve with a novel algorithm based on Branch and
Bound. This algorithm allows us to find the set of actions that minimizes the cost
function and includes a procedure to split the sets of candidate solutions and the
calculation of upper and lower bounds on the cost. Additionally, we propose a method
to reduce the problem to several smaller subproblems. This method and its evaluation
are presented in Chapter 2.

• A distributed coverage estimation algorithm [119]. We propose an algorithm
that allows every robot to estimate in a distributed manner the global coverage function
using only local information, i.e., exchanging information only with neighbors. We pay
special attention to the characterization of the algorithm, establishing bounds on the
estimation error for every point of the environment. Additionally, we demonstrate
that the algorithm guarantees a perfect estimation in a particular area for each robot.
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The algorithm is described in Chapter 3 along with a test of its correctness and an
evaluation of its performance.

• A distributed, partition-based solution combining a locally optimal feed-
back controller with a selection of coverage goals [120]. We introduce a new
function to determine the potential improvement of the coverage at each point of the
environment. Upon this metric, we build a feedback control strategy that combines two
actions. The first one maximizes the improvement. The second one drives the robots
to the points of the highest improvement, which the robots are capable of finding
distributedly, inside their partition. This contribution is introduced in Chapter 4.

• A distributed, finite-horizon-optimal path planning solution with coverage
control for continuous environments with obstacles [121]. We propose an
algorithmic solution in which each robot locally finds the best paths to keep the desired
coverage level over the whole environment. Using Fast Marching Methods, a set of
optimal, finite-horizon paths are computed in terms of coverage quality, while keeping
a safety distance to obstacles, and the one that mostly improves the coverage along the
whole path is followed. We also propose a coverage action controller, locally computed
and optimal, that makes the robots maintain the coverage level of the environment
significantly close to the objective. This approach is presented in Chapter 5 with
simulations and real experiments.

• A distributed solution for complex, non-convex, continuous environments
with equitable partitioning and graph-based, finite-horizon optimal paths
[122]. The first part of our solution partitions the environment and assigns each
partition to a single robot that becomes responsible of developing the coverage on
it. It is based on the geodesic distance and divides general, non-convex environments
in regions such that the work required to the robots inside them is equal. We also
extend the algorithm to be aware of the energy, coverage capabilities or status of the
robots and of the connectivity of the partitions. The second part of our solution is a
planning method that allows each robot to find the optimal, finite-horizon path inside
its partition in terms of the current coverage error. This path is planned through
a graph that covers the entire partition in a sweep-like manner and also allows the
robot to traverse the boundary of the partition. The entire solution is introduced in
Chapter 6.

• A centralized, periodic and cooperative strategy for discrete environments
with optimal coverage times and actions [123,124]. In this approach, the robots
have to visit periodically a discrete set of points of interest and spend some time on
them carrying out the coverage task. We use a divide-and-conquer strategy and split
the problem into three smaller subproblems to counteract its complexity. In the first
place, we plan individual closed paths for the robots to cover all the points periodically.
Secondly, we formulate a quadratically constrained linear program to find the optimal
coverage times and actions that satisfy the coverage objective. Finally, we join together
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the individual plans of the robots in a periodic team plan by obtaining a schedule with
a MILP that guarantees collision avoidance. We introduce this strategy in Chapter 7.

• An application to domestic mobile induction heating [124]. We particularize
the previous solution to the application of domestic induction heating with mobile
inductors. The problem is to persistently heat a finite set of pots with a team of
mobile inductors. Since the motion of the inductors is very constrained due to the
small size of the hob with respect to them, we develop a particular collision avoidance
policy to guarantee the heating of all the pots. We show the performance of the
entire solution with experiments on the real prototype of an induction hob with mobile
inductors carried by robotic arms. This application is detailed in Chapter 8

In addition to the aforementioned contributions to the persistent coverage problem and
its particular application to domestic heating, during this thesis many other contributions
have been made in the evolution and modernization of home appliances. Specifically, these
contributions are patents in human-machine interaction based on gestures [117,125–127] and
in applying induction technology to domestic ovens [128].

All the contributions in this thesis have been published (or are in the process of eval-
uation) and have been presented and made available to the scientific community through
several media.
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• José Manuel Palacios-Gasós, Eduardo Montijano, Carlos Sagüés and Sergio Llorente.
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“Distributed Coverage Estimation for Multi-Robot Persistent Tasks”. European Con-
trol Conference, Linz, Austria. pp. 3681-3686. 2015.

34
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• José Manuel Palacios-Gasós. “Multi-Robot Persistent Coverage”. Distributed Intelli-
gent Systems and Algorithms Laboratory, EPFL, Laussane, Switzerland. April 2016.

• Eduardo Montijano Muñoz. “Research Overview in Perception, Planning and Coopera-
tive Control of Multi-Robot Systems”. Multi-Robot Systems Lab, Stanford University,
San Francisco, CA, USA. December 2017.
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Chapter 2

Centralized, Finite-Horizon Path
Planing for Convex, Continuous
Environments

In this chapter we present a centralized solution to persistently cover a continuous envi-
ronment. We consider a cost function that quantifies the quality of the coverage in a finite
prediction horizon and transform the path planning problem into a discrete optimization pro-
blem with constraints. We introduce a novel branch-and-bound algorithm that allows us to
find the optimal solution to the problem, i.e., the set of paths that minimizes the cost func-
tion. This algorithm includes a procedure to split the sets of candidate solutions and the
calculation of upper and lower bounds on the cost. Additionally, we propose a method to re-
duce the problem to several smaller subproblems and alleviate its computational complexity.
Finally, we carry out simulations to evaluate the performance of the system.

2.1 Introduction

In this chapter, we begin our proposal of new solutions to the persistent coverage problem
starting from the most basic and approachable settings: a convex, continuous environment
and a centralized system. Many solutions that plan infinite-horizon, closed paths for the
robots have been proposed for persistent coverage. They are not optimal for environments
with variable decay or importance if no redundancy is allowed. For this reason, we propose a
solution to the problem with finite-horizon, open paths, that can adapt to the non-uniformity
of the environment. In addition, a centralized system offers the guarantee optimality of such
solution thanks to the global information that is gathered in the central node.

The first contribution of this chapter is a new approach to the problem based on planning
open paths that are optimal in terms of coverage of the whole team in a finite prediction
horizon. To this end, we propose a cost function that quantifies the quality of the coverage
performed by the team given a set of inputs. The set of paths that minimizes such cost
function is the one that gives the best coverage and, therefore, the cost function leads
to an optimization problem that is expressed in discrete time and continuous space and

37



actions, that define the desired paths. By discretizing both the actions and the environment
we transform the problem into a discrete optimization problem with restrictions, that is
amenable to being solved using dynamic programming techniques [129].

Different well-known dynamic programming techniques, such as Branch and Bound [130],
are capable of solving general shortest path problems. Branch-and-bound algorithms, which
have successfully been used in formation control [95] and trajectory planning with collision
avoidance [93], seek the optimal solution performing a systematic evaluation of increasingly
smaller subsets of the solution set. It can be interpreted as a rooted tree of feasible solutions
with the full set at the root and with each branch representing a subset of candidate solutions.
The key idea of branch and bound is to calculate bounds on the attainable cost of each brand
to eliminate it from further consideration. In order to build a branch-and-bound algorithm
two procedures are needed: one to split a given set of candidate solution into smaller subsets
and one to decide if a branch has to be pruned. The efficacy of the second procedure is key
to the computational cost since it is strongly dependent on the number of explored nodes. If
a branch is pruned, there is no need to explore all the nodes below it. Therefore, the nearer
the branch is to the top of the tree, the less nodes explored and the lower computational
cost.

In this context, the second contribution of this chapter is an algorithm based on branch
and bound, that allows us to find the optimal solution to the optimization problem. To
achieve this, we propose one method to split the branches of the tree of candidate solutions
and another one to eliminate branches from further consideration. For the second one we
introduce and prove an upper and a lower bound of the attainable cost of a branch. Addi-
tionally, we propose a method to reduce the problem to several smaller subproblems in order
to reduce the computational cost while still finding the optimal solution.

The remainder of the chapter is structured as follows: Section 2.2 formulates this version
of the persistent coverage problem. In Section 2.3 we introduce the finite-state version of
the problem. The branch and bound solution is proposed in Section 2.4. In Section 2.5 we
present an alternative to separate the problem into smaller subproblems. The performance
of the algorithm is analyzed in simulations in Section 2.6. Finally, Section 2.7 gathers the
conclusions of this work.

2.2 Problem Formulation

Let Q ⊂ R2 be a known bounded environment which a team of N ∈ N mobile robots has
to persistently cover and that is known by the robots. We assume that they are holonomic
and, due to the discrete-time communications of the multi-robot team, their motion in
discrete time is expressed as

pi(k) = pi(k − 1) + ui(k − 1), (2.1)

where pi(k) ∈ Q is the position of robot i at time k ≥ 1 with i ∈ {1, . . . , N} and ui(k−1) is
the motion control action. The maximum distance that a robot can move in one step is umax

i ,
i.e., ‖ui(k)‖ ≤ umax

i ,∀ i ∈ N . We also consider that there is a low-level motion controller
that calculates the forces or torques of the specific robot and guarantees that it reaches the
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position pi(k) at time k and that the robot has an accurate measurement of its own position
at every time.

The coverage of the environment is modeled with a time-varying field, Z(q, k), which we
call coverage function or coverage map indistinctly. Recall that this field may represent a
physical quantity, such as an accumulation of heat or a height of grass. The aim of the robotic
team is to maintain a desired coverage level, Z∗(q) > 0,∀q ∈ Q, that we alternatively refer
to as objective map. Each point has a different importance φ(q) or, equivalently, provides a
different reward when being covered.

To reach this aim, the robots are able to generate an increase on the coverage level at
each time instant. Depending on its position, pi(k), each robot i produces an increment
αi(q,pi(k)) ≥ 0 on the points within the coverage radius rcov around pi(k). This production
can also be adjusted by a gain 0 ≤ ρi(k) ≤ ρmax

i , that is the coverage action. The purpose
of this gain is to keep the variable production level independent from the fixed shape of the
production.

On the other hand, as time goes by, the coverage level of a given point deteriorates.
This decrement can be modeled according to a time-independent decay gain d(q), with
0 < d(q) < 1. It is important to note that the decay rate can be different from one point
to another, although some works consider it constant over the environment. Therefore, the
evolution model of the coverage level is represented by the following recurrence equation,

Z(q, k) = d(q)Z(q, k − 1) +
N∑
i=1

ρi(k − 1)αi(q,pi(k)). (2.2)

This exponential deterioration of the coverage is suitable for applications such as heating a
place or watering crops. It differs from alternative formulations as in [64], where the coverage
level increases over time and is decreased by the robots.

For the sake of clarity, in the rest of the chapter we omit the dependency of q unless it
is strictly necessary, i.e., Z(q, k) ≡ Z(k) or Z∗(q) ≡ Z∗. The objective of any control policy
that aims to make Z(k) equal to Z∗ is to find the inputs of the robots that produce the
best coverage of the environment. Although this can be done considering one time step at
a time, a better solution is to find the current actions while planning multiple steps ahead,
i..e, planning a longer open path. We let T > 0 be the horizon where we want to design our
control actions and, for any k,

uk =


u1,k . . . u1,k+t . . . u1,k+T−1

. . . . . . . . . . . . . . .

uN,k . . . uN,k+t . . . uN,k+T−1

 ,

ρk =


ρ1,k . . . ρ1,k+t . . . ρ1,k+T−1

. . . . . . . . . . . . . . .

ρN,k . . . ρN,k+t . . . ρN,k+T−1

 ,
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the associated control inputs, where the temporal dependency is written as a sub-index for
clarity. Note that these actions represent in a discretized way the optimal paths that the
robots have to follow.

To compute these inputs, we define a cost function as the sum of the quadratic coverage
errors in Q along T instants,

f (k,uk,ρk) =
T∑
t=1

∫
Q

φ ·
(
Z∗ − Z(k + t)

)2
dq.

Note that it penalizes under-covered points as well as over-covered ones. This also gives
more importance to covering the lowest covered points rather than the ones with a coverage
level near the objective. Therefore, the persistent coverage problem is presented in this case
as a constrained non-linear optimization problem,

minimize
uk,ρk

f (k,uk,ρk)

subject to ‖ui(k + t− 1)‖ ≤ umax
i ,

0 ≤ ρi(k + t− 1) ≤ ρmax
i ,

pi(k + t) ∈ Q,

‖pi(k + t)− pj(k + t)‖ ≥ δ,

∀ i, j ∈ {1, . . . , N} with i 6= j,

∀ t ∈ {1, . . . , T},

(2.3)

where δ is a safety distance to avoid collisions between pairs of robots. In the case of (possibly
moving) obstacles, that can be detected with sensors on board the robots, the restriction of
the positions inside the environment in (2.3) becomes pi(k + t) ∈ Q \Qobs where Qobs are
the points of the environment Q that are occupied by such obstacles.

2.3 Finite-State Version of the Problem

Since finding the optimal solution of (2.3) is very complex, we consider instead a dis-
cretized version of the whole setup. For all k we impose that

q,pi(k) ∈ Qd ⊆ Q,

ui(k) ∈ Ud,i,

ρi(k) ∈ Pd,i,

where Qd is a discretization of the environment and Ud,i and Pd,i are finite sets of action
values, such that

0 ≤ max
Ud,i

‖ui(k)‖ ≤ umax
i ,

pi(k) + ui(k) ∈ Qd,

0 ≤ max
Pd,i

ρi(k) ≤ ρmax
i .
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With this discretization we formulate the discrete version of the optimization problem,

minimize
uk,ρk

f (k,uk,ρk) =
T∑
t=1

∑
Qd

(
Z∗ − Z(k + t)

)2

subject to ui(k + t− 1) ∈ Ud,i,

ρi(k + t− 1) ∈ Pd,i,
‖pi(k + t)− pj(k + t)‖ ≥ δ,

∀ i, j ∈ {1, . . . , N} with i 6= j

∀ t ∈ {1, . . . , T}.

(2.4)

There are two main reasons that make it interesting to initially consider (2.4) instead of (2.3).
The first reason is that for this problem it is possible to obtain the exact optimal solution,
whereas for the continuous version, with the existing optimization methods we can only
expect to obtain a local minimum. The second reason is that this solution can also be used
in a second stage to generate an accurate initial seed for (2.3), guaranteeing that, even if we
still reach a local minimum, it will be close to the global one.

2.4 Finite-Horizon Path Planing based on Branch and

Bound

In this section we propose a branch-and-bound algorithm to find the optimal solution
of the optimization problem (2.4). Branch-and-bound algorithms [130] seek the optimal
solution performing a systematic evaluation of increasingly smaller subsets of the solution
set. The solution set is interpreted as a rooted tree of feasible solutions with the full set
at the root and with each branch representing a subset of candidate solutions, as shown in
Fig. 2.1. To build a branch-and-bound algorithm, two procedures are needed: one to split
a given set of candidate solutions into smaller subsets and another one to prune branches
using bounds on the cost. The rest of the section is devoted to explain in detail these two
procedures.

2.4.1 Splitting Procedure

Each node that is not a leaf in the tree has some values of the action vectors which are
already fixed and some others still unfixed. Without loss of generality, we separate the action
vector in these two components:

uk =
[

ufixedk unon−fixedk

]
≡
[

ufk unfk

]
,

ρk =
[
ρfixedk ρnon−fixedk

]
≡
[
ρfk ρnfk

]
.

For a particular node, we take one of the actions in the non-fixed set and generate as
many new nodes as feasible values for that action. A representation of this idea can be seen
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Figure 2.1: Representation of a branch-and-bound solution tree.

in Fig. 2.1. At each level, each node is divided by assigning all the possible values to the first
action that has not been fixed yet. The order in which we select the value of such action
is the following: first, the movements of the N robots for time k to time k + T − 1 and
second, the productions of the N robots for each time instant. We choose this order since
the movements in the first prediction instants are more likely to have considerable different
costs and, thus, to allow the pruning of more branches. Note that any other order can be
followed and that such order may influence the number of branches that are pruned.

2.4.2 Pruning Procedure

The second procedure aims to decide whether a branch can be pruned or needs further
exploration. The efficacy of this procedure is key to the computational cost of the algorithm
since the number of explored nodes strongly dependent on it. If a branch is pruned, there is
no need to explore all the nodes below it. Therefore, the nearer the branch is to the top of
the tree, the less nodes are explored.

The decision of pruning a branch or not is made by calculating an upper and a lower
bound on the cost of this branch, comparing it with the best solution found so far. If the
lower bound of a branch is higher than the current best upper bound, this branch can be
pruned since it will not give a better solution than the stored one. Otherwise, the node is
stored in a list to be explored. Additionally, if its upper bound is lower than the current
best, then the value of the current best upper bound is updated with this one.
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Upper Bound

For a given node, an upper bound on the cost function can be calculated as the cost of
any feasible solution on the set that is being evaluated. To rapidly find a feasible solution,
we assign to all the non-fixed actions of the current node, unfk and ρnfk , the first feasible
value of their sets. By feasible values, we refer to those that belong to Ud,i, do not make a
robot leave Qd and do not violate the constraints on the collisions between robots.

Lower Bound

The lower bound on the cost function that we propose is

f(k) =
T∑
t=1

∑
Qd

(
Z∗ − Z(k + t)

)2
. (2.5)

Before introducing Z(k) we give an interpretation of this lower bound. The cost in the lower
bound produced by the actions that are already fixed, uf and ρf , coincides with the actual
cost. In particular, f(k) = f(k) if unf and ρnf are empty. Let also pfi (k + t) denote the set

of robot positions obtained by fixed actions, uf (k + t− 1), which will allow the formulation
of Z(k) and Z ′(k).

For the non-fixed actions we introduce a desirable production αi
(
Z ′(k + t),pri (k + t)

)
that represents the optimal distribution of the non-fixed production in the area that can be
reached with the non-fixed movements. In other words, we aim to share out the productions
that are not fixed yet between all the points that could be covered by the robots. To find
these points, let pri (k + t) be the set of reachable positions at time k + t,

pri (k + t) = {p |p = pi(k) +
t−1∑
`=0

ufi (k + `) +
t−1∑
`=0

unfi (k + `), unfi (k + `) ∈ Ud,i},

which includes the already fixed actions and all the feasible values of the non-fixed ones,
considering domain boundaries and collisions as well.

Now we are in the position to formulate Z(k) from (2.5):

Z(k + t) = Z ′(k + t) +
N∑
i=1

αi
(
Z ′(k + t),pri (k + t)

)
, (2.6)

Z ′(k + t) = dZ(k + t− 1) +
N∑
i=1

ρfi (k + t− 1)αi
(
pfi (k + t)

)
.

The formal definition of the desirable production function requires a profuse intermediate
formulation that needs to be presented in advance. First we formalize the reachable area
and the production that has to be distributed.

From the set of reachable positions, pri (k + t), we can compute the reachable coverage
set, as the set of points q ∈ Qd in which robot i could apply a positive production,

Ωr
i (k + t) = {q | αi(q,p) > 0, p ∈ pri (k + t)}. (2.7)
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Note that the points covered from positions that only involve fixed actions are not considered,
since that production is already included in Z ′(k + t).

Now we define the sets of overlapped reachable coverage sets by different robots,

Ωr
m(k + t) =

⋃
i∈Vm(k+t)

Ωr
i (k + t),

with Vm(k+t) the subsets of robots that form a connected component in terms of overlapping.
The idea of the optimal production is to share out the maximum production of the

overlapped robots fairly in their respective overlapped set, i.e., to share out

%m(k + t) =
∑

Qd

∑
i∈Vm(k+t)

ρmaxi αi(q,p) (2.8)

among Ωr
m(k + t). We use αi(q,p) since the maximum coverage action that a robot can

apply is constant.
The optimal way to perform such distribution in terms of the quadratic coverage error

is to cover the lowest covered points until there is no more production to give or there are
no points with a coverage value below the objective. An illustrative analogy is the problem
of filling glasses with a bottle of water. The glasses can be seen as the overlapped points
of a set of robots, Ωr

m(k + t), with the water level as the coverage level, Z1(k + t − 1) to
Z4(k + t− 1) in Fig. 2.2. The amount of water in the bottle is the maximum production of
this set of robots, %m(k+ t). The optimal water distribution is achieved in the following way:
one starts filling the emptiest glass (glass 4) until it reaches the level of the second emptiest
(glass 3 when Z4 = 2). Then fills both fairly until they reach the level of the third glass with
the lowest level (glass 2 in Fig. 2.2a) and so on until they are all full, the objective level is
reached (Fig. 2.2b) or the bottle is empty (Fig. 2.2a).
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Figure 2.2: Example of the analogy of filling glasses with a bottle of water. a) Z∗ = 4,
Z+
m = 3 and Zm = 3.33. b) Z∗ = 2.5, Z+

m = 3 and Zm = 2.5.

We now formulate the distribution and prove its optimality. We find the maximum
coverage level in the overlapped set until which all the less-covered points can be covered:

Z+
m(k + t) = max

q∈Ωr
m(k+t)

Z ′(k + t)
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subject to ∑
q∈ΩZ+

m (k+t)

(
Z+
m(k + t)− Z ′(k + t)

)
≤ %m(k + t),

where
ΩZ+

m (k + t) =
{
q ∈ Ωr

m(k + t) |Z ′(k + t) < Z+
m(k + t)

}
.

Note that Z+
m(k + t) does not depend on q. In the example of Fig. 2.2a this quantity is

Z+
m(k + t) = Z2 = 3 since, for %m = 4, we can fill Z3 and Z4, that are less covered than Z2,

until they reach this coverage value but we cannot make Z2, Z3 and Z4 reach the value of
Z1. Additionally, to avoid over covering the environment and reach the optimum coverage,
if Z+

m(k + t) > Z∗, we only apply enough action in the points to reach the objective, i.e.,

Zm(k + t) = min
(
Z∗, Z+

m(k + t)
)
.

This is the case of Fig. 2.2b, where Z+
m(k + t) is still equal to 3 but Zm(k + t) = Z∗ = 2.5.

After that, we calculate the total production required to make the points with coverage less
or equal to Zm(k + t) reach this value,

%Zm(k + t) =
∑

q∈ΩZ
m(k+t)

(
Zm − Z ′(k + t)

)
,

with
ΩZ
m(k + t) =

{
q ∈ Ωr

m(k + t) |Z ′(k + t) ≤ Zm(k + t)
}
.

In Fig. 2.2a, %Zm(k + t) = 3, 1 unit for Z3 and 2 units for Z4, whereas in In Fig. 2.2b,
%Zm(k + t) = 2. Finally, the remaining production, %m(k + t)− %Zm(k + t), is equally divided
among points with coverage value Zm(k + t). In Fig. 2.2a, where there is 1 unit left, it is
divided between Z2, Z3 and Z4.

Taking all of this into account, for any q ∈ ΩZ
m, the optimal coverage function introduced

in Equation (2.6) is

αi = Zm − Z ′ + min
(%m − %Zm
|ΩZ

m|
, Z∗ − Zm

)
, (2.9)

where the temporal indices have been omitted for clarity. The first two terms in (2.9), make
all the points in ΩZ

m reach Zm and the second term is the one in charge of the equal dis-
tribution of the remaining production value. The function also considers the case where
Z∗ is reached, thanks to the minimum function, as in Fig. 2.2b. When this happens,∑

Qd

∑
Vm
αi ≤ %m. For the rest of the points in the environment, the coverage action

is zero, αi = 0. This means that the action does not increase the coverage of the points that
are not reachable or points with a coverage level such that %m is not enough to bring the
less-covered points to it, e.g., Z1 in Fig 2.2. Eventually, this formulation allows us to state
the optimality of the optimal production in the following theorem.

Theorem 2.4.1. The optimal production from (2.9) represents the optimal way in which
the total production can be distributed in terms of the quadratic coverage error, i.e.,∑

Qd

(
Z∗ − Z(k + 1)

)2 ≤
∑

Qd

(
Z∗ − Z(k + 1)

)2
, (2.10)

where Z(k + 1) is obtained from (2.6) and Z(k + 1) from (2.2) with Z(k) = Z(k).
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Proof. It is clear that ∑
q/∈Ωr

m(k+1)

(
Z∗ − Z(k + 1)

)2
=
∑

q/∈Ωr
m(k+1)

(
Z∗ − Z(k + 1)

)2

with αi(k) = αi(k) = 0, ∀q /∈ Ωr
m(k + 1), and Z(k) = Z(k).

Now we want to prove (2.10) in the rest of the points:∑
Ωr

m(k+1)

(
Z∗ − Z(k + 1)

)2 ≤
∑

Ωr
m(k+1)

(
Z∗ − Z(k + 1)

)2
. (2.11)

The following proof for this equation is valid for each m ∈ {1, . . . ,M} and, thus, for the
sum of all of them since they are independent by definition. In the first place we develop the
cost with the optimal production, left-hand side of (2.11). The definition of αi(k) in (2.9)
guarantees that all the points in the set ΩZ

m(k+1) have the same Z∗−Z(k+1) = e(k+1),∀q ∈
ΩZ
m(k + 1), where

e = Z∗ −
(
Zm + min

(%m − %Zm
|ΩZ

m|
, Z∗ − Zm

))
≥ 0.

We omit the temporal dependencies when it is not necessary for clarity. Then, the left-hand
side of (2.11) in this subset becomes∑

ΩZ
m

(
Z∗ − Z(k + 1)

)2
=
∑

ΩZ
m

e2 = |ΩZ
m| e2. (2.12)

Now we define the coverage error out of ΩZ
m, i.e., in Ω

r\Z
m = Ωr

m \ΩZ
m. Since the coverage

level in Ω
r\Z
m must be greater than in ΩZ

m by definition of ΩZ
m, the coverage error must be

lower and we can write it as the error in ΩZ
m minus a positive quantity, ẽ ≡ ẽ(q, k + 1) ≥ 0

as

Z∗ − Z(k + 1) = e− ẽ(q, k + 1), ∀q ∈ Ωr\Z
m .

Therefore, we have∑
Ω

r\Z
m

(
Z∗ − Z(k + 1)

)2
=
∑

Ω
r\Z
m

(e− ẽ)2 = |Ωr\Z
m | e2 − 2e

∑
Ω

r\Z
m

ẽ+
∑

Ω
r\Z
m

ẽ2. (2.13)

In the second place we develop the right-hand side of (2.11) with an arbitrary production
function αi(k + 1), as a function of e and ẽ. In the points of ΩZ

m, the coverage error may be
greater or lower than e and it can be written as

Z∗ − Z(k + 1) = e− e(q, k + 1) ≡ e− e, ∀q ∈ ΩZ
m,

where e can be either positive or negative. This gives∑
ΩZ

m

(
Z∗ − Z(k + 1)

)2
=
∑

ΩZ
m

(e− e)2 = |ΩZ
m| e2 − 2e

∑
Ω

r\Z
m

e+
∑

ΩZ
m

e2. (2.14)
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And in the points of the set Ω
r\Z
m the coverage error is the one of the lower bound, e − ẽ,

minus a positive quantity, e(q, k+1) ≡ e ≥ 0, that represents the production αi(k+1), ∀ i ∈
Vm(k + 1), that can be given in these points:

Z∗ − Z(k + 1) = e− ẽ− e, ∀q ∈ Ωr\Z
m .

Thus, we have ∑
Ω

r\Z
m

(
Z∗ − Z(k + 1)

)2
=
∑

Ω
r\Z
m

(
e− (ẽ+ e)

)2

= |Ωr\Z
m | e2 − 2e

∑
Ω

r\Z
m

(ẽ+ e) +
∑

Ω
r\Z
m

(ẽ+ e)2.
(2.15)

If we sum all the points of Ωr
m with the optimal production, (2.12) and (2.13) and with

a generic production function, (2.14) and (2.15), and cancel equal terms, (2.11) becomes∑
Ω

r\Z
m

ẽ2 ≤ −2e
∑

Ωr
m

e+
∑

ΩZ
m

e2 +
∑

Ω
r\Z
m

(ẽ+ e)2.

If
∑

Qd

∑
Vm
αi ≥

∑
Qd

∑
Vm
αi, then

∑
Ωr

m
e ≤ 0. On the contrary, if

∑
Qd

∑
Vm
αi <∑

Qd

∑
Vm
αi, this means that Zm = Z∗ and e = 0. Therefore, the first term of the right-hand

side is always zero and since ẽ ≥ 0 and e ≥ 0, ∀q ∈ Ω
r\Z
m , Equation (2.11) is proven.

We have demonstrated that sharing out the maximum production of the robots among the
less-covered points leads to a lower quadratic coverage error than applying the actual actions
of the robots when the previous maps are equal. The last thing that must be considered
to see that (2.5) is a lower bound on the cost is that, for the calculation of the bound, the
production that is not used at a time k+t−1 can be used at time k+t with the corresponding
decay. We define

∆%m(k + t− 1) = %m(k + t− 1)−
∑

Qd

∑
Vm
αi(k + t− 1).

Therefore, if instead of (2.8) we use

%m(k + t) =
∑
Qd

∑
i∈Vm(k+t)

ρmaxi αi(q,pi(k)) + d∆%m(k + t− 1),

we allow the distribution of at least the same coverage in the calculation of the lower bound
than in the actual production of the robots. Intuitively it can be seen that this idea together
with the optimal production leads to a lower bound on the cost since the lower bound
distributed optimally the same coverage or more.

In the example this means that the water that is not used at a time to fill the glasses is
kept and can be used at the following instant. In particular, in Fig. 2.2b there are 2 coverage
units that have not been distributed. This means that, if at the following instant an empty
glass appears, these 2 units will be available to fill it. This is a reasonable assumption for
the calculation of the lower bound since having the maximum production to distribute up
to the objective and saving the rest will always be better than covering at each time with a
fixed production.
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2.5 Problem Reduction

In this section we propose a separation of the problem in several smaller subproblems
that allows a parallelization of the resolution and reduces the computational cost by reducing
the number of nodes and the number of actions involved in each node. The key idea is that
if two robots can cover different sets of points at time k, the optimal actions of both of
them in k calculated separately are the same as if they are calculated together since the
movement and production of one robot does not alter the set that the other can cover. This
intuitive idea requires a more complex formulation in the case that we have N robots and
T prediction instants.

Let us define the sets of robots whose reachable coverage sets, Ωr
i (k + t) from Equa-

tion (2.7), overlap at any time in the prediction horizon:

Be(k) =
{
i, j ∈ {1, . . . , N} | Ωr

i (k + t) ∩ Ωr
j(k + s) 6= ∅, t, s ∈ {1, . . . , T}

}
.

with e ∈ {1, . . . , E}. The key idea of these sets is that, if a robot i can cover a point q at
time k + t, it can modify the coverage of such point and, therefore, influence the actions of
a different robot that can cover the same point q at other time k + s. Thus, we also define
the regions

Ωe(k) =
⋃
i∈Be

t∈{1,...,T}

Ωr
i (k + t),

that include the reachable points of the robots of each Be(k).
Now we are in the position to present the reduction of the problem in the following

proposition.

Proposition 2.5.1. The solution of the optimization problem (2.4) can be obtained by solving
E smaller subproblems,

min
u,ρ

f(k) = min
u1,ρ1

f1(k) + · · ·+ min
uE ,ρE

fE(k) +
∑T

t=1

∑
q/∈

⋃
Ωe(k)

(
Z∗ − dtZ(k)

)2
,

with

fe(k) =
∑T

t=1

∑
Ωe(k)

(
Z∗ − Z(k + t)

)2
.

These subproblems can be solved independently with the method introduced in Section 2.4.

Proof. The definition of Ωe(k) allows us to reformulate the discrete cost function from (2.4)
as

f(k) =
T∑
t=1

∑
Ω1(k)

(
Z∗ − Z(k + t)

)2
+

T∑
t=1

∑
ΩE(k)

(
Z∗ − Z(k + t)

)2
+

T∑
t=1

∑
q/∈

⋃
Ωe(k)

(
Z∗ − dtZ(k)

)2

= f1(k) + · · ·+ fE(k) +
T∑
t=1

∑
q/∈

⋃
Ωe(k)

(
Z∗ − dtZ(k)

)2
.

where the last term does not depend on the actions of the robots in the prediction horizon
since it gathers all the points that are not reachable for any robot.
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This reduction is very significant since it allows us to divide the original problem (2.4) in
problems with less dimensions that can be solved independently with the introduced method
and, therefore, to obtain the same optimal solution with a much lower computational cost.

2.6 Simulations

In this section we present simulation results for the branch-and-bound approach to the
persistent coverage problem. The simulations are implemented in Matlab. The environment
Q is a square of 20 × 20 units with a decay rate d = 0.99 and the desired coverage level is
Z∗ = 100 for every point. The environment is covered with N = 3 robots whose discrete
motion is uxi (k) ∈ Ux

d,i = {−1, 0, 1} and uyi (k) ∈ Uy
d,i = {−1, 0, 1}. The coverage action is

ρxi (k) ∈ Pd,i = {0, 50}, the coverage radius rcov = 2 units and the production function

αi(k) =


(r − rcov)2

r2
cov

, if r = ‖pi(k)− q‖ ≤ rcov,

0, otherwise.

In the first place we present simulation results for the bounds of the branch-and-bound
method. In Fig. 2.3 we represent in red the total number of nodes and in blue the number of
explored nodes Our bounds allow the algorithm to find the optimal solution exploring only,
on average, the 21% of the total. This means that, thanks to the accuracy of the bounds,
the 79% of the branches are pruned.
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Figure 2.3: Number of explored nodes (blue) vs. total number of nodes (red).

Fig. 2.4 shows the computational cost of the evaluation of the lower bound of a node
depending on the number of non-fixed actions. It can be seen that it grows more than
linearly. The total execution time for these settings was around 4.5 seconds per iteration on
average.

In the second place we focus on the reduction of the problem that has been presented
in Section 2.5. The results obtained for the reduction of the complexity of the problem for
this simulation are shown in Table 2.1. The entire problem with the actions of the three
robots was solved only in the 5% of the cases; one subproblem of 2 robots and one of 1 robot,
in the 39% of the cases; and three subproblems of 1 robot in the 56% of the cases. These
numbers demonstrate that the proposed reduction of the problem was of utility in the 95%
of the iterations and, as can be seen in the table, this implies an enormous reduction in the
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Figure 2.4: Computational cost of the lower bound.

number of nodes that can be explored, around three orders of magnitude for every robot
that is separated.

Problems N = 3 N1 = 2, N2 = 1 N1 = 1, N2 = 1, N3 = 1

Ocurrences 5% 39% 56%

Number of nodes 4 · 109 4 · 106 + 3280 3 · 3280

Table 2.1: Results on problem reduction.

The number of non-fixed actions is bounded by 3 when only one robot is involved in the
problem and by 6 when only two are involved. Therefore, the computational cost of the
calculation of the lower bound is considerably reduced when applying the reduction of the
problem according to Fig. 2.4. In fact, the average iteration time for this case was only 0.64s,
almost 7 times lower than without reduction.

(a) k = 1. (b) k = 50.
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(c) k = 100.

Figure 2.5: Coverage map of three different times and quadratic coverage error of the simu-
lation. Magenta circumferences represent the coverage areas of the robots; white segments,
the current motion action and red segments, the predicted actions in T.

Finally, we provide simulation results on the coverage obtained with our entire approach.
In Fig. 2.5a - 2.5c the coverage maps of three different times are shown. The current motion
actions of the robots are represented with white segments while the red segments represent
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the actions calculated for the following instants in the horizon. Initially all the points are
uncovered. As the robots move, the coverage level of the points progressively increases with
some points reaching the objective while others are still under-covered. In the end, the
coverage level of the points spread out around the value of the objective. Fig. 2.6 presents
the evolution of the quadratic coverage error of the environment,

f (k,uk,ρk) =

∫
Q

φ ·
(
Z∗ − Z(k + t)

)2
dq.

It can be seen that it decreases rapidly when the robot start producing and that it tends to
a steady-state value different from zero. This happens because near the robots some points
are over-covered while the coverage on distant points decays and they become under-covered.
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Figure 2.6: Quadratic coverage error.

2.7 Conclusions

In this chapter we have presented an optimal, centralized approach to the persistent
coverage problem in a continuous environment. We have formulated the problem as a de-
terministic finite-state problem and proposed an algorithm based on branch and bound to
obtain the optimal actions for the robots. To this end, we have introduced a splitting pro-
cedure for the sets of feasible solutions as well as an upper and a lower bound that allow us
to prune the branches that do not lead to a better solution. Moreover, we have presented
an alternative to reduce the problem to several smaller subproblems whose computational
cost is considerably lower. Finally, we have carried out different simulations to validate the
proposed contributions and to evaluate the performance of the system.

It has been shown that the computational cost of the branch-and-bound methods is high,
since it grows exponentially with the number of variables in the solution set. Actually, the
problem become intractable when such number is elevated. As an example, the iteration time
for three robots and a time horizon of three steps was 4.5 seconds. Nevertheless, this method
presents several theoretical advantages that support and make the exploration of this type of
solution worth. The first advantage is that for a moderate number of optimization variables
and a reasonable discretization of the environment this method guarantees the optimal open
paths at a team level. The second advantage is that, even for a high number of optimization
variables, it can be used to generate an accurate initial seed for other optimization methods
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that only give the optimal solution if the initial guess is closer enough to it. This initial seed
can be obtained from the branch-and-bound method using a looser discretization.

After presenting and discussing the advantages and disadvantages of an optimal cen-
tralized solution, in the following chapters we focus on distributed solutions that are com-
putationally much less demanding and scalable, although they may be suboptimal, and
progressively tackle more complicated environments.
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Chapter 3

Distributed Coverage Estimation

In this chapter we propose an algorithm that allows every robot to estimate in a distributed
scenario the global coverage function using only local information, i.e., exchanging informa-
tion only with neighbors. We pay special attention to the characterization of the algorithm,
establishing bounds on the estimation error for every point of the environment. Addition-
ally, we demonstrate that the algorithm guarantees a perfect estimation in a particular area.
Finally, we test its correctness and evaluate its performance by means of simulations.

3.1 Introduction

Distributed approaches in multi-robot systems present several advantages with respect
to centralized ones in term of robustness, scalability and computational complexity. The
main disadvantage, though, is the lack of information on each robot, since they only collect
information from their neighbors and may not have global information of what is happening
in the environment.

A typical assumption in the approaches to the coverage problem is the exact knowledge
of the coverage levels of the whole environment, that permits the calculation of the motion
of the robots. One alternative to collect this information is to communicate each production
or measurement of every robot through the network labeled with a robot identifier and a
time stamp. Then, each robot is capable of retrieving the actual coverage map using all the
received information. However, this information exchange can be challenging when dealing
with large environments, large and changing robotic networks or when the team of robots
has limited communication capabilities.

In the present chapter we present an algorithm to estimate the coverage of the environ-
ment using only local information that allows the robots to exactly retrieve the coverage
level in their surroundings and to have an estimation with a bounded error in the entire en-
vironment. This property implies that, when the motion is calculated based on the coverage
level of the area close to the robot, our system behaves as well as a system with centralized
information. The algorithm is based on distributed max-consensus combined with additive
inputs given by the actions of the robots. It reduces the communication overhead due to the
fact that robots only communicate their local estimation of the global map and their local
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information of the points where several robots are adding their contributions. We use the
term estimation as in deterministic problems of control theory such as state observers [131],
although we do not consider delays, noise or uncertainties in the parameters. We provide
bounds on the estimation error of the robots for any point of the environment and charac-
terize the set of allowable actions that ensure that each robot maintains a perfect estimation
within a certain area, that we call reachable area. Moreover, we characterize the area in
which there is no estimation error for any possible action.

The remainder of the chapter is structured as follows. Section 3.2 presents a discrete-
time formulation of the coverage estimation problem. The description of the algorithm for
the local map update is in Section 3.3. The behavior of the algorithm is characterized in
Section 3.4. The performance of the whole approach is analyzed in simulations in Section 3.5
and Section 3.6 gathers the conclusions of this work.

3.2 Problem Formulation

In this chapter the formulation of the problem is almost the same as in the previous one.
For this reason, we build upon Section 2.2 and only introduce the differences with respect
to it.

We again consider a continuous environment Q ⊂ R2 where the evolution of the coverage
is modeled with a constant decay gain d(q) as in (2.2) and a coverage level Z∗(q) is desired.
This must be attained with N ∈ N holonomic robots which obey (2.1). In this case we
consider that the maximum distance that a robot can move in one step is the same for all
the team, ‖ui(k)‖ ≤ umax. Depending on their position, pi(k), each robot has a coverage
area, Ωi

(
pi(k)

)
⊆ Q, which is bounded by a circle of radius rcovi centered at pi(k), although it

is not necessarily circular, convex or equal for all the robots. In this area a robot increases the
value of the coverage by αi

(
q,pi(k)

)
> 0, which we call production, and consider constant

over time. For the rest of the points of the environment, i.e., the ones that are not covered by
robot i, we consider that αi

(
q,pi(k)

)
= 0. From now on we will denote Ωi(k) ≡ Ωi

(
pi(k)

)
,

αi(k) ≡ αi
(
q,pi(k)

)
and α(k) ≡

∑
i∈{1,...,N} αi(k). Note that in this setting the coverage

level of the environment is bounded by 0 ≤ Z(k) ≤ maxα(k)/(1− d).
The robots form a network defined by a communication graph Gcom(k) =

(
V (k), E(k)

)
.

The vertices V (k) of the graph are the positions pi(k) of the robots. To define the edges
E(k), we let rcom > 0 be the communication radius, the maximum distance between two
robots at which they can communicate. We assume it constant and equal for all the robots.
With this radius, an edge (i, j) ∈ E(k) if ‖pi(k) − pj(k)‖ ≤ rcom. Additionally, Ni(k) =
{j ∈ {1, . . . , N} | (i, j) ∈ E(k)} are the neighbors of robot i at instant k.

Depending on the motion of the robots, the communication graph could end up being
disconnected. In this thesis we assume that this is not the case, and we assume that it
remains connected at all times even though the graph topology can change over time. This
could be achieved, for example, by including in the motion of the robots connectivity con-
straints such as [132], [108]. Nevertheless, a more relaxed assumption such as periodic joint
connectivity [106, 107] could be made, where the union of the disconnected communication
graphs would become connected at most every T instants.

54



The communication in the network is considered synchronous and not affected by delays
or noise, assuming this can be provided by a synchronizer [133]. Moreover, the presence of
obstacles does not affect the communication capabilities of the network, i.e., two robots keep
in communication even if there is an obstacle between them.

In this context, it is clear that any control policy that aims to make Z(k) equal to
Z∗ will consider the coverage level in the design of the inputs of the robots. However, in
equation (2.2) we observe that the value of Z(k) depends on the coverage actions of all the
robots. In our distributed scenario, where a robot may not be in direct communication with
all the others and may only have partial information of the environment, this represents
an obstacle and, for this reason, we introduce our distributed estimation algorithm in the
following section.

3.3 Local Estimation of the Coverage

The local estimation of the coverage function of each robot is represented by Zi(q, k), that
we call local map. Each robot updates its local map using the information received from its
current neighbors, which may include the local map and, in some cases, the coverage function
of the neighboring robots. Before presenting our updating algorithm, let us introduce two
assumptions referring to the communication radius and the initial estimation.

Assumption 3.3.1. We assume that robots with overlapping coverage areas can communi-
cate, i.e., rcom > 2 rcovmax, where rcovmax = maxi∈{1,...,N} r

cov
i .

Assumption 3.3.2. We assume that at the initial time the robots know the actual coverage
level, i.e., the estimation of every robot is correct: Zi(0) = Z(0),∀q ∈ Q.

Now we present in Algorithm 1 our 2-step strategy to update the estimation along with
an illustrating example in Figure 3.1. In this example we have the global coverage map
Z(k) from Figure 3.1a and we refer to the estimation of robot 1. The intuitive idea of the
algorithm is the following: we extract in Step 1 the additions that the neighbors have already
gathered, both from their productions and from other robots, and we take into account the
overlappings between the coverage areas of the robots to correct the estimation in Step 2.
In fact, the objective of this update is to keep the estimation as close to the actual value as
possible without overestimating it.

In the first step, at each communication time, k, each robot generates its map-to-
communicate, Zcom

i (k) (Figure 3.1b in example), as the map of the previous time instant
with its decay plus its current production,

Zcom
i (k) = dZi(k − 1) + αi(k), (3.1)

where we assume that the decay rate is known by the robots. Note that at time k each robot
includes the production of the same time instant k. Therefore, there is no delay or offset in
the estimation.

Each robot sends its map-to-communicate to its neighbors and receives their maps. With
this information, the first step of the update is performed dividing the map into two parts:
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Algorithm 1 Coverge Estimation Update

1: – Step 1:
2: Calculate map-to-communicate Zcom

i (k), (3.1).
3: Communicate map to neighbors.
4: Update local map Z−i (k), (3.2).

5: – Step 2:
6: Extract overlapped production βi

(
q,pi(k)

)
, (3.3).

7: Communicate regions to neighbors.
8: Update local map Zi(k), (3.4).
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Figure 3.1: Example of the estimation algorithm at time k. (a) Global coverage map,
Z(k). The coverage area of robot 1 is represented with a yellow circumference and its
communication area with a dash-dotted one. (b) Map-to-communicate of robot 1, Zcom

1 (k).
(c) Map calculated by robot 1 in the first step of the update, Z−1 (k). (d) Estimation of the
coverage map of robot 1, Z1(k). The orange areas coincide with the overlapped productions
of the robots, βi(k).

the coverage area, Ωi(k), and the rest of the map. The robot updates each region separately
according to

Z−i (k) = Zcom
i (k) +

∑
j∈Ni(k)

max
(
Zcom
j (k)− dZi(k − 1), 0

)
, ∀q ∈ Ωi(k), (3.2a)

Z−i (k) = max
j∈Ni(k)

(
dZi(k − 1), Zcom

j (k)
)
, ∀q /∈ Ωi(k). (3.2b)
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For the update (3.2a) robot i adds its map-to-communicate from (3.1) to the contribu-
tions of its neighbors. The contribution of a neighbor j can be calculated as the difference
Zcom
j (k) − dZi(k − 1), e.g., the orange area of Figure 3.1c. To prevent this difference from

being negative we use the maximum function. This may happen when the estimation of
robot j is smaller than the estimation of robot i as in the following situation. Let robot
i be overlapped with a robot ` that is not a neighbor of robot j, i.e., j, ` ∈ Ni(k) and
j /∈ N`(k) ⇔ ` /∈ Nj(k). The estimation Zcom

j (k) may be lower than dZi(k − 1) in the
overlapping region Ωi(k)∩Ω`(k) since the production of robot ` at time k is not available to
robot j. This would happen to the estimation of robot 2 in Figure 3.1a at the next iteration.
It would be overlapped with robot 1 and in direct communication with robot 6, while 1 and
6 would not be neighbors.

In the second part of the local map update (3.2b), each robot updates its local map
outside its coverage area, q /∈ Ωi(k), as the maximum of the received values and its own.
Such value corresponds to the latest information of this robot or its neighbors. This update
underestimates the coverage level when two or more neighbors are overlapping outside the
coverage area of a robot as in Figure 3.1c. In that situation only the highest contribution is
considered and not the addition of all of them.

To counteract this error, a second updating step is executed. At first, each robot extracts
the region of its coverage area that is overlapped with the one of another robot,

Ωo
i (k) =

{
q ∈ Ωi(k) ∩Ωj(k) | j ∈ Ni(k)

}
.

This area can be determined as

Ωi(k) ∩Ωj(k) =
{
q ∈ Ωi(k) |Zcom

j (k)− dZi(k − 1) > 0
}
, ∀ j ∈ Ni(k).

Then, the robot sends its coverage function in the overlapped region to its neighbors:

βi(k) ≡ βi
(
q,pi(k)

)
= αi

(
q,pi(k)

)
, ∀q ∈ Ωo

i (k). (3.3)

This information is the only that a neighboring robot may not be able to extract from the
maps-to-communicate in the first step due to the maximum function in (3.2b). Although
sending a full map with the robot production at the first step of the algorithm makes it
simpler, it is not a communication-effective solution since it is not necessary to send all the
points. On the contrary, with our algorithm each robot locally decides which points are of
interest for its neighbors and discards the rest.

After exchanging the overlapped productions with their neighbors, they perform the final
update with the received ones:

Zi(k) =


Z−i (k), ∀q ∈ Ωi(k),

Z−i (k)−max
j∈Ni(k)

βj(k) +
∑

j∈Ni(k)

βj(k), ∀q /∈ Ωi(k). (3.4)

This final step adds the contributions that are not considered in the first and ends the
estimation, as shown in Figure 3.1d.
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The presented algorithm permits that each robot locally decides which points of its
own production are of interest for its neighbors and discards the rest in a communication-
effective solution. Another important property, that will be useful in the next section, is
that it satisfies

Zi(k) ≥ dZi(k − 1), ∀q ∈ Q. (3.5)

Also note that the presence of obstacles or a non-convex environment would not affect the
estimation algorithm according to the communication policy. In any case, slightly different
rules could be applied to estimate the coverage but, in that case, different information should
be exchanged. For instance, another estimation strategy could exchange the coverage αi and
forward the received αj. However, this alternative would require a trace of which productions
have been included and forwarded, several communication rounds at each iteration and an
increased communication expense.

3.4 Characterization of the Estimation

We characterize now the accuracy of the estimation using Algorithm 1. In the first place
we determine the allowable actions of each robot in order to guarantee that the estimation
is equal to the global map inside what we call the zero-error area and the reachable area of
the robots. Next, we delimit the areas in which a correct estimation is guaranteed regardless
of the movement of the robots. Finally, we establish bounds to the estimation error in all
the points of the environment.

Let us begin defining the zero-error area of robot i,

Ωz
i (k) =

{
q ∈ Q | ‖q− pi(k)‖ < rcom − rcovmax

}
,

that contains the points in which our algorithm guarantees a correct estimation. These are
the points of the environment that can be covered by another robot only if it is a neighbor
of i at each time. In Figure 3.2 an illustrative example of this area is shown in red.

We also define the reachable area of robot i,

Ωr
i (k) =

{
q ∈ Q | ‖q− pi(k)‖ < rcom − rcovmax + umax

i (k)
}
,

that comprises the points of the environment that can be reached by the zero-error area of
robot i with the action calculated at time k, where umax

i (k) is the maximum action of robot
i at such time.

Let us introduce now some useful results in the following lemmas to demonstrate the
correctness of the estimation in these points in Theorem 3.4.4. First we prove that a correct
estimation at a time k−1 in Ωr

i (k−1) leads to a bounded estimation in all the environment
at time k and also to a correct estimation in Ωz

i (k), so that the update of the algorithm does
not introduce an error in the current zero-error area.

Lemma 3.4.1. For any iteration k, consider that at the previous iteration the estimation of
the coverage map of a robot i is equal to the global coverage map inside its reachable area:

Zi(k − 1) = Z(k − 1), ∀q ∈ Ωr
i (k − 1). (3.6)
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Figure 3.2: Example of zero-error area (red) for the robot depicted in yellow.

Then, the execution of Algorithm 1 leads to a bounded estimation in all the environment,

Zi(k) ≤ Z(k), ∀q ∈ Q,

and does not introduce an error in the estimation inside the zero-error area,

Zi(k) = Z(k), ∀q ∈ Ωz
i (k).

Proof. In this proof all the areas refer to time k unless it is explicitly stated, for instance,
Ωz
i ≡ Ωz

i (k) and also Ni ≡ Ni(k). In the first place we prove the upper bound of the
estimation. Following the principle of induction:

1) Consider Zi(0) ≤ Z(0) from Assumption 3.3.2.
2) Assume as an induction hypothesis that

Zi(k − 1) ≤ Z(k − 1), ∀q ∈ Q, i ∈ {1, . . . , N}. (3.7)

3) We split the environment into two areas in accordance to the estimation algorithm. If
a point q ∈ Ωi, the update from (3.1), (3.2a), (3.4) and Assumption 3.3.1 is

Zi(k) = dZi(k − 1) + αi(k) +
∑
j∈Ni

max
(
dZj(k − 1) + αj(k)− dZi(k − 1), 0

)
,

where, according to the hypothesis of this lemma (3.6) and the induction hypothesis,

0 ≤ max
(
dZj(k − 1) + αj(k)− dZi(k − 1), 0

)
≤ αj(k).

Therefore, we have

Zi(k) ≤ dZi(k − 1) + αi(k) +
∑
j∈Ni

αj(k) ≤ Z(k).
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In the second area, i.e., if q /∈ Ωi, the update from (3.1),(3.2b) and (3.4) is

Zi(k) = max
j∈Ni

(
dZi(k − 1), dZj(k − 1) + αj(k)

)
−max

j∈Ni

βj(k) +
∑
j∈Ni

βj(k), (3.8)

where the first term

max
j∈Ni

(
dZi(k − 1), dZj(k − 1) + αj(k)

)
≤ dZ(k − 1) + max

j∈Ni

αj(k).

If such q ∈ Ωo
j , that is, βj(k) > 0, then maxj∈Ni

αj(k) = maxj∈Ni
βj(k),

∑
j∈Ni

βj(k) =∑
j∈Ni

αj(k) and (3.8) becomes

Zi(k) ≤ dZ(k − 1) +
∑

j∈Ni

αj(k) ≤ Z(k). (3.9)

Finally, if such q /∈ Ωo
j , there exists no βj(k), (3.8) becomes

Zi(k) ≤ dZ(k − 1) + maxj∈Ni
αj(k) ≤ Z(k).

and the first result is proven.
For the second result of this lemma an analogous demonstration can be developed splitting

the environment into Ωi and the rest of the zero-error area, Ωz
i \ Ωi, particularizing each

region for q ∈ Ωj and q /∈ Ωj, and applying the hypothesis and the first result of this
lemma.

Next, we prove that the estimation at a particular time takes into account all the pro-
ductions from at least N − 1 instants before. To do so, we denote the diameter of the
communication graph as diam

(
Gcom(k)

)
, that is bounded by 1 ≤ diam

(
Gcom(k)

)
≤ N − 1.

Thus, the maximum time that the production of a robot needs to propagate through the
entire network is equal to the number of robots minus one.

Lemma 3.4.2. Consider that for any iteration k−N the estimation of the coverage map of
all robots is equal to the global coverage map inside their reachable area,

Zi(k −N) = Z(k −N), ∀q ∈ Ωr
i (k −N).

Then, according to Algorithm 1, the production of the robots developed at time instant k −
N + 1, i.e., α(k−N + 1), does not induce an error in the estimation of the coverage at time
k, i.e., in Zi(k), i ∈ {1, . . . , N}.

Proof. Let q ∈ Q be a point such that, for at least one robot, j1, αj1(k − N + 1) > 0. In
such case q ∈ Ωr

j1
(k −N), by assumption of this lemma Zj1(k −N) = Z(k −N) and from

Lemma 3.4.1, Zj1(k −N + 1) = Z(k −N + 1). In the following iterations, according to the
property of the estimation from (3.5), it is clear that,

Zj1(k −N + 1 + `) ≥ d`−1Z(k −N + 1) = d`Z(k −N) + d`−1α(k −N + 1), (3.10)
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with ` ∈ {1, . . . , N − 1}, implying that any possible error in the estimation of j1 is not due
to the productions at time k −N + 1.

In the next iteration, k − N + 2, for any neighbor of j1, say j2, it can happen that
q ∈ Ωr

j2
(k −N + 1) or not. If q /∈ Ωj2(k −N + 2), from (3.2b) and (3.4),

Zj2(k −N + 2) = maxm2(dZj2(k −N + 1), Zcom
m2

(k −N + 2))

+
∑

m2

βm2(k −N + 2)−maxm2

(
βm2(k −N + 2)

)
≥ dZj1(k −N + 1) ≥ d2Z(k −N) + dα(k −N + 1),

with m2 ∈ Nj2(k−N +2). On the other hand, if q ∈ Ωj2(k−N +2), the update from (3.2a)
and (3.4) results in

Zj2(k −N + 2) ≥ dZj2(k −N + 1) + αj2(k −N + 2)

+ max
(
dZj1(k −N + 1) + αj1(k −N + 2)− dZj2(k −N + 1), 0

)
≥ dZj1(k −N + 1) ≥ d2Z(k −N) + dα(k −N + 1).

Thus, j2 has no estimation error at time k − N + 2 caused by α(k − N + 1). Additionally,
using the same argument as in (3.10) it is clear that any error in j2 in the following iterations
is not due to α(k −N + 1).

A similar reasoning can be developed at time k − N + 3 for neighbors of j1 or j2 and,
consequently, in at most N − 1 iterations the same result can be obtained for all the robots
of the network. Therefore, the estimation of any robot of the network at time k includes at
least the productions of the robots at time k − (N − 1) and the proof is complete.

The third result establishes bounds in the motion of each robot in order to assure that its
zero-error area does not reach the production of other robots which were not its neighbors
at the previous time.

Lemma 3.4.3. Let Ωρ
i (k) be a circle of center pi(k) and radius ρi(k) − rcovmax. ρi(k) =

minj,` ‖pi(k) − pj(`)‖, with j /∈ Ni(k) and ` > 0, ` ∈ {k − N + 1, ..., k}, is the minimum
distance from the current position of robot i to any of the last N −1 positions of other robots
j that are not neighbors of i at iteration k. If the motion of robot i at time k satisfies that

‖ui(k)‖ ≤ umax
i (k) = min

(
umax, ρi(k)− rcom

)
, (3.11)

then, αj(`) = 0, ∀q ∈ Ωr
i (k), with j /∈ Ni(k) and ` > 0, ` ∈ {k −N + 1, ..., k}.

Proof. Since ρi(k) is the minimum distance from the current position of robot i to any of
the last N − 1 positions of other robots j that are not neighbors of i at iteration k, then
αj(`) = 0 for all q ∈ Ωρ

i (k) and ` = {k −N + 1, . . . , k}.
Therefore, we need to demonstrate that Ωr

i (k) ⊆ Ωρ
i (k). This happens if the radius of

Ωr
i (k) is smaller than the radius of Ωρ

i (k), that is,

rcom − rcovmax + umax
i (k) ≤ ρi(k)− rcovmax,

which is true if (3.11) holds.
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In practice, the restriction that the previous lemma establishes on ‖ui(k)‖ may be
stronger than needed, since the direction of the movement may direct the robot to a place
with no possible error, while the module of the action restricts such movement. Therefore,
this restriction should only be applied depending on the direction of the motion.

These results allow us to introduce the theorem that guarantees a perfect estimation of
the coverage in the reachable area of the robots at every time. This theorem proves the
hypothesis of Lemmas 3.4.2 and 3.4.1.

Theorem 3.4.4. If Assumptions 3.3.1 and 3.3.2 hold and the motion of the robots satis-
fies (3.11), then, according to Algorithm 1, the local map is equal to the global coverage map
at time instant k inside the reachable area of the robot,

Zi(k) = Z(k), ∀q ∈ Ωr
i (k).

Proof. Following the principle of induction:
1) Consider Zi(0) = Z(0) from Assumption 3.3.2.
2) Assume as an induction hypothesis that

Zi(k − 1) = Z(k − 1), ∀q ∈ Ωr
i (k − 1).

3) Using Lemma 3.4.1 and the induction hypothesis we have Zi(k) = Z(k) in Ωz
i (k).

Then for those areas of Ωr
i (k) that intersect with Ωz

i (k) the result is proven.
We now focus on demonstrating that the same holds for any point q ∈ Ωr

i (k) \ Ωz
i (k).

Lemma 3.4.2 demonstrates that the production of the robots before or at time k − N + 1
induces no error in Zi(k) and Lemma 3.4.3 guarantees that αm(`) = 0 in Ωr

i (k) for all
` ∈ {k − N + 1, ..., k}, m /∈ Ni(k). Therefore, only the production after k − N + 1 of the
current neighbors of robot i can cause an error on Zi(k) within Ωr

i (k)\Ωz
i (k). For any point

of this region the updating law from (3.1), (3.2b) and (3.4) is (3.8).
If there exists some neighbor j such that q ∈ Ωz

j(k), then Zj(k) = Z(k) and the first
term of (3.8) becomes dZ(k− 1)−maxj∈Ni(k) αj(k). Since αi(k) = 0 and maxj∈Ni(k) αj(k) =
maxj∈Ni(k) βj(k), then Zi(k) = Z(k) in

(
Ωr
i (k) \Ωz

i (k)
)
∪Ωz

j(k).
On the other hand, if there is no neighbor j such that q ∈ Ωz

j(k), i.e., αj(k) = 0 for all
j ∈ V in q, then, (3.8) results in Zi(k) = maxj∈Ni(k)∪i dZj(k − 1).

Repeating the same procedure for time k − 1, if q ∈ Ωz
j(k − 1) for any j ∈ {Ni(k), i},

then Zj(k − 1) = Z(k − 1) which implies that Zi(k) = dZ(k − 1) = Z(k). If q /∈ Ωz
j(k − 1),

then we can repeat recursively until k− (N −1). If q /∈ Ωz
j(`) with ` ∈ {k−N +1, ..., k−1},

then, according to Lemma 3.4.2,

Zi(k) = dNZ(k −N) + dN−1α
(
k − (N − 1)

)
= Z(k),

completing the proof.

We can now extend the area in which a robot has no estimation error at each time
depending on the positions of the non-neighbors.
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Corollary 3.4.5. Considering the same as in Theorem 3.4.4, the local estimation of the
coverage map of any robot i is equal to the global map inside Ωρ

i (k),

Zi(k) = Z(k), ∀q ∈ Ωρ
i (k).

Proof. The same proof as for Theorem 3.4.4 can be applied here using Ωρ
i (k) instead of

Ωr
i (k).

The previous results guarantee zero estimation error in a region that depends on the
positions of the robots that are not neighbors, m /∈ Ni(k), at each time k. However, in a
distributed approach a robot does not know such positions. Regardless of the motion of
the robot and the positions of the other robots there is a region, presented in the following
theorem, in which zero error is guaranteed.

Theorem 3.4.6. Let r∗z = rcom− rcovmax− (N − 1)umax. Then, if Assumptions 3.3.1 and 3.3.2
hold, Algorithm 1 guarantees that

Zi(k) = Z(k), ∀q ∈ Q | ‖pi(k)− q‖ < r∗z .

Proof. According to Lemma 3.4.2, whose hypothesis is confirmed by Theorem 3.4.4, the
production of the robots from N − 1 or more instants before does not induce an error.
Therefore, it is guaranteed that the robot does not have an estimation error in an area
around it if it is not capable of reaching the production of non-neighbors in less than N − 1
iterations. According to Assumption 3.3.1, in the worst case, the production of a non-
neighbor is at a distance of rcom− rcovmax. Additionally, a robot can move at most (N −1)umax

units in N−1 instants. Therefore, the radius of the area around the robot that cannot reach
the previous productions of a non-neighbor is r∗z = rcom− rcovmax− (N − 1)umax and the proof
is complete.

Finally, we set bounds to the estimation error in all points.

Theorem 3.4.7. Consider that Assumptions 3.3.1 and 3.3.2 hold. Also consider that the
maximum value of the production function of every robot is

P = max
i∈{1....,N}

αi(k). (3.12)

Then, according to Algorithm 1, the error of the local estimation of the coverage map for all
k > 0 is bounded by

0 ≤ Z(k)− Zi(k) ≤ P (N − 1)
1− dN

1− d
. (3.13)
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Proof. The lower bound is proven in Lemma 3.4.1, whose hypothesis is confirmed by The-
orem 3.4.4. We prove here the upper bound. As we mentioned, the error of the local
estimation, εest = Z(k)− Zi(k), is caused by the lack of communication between all robots
of the network. In fact, the more non-neighbors of robot i overlap between them, the higher
this error is for robot i at each time instant. Consequently, we can formulate the maximum
error produced at a particular time instant as e = Pno where 0 < no ≤ N − 1 is the number
of overlapping robots outside the communication area of any other robot. In the worst case
scenario, this error is repeated every time instant and added to the previous ones that have
decayed over time. Therefore, we have

εest = e+ de+ d2e+ ...+ dδ−1e = e
1− dδ

1− d
,

where δ− 1 represents the number of iterations until the robot receives the information and
its value depends on no. However, as introduced for Lemma 3.4.2, the maximum is N − 1
instants, i.e., δ − 1 ≤ N − 1, and only the errors of the last N − 1 iterations have to be
added. Thus,

εest = Pno
1− dδ

1− d
≤ P (N − 1)

1− dN

1− d
,

and the desired result is proven.

The bound in (3.13) can also be modified to take into account disconnected networks
under the standard assumption of periodic joint connectivity [134], which supposes the union
of the disconnected communication graphs form a connected one at most every T instants.

Remark 3.4.8. Consider the same as in Theorem 3.4.7 and also consider periodic joint
connectivity of the network. Then, according to Algorithm 1, the error of the local estimation
of the coverage map for all k > 0 is bounded by

0 ≤ Z(k)− Zi(k) ≤ P (N − 1)
1− dTN

1− d
.

3.5 Simulations

Eventually, we present simulation results for the proposed estimation algorithm. At the
beginning, we show the behavior in an illustrative example and afterwards, we provide an
exhaustive evaluation of the influence of the parameters using a Monte Carlo analysis.

The reference settings that we have used in these simulations are the following. The
environment Q is a rectangle of 100× 150 units with a decay rate d = 0.995 and the desired
coverage level is Z∗ = 100 for every point. The team consists of N = 6 robots, whose
maximum motion is umax = 5 and whose production function is equal to

αi(k) =


P

rcovi
2 (r − rcovi )2, if r = ‖pi(k)− q‖ ≤ rcovi ,

0, otherwise,
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with a maximum value P = 25 and a coverage radius rcovi = 10 units. The communication
radius is rcom = 120, that clearly satisfies Assumption 3.3.1, and the motion controller will
be explained in the next chapter. Note that in a real-world environment most parameters
are fixed by the application and by the specific robots used. Thus, for the simulation the
selection is arbitrary. Also note that, without loss of generality, we use the same coverage
radius and the same coverage function for all the robots.

Illustrative Example

This section presents an illustrative example of the simulations with the reference settings.
In Theorem 3.4.7, we state that the estimation error is bounded by (3.13). If we calculate
the maximum estimation error of the network for this example, the maximum value reached
is 25.1, as can be seen in Figure 3.3. This error is lower than the value of our upper bound
that is 740.7. Although the theoretical bound is loose, it shows that the estimation error
does not go to infinity and remains bounded. In practice, it can be seen that the estimation
error is much lower and that the algorithm works even better than theoretically predicted.
The minimum value of the estimation error is always 0 which also confirm the lower bound
in (3.13).
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Figure 3.3: Evolution of the maximum estimation error of the network.

In Theorem 3.4.4, we state that the estimation is perfect inside the reachable area of
each robot when the motion action satisfies (3.11) and in Theorem 3.4.6, the area in which
there is no estimation error when no restriction is applied to the motion. To check that these
statements hold, we use the minimum distance to an estimation error between all the robots
(MDE). This distance is the shortest Euclidean distance from a robot to the points in which
it has an estimation error, i.e., where Zi(k) 6= Z(k):

MDE(k) = min
i,q

(
‖q− pi‖ |Zi(q, k) 6= Z(q, k)

)
. (3.14)

In Figure 3.4 we depict the MDE from (3.14) in each iteration. When the motion sat-
isfies (3.11) (Figure 3.4a), the MDE is always greater than the radius of the reachable area
(red line) and, thus, comply with Theorem 3.4.4. It is also greater than the radius of the
zero-error area (green dash-dotted line) that has a constant value. On the other hand, when
there is no restriction to the motion, Figure 3.4b shows that MDE is greater than r∗z = 85
(red line) as asserted in Theorem 3.4.6. In fact, although it is not theoretically guaranteed,
it can be seen that most of the time the estimation is correct in an area with the same
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radius as the zero-error area, i.e., MDE greater than 110, and even in a bigger region. This
is an advantage since the velocity restriction from Equation (3.11) can not be calculated in
a distributed scenario and allows us to omit it in a real-world application. In addition, in
both figures the MDE is not depicted in the iterations in which all the robots have a perfect
estimation.
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(a) Motion satisfies Equation (3.11).
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(b) No restriction to the motion.

Figure 3.4: Evolution of the MDE.

If we test the restriction in terms of the motion of the robots, this example shows that,
in practice, it is not very limiting. Figure 3.5 shows the maximum allowed movement in the
calculated direction at each iteration for a robot. It can be seen that the desired movement
is under the maximum allowed in most cases.
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Figure 3.5: Movement of a robot. The blue line represents the desired movement of the
robot and the red line, the maximum movement allowed by Lemma 3.4.3.
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Local Estimation of the Coverage

In order to perform a thorough validation of our local map updating strategy from Al-
gorithm 1, we developed a Monte Carlo analysis, which includes 20 runs of the simulations
from 20 different initial positions of the robots for different combination of parameters. In
particular, we evaluate the influence of varying the decay, d, the number of robots, N , the
communication radius, rcom, the maximum value of the production, P , and the coverage
radius, rcov, with respect to the reference settings. To do so, we synthesized the two mea-
surements introduced in the example: we calculate the maximum estimation error and the
minimum MDE over all the runs and average both over time. We call them εmax and MDE,
respectively. In Table 3.1 the results of this study are summarized and the conclusions from
them are:

d 0.991 0.993 0.995 0.997

εmax 25.3 25.4 25.8 26.2

MDE 111.3 111.2 111.2 111.3

N 4 6 8 12 16

εmax 25.2 25.8 26.3 29.5 31.8

MDE 112.6 111.2 110.8 110.5 110.4

rcom 80 100 120 140 160

εmax 42.6 32.7 25.8 22.4 4.1

MDE 70.5 90.8 111.2 132.4 153.8

P 15 20 25 30 35

εmax 15.1 20.3 25.8 31.7 36.6

MDE 111.2 111.3 111.2 111.1 111.2

rcov 5 10 15 20

εmax 25.1 25.8 28.0 31.4

MDE 116.6 111.2 106.1 101.1

Table 3.1: Maximum estimation error, εmax, and minimum distance to an estimation error,
MDE.

• The variation of the decay has a small influence on εmax. This error is around the
value of P which means two things: few overlappings take place outside the zero-error
area of the robot and the production of the non-neighbors needs only one instant to
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reach the robot. In these conditions, the decay does not play an important role. In
addition, the decay does not influence the MDE since it only modifies the coverage
level. Further tests showed that both conclusions are valid for even larger variations
of the decay rate.

• An increase in the number of robots makes εmax increase because the number of over-
lappings rises. On the contrary, it makes the MDE decrease because it is more likely
that a robot appears on the limit of the zero-error area. Nevertheless, the influence of
this parameter is small in both measurements.

• The communication radius is the parameter with the biggest influence in the estima-
tion. For this reason we represent the evolution of the two measurements in Figure 3.6.
It can be seen that εmax decreases when the communication radius increases. This
happens because a larger radius implies that more robots are in direct communication,
reducing the error drastically. On the contrary, the MDE increases with the commu-
nication radius, since the production of the robots that are in direct communication
does not induce an estimation error.
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Figure 3.6: Evolution of the estimation with the communication radius.

• The influence of the maximum production is very important since it directly modifies
the estimation error. However, as well as the decay, it has no effect in the distance to
the error.

• The coverage radius makes εmax increase since the bigger the radius is, the more over-
lappings occur. The MDE decreases with this radius. If two robots are not neighbors,
a larger coverage radius makes the MDE that they produce on each other shorter.

Although it cannot be shown graphically for all the trials, it should be noted that both
the boundedness of the estimation error and the correct estimation in the characterized areas
hold at all times for all the simulations that we have carried out.

These simulation results are in concordance with the theoretical results of the chapter:
the local estimation is equal to the global map in the characterized areas and bounded in
the rest of the domain.
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3.6 Conclusions

In this chapter we have presented an algorithm to construct an estimation of the global
coverage map with only local information received from neighboring robots. We have formu-
lated the problem in discrete time so as to deal with the discrete nature of the communications
in a distributed system. This algorithm has been proven to be accurate when calculating the
estimation. We have proved that the estimation is equal to the global map inside the zero-
error area of each robot when the motion of the robot satisfies a condition. Moreover, we
have characterized the area in which zero error is guaranteed for any velocity. Additionally,
we have established bounds on the estimation error for the rest of the environment. Finally,
we have carried out different simulations to validate the proposed contributions.

The estimation algorithm represents the stepping stone for a distributed persistent cove-
rage solution. Using our estimation procedure, any kind of strategy for the planning or
control of the positions of the robots can be used used with formal guarantees of accuracy
in the coverage value. For this reason, in the following chapter we develop a motion control
law that builds upon the correctness of the estimation and the characterized regions.
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Chapter 4

A Distributed, Partition-Based
Solution with Feedback Control for
Continuous Environments

In this chapter we propose a distributed feedback control law for the persistent coverage
of a continuous environment. We introduce a new function to determine the potential im-
provement of the coverage at each point of the environment. The robots compute a Voronoi
partition that is updated over time and calculate, using the values of this metric in their own
regions, a control input that combines two actions. The first one maximizes the improve-
ment. The second one drives the robots to the points with the highest improvement, which
the robots are capable of finding locally inside their partition. The strategy is analyzed by
means of simulations and discussed in detail at the end of the chapter.

4.1 Introduction

In a persistent coverage application, the motion of the robots must be controlled or
planned according to the coverage of the environment, either the actual coverage when using
motion controllers or online planning or the expected coverage when planning trajectories a
priori. Thanks to the estimation algorithm presented in the previous chapter, the robots are
able to accurately retrieve the coverage level in their surroundings in a distributed manner.
From this point of view, a local controller based on this information appears as the best fit
to control the motion of the robots. However, since these types of controllers suffer from
local minima, an additional strategy has to be used to avoid getting stuck at them.

In this chapter, we propose a distributed strategy to control the motion of the robots
that combines a gradient term and a goal-oriented term. Both terms are based on a new
metric, called Improvement Function, that characterizes how profitable it is, in terms of
coverage, to locate a robot at a specific position. The gradient term pushes the robots in the
direction that improves the coverage the most, i.e., the locally-optimal direction. To avoid
local minima and we also build an algorithm that allows each robot to locally determine the
points with the highest improvement value. These points become goals that it has to reach
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and the goal-oriented term drives the robot to them. The combination of both terms avoids
revisiting well-covered areas and drives the robots towards uncovered areas.

In this chapter we consider the same formulation as in the previous one and, therefore,
we omit the problem formulation section and refer the reader to Section 3.2. The remainder
of the chapter is structured as follows. The notion of improvement function is proposed
in 4.2 along with a distributed partition of the environment, preliminaries for Section 4.3
where we introduce the motion law to control the movement of the robots. The approach
is discussed in Section 4.5 and its performance is analyzed in simulations in Section 4.4.
Finally, Section 4.6 gathers the conclusions of this work.

4.2 Improvement Function and Environment Partition

In this section we introduce a new metric, the Improvement Function, that characterizes
how profitable it is to locate a robot at a specific position in terms of the coverage level, and
divide the environment using a distributed Voronoi partition, that provides each robot with
a safe region where there is no interference with other robots. Using this metric and inside
this region, each robot will be able to safely determine its own motion action.

Improvement Function

An approach to control the motion of the robots is to define goals to which the robots
must move. These goals could be selected randomly according to a sampling-based motion
planning algorithm [135]. However, for the distributed coverage problem, these goals must
be points that provide the maximum improvement of the coverage according to the local
information of the robots. To find them, we introduce a new metric that characterizes how
profitable it is to locate a robot at a specific position, p ∈ Q, in terms of the coverage level
estimated by the robots. We call this metric Improvement Function,

Mi(p, k) =

∫
Ωi(p)

Z∗ − Zi(k)

Z∗
Φ(q)αi(q,p) dq∫

Ωi(p)

Φ(q)αi(q,p) dq
. (4.1)

Recall that Φ(q) ∈ (0, 1] is a function that represents the importance of covering each point.
The Improvement Function computes the integral of the normalized coverage error

(
Z∗ −

Zi(k)
)
/Z∗ weighted with the production of a robot located in p, αi(q,p), and normalizes

it to obtain a value independent of the production function. Note that Mi(p, k) ≤ 1 by
definition and that it has a value between 0 and 1 when the coverage area around the point
p is slightly covered and below zero when it is over-covered.

According to the previous definition, we will show that this function provides a crucial
information for the control of the motion of the robots and even for the planning of trajec-
tories for them. For instance, the point where this function reaches its maximum represents
the point in which a robot can improve the coverage the most and, therefore, it could be
assigned to the robot as the goal to follow.
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We also introduce the temporal evolution of the improvement to simplify its online com-
putation and update:

Mi(p, k) = dMi(p, k − 1) + Ai(p)− 1

Bi(p)

∫
Ωi(p)

α(k) Φ(q)αi(q,p) dq, (4.2)

where

Ai(p) =
1

Bi(p)

∫
Ωi(p)

(
1− d(q)

)
Φ(q)αi(q,p) dq

and

Bi(p) =

∫
Ωi(p)

Φ(q)αi(q,p) dq

are constants that can be calculated a priori. This temporary evolution calculates directly
the improvement at each time as a function of its previous value and the coverage of the
robots. It is interesting to highlight that the evolution of the improvement is the opposite
of the evolution of the coverage. The improvement increases constantly with time due to
the decay in Ai(p) and decreases when the robots are producing an increase of the coverage
level around each point.

Distributed Partition of the Environment

The selection of improvement maxima as goals in any part of the environment may lead
to long and unnecessary shifts, redundancy or even collisions. Additionally, each robot
may not be able to find the actual maximum improvement since (4.1) only uses its local
estimation, Zi(k), that, although bounded, may have errors in regions far away from the
robot. The solution to these problems is to assign particular regions to the robots in which
they are responsible for the coverage. This can be achieved partitioning the environment
in a distributed fashion. In particular, we choose a distributed Voronoi tesellation. It is a
well-known technique that associates to each robot its closest points of the environment:

V∗i (k) = {q ∈ Q | ‖pi(k)− q‖ ≤ ‖pj(k)− q‖ ∀j 6= i}.

The estimation of the coverage is always guaranteed to be exact within the zero-error
area of the robots when their motion satisfies (3.11) and, since the size and shape of this
region is constant, we reduce the Voronoi region to the intersection with this area, resulting
in the r-disk Voronoi partition [2]:

Vi(k) = V∗i (k) ∩Ωz
i (k).

This region, though little conservative in some cases, presents several advantages:

1. It has been successfully applied in solutions to the static and dynamic coverage prob-
lems [6].

2. It prevents the robots from selecting as goals points in which the estimation is not
exact, since inside Ωz

i (k) the estimation is always correct.
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3. It overcomes the problem of long shifts, since each robot chooses goals only in its
proximity.

4. It inherently prevents collisions in convex environments, since each robot has an ex-
clusive region.

A small limitation of this partition occurs when the motion of the robots is unrestricted.
In that case, a region of radius r∗z should be used to guarantee a correct estimation inside
the r-disk Voronoi cell but depending on the parameters of the system, r∗z might be small
and lead to a small partition. However, as simulation results in Section 3.5 show, the motion
restriction is not often violated and the estimation algorithm is able to recover from it.

It should be noted that any other partition method such as power diagrams [16] or K-
Means clustering [136] could be used. The partitions could also be combined with some task
assignment procedure [137] to consider in the problem the optimization of some global metric,
e.g., total distance walked by the robots, at the expense of some additional coordination.
In fact, the selection of the distributed partition method is independent of the rest of the
elements considered in the distributed strategy to coordinate the robots.

4.3 Feedback Controller

In this section we introduce the motion controller that combines the locally-optimal
direction of movement, calculated as the gradient of the improvement function, with the
direction to poorly covered areas that maximize the improvement of the coverage.

The idea behind this combination is twofold. The path to the goal may go through
well- or over-covered areas, that can deteriorate the overall performance, and the gradient-
based term helps to avoid these and move across areas where the coverage level is under
the objective. Alternatively, the gradient term on his own may lead to local minima of the
coverage and get stuck temporarily there, and it only relies on the coverage at the position of
the robot, discarding the information in the rest of the partition. Therefore, the goal-directed
term allows the robots to avoid local minima and to move to more profitable regions.

4.3.1 Local, gradient-based control

As mentioned before, the locally-optimal direction of movement is calculated as the
gradient of the Improvement Function with respect to the robot position. To develop such
gradient we omit the dependencies with q for simplicity and we use pi ≡ pi(k) and Ωi ≡
Ωi(pi). The first step is to derive the quotient in Equation (4.1) particularized for the
position of the robot, pi(k):

∇pi
Mi(pi, k) =

∇pi
B1 ·B2 −B1 · ∇pi

B2

B2
2

(4.3)

with

B1(k) =

∫
Ωi

Z∗ − Zi
Z∗

Φαi(k) dq
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and

B2(k) =

∫
Ωi

Φαi(k) dq.

If we define
αij(k) = max

(
Zcom
j (k)− dZi(k − 1), 0

)
, ∀q ∈ Ωi(k), (4.4)

the estimation algorithm from (3.1), (3.2a) and (3.4) gives

Zi(k) = dZi(k − 1) + αi(k) +
∑
j∈Ni

αij(k),∀q ∈ Ωi. (4.5)

Applying the Leibniz integral rule to the term ∇pi
B1, we obtain

∇pi
B1 =

∫
Ωi

Φ

Z∗
∇pi

(
Z∗αi(pi)−

(
dZi(k − 1) + αi(pi) +

∑
j∈Ni

αij(k)
)
αi(pi)

)
dq

=

∫
Ωi

Φ

Z∗

(
Z∗∇pi

αi(pi)− dZi(k − 1)∇pi
αi(pi)−∑

j∈Ni

αij(k)∇pi
αi(pi)− 2αi(pi)∇pi

αi(pi)
)

dq

=

∫
Ωi

Φ

Z∗
∇pi

αi(pi)
(
Z∗ − dZi(k − 1)−

∑
j∈Ni

αij(k)− 2αi(pi)
)

dq (4.6)

Substituting

A(k) = Z∗ − dZi(k − 1)−
∑
j∈Ni

αij(k)− 2αi(k), (4.7)

we have

∇pi
B1 =

∫
Ωi

Φ

Z∗
∇pi

αi(pi)A(k) dq.

On the other hand we have

∇pi
B2 =

∫
Ωi

Φ∇pi
αi(pi) dq.

Introducing this equation and (4.6) in (4.3), the gradient of the Improvement Function
results in:

ugradi (k) = ∇pi
Mi

(
pi(k), k

)
=

∫
Ωi

Φ

Z∗
∇pi

αi(k)A(k) dq∫
Ωi

Φαi(k) dq
−

∫
Ωi

Φ
Z∗ − Zi(k)

Z∗
αi(k) dq

∫
Ωi

Φ∇pi
αi(k) dq(∫

Ωi

Φαi(k) dq

)2 . (4.8)

This gradient represents how the Improvement Function changes inside the coverage area
of robot i due to small variations of its position and it gives the direction of the motion of
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the robot that maximizes the increase of the improvement, i.e., the direction in which the
coverage would be most improved.

The use of this kind of gradient descent solution is usually applied to centralized sys-
tems [57]. Fortunately, our distributed estimation algorithm of Section 3.3 allows us to use
the same gradient-based controller as a centralized system to obtain the same solution be-
cause each robot has an accurate estimation of the global map in the area required for the
computation of the gradient.

Proposition 4.3.1. The response of the gradient-based motion controller from (4.8) is the
same for our distributed system as for a centralized system with

B(k) = Z∗ − dZ(k − 1)−
∑

j∈{1,...,N}

αj(k)− αi(k) (4.9)

instead of A(k) and Z(k) instead of Zi(k).

Proof. In the first place we demonstrate that∑
j∈Ni(k)

αj(k) =
∑

j∈Ni(k)

αij(k), ∀q ∈ Ωi(k). (4.10)

According to the definition of the map-to-communicate from (3.1),

αj(k) = Zcom
j (k)− dZj(k − 1). (4.11)

Inside Ωi(k) ∩Ωr
j(k), Theorem 3.4.4 states that Zj(k) = Z(k) = Zi(k). Then,

αij(k) = Zcom
j (k)− dZi(k − 1) = αj(k), ∀q ∈ Ωi(k) ∩Ωr

j(k). (4.12)

In Ωi(k) \Ωz
j(k), according to Theorem 3.4.7, Zj(k − 1) ≤ Z(k − 1) = Zi(k − 1). Then,

we have
Zcom
j (k)− dZi(k − 1) ≤ 0 =⇒ αij(k) = 0 = αj(k), (4.13)

completing the first part of the proof.
If we now introduce 4.10 in 4.9 we have

B(k) = Z∗ − dZ(k − 1)−
∑

j∈Ni(k)

αij(k)−
∑

j /∈Ni(k)

αj(k)− αi(k). (4.14)

Since the integrals in 4.8 are only computed inside Ωi(k) and in this region αj(k) = 0, ∀ j /∈
Ni(k), j 6= i, then we have

∑
j /∈Ni(k) αj(k) = αi(k). Therefore,

B(k) = Z∗ − dZ(k − 1)−
∑

j∈Ni(k)

αij(k)− 2αi(k) = A(k). (4.15)

Recalling that in Ωi(k) Theorem 3.4.4 proves that Zi(k) = Z(k) since Ωi(k) ⊂ Ωr
i (k), the

proof is complete.

This proposition demonstrates that with our proposal any robot can calculate its own
action using only local information and obtain the same results as a centralized system.
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4.3.2 Goal-oriented control

The goal-oriented control aims to direct the robots to areas where the Improvement
Function is maximized. The direction in which each robot moves toward its goal is

ugoali (k) = g∗i (k)− pi(k), (4.16)

where g∗i (k) is the goal of robot i at time k.
In accordance with the Improvement Function (4.1), the goal should be the point q where

it reaches its maximum value inside the Voronoi region:

g∗i (k) = argmax
q∈Vi(k)

Mi(q, k). (4.17)

However, this point may not exist or may not be unique, for instance when there are several
points uncovered, or may change every iteration, leading to undesirable oscillations or cyclic
behaviors. To cope with these problems we propose an algorithm that handles several goals.
The key idea of this algorithm is to maintain a list of possible goals, Li(k), that is updated
every iteration and from which the current goal is selected.

In our solution, any goal gi ∈ Li(k) must be inside the Voronoi partition,

gi ∈ Vi(k), (4.18)

and must be under-covered,
Mi(gi, k) > 0. (4.19)

Therefore, the first step is to check if the goals from the list of the previous iteration,
gi ∈ Li(k − 1), are still feasible, including if they have been reached:

gi is feasible ⇐⇒ Mi(gi, k) > 0 ∧ gi ∈ Vi(k) ∧ ‖gi − pi(k)‖ > E , (4.20)

where E is the distance at which a goal is considered reached. Whenever a goal stops
satisfying these criteria, it is removed from the current list Li(k).

Next, we define a region in which new possible goals are searched as

Ri(k) = Vi(k) \Ωi

(
pi(k)

)
\Ωi(gi), (4.21)

that includes all points of the Voronoi region that are not in the coverage area of the robot
centered either at pi(k) or at any gi ∈ Li(k). Note that in the initialization step for Li(1),
the search region is Ri(1) = Vi(1), and that each new possible goal found in the search
region meets the distance requirement

g2
i /∈ Ωi(g

1
i ), (4.22)

with g1
i , g2

i any pair of possible goals in Li(k).
Each robot iteratively looks for new possible goals inside Ri(k), that are global or local

maxima or quasi-maxima of the Improvement Function. The set of these points is

Pi =
{
p ∈ Ri(k) |Mi(p, k) ≥Mi(p + ε, k)

}
, (4.23)
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which can be found using state-of-the-art methods such as pattern search. Such p ∈ Pi must
also satisfy Mi(p, k) > 0. Nevertheless, from this set only the nearest point to the robot is
selected as a new possible goal:

gi = arg min
p∈Pi

(‖p− pi(k)‖). (4.24)

This point gi is the most interesting of the current search region both in terms of the
Improvement Function and in terms of the time until it can be covered. Thus, it is appended
to the current list of goals, Li(k), and the points close to it are eliminated from the search
region to keep satisfying (4.22):

Ri(k) = Ri(k) \Ωi(gi). (4.25)

The search is repeated until Ri(k) is empty or there are no more points with a positive value
of the Improvement Function and eventually, each robot has an updated list of possible
goals, Li(k).

The selection of the goal to follow from this list can be done in accordance with several
criteria such as the value of the Improvement Function, Mi(gi, k), the distance to the current
position of the robot or the distance to the neighbors. This means that, for instance, the
most profitable goal may be the one with the highest value of Mi(q, k) or the nearest to
the robot and it is clear then that the definition of profitability of a goal depends on the
application. Therefore, the selection of the current goal from the list can be generalized as

g∗i (k) = argmin
gi∈Li(k)

f(Mi(gi, k), ‖gi − pi‖, ‖gi − pj‖), (4.26)

where j ∈ Ni(k) and f(·) represents the profitability of an objective from the list, thus we
call it Profitability Function. In particular, in this chapter we use

f(gi, k) = −Mi(gi, k). (4.27)

However, to give a more general idea of this function in the simulation section 4.4 we provide
a comparison of several different alternatives.

Finally, in Algorithm 2 we summarize this method to search for goals.

4.3.3 Motion Control Law

The overall motion control law that we propose gathers both previous actions, the local,
gradient-based, ugradi (k), and the goal-oriented, ugoali (k), as follows:

ui(k) = WL(k)umax
i (k)

WL(k)ugradi (k) +WG(k)ugoali (k)

‖WL(k)ugradi (k) +WG(k)ugoali (k)‖
. (4.28)

umax
i (k) is bounded by Lemma 3.4.3 or by umax and, with a little abuse of notation, ugradi (k)

and ugoali (k) are the normalizations of the directions introduced in (4.8) and (4.16), respec-
tively. The weight WL(k) of the gradient-based action is also used as a gain of the maximum
velocity of the robot and is defined according to the Improvement Function from (4.1):

WL(k) = 1−max
(
Mi

(
pi(k), k

)
, 0
)
, (4.29)
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Algorithm 2 Selection of goals.

Require:
1. Previous list of goals, Li(k − 1).
2. Voronoi region of the robot, Vi(k).
3. Improvement Function, Mi(q, k), ∀q ∈ Vi(k).

1: Li(k) = Li(k − 1)
2: For all gi ∈ Li(k − 1)
3: If gi is not feasible (4.20),
4: Remove gi from Li(k).
5: Define search region Ri(k) (4.21).
6: While Ri(k) 6= ∅ and ∃p ∈ Ri(k) |Mi(p, k) > 0
7: Search for a new possible goal gi ∈ Ri(k) (4.23)-(4.24).
8: Append gi to Li(k).
9: Eliminate points near gi from Ri(k) (4.25).

10: Select current goal g∗i ∈ Li(k) (4.26).

where 0 ≤ WL(k) ≤ 1. When the coverage level is near to the objective in the coverage area
of the robot, the importance of the local action tends to 1, to avoid revisiting areas already
well covered. When the coverage level is poor, the local direction becomes less important
since coverage is still needed. This weight (4.29) can also be seen as a velocity gain. It has
the effect of slowing the robot down to keep covering its area when it has a low coverage
level and speeding it up to quickly move to less covered areas when its coverage level is near
the objective.

The importance of the goal-oriented action is

WG(k) = Mi

(
gi(k), k

)
, (4.30)

where 0 ≤ WG(k) ≤ 1 and gi(k) is the goal of robot i, described in Section 4.3.2. This
weight increases the importance of the goal when the coverage area of the robot virtually
located there is poorly covered and, vice versa, the goal becomes less important when it is
well covered.

The motion control law that we propose avoids getting stuck thanks to the weights WL

and WG. They have the effect that, when the coverage area of the robot is poorly covered,
the robot moves slowly and directed to the goal and, when the area is well covered, it moves
fast in the direction of the gradient. In the highly improbable case that both weighted actions
cancel out, the robot does not move but keeps covering, making the weight of the gradient
WG change and, thus, breaking the equality.

4.4 Simulations

We present simulation results for the proposed solution to the persistent coverage pro-
blem. At the beginning, we show the behavior of the entire system using an illustrative
example and afterwards, we provide an exhaustive evaluation of different alternatives to the

79



Profitability Function, the control of the motion of the robots and the whole approach to the
problem using a Monte Carlo analysis.

The reference settings that we have used in these simulations are the same as in the
previous chapter. In addition to those settings, the Profitability Function that we use is (4.27)
and we select the number of robots that is able to produce more coverage than the total
decay of the environment when it is at the desired level, i.e., we use the minimum number
of robots that satisfy ∫

Q

∑
i∈{1,...,N}

αi(k)dq >

∫
Q

(1− d)Z∗dq. (4.31)

Although this is a sufficient condition for the robots to be able to reach the desired coverage
level, it is not a requirement of the algorithm. If less robots were deployed they would try to
keep the average coverage level as high as possible. Also note that, without loss of generality,
we use the same coverage radius and the same coverage function for all the robots although
they could be different [57] without modifying the global behavior of the system. In addition,
we define the quadratic coverage error,

ε̃(k) =

∫
Q

(
Z∗ − Z(k)

)2
dq, (4.32)

that is an interesting metric used in some of the following results. The simulations are
implemented in Matlab, run on a laptop with an Intel Core i7 and the average iteration time
for these settings is around 80ms.

4.4.1 Illustrative Example

This section presents an illustrative example of the simulations with the reference settings.
In Figure 4.1 we depict the coverage map with the coverage areas of the robots and their
motion control actions (4.28) for three different instants. One can see that the performance
of the system is quite good. In fact, the average coverage level reached is 96.4 with a standard
deviation of 21.3 that is, at most, 30 in the transient state. This supports that, although it
is not theoretically guaranteed, not only most of the points reach the desired level at some
time but also an average level near the objective is maintained over time.

Figure 4.1a shows that in the beginning there is almost no movement since the environ-
ment is uncovered and the weight WL, that is the velocity gain, is small. At this time, the
goal-oriented term, WG(k)ugoali (k), prevails. When the environment starts to be covered, the
combination of both terms drives the robots (Figure 4.1b). In the end, when all the envi-
ronment is covered, the term that has more influence is the gradient-based, WL(k)ugradi (k),
since there are few uncovered areas that are worth visiting (Figure 4.1c). In Figure 4.2 the
weight of each action is depicted for one of the robots. It confirms that the goal-oriented
term is more important in the transient while it is the gradient in the steady state and that
the velocity gain WL progressively increases with the coverage of the environment.

The trajectories for the first 200 instants of this simulation are shown in Figure 4.3. At
start, the robots focus on their particular regions for three reasons: (i) they follow the goals
from the initial list, that belong to the same region and all are poorly covered; (ii) the goal
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Figure 4.1: Example of simulation: coverage map with the coverage areas of the robots
(magenta dashed circumferences) and their motion control actions for three different instants.
Red lines represent the goal-oriented term, WG(k)ugoali (k), magnified by 2.5 and point to the
objectives that are represent by red asterisks. Green lines represent the gradient-based
term, WL(k)ugradi (k), magnified by 2.5. The resulting action is represented in white. Green
circumferences in (b) represent the zero-error areas of the robots and the thickest white lines,
the Voronoi partition of the environment.
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Figure 4.2: Evolution of the weights of the actions WL and WG for one of the robots.

term is more important in the control law and (iii) they move slowly since the velocity gain,
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WL(k), is small due to the low coverage of the environment. As the algorithm proceed, the
gradient term dominates the motion and the velocity is higher, making the covered regions
of the robots overlap more and more. It is worth mentioning that for these settings, and in
particular for this number of robots and communication radius, the network did not become
disconnected in any of the carried-out simulations.
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Figure 4.3: Trajectories followed by the 6 robots during the first 200 iterations. Initial
positions are represented with stars and final positions with squares.

4.4.2 Profitability Function

As mentioned in Section 4.3.2, the Profitability Function, f(·), that allows the selection
of the current goal from the list can be defined in a different manner depending on the
application. In this section we compare several different alternatives to see the influence
that they have in the global behavior of the system. The first one selects the point with the
best value of the Improvement Function,

f1(g, k) = −Mi(g, k). (4.33)

The second one is based on the minimum distance to the objectives and is aimed at reducing
the overall motion,

f2(g, k) = ‖g − pi(k)‖. (4.34)

In the third place we weight the previous two, varying the importance of the Improvement
Function and the distance:

f3(g, k) = −0.7Mi

(
g, k
)

+ 0.3 ‖g − pi(k)‖, (4.35)

f4(g, k) = −0.5Mi

(
g, k
)

+ 0.5 ‖g − pi(k)‖, (4.36)

f5(g, k) = −0.3Mi

(
g, k
)

+ 0.7 ‖g − pi(k)‖. (4.37)

We also include in the comparison other selection methods that may not work properly, to
have a better idea of the performance of all of them. The sixth alternative is to select the
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goal with the lowest value of the Improvement Function, i.e., the point of the list that causes
the smallest improvement of the coverage,

f6(g, k) = Mi(g, k). (4.38)

Additionally, we use a random selection of the goal from the list that we refer to as f7(g, k).
Finally, we also compare these methods with a random selection of the goal in the Voronoi
region of the robot. Instead of constructing a list of goals we directly select a random point
of the region as the goal to follow. We refer to this as f8(g, k).

From the simulations of these eight alternatives with the reference settings we obtained
the following results. Firstly we find that the standard deviation of the coverage level
averaged over the runs is very significant to compare the options as can be seen in Figure 4.4.
The average coverage level is the same in all the cases since the production of the robot does
not change, but the standard deviation gives an idea of how homogeneous is the coverage of
the environment. The figure shows that the lowest deviation is achieved with f1, f3, f4 and
f5, i.e., with the Profitability Functions that look for the goal with the maximum value of
the improvement. These selections lead to a more homogeneous coverage of the environment
than the others in the transient state.
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Figure 4.4: Average standard deviation of the coverage level for the different Profitability
Functions and additional selection methods.

The Profitability Functions that look for the worst covered areas select goals that produce
high values of WG and not only direct the robots to the most profitable areas but also give
more importance to the goal-oriented term in the control law. On the contrary, if the
improvement of the selected goals is really low, as for f6 or f8, WG tends to zero. In that
case, the gradient term dominates the motion and the results tend to be similar to the ones
obtained only with the gradient term. This is the reason why the performance differences
between so different Profitability Functions are not larger and why all of them converge to
the same standard deviation value in the steady state, because eventually the gradient term
dominates the motion.

Figure 4.5 shows the average weights for the eight Profitability Functions. It can be seen
in Figure 4.5a that the gradient weight is very similar for all of them except for those based
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upon the Improvement Function in the first 100 iterations. In the end the weight of the
gradient is almost 1 in all cases, supporting that all the alternatives converge to the same
value of the standard deviation. However, the most important result is the influence of the
Profitability Function in WG, shown in Figure 4.5b. The chosen function clearly determines
which term is more important in the control action in the transient: the goal-oriented term
dominates in the beginning for f1, f3, f4 and f5 but for f6 the gradient rules the motion from
the start. This is the reason why f1 or f3 give much better results than the other alternatives
in the transient state.
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(a) WL.
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Figure 4.5: Evolution of the weights for the different Profitability Functions.

Eventually, Figure 4.5a also gives an idea of the distances traveled by the robots since
WL acts as a velocity and the total traveled distance is proportional to the integral of WL

over time. Intuitively, f2 should lead to the shortest distance but in practice it does not
because the nearest goals may not be the most profitable and then the robots move faster
and travel more distance. The alternatives that lead to shorter distances are f1 and f3 but
the differences are under the 1.2% since the gradient weight is very similar for all of them.

Finally we compare the performance of the alternatives using the quadratic coverage
error of the system, ε̃(k). Upon this metric we compute the relative coverage error as the
quadratic coverage error of each alternative relative to the best one. In this case we calculate(
ε̃(k) − ε̃f1(k)

)
/ε̃f1(k) where ε̃f1(k) is the quadratic coverage error obtained with f1, so as
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to obtain a representative measure in percentage for each alternative (Figure 4.6). It shows
that the Profitability Functions that are not build upon the Improvement Function perform
up to a 20% worse.
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Figure 4.6: Relative quadratic coverage error with respect to f1 for the different Profitability
Functions and additional selection methods.

If we average these relative errors over time (Table 4.1), we can have a single measure of
the differences that the selection methods cause on the performance of the system.

f1 f2 f3 f4 f5 f6 f7 f8

0% 10.1% 0.5% 1.7% 3.1% 9.2% 8.0% 9.1%

Table 4.1: Relative coverage error with respect to f1 averaged over time.

The conclusion from this results is that, although the Profitability Function is important
conceptually, using a criterion that is based on the maximum Improvement Function of the
coverage, such as f1 or f3, leads to a coverage around a 10% better than using any other
selection that does not take it into account.

4.4.3 Motion Control

In the third place we provide results regarding the control of the motion of the robots.
To evaluate the influence of the restriction from Equation (3.11) in terms of the motion of
the robots, we ran a Monte Carlo simulation with the reference settings and concluded that,
in practice, this restriction in the motion is not very limiting. In 20 runs of 600 iterations,
it was only applied in the 6.4% of the cases and caused on them an average reduction of the
motion of the 54.0%.

Next, we compare our motion control law with the performance of the gradient-term and
the goal-oriented term separately. In Figure 4.7 it can be seen that the average standard
deviation of the coverage level is greater when only one of the terms of the control law is
used. This means that our motion control law produces a more homogeneous coverage in
the environment. It is also remarkable that, in the steady-state, the control using only the
goal-oriented term has a much higher deviation. This happens when the environment is
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already well covered because the path to the objective produces over-covered regions. On
the contrary, the behavior of the gradient-term separately is very similar to the entire law
because this term prevails over the goal-oriented.
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Figure 4.7: Average standard deviation of the coverage level for the different motion control
laws.

We also represent in Figure 4.8 the quadratic coverage error of each term separately
relative to the quadratic coverage error obtained with our motion control law,

(
ε̃(k) −

ε̃ui(k)
)
/ε̃ui(k). It shows that the goal-oriented term alone also produces a great increment

of the coverage error at the end of the simulations while the gradient term does not.
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Figure 4.8: Relative quadratic coverage error with respect to (4.28) for the different motion
control laws.

Table 4.2 demonstrates that, on average, the coverage with our motion control law per-
forms a 7.5% better than only the gradient-based term and a 73.4% better than only the
goal-oriented term.

Gradient and Goals Gradient Goals

0% 7.5% 73.4%

Table 4.2: Relative coverage error with respect to (4.28) averaged over time.
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4.4.4 Global Performance Analysis

In this final part we provide simulation results on the performance of our entire approach
to the persistent coverage problem, that comprises the estimation algorithm and the motion
control. Specifically, we study the influence of the parameters of the system in the quadratic
coverage error of the steady-state, calculated for k = 600, and in the standard deviation of
the coverage level.

In Figure 4.9 we present the evolution of the quadratic coverage error of the steady-state
averaged over the runs for different values of the parameters. It can be seen that, in terms
of this coverage error, there is an optimum value for each parameter when all the others are
fixed and, when a different value is applied, the coverage error of the steady-state is higher.
The reason is that higher values of the parameters increase the production of the system
or decrease the deterioration of the coverage, leading to a coverage level of the environment
greater than the objective. Similarly, lower values lead to an under-covered environment.
In both cases, the quadratic coverage error is higher than in a well-covered environment
according to its definition.
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Figure 4.9: Evolution of the average quadratic coverage error of the steady-state for different
values of the parameters.
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d 0.991 0.993 0.995 0.997

Z 56.9 72.0 96.4 140.5

N 4 6 8 12 16

Z 65.1 96.4 127.8 190.7 253.6

P 15 20 25 30 35

Z 58.6 77.5 96.4 115.4 134.6

rcov 5 10 15 20

Z 25.0 96.4 212.1 368.4

Table 4.3: Average coverage level of the steady-state.

These results are supported by the specific values of the average coverage level of the
steady-state, gathered in Table 4.3. Since the robots are capable of increasing the coverage
level, the average level of the environment increases with the number of robots, the maximum
value of the production, P , and the coverage radius. Moreover, since higher decays produce
lower decreases on the coverage level, the evolution with respect to this parameter is the
same. An uncertainty on the value of the decay might lead to under- or over-covering the
points of the environment, i.e., an inaccurate estimation of the rate would lead to a certain
value in Figure 4.9a but the actual value might be different. This can be solved by correcting
the estimation with the information from sensors mounted on the robots.

Note that we do not show the evolution with the communication radius since it is neg-
ligible due to the size of the Voronoi region with respect to the zero-error area and to the
selection of the goals near the robot, as can be seen in Figure 4.1b.

We also evaluate the influence of all the parameters in the standard deviation of the
coverage level. Figure 4.10 shows the average standard deviation for each value of the
parameters. We can draw the following conclusions:

• Low values of the decay present a similar behavior, especially in the steady state.
Only the greatest value shows a greater standard deviation for the transient and the
stationary (Figure 4.10a).

• The influence of the number of robot in the transient is rather complex as can be seen
in Figure 4.10b. However, in the end the more robots are used, the higher the standard
deviation since the coverage action is not controlled.

• An increase in the maximum production makes the standard deviation of the coverage
level increase since the increment of the coverage level at each time is higher and,
therefore, the value of the most covered points with respect to the least covered ones
(Figure 4.10c).
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Figure 4.10: Evolution of the average standard deviation of the coverage level for different
values of the parameters.

• The deviation of the coverage level responds to the variation of the coverage radius
(Figure 4.10d) in the same way as to P and this parameter is again the one that
produces the greatest variation.

Although in most cases the lowest value of each parameter leads to the lowest deviation, it is
essential that the environment reaches the objective and, thus, the average coverage level of
the environment from Table 4.3 must be taken into account. It can be seen that the coverage
level increases with all the parameters and that the optimal value according to this criterion
is the same as for the coverage error.

4.5 Discussion

There are several aspects of the feedback control law that are worth highlighting and
deserve a more detailed discussion:

1. The control law has been designed to be integrated with the estimation algorithm
of the previous chapter. Together they form a complete distributed approach to the
persistent coverage problem. Nevertheless, they can be used separately with other
estimation or motion techniques.

2. There is no guarantee that the trajectories obtained with the proposed motion control
law are optimal and, therefore, the coverage strategy may also be suboptimal. This is
the price for obtaining a distributed, computationally cheap and not communication
intensive solution. In any case, the simulations have shown the good performance of
the system and the kindness of our approach.
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3. It is known that gradient methods may lead to local optima and, therefore, the robots
could end up stuck in one of these minima. However, there are several features of our
approach that prevent this situation: i) we follow goals as well as the gradient and
include the variable weights in the motion control law (4.28); ii) the coverage level
outside the coverage area of the robots decreases when it is not covered and even if
a robot reaches a local minimum, the area around it will decay and will require the
robot to cover it; iii) if both weighted actions cancel out, the robot does not move, but
keeps covering, making the weight of the gradient WG change and, thus, breaking the
equality. This does not imply that all the points are theoretically guaranteed to reach
the objective, even though it should happen in practice.

4. Although the control law does not guarantee collision-free motion, the Voronoi parti-
tion prevents collisions as mentioned before, specially in convex environments. Addi-
tionally, state-of-the-art collision avoidance methods, such as potential fields, can be
incorporated to the system and used in the case that the gradient term dominates the
motion.

5. The discrete-time formulation of the problem requires the frequency of the estimation
to be sufficiently high with respect to the maximum velocity and the coverage radius of
the robots to avoid discretization problems. Since the actual production is continuous,
the estimation must be run fast enough not to miss sensible information between two
consecutive estimation instants. For instance, if a robot can move at 1 m/s with a
coverage radius of 0.25 m, the frequency should be at least 10 Hz. On the contrary,
if the coverage radius is 25 m, the frequency could be 1 Hz since the information loss
due to the temporal discretization would be negligible.

6. The goal selection and motion control do not need to be run as fast as the estima-
tion. In fact, there must be a trade-off between the quality of the solution and the
computational cost in the sense that the more frequent the calculation is carried out,
the better the final coverage is obtained and the higher computational cost is incurred.
Regarding the order, the goal selection and motion step should follow the estimation
step in order to calculate the actions with the latest information. In the event that a
different sequence is used, the only implication is that the actions may lead to a worse
coverage since they are calculated with non up-to-date information.

4.6 Conclusions

In this chapter we have introduced a motion control law that drives the robots to poorly
covered areas while moving in the direction of the maximum improvement. The first part
is achieved by following objectives, that are selected inside the Voronoi regions to avoid
conflicts between robots. The second part is achieved using the local gradient of the newly
presented Improvement Function. An important effort has been made to validate the pro-
posed contributions and to evaluate the performance of the system. We have illustrated the
simulations with an example, in which we have shown the main features of our approach, and
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we have performed a thorough validation of the proposed algorithms and a detailed study
of the influence of the parameters in its performance.

The proposed motion control law, though based on heuristics, addresses an NP-hard
problem. With respect to previous approaches to persistent coverage based on motion con-
trollers, it is fully distributed, accounts for the quality of a distributed estimation and shows
good performance even though the coverage action is considered fixed. Despite all these
advantages, a feedback control is in the end a naive planning with a temporal horizon of
one step. The question that arises naturally is if it is possible to obtain better results by
considering more natural paths to the goals. We explore this idea in the following chapter
that, in addition, allows us to consider environments with some obstacles and even really
complex environments.
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Chapter 5

A Distributed,
Finite-Horizon-Optimal Path
Planning Solution for Continuous
Environments with Obstacles

In this chapter we introduce a distributed solution for the coverage of a continuous envi-
ronment with obstacles. We propose an algorithmic solution in which each robot locally finds
the finite-horizon paths which are optimal in terms of coverage quality, to a set of poten-
tial goals inside its own Voronoi region. These paths are computed using a Fast Marching
Method and keep a safety distance to obstacles. Between all the potential paths, the one that
mostly improves the coverage along the whole path is followed. In addition, we propose a
coverage action controller, locally computed and optimal, that makes the robots maintain the
coverage level of the environment significantly closer to the objective. Simulations and real
experiments support our solution.

5.1 Introduction

Persistent coverage applications with ground vehicles rarely occur in convex environments
and the robots usually work in complex environments and surrounded by obstacles. The
approach of the previous chapter may suffer in these environments since both terms may
direct the robots to obstacles and even adding a term that repulses the robots from obstacles
may not be enough to reach the destinations.

In addition, the accuracy of the estimation, the notion of improvement function and the
definition of goals open the door to a different strategy that takes a step towards optimality.
Still with the idea of following coverage goals, we can plan paths to them in order to maximize
the coverage provided until they are reached instead of just controlling their motion actions.

For these reasons, in this chapter we propose a distributed algorithm that is capable of
planning optimal paths in terms of improvement to many possible goals at the same time
and actively select the one with the best accumulated improvement. The selection of goals
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can be compared to discretized approaches. Nevertheless, our active search of the points
that require the most coverage at each time allows us to cover continuous environments.
Our path planning strategy is based on Fast Marching Methods (FMM), that have proved
to be successful in real domestic spaces with high complexity [138]. We introduce in this
method two cost functions that account for the coverage of the environment and for the
obstacles and, consequently, the planned paths are optimal in terms of coverage and keep
a safety distance to obstacles. This on board, fast computation of paths also allows the
avoidance of unexpected obstacles as opposed to approaches that plan a priori, and the
optimality of the paths outscores the use of local motion controllers. The paths are followed
using a Dynamic Window Approach (DWA) [91]. Moreover, we introduce a coverage action
controller that allows the robots to provide the optimal coverage at each point to maintain
the desired coverage level. This is essential in applications such as heating or watering, to
avoid over-heating or flooding, respectively, or to save power in the case of vacuuming or
cleaning. In fact, it provides a significant improvement with respect to the approach in
the previous chapter where the coverage action was fixed. We show this in simulations and
demonstrate the effectiveness of this new approach with real experiments.

The remainder of the chapter is structured as follows: Section 5.2 presents the particular
aspects of the formulation for this approach and an overview of the solution. The path
planning algorithm is developed in Section 5.3 along with the goal selection method. Section
5.4 introduces the coverage controller and the navigation algorithm. The performance of the
whole approach is analyzed in simulations and with real experiments in Section 5.5. Finally,
Section 5.6 gathers the conclusions of this work.

5.2 Solution Overview

In order to introduce this approach to the problem, we build upon the formulation from
the previous chapters and give an overview of the new solution.

The formulation of the problem is basically the same as in the previous chapter. In
this chapter the environment is not necessarily convex and each robot has a map that may
include walls and obstacles. We assume for simplicity of the formulation that the shape of
the robots is a circle of radius r and we define Qf (k) as the points in which the robot can
be located without colliding with the obstacles. This is obtained by expanding the obstacles
by the radius of the robot. Although it may change over time, we omit this dependency in
the rest of the chapter for simplicity.

With respect to the production of the robots, αi
(
q,pi(k)

)
, the main difference that we

introduce in this chapter is that it can be controlled by a certain gain, 0 ≤ ρi(k) ≤ ρmax
i ,

that we call coverage action.
The intuitive idea of the approach that we present here is the following. As in the

previous chapter, the robots divide the environment in particular regions using an r-disk
Voronoi partition. Each robot also creates a list of candidate goals that includes the points
of its region in which the coverage level can be improved the most. At each iteration the
partition and the list are updated, the latter using the improvement function Mi(k). The
goals that are no longer feasible or safe are removed and new goals are included. In fact, a
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goal is considered safe if it is not close to any other robot: ‖gi−pj(k)‖ > E ′, with gi ∈ Li(k),
j 6= i, j ∈ {1, . . . , N} and E ′, a safety distance. If the current goal of a robot stops being
feasible, profitable or safe, a new one must be selected from the list. The main contribution
of this algorithm is in how to select such new goal and how to reach it. To do so, the
robot first calculates the paths to all the candidates from the list, selects the one whose path
optimizes the coverage and then follows the path calculating the optimal coverage action
and controlling the movement.

An overview of this procedure that each robot locally performs can be seen in Alg. 3.

Algorithm 3 Solution Overview

1: Create initial partition and goal list.
2: while Robot in operation do
3: Update Z(k), (2.2), and Mi(k), (4.2).
4: Update partition and goal list (Algorithm 2).
5: if Current goal not valid (4.20) then
6: Plan paths to goals (Section 5.3).
7: Select new current goal (Section 5.3.4).
8: end if
9: Calculate coverage action (Section 5.4.1).

10: Control movement (Section 5.4.2).
11: end while

5.3 Coverage-Optimal, Finite-Horizon Path Planning

In order to reach the coverage goals the robots have to plan the paths from their location.
These paths not only must avoid all the obstacles but also must go through the lowest covered
areas. The idea is that the robots go to the goals providing the best improvement of the
coverage along their paths. To do so, we use an FMM-based planning method that allows us
to take into account these two variables: obstacles and improvement of the coverage. This
method is suitable for online computation and with the same calculation permits us to find
the paths to several points. This represent an interesting advantage, since each robot can
analize several goals at the same time and select the best one based on the quality of their
associated paths.

5.3.1 FMM-based Planning

Given a robot location, FMM-based path planning methods [138] calculate a potential
field of the environment, vi(q), ∀q ∈ Qf , that provides the optimal path if the gradient
descent of the field is followed from any goal. This means that calculating the field once, the
paths to different points can be calculated. The potential field represents the minimal time
that a wave front needs to propagate from the robot location to any other feasible point
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of the environment. To obtain this field, FMM approximates the solution to the nonlinear
Eikonal equation

|∇vi(q)| = Fi(q), ∀q ∈ Qf

given a boundary condition vi(q) = 0, ∀q ∈ Γ, where Γ ⊆ Qf is the initial wave front, that
in this case is the position of the robot pi(k). As an input, we have to provide the FMM
planner with the initial point of the path, i.e., the position of the robot, and the speed of
propagation of the wave front as a function of the points of the environment, Fi(q, k) > 0.
This speed, which is not directly related with the speed of the robot, can be seen as the
inverse of a cost of the robot visiting each point of the environment. When the FMM
calculates the potential field, that is smooth and free of local minima, the optimal path γi(τ)
to any goal is calculated by following the direction of the gradient descent of the field from
the goal position:

γi(τ) = γi(τ − dτ)− dτ∇vi(γi(τ − dτ)), (5.1)

where the path is parametrized by τ ∈ [0, L] and L is the length of the path. Although this
path is calculated regardless of the dynamics of the robot, it does not have abrupt turns
thanks to the smoothness of the FMM potential field. On the other hand, it is optimal in
the sense that it minimizes ∫ γi(L)

γi(0)

[
Fi

(
γi(τ), k

)]−1

dτ.

We consider as speed function

Fi(q, k) = F o
i (q, k) + FM

i (q, k),

that is the result of merging together a function associated to obstacles and another associ-
ated to the improvement of the coverage. The idea is that the path optimizes the coverage
from the robot position to the goal and avoids the obstacles.

5.3.2 Coverage Improvement Speed Function

In order to find the path towards the goal that optimizes the coverage, we introduce a
sigmoid speed function that includes the improvement of the coverage as follows:

FM
i (q, k) =

1

1 + e−βMMi(q,k)
.

where βM is a parameter to modify the shape of the sigmoid. This function assigns a high
speed for the wave front to the points in which the Improvement Function is greater than
zero, i.e., where the robot can improve the coverage, and a low speed to the points with
negative improvement. The effect of this function is that the FMM planner calculates the
path of maximum accumulated improvement to the goal.

Since the speed function is based on the Improvement Function (4.1) that changes over
time, its online computation benefits from the temporal update of the improvement proposed
in (4.2).
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5.3.3 Obstacle Speed Function

The FMM-based planning already avoids collision with obstacles since the potential field
is only calculated for q ∈ Qf , i.e., the collision-free positions. Nevertheless, it is also desirable
to keep a safety distance to the obstacles when possible. To do so, we assign a higher cost to
the points around the obstacles than to points in free areas so that the wave front propagates
faster in free areas than near obstacles. Therefore, the resulting path of the robot goes
through free spaces rather than close to obstacles. The speed function that we propose,
adapted from [92], is

F o
i (q, k) =


0, δ(q, k) < C,

1−max(−
(
δ(q, k)

C

)2

+ 2
δ(q, k)

C
, 0), otherwise,

with C, the safety distance and δ(q, k), the euclidean distance between the point q and the
closest point of the obstacles.

We do not develop further the avoidance of moving obstacles because of the difficulty
of predicting their future positions. However, the navigation algorithm that we introduce
in Section 5.4 handles the obstacles that may appear in the path of the robots and avoids
collisions with them.

5.3.4 Selection of the Current Goal

The point of the list with the best improvement may not be the best choice for the
coverage of the entire environment. It is the one that needs the most coverage locally but
the path that the robot has to follow to reach it may not be profitable at all. For this reason,
we propose a new strategy to select the goal from the list.

The first step is to plan the paths to the goals of the list, γgi
(τ), ∀gi ∈ Li(k), according

to (5.1). To do so, the potential field vi(q) only has to be calculated once from the current
position of the robot for all the goals.

Then, the total improvement of the path per length unit is calculated as

Mγi(gi, k) =
1

L(gi)

∫ γgi(L(gi))

γgi(0)

Mi

(
γgi

(τ), k
)
dτ,

where L(gi) ≡ L(γgi
(τ)) is the length of γgi

(τ).
Finally, we select as current goal for robot i the one with the highest value of Mγi(gi, k),

that is,
g∗i = argmax

gi∈Li(k)

Mγi(gi, k).

In the case that various goals satisfy this equation, we select as current goal the one with the
longest L, since it provides the longest plan in time for the robot and therefore the greatest
overall improvement. Note that, for every goal, the path is optimal to reach it. However,
since the selection is made from a finite set of goals, the path to the selected goal may not
correspond to the global optimum among all the possible paths in the partition.
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5.4 Coverage Action Control and Navigation

The last step to complete our persistent coverage approach is the control of the coverage
action of the robots and the navigation towards the goals following the planned paths.

5.4.1 Coverage Action Control

We propose the following law to control the coverage action. It is based on the differ-
ence between the coverage level of the environment and the coverage objective, both in the
coverage area of the robot:

ρi(k) =


ρmax
i , if ρ∗i (k) ≥ ρmax

i ,

ρ∗i (k), if 0 < ρ∗i (k) < ρmax
i ,

0, if ρ∗i (k) ≤ 0,

(5.2)

with

ρ∗i (k) =

∫
Ωi(pi(k))

Φ
(
Z∗ − dZ(k − 1)

)
αi(k) dq∫

Ωi(pi(k))

Φαi(k)2 dq
.

This definition leads us to the following proposition:

Proposition 5.4.1. The coverage controller from (5.2) is optimal in terms of the quadratic
coverage error,

ε̃(k) =

∫
Q

Φ
(
Z∗ − Z(k)

)2
dq.

Proof. We want to find the coverage action that optimizes the quadratic coverage error, i.e.,

ρ∗i (k) = argmin
ρi(k)

ε̃(k).

Introducing (2.2) and recalling that αi(k) = 0, ∀q /∈ Ωi, this error can be formulated as

ε̃(k) =

∫
Ωi

Φ
(
Z∗ − dZ(k − 1)− ρi(k)αi(k)

)2
dq.

Now, we derive it with respect to ρi(k) to find its optima:

∂ε̃(k)

∂ρi(k)
=

∫
Ωi

Φ
∂

∂ρi(k)

(
Z∗ − dZ(k − 1)− ρi(k)αi(k)

)2
dq

=

∫
Ωi

2 Φ
(
Z∗ − dZ(k − 1)− ρi(k)αi(k)

)(
− αi(k)

)
dq

= −2

[∫
Ωi

Φ
(
Z∗ − dZ(k − 1)

)
αi(k)dq−

∫
Ωi

Φ ρi(k)αi(k)2dq

]
. (5.3)
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If we make this derivative equal to zero, we obtain

∂ε̃(k)

∂ρi(k)
= 0⇒ ρ∗i (k) =

∫
Ωi

Φ
(
Z∗ − dZ(k − 1)

)
αi(k)dq∫

Ωi

Φαi(k)2dq
,

that is the optimum value of ρi(k) since

∂2ε̃(k)

∂ρi(k)2
=

∫
Ωi

Φαi(k)2dq > 0.

Finally, we can directly apply the restrictions on the coverage action 0 ≤ ρi(k) ≤ ρmax
i . Since

the value of ρ∗i (k) is a minimum and the function f
(
ρi(k),q

)
is a sum of quadratic functions,

the value of ρi(k) in the restricted interval that gives the minimum ε̃(k) is always the closest
to ρ∗i (k).

The main feature of the coverage action controller is that it allows the robots to maintain
the coverage level as close as possible to the objective without overcovering it unboundedly.
In comparison to our previous approach this is a significant advantage, as we will show it in
simulations.

5.4.2 Robot Navigation

The navigation and guidance algorithm has to calculate the velocity commands for the
robot to follow the path respecting its admissible actions. At the same time, it has to avoid
the unmapped obstacles that may appear during the motion and can be detected by the
sensors on board the robots. To this end, we make use of a Dynamic Window Approach
(DWA) [91], that computes the velocity command as a function of the previous command,
the desired path, the motion and acceleration restrictions of the robot, and its current pose
and sensor readings.

The implications of this algorithm are the following. When there are no unmapped
obstacles in the surroundings of the robot, it follows the planned path at its maximum
allowed speed and provides the optimal coverage to the environment. If an obstacle appears,
it is avoided while trying to minimize the deviation from the path. The same happens when
the path can not be precisely followed due to the robot dynamics. In both cases the coverage
along the path is not optimal, due to such deviation. However, thanks to the coverage action
controller, the coverage provided at each point is still optimal.

5.5 Simulations

In this section we introduce the robotic platform, present the results of the simulation,
including a comparison with the previous chapter and show some experimental results.
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5.5.1 Robotic Platform and Simulations Settings

For the validation of this algorithm we used a team of robots (Fig. 5.1) developed
within the MOnarCH Project1 [44]. The robotic platform is omnidirectional thanks to four
Mecanum wheels, actuated by four independent motors. The maximum linear velocity of the
robots is umax

i = 2.5m/s; the maximum acceleration, u̇max
i = 1m/s2; and the maximum an-

gular velocity, ωmax
i = 600◦/s. Among other sensors, the robots are equipped with two laser

range finders that are used for mapping and localization with off-the-shelf ROS packages.

Figure 5.1: Team of MOnarCH robots used for the experiments.

Since these robots were not specifically built to develop coverage and they are not
equipped with actuators such as vacuuming or heating systems, we simulate the coverage as
follows. The coverage area of each robot, Ωi

(
pi(k)

)
, is a circle of radius equal to the actual

radius of the robot, rcovi = 0.325m. The production is defined as constant inside this area
with a value of αi

(
q,pi(k)

)
= 10. The coverage of the environments decreases over time

with a decay rate d(q) = 0.9995 and the coverage objective is Z∗(q) = 100. Recall that the
aim of the team is to keep the coverage of all the points as close as possible to this value.

5.5.2 Simulation Results

In the first place we introduce simulation results to evaluate the effectiveness of the
approach and the scalability of the team. Moreover, we compare the current approach with
the one from the previous chapter.

In Fig. 5.2 we show an example of the persistent coverage of a 10 x 8 m2, non-convex
environment with five robots. At the beginning (Fig. 5.2a), the robots start covering the
environment following almost straight paths to the goals and only avoiding obstacles. When
the coverage of the environment increases (Fig. 5.2b), the planned paths go through the least
covered areas to the goals. In the end, when all the point of the environment are well covered

1Multi-Robot Cognitive Systems Operating in Hospitals. FP7-ICT-2011-9-601033. Website:
http://monarch-fp7.eu/
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(Fig. 5.2c), the robots keep moving to maintain the coverage level as close to the objective
as possible.

(a) k = 10.
50 100 150
(b) k = 150.

0

50

100

150

(c) k = 500.

Figure 5.2: Example of simulation: coverage level of the environment with the coverage areas
of the robots in different colors for three different time instants. Colored asterisks represent
the goals of the robots; green lines, the planned paths of the robots; and white lines, the
Voronoi partition of the environment. Black areas are mapped obstacles.

The mean coverage level of the environment increases quickly when the robots start
moving and reaches a steady state in around 200 iterations as shown in Fig. 5.3. The mean
coverage level in the steady-state value is less than 4% away from the objective. Additionally,
the standard deviation is around 15 coverage units while it only reaches a maximum value
of 48 in the transient.
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Figure 5.3: Evolution of the mean coverage level (blue) and its standard deviation (red) for
the simulation example.

Fig. 5.4a shows the paths followed by the robots in the first 200 iterations with an
iteration period of 125 ms. The green and magenta robots cover specific regions while the
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Figure 5.4: Paths followed by the robots during the first 200 iterations (a) using the obstacle
speed function and (b) with no obstacle speed function. Stars represent the initial points
and squares, the final ones.

others exchange regions due to the presence of obstacles in the environment. The paths keep
a safety distance to these obstacles to avoid collisions. In contrast, they drive the robots
much closer to the obstacles if the obstacle speed function is not included in the planning,
as can be seen in Fig. 5.4b. The average minimum distance to an obstacle in these two cases
is 0.94 and 0.72 m, respectively, and the minimum distance is lower than 0.5 m in 21 and 86
out of 200 iterations, respectively. This supports the use of the obstacle speed function to
reduce the risk of collisions due to noise in mapping and/or localization.

As mentioned before, in Fig. 5.5 we test the scalability of our approach and compare
it with our previous approach. These simulations have been carried out in a 15 × 15 m2

environment to be able to increase the number of robots. Fig. 5.5a shows that a team of 2
or 5 robots is not capable of reaching on average the objective of Z∗(q) = 100 and produces
a higher standard deviation (Fig. 5.5c) than a team of 20 or 50 robots. These teams reach
the objective rapidly with a low standard deviation. One of the main differences with our
previous approach is that the coverage action was not controlled as it is in this one, i.e.,
it was fixed. Consequently, the mean coverage level increases with the number of robots
(Fig. 5.5b) independently from the objective and only a team of 10 robots maintains the
objective level over time. Additionally, the deviation of the coverage level with the previous
approach is considerably higher (Fig. 5.5d).

The total computational cost of the simulation has been measured and represented in
Fig. 5.6. Although this time increases more than linearly with the number of robots, with
50 of them it takes less than 35 ms per robot to calculate their control actions. This shows
that our approach is scalable and can be applied distributedly, i.e., each robot can calculate
its actions independently. Additionally, we show that this new approach is faster than the
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Figure 5.5: Evolution of the coverage with the number of robots. (a) Mean coverage level of
this approach. (b) Mean coverage level with our pevious approach. (c) Standard deviation
of the coverage level with this approach. (d) Standard deviation with our previous approach.

previous one, since once the path is planned, the calculation of the motion action is fast
compared with the gradient calculated every time in 4.28.
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Figure 5.6: Evolution of the iteration time with the number of robots. Blue square markers
represent the times with this approach and red circular markers, with our previous approach.
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5.5.3 Experimental Results

The experimental validation of this work was developed in the robotics lab of the Dis-
tributed Intelligent Systems and Algorithms Laboratory at EPFL. The environment was an
almost rectangular region of approximately 15 m2 where N = 2 robots were deployed. In
Fig. 5.7 we show a snapshot of one of the experiments and the complete experiment can be
seen here.

Figure 5.7: Snapshot of one of the experiments. The coverage level of a part of the environ-
ment is projected on the ground. Shades of blue represent undercovered points and shades
of red, points whose level is around the objective.

In Fig. 5.8 the mean coverage level of the environment and its standard deviation are
depicted. The evolution is similar to the simulated one and it proves the validity of the
approach with real robots.
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Figure 5.8: Evolution of the mean coverage level (blue) and its standard deviation (red).

Finally, we show the paths followed by the robots. These paths are more overlapped than
the simulated ones due to the limited accuracy of the localization and motion of the robots.
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Nevertheless, they cover the entire environment with almost no overlapping of the regions
covered by each robot.

Figure 5.9: Paths followed by the robots during the first 200 iterations. Stars represent the
initial points and squares, the final ones.

5.6 Conclusions

In this chapter we have introduced a method to plan open paths based on FMM. For this
method, we have proposed two speed functions: one to optimize coverage and another one to
keep a safety distance to obstacles. We have also presented a method to find and select the
coverage goals which the robots have to reach based on the total improvement of the path.
To keep the robot following their paths we use a DWA. Additionally, we have proposed a
law to control the coverage action of the robots at every time.

One of the main advantages of this approach is the coverage controller. It provides a
significant improvement to reach and maintain the coverage objective as we have shown in
simulations. In separates the coverage from the motion in the sense that keeping the robot
still or moving it fast does not necessarily deteriorate the coverage level.

The other main advantage of this approach is the planning of finite horizon paths. It
leverages advantages and overcome limitations of the typical solutions based on feedback
controllers or on the planning of infinite horizon paths. Whit respect to the latter, it can
adapt to environments where the decay or the importance is not uniform, to changes in
the environment including obstacles and coverage, and also to changes on the robotic team.
With respect to controllers, it provides optimal coverage paths and does not get stuck in
local minima or due to obstacles. In addition, it does not require sudden changes in the
actions since the resulting paths are smooth.

The only disadvantage of this proposal resides in that the Voronoi partition of each robot
may not be self-connected, i.e., it can be split into two or more components in the presence
of complex obstacles or walls like in an office environment. This results in that a robot path
may cross the partition of another robot with all its implication. Additionally, the partitions
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are exclusively geometric and do not take into account how much coverage is required inside
them. For these reasons and being aware that this is a problem inherent to the Voronoi
partitions, in the following chapters we propose a more appropriate partitioning method for
persistent coverage along with a motion strategy inside them.
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Chapter 6

A Distributed Solution for Complex,
Non-Convex Environments with
Equitable Partitioning and
Graph-based, Finite-Horizon-Optimal
Paths

In this chapter we present a distributed solution for complex, non-convex environment.
As a first step, our solution finds a partition of the environment where the amount of work for
each robot, weighted by the importance of each point, is equal. This is achieved using a power
diagram and finding an equitable partition through a provably correct distributed control law
on the power weights. Compared to other existing partitioning methods, the contribution of
our solution is the ability to work in complex environments. Additionally, we propose two
extensions for this strategy. The first one is an update of the partition that is aware of
the energy consumption of the robots, their different coverage capabilities or even the failure
of one or more members of the team. The second extension controls the movement of the
generators of the partitions with the objective of keeping the partitions self-connected. In the
second step, each robot computes a graph that gathers sweep-like paths and covers its entire
partition. At each planning time, the current coverage error at the graph vertices is assigned
as weights of the corresponding edges. Then, our solution is capable of efficiently finding the
optimal open coverage path through the graph. Simulation results are presented to support
our proposal.

6.1 Introduction

The intention of this chapter is to introduce a solution to the problem for all kind of con-
tinuous environments, in general, complex, non-convex ones. This solutions can be included
in the group of partition-based solutions. They address the problem with a divide-and-
conquer strategy in the sense that they partition the environment and assign each partition
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to a single robot that becomes responsible of developing the coverage on it [54]. The ad-
vantages of this type are that, once the environment is partitioned, each robot can work
independently, with no risk of collision and with no need of communication in the normal
operation of the system.

Our partitioning method builds upon the one presented in [73] that was limited to convex
environments. Our contribution here is threefold. The main contribution is the extension of
the method to general, non-convex environments, by formulating the algorithm in terms of
the geodesic distance. This formulation allows the partition to be consistent with the shape
of the environment. The second contribution is an energy-aware partition update that is
intended to repartition the environment when one or more robots need to recharge or fail.
The third contribution is a strategy for the generators of the partitions to follow the centroid
of the biggest connected component to reduce the disconnections of the partitions. Together,
our partitioning method guarantees convergence to the equitable partition while reducing
the disconnections, is aware of the energy of the robots, does not require a discretization of
the environment and does not require that the initial position of the robot belong to its final
partition.

The second part of our solution is a planning method that allows each robot to find the
optimal, finite-horizon path inside its partition in terms of the current coverage error. The
use of the current coverage error is motivated by the complexity that implies the temporal
evolution of the coverage, due to the decay and the actions of the robots. It permits to
eliminate this temporal component from the planning and still obtain optimal paths. The
paths are planned through a graph that covers the entire partition in a sweep-like manner
and also allows the robots to traverse the boundary of their partitions. These paths are found
in a finite horizon in order to handle that the decay of the coverage and the importance of
the points are not uniform inside the partitions. While following the paths, the robots apply
the coverage controller from (5.2)

Since the formulation of the problem for this chapter is the same as for the previous
one, the remainder of the chapter is structured as follows. In Section 6.2 we present the
equitable partitioning method along with an energy-aware updating strategy and an exten-
sion to reduce disconnections in the partitions. In Section 6.3 the strategy to plan paths
and individually cover each partition is presented. Finally, we present simulation results in
Section 6.4 and conclusions in Section 6.5.

6.2 Equitable Partitioning

The first step of our strategy to solve the persistent coverage problem is to divide the
environment in as many equitable regions as robots. The goal is that each partition requires
an amount of work proportional to the capabilities of its assigned robot with respect to the
rest of the team and to the importance of its points. To this end, we introduce the notions
of power diagram and geodesic distance, define the importance-weighted workload of the
agents in terms of the coverage problem and detail our distributed partitioning algorithms
along with an energy-aware extension.
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6.2.1 Power Diagrams and Geodesic Distance

Let us first define a set of points, G = {g1, . . . ,gN}, with gi,gj ∈ Q,gi 6= gj if i 6=
j, i, j ∈ {1, . . . , N}, which will act as the generators of the partitions. Our algorithm to find
the equitable partitions is based on power diagrams [139], that are a generalization of the
Voronoi diagrams. The main advantage, apart from generality, is that the equitable power
diagram is always guaranteed to exist [73]. Instead of assigning the points to each partition
according to the euclidean distance to the generator, the power diagrams uses the squared
distance minus a certain weight. If we let w = {w1, . . . , wN} be the set of power weights
associated to the partitions, we can formally define the partitions obtained form the power
diagram as

Pi(w) = {q ∈ Qf | d(q,gi)
2 − wi ≤ d(q,gj)

2 − wj}.

To be able to apply this partitioning to a non-convex environment, we make use of
the geodesic distance, dg(q,g), that is the length of the shortest path between two points
of the environment. Assuming that the environment is composed of polygonal obstacles,
the shortest path between every two points is the concatenation of a set of straight lines
connecting the two points and some vertices of the obstacles, {q,h1

q,g,h
2
q,g, . . . ,h

lq,g
q,g ,g},

where lq,g is the number of obstacle vertices that define such path. Therefore, the geodesic
distance can be decomposed in the summation of the Euclidean distances between each pair
of consecutive points:

dg(q,g) = ‖q− h1
q,g‖+ ‖h1

q,g − h2
q,g‖+ · · ·+ ‖hlq,gq,g − g‖. (6.1)

Using this metric, the boundary between two partitions is

∆ij = {q ∈ Qf | dg(q,gi)2 − wi = dg(q,gj)
2 − wj}. (6.2)

According to this definition, the neighbors of a generator are

Ni = {j ∈ {1, . . . , N} \ i |∆ij 6= ∅}.

We assume that each robot can communicate with robots of neighboring regions.

6.2.2 Importance-Weighted Workload

The partitions that are assigned to the robots have to be equitable in terms of the work
that has to be carried out inside them. At the same time, they have to take into account the
importance of the coverage of each point. Therefore, it is essential to define the workload
in terms of the variables of the problem. The definition of the work at each point of the
environment that we consider is

λ(q) = φ (1− d)Z∗.

Strictly speaking, (1 − d)Z∗ is the actual workload of each each point. It represents the
coverage that decays at each time if the point has reached the desired level, i.e., in the
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steady state. Nevertheless, we weight it with the importance to allow the robots to spend
more time covering the most important points, at the expense of reducing the attention to
less important points. This may lead to partitions in which (1 − d)Z∗ is not equitable but
the importance of the work of each partition is. From now on, we refer to this importance-
weighted workload simply as workload.

The workload inside each partition can be calculated as

λPi(w) =

∫
Pi(w)

λ(q) dq,

Both the importance and the decay take values between 0 and 1. On the contrary, the
desired coverage level is expressed in general in coverage units and therefore, we normalize
the entire workload by

∫
Q φ (1− d)Z∗ dq to obtain it in percentages.

6.2.3 Distributed Algorithm for Equitable Partitioning

The power diagram can be seen as a relation between the weights and the regions that
belong to their corresponding generators. Therefore, we minimize a cost function whose
minima correspond to sets of weights that lead to an equitable partition:

H(w) =
N∑
i=1

1

λPi(w)

.

One can see that this function reaches its minimum when the workload of all the partitions
is the same. From now on, we omit the dependencies of H and Pi with w for the sake of
clarity.

To minimize this function distributively, each robot is in charge of a generator, that we
locate at the robot’s position for simplicity, and its associated weight, initially set to zero.
The following law controls the latter to reach an equitable partition by communicating only
with its neighbors.

Theorem 6.2.1. The power diagram generated by G and w converges to an equitable power
diagram under the distributed control law

ẇi = −kw
∂H

∂wi
, (6.3)

with kw, a positive gain, and

∂H

∂wi
=
∑
j∈Ni

(
1

λ2
Pj

− 1

λ2
Pi

)∫
∆ij

‖n′ij(q)‖λ(q) dq, (6.4)

where n′ij(q) is the outward normal to the boundary between the partitions i and j at point
q ∈ ∆ij.
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Proof. In the first place we develop the gradient of the cost function with respect to a single
weight wi:

∂H

∂wi
= − 1

λ2
Pi

∂λPi

∂wi
−
∑
j∈Ni

1

λ2
Pj

∂λPj

∂wi
. (6.5)

It only depends on the neighboring partitions since a variation on wi only affects them. The
derivative of the workload in the partition of robot i is

∂λPi

∂wi
=

∂

∂wi

∫
Pi

λ(q) dq.

It can be transformed using the following result associated with the divergence theorem:

∂

∂wi

∫
Pi

λ(q) dq =

∫
∂Pi

(
∂q

∂wi
· n∂Pi

(q)

)
λ(q) dq,

where n∂Pi
(q) represents the unit outward normal to the boundary of the partition, ∂Pi, at

point q. It results in

∂λPi

∂wi
=
∑
j∈Ni

∫
∆ij

(
∂q

∂wi
· nij(q)

)
λ(q) dq +

∑
j∈Ni

∫
∆
Qf
i

(
∂q

∂wi
· nij(q)

)
λ(q) dq, (6.6)

where ∆
Qf

i is the boundary between the partition and the environment and nij(q) is the unit
normal outward this boundary or the boundary between partitions i and j, ∆ij. The second

term is always zero either because ∆
Qf

i = ∅ or because a variation on the weight does not
affect the boundary between the partition and the environment, i.e., ∂q/∂wi = 0. Applying
the same procedure to ∂λPj

/∂wi and introducing in (6.5), we have

∂H

∂wi
= − 1

λ2
Pi

∑
j∈Ni

∫
∆ij

(
∂q

∂wi
· nij(q)

)
λ(q) dq−

∑
j∈Ni

1

λ2
Pj

∫
∆ij

(
∂q

∂wi
· nji(q)

)
λ(q) dq,

Noting that nji(q) = −nij(q), we only have to calculate the scalar product ∂q/∂wi·nij(q).
The first term can be obtained by deriving the condition of the boundary points (6.2) with
respect to the power weight,

∂

∂wi

(
dg(q,gi)

2 − wi
)

=
∂

∂wi

(
dg(q,gj)

2 − wj
)
,

that leads to

2dg(q,gi)
∂dg(q,gi)

∂q
· ∂q

∂wi
− 1 = 2dg(q,gj)

∂dg(q,gj)

∂q
· ∂q

∂wi
. (6.7)

The partial derivative of the geodesic distance with respect to the boundary point q only
affects the first term on the right hand side of (6.1):

∂dg(q,gi)

∂q
=
−(q− h1

q,gi
)

‖q− h1
q,gi
‖
. (6.8)
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Analogously for the other generator we have

∂dg(q,gj)

∂q
=
−(q− h1

q,gj
)

‖q− h1
q,gj
‖
. (6.9)

Note that these derivatives have two components, x and y, and that they appear in a scalar
product in (6.7). Therefore, introducing (6.8) and (6.9) in (6.7), we have

2dg(q,gi)

(−(q− h1
q,gi

)x

‖q− h1
q,gi
‖
∂qx
∂wi

+
−(q− h1

q,gi
)y

‖q− h1
q,gi
‖
∂qy
∂wi

)
− 1

= 2dg(q,gj)

(
−(q− h1

q,gj
)x

‖q− h1
q,gj
‖
∂qx
∂wi

+
−(q− h1

q,gj
)y

‖q− h1
q,gj
‖
∂qy
∂wi

)
(6.10)

and, regrouping the terms,[
2dg(q,gi)

−(q− h1
q,gi

)x

‖q− h1
q,gi
‖

+ 2dg(q,gj)
(q− h1

q,gj
)x

‖q− h1
q,gj
‖
,

2dg(q,gi)
−(q− h1

q,gi
)y

‖q− h1
q,gi
‖

+ 2dg(q,gj)
(q− h1

q,gj
)y

‖q− h1
q,gj
‖

]
· ∂q

∂wi
= 1. (6.11)

To obtain the normal to the boundary between two partitions, nij(q), we make use of
the property of the gradient of a function, that is always perpendicular to the level curves of
the function. To this end, we transform the equation that defines the boundary points (6.2)
into a function,

f(q) = dg(q,gi)
2 − wi − dg(q,gj)2 + wj,

Then, we calculate the gradient at the points that satisfy f(q) = 0, that is, q ∈ ∆ij, for the
x component,

∂f(q)

∂qx
= 2dg(q,gi)

∂dg(q,gi)

∂qx
− 2dg(q,gj)

∂dg(q,gj)

∂qx

= 2dg(q,gi)
∂‖q− h1

q,gi
‖

∂qx
− 2dg(q,gj)

∂‖q− h1
q,gj
‖

∂qx

= −2dg(q,gi)
(q− h1

q,gi
)x

‖q− h1
q,gi
‖

+ 2dg(q,gj)
(q− h1

q,gj
)x

‖q− h1
q,gj
‖
,

and, similarly, for the y component. Therefore, the normal to the boundary is

n′ij(q) =

(
∂f(q)

∂qx
,
∂f(q)

∂qy

)
and the unit normal is

nij(q) =
n′ij(q)

‖n′ij(q)‖
.
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Introducing the last three equations in (6.11), we obtain

∂q

∂wi
· nij = ‖n′ij(q)‖,

and replacing in (6.6) we obtain the complete formulation of the gradient stated in (6.4). This
gradient is distributed since each robot can update its own weight by only communicating
with its neighbors. Finally, the proof of the convergence is equivalent to Theorem 3.7 in [73],
completing the proof of this theorem.

Remark 6.2.2. The main differences of our proof with respect to the one presented in [73]
reside in the derivation of the geodesic distance and in the calculation of the normal to
the boundary points. These two key modifications generalize the algorithm to any kind of
non-convex environments, yet still giving the same solution for convex ones.

6.2.4 Energy-Aware Partition and Update

The algorithm to find the equitable partition that we have introduced simply divides
the environment in regions with the same workload. However, the robots may have different
capabilities and the workload assigned to each of them must be proportional to its capabilities
with respect to the rest of the team. We can extend the algorithm to take this into account
by including them in the cost function:

H =
N∑
i=1

∫
Ωi(p)

ρmax
i αi(q,p) dq

λPi(w)

,

where p is a virtual position to integrate the maximum coverage that each agent can provide.
In the same way as the capabilities, the energy level and the energy expenditure of the

robots may also be different. If an evolution model for the expenditure is available, i.e.,
how the energy level decreases with the motion and coverage of the robot, it can be used to
predict how fast each robot is running out of battery and include it in the initial partition.
Nevertheless, for the general case, the initial partition can be updated depending on the
actual energy level of the robots using

H =
N∑
i=1

ei

∫
Ωi(p)

ρmax
i αi(q,p) dq

λPi(w)

,

where ei ∈ [0, 1] represents the energy level of robot i.
Since persistent coverage is an infinite task, in the sense that it can never be considered

complete, there is a situation in which updating the partitions can improve the performance
of the team considerably: when one ore more robots stop covering to recharge or refuel.
During this time, that can be significant, they do not provide coverage in their partitions
and the optimal strategy for the whole team is to update the partition for the remaining
robots and keep covering the entire environment. This requires again communication between
the robots and is also applicable in the case of failure of one or more robots.
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6.2.5 Partition Connectivity Maintenance

The partitions obtained with (6.3) are proven to be equitable. However, for non-convex
environments, especially for complex ones, they might be disconnected, in the sense that in
order to reach some points of the partition, a robot needs to go through the partitions of
other robots. In this section we extend our partitioning algorithm and control the positions
of the generators, that are still a degree of freedom, to reduce these disconnections.

Let us begin by defining the connected components, P`i (w), ` ∈ {1, . . . , Li}, Li ∈ Z+,
that form a partition:

Pi =

Li⋃
`=1

P`i .

Between these connected components we select the one with the highest workload:

P ′i = argmax
P`
i

λP`
i
.

Note that for connected partitions, P ′i coincides with Pi. Then, we calculate the center of
mass of P ′i as

g∗i =
1

λP ′i

∫
P ′i

qλ(q) dq.

This point is the best point of the environment in which the generator gi could be located
to favor the connectivity of its partition. However, it cannot be moved straightaway in the
direction gig∗i since there are two restrictions that must be taken into account. The first one
is that the motion of the generator must not hinder the evolution of the weights towards
the equitable partition. Therefore, such motion can only be executed if it contributes to the
minimization of (6.2.3) or, at least, it is not detrimental. The second restriction is that in a
non-convex environment it has to follow the geodesic path from its current position to the
center of mass to avoid sudden changes in the shape, size and workload of the partitions. If
we call γi the shortest path from gi to g∗i , we want the generator to move in the direction
γi(gi), that is the direction of the path at gi. In this context, the algorithm that we propose
is presented in the following theorem.

Theorem 6.2.3. The power diagram generated by G and w converges to an equitable power
diagram and reduces the disconnections of the partitions under the distributed control law

ẇi = −kw
∂H

∂wi
, (6.12a)

ġi = kg fsat

(
gig∗i ·

−∂H
∂gi

)
γi(gi), (6.12b)

with kw, kg, positive gains,

fsat(x) =


0, ∀x ≤ 0,

exp

(
−1

(ksat x)2

)
, ∀x > 0,

(6.13)
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a saturation function with ksat > 0, and

∂H

∂gi,k
=
∑
j∈Ni

(
1

λ2
Pj

− 1

λ2
Pi

)∫
∆ij

‖n′ij(q)‖(h
lq,gi
q,gi − gi)k

‖hlq,giq,gi − gi‖
λ(q) dq, (6.14)

where n′ij(q) is the outward normal to the boundary between the partitions i and j at point
q.

Proof. The convergence to an equitable power diagram is guaranteed under the first part of
the control law, (6.12a), in Theorem 6.2.1. In this proof we only show that the second part
of the control law, (6.12b), does not counteract this convergence.

The direction of motion of the generators that maximizes the improvement of the cost
function is the gradient of the cost function with respect to gi, i.e., ∂H/∂gi. This gradient
is obtained in the same way as with respect to wi in the proof of Theorem 6.2.1 with only
two particularities. The derivatives of the geodesic distances with respect to gi,x are

∂dg(q,gi)

∂gi,x
=
∂‖q− h1

q,gi
‖

∂gi,x
+ · · ·+ ∂‖hlq,giq,g − gi‖

∂gi,x
=
−(q− h1

q,gi
)

‖q− h1
q,gi
‖
· ∂q

∂gi,x
− (h

lq,gi
q,g − gi)x

‖hlq,giq,g − gi‖
,

∂dg(q,gj)

∂gi,x
=
∂‖q− h1

q,gj
‖

∂gi,x
=
−(q− h1

q,gj
)

‖q− h1
q,gj
‖
· ∂q

∂gi,x
,

and equivalent for gi,y. Note that in the first step of the first derivative all the intermediate
terms represented with the dots are equal to zero since they do not depend on gi,x or q. The
second particularity is that in the end we obtain

∂q

∂gi,x
· nij = ‖n′ij(q)‖(h

lq,gi
q,g − gi)x

‖hlq,giq,g − gi‖
,

which leads to (6.14).
The saturation function in (6.12b) compares the direction of the gradient with the di-

rection from the generator to the centroid of the biggest connected component. If both
directions are approximately aligned, i.e., the movement of the generator to the centroid
favors the convergence to the equitable partition, the generator is able to follow the geodesic
path to the centroid according to γi(gi). Otherwise, if the movement to the centroid hinders
the convergence, fsat = 0 and the generator does not move. Additionally, since the move-
ment is to the centroid of the connected component with the biggest workload, it favors that
the partition remains connected.

Although the proposed control law converges to the equitable power diagram and tends
to give connected partitions, the latter is not theoretically guaranteed. In the simulation
section we evaluate this and show that the partitions rarely result disconnected. In any case,
there are procedures to reassign the disconnected components to other robots such as [71]
and finally obtain connected partitions at the expense of making them less equitable.

115



6.3 Finite-Horizon, Optimal Coverage Planning based

on a Path Graph

The second part of our persistent coverage solution is in charge of planning online optimal
coverage paths for the robots, Γi(k). The objective of these paths should be to minimize

f(K) =
K∑
k=1

∫
Q

Φ
(
Z∗ − Z(k)

)2
dq, (6.15)

where Φ ≡ Φ(q) ∈ (0, 1] is the importance of covering each point. The squared term
implies that overcovering a point is as undesirable as undercovering it although the coverage
controller from (5.2) guarantees that the coverage does not increase unboundedly. However,
solving this problem is NP-hard, and the very few attempts to solve it have demonstrated
that the inclusion of a few robots and time steps in the planning horizon (< 5) already
overwhelms current processors [118].

Since we divide the environment in equitable disjoint partitions, we can also separate
the cost function according to the following proposition and reduce the complexity of the
problem.

Proposition 6.3.1. The paths that optimize (6.15) subject to an equitable partition result-
ing from Theorem 6.2.1 or Theorem 6.2.3 are the paths that optimize individually the cost
function inside each partition, i.e.,

min
Γi

f(K) = min
Γ1

f1(K) + . . . + min
ΓN

fN(K),

with

fi(K) =
K∑
k=1

∫
Pi

Φ
(
Z∗ − Z(k)

)2
dq, (6.16)

Proof. It is straightforward to see that

f(K) = f1(K) + . . . + fN(K).

Since the path of each robot can only be planned inside its partition, the contribution of
such path to the minimization of f(K) is restricted to Pi, that is represented by fi(K),
completing this proof.

The immediate consequence of this proposition is that each robot can plan locally its
own optimal path and the cost function can be computed distributively, since each robot
only needs the information of its own coverage, i.e., inside its own partition. Nevertheless,
the problem remains significantly complex due to the dependency of the coverage of a point
with the actions of the robot in the previous instants. To counteract this complexity, we
define the current coverage error at time k at each point as

e(q, k) = Φ
(
Z∗ − Z(k)

)2
. (6.17)
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This metric allows us to efficiently plan the coverage paths as a function of the coverage error
of the environment and to simplify the temporal complexity of the coverage while planning.

The coverage solution that we propose is to initially define a graph of sweep-like paths
and at each time finding the optimal path through the graph in terms of the current coverage
error from (6.17).

6.3.1 Graph Construction based on Sweep-like Paths

In order to define the paths that the robots can follow without colliding with the obstacles
of the environment, we define the reduced partitions as

P ′i = Pi ∩Qf .

These reduced partitions, that we will refer to in this section simply as partitions, result
from intersecting the initial partitions with the points of the environment in which the robot
can be located without colliding with an obstacle.

Inside the partitions we separate the construction of the path graph in two parts: grid
and boundary. The aim of the first part is to define paths that allow the robot to perform a
complete sweep of the partition. To this end, we intersect a grid of points with the partition:

Vgi = {v ∈ P ′i |v = (x0
i ± k di, y0

i ± ` di), k, ` ∈ Z},

where v0
i = (x0

i , y
0
i ) ∈ P ′i is the left-most, top point of the partition and di is the optimal

separation between consecutive sweeping lines. These vertices are connected by an edge if
they share the x− or y-coordinate and are separated in the other by di. Formally,

Egi = {(v1,v2) | ‖v1 − v2‖ = di, ∀v1,v2 ∈ Vgi }.

Figure 6.2a shows an example of the vertices and edges that correspond to the grid part of
the path graph.

Remark 6.3.2. The optimal separation between two horizontal or two vertical sweeping
lines, di, depends on the shapes of the coverage area and the production function. For a
circular area and a constant production, di = 2 rcovi . For non-circular areas it is two times
the maximum width of the area in the perpendicular direction to the movement of the robot.
For non-constant areas it can be obtained by minimizing

rcovi∫
−rcovi

di∫
0

1(
αi((x, y), (0, 0)) + αi((x, y), (0, di))

)2dx dy, (6.18)

as illustrated in Fig. 6.1.

The idea behind (6.18) is that, if the coverage area of the robot overlaps in two sweeps,
the sum of the coverage provided in the two sweeps is as similar as possible for all the points
in the perpendicular direction. For this reason, the inverse of the sum of the coverage of
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Figure 6.1: Schematic of the overlap of the coverage areas for two consecutive sweeps in the
x direction.

both sweeps is integrated over the area between them. This is represented in Fig. 6.1 where
the robot sweeps in the x direction at x = 0 and x = di.

The second part of the graph is intended to cover the entire boundary of the partition.
We represent the boundary as ∂P ′i and locate a finite number of vertices over it as follows:

Vbi = {v ∈ ∂P ′i |vx = x0
i ± k

di
2
∨ vy = y0

i ± `
di
2
, k, ` ∈ Z},

They are located at the intersections of a square grid of size di/2 with the boundary, to
provide a sufficiently fine discretization of it. These vertices are linked by the edges

Ebi = {(v1,v2) |v1 and v2 are consecutive over ∂P ′i}.

These edges allow the robots to follow the entire boundary of the partition as shown in
Fig. 6.2b.

Finally, we merge the two parts by including an additional set of links,

Egbi = {(v1,v2) | |vx1 − vx2 | < di ∧ |vy1 − vy2| = 0 ∨ |vx1 − vx2 | = 0 ∧ |vy1 − vy2| < di,

∀v1 ∈ Vgi ,v2 ∈ Vbi }.

As can be seen in Fig. 6.2c, these edges link the vertices of both parts that are closer than
di either in the x- or in the y-axis and the resulting directed path graph can be expressed as

G = (Vi, Ei) ≡ (Vgi ∪ Vbi , E
g
i ∪ Ebi ∪ E

gb
i ).

6.3.2 Optimal Path Planning

In order to maintain the coverage as close as possible to the desired level, we propose a
planning approach in which each robot minimizes the current coverage error e(q, k) inside
its own partition. Optimizing the current error might be suboptimal in terms of (6.16).
However, it reduces drastically the complexity of the planning problem by eliminating the
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(a) Grid. (b) Boundary. (c) Complete graph.

Figure 6.2: Example of graph construction.

temporal dependency. In fact, thanks to the path graph introduced before and the optimal
separation between the nodes, this problem reduces to finding the set of ordered nodes that
provides the biggest reduction of such error to the motion of the robots. Our solution can be
found very efficiently with a well-known method and still guarantees that the path is optimal
in terms of the current error. In fact, the resulting path can cover the entire partition if that
is the optimum.

In the first place, let us transform the graph in a weighted digraph by defining the weights
of the edges:

ωi(v1,v2, k) = max
(
e(v2, k), 0

)
, ∀ (v1,v2) ∈ Ei.

Therefore, traversing each edge adds to the path the current error at the head of the edge.
Note that these weights are fixed for the k of the planning instant although they vary over
time with the coverage.

In the second place, we define the error per number of visited vertices of the path as

gi
(
Γi(v)

)
=

∑Lv

`=1 ωi(v`−1,v`, k)

Lv
,

where Lv is the number of traversed vertices to reach v through its optimal path.
In this context, we pose the problem of planning the optimal path as

maximize
Γi(v)

gi
(
Γi(v)

)
,

that is, finding the path to the vertex of the graph that leads the robot to the maximum
reduction of the error along it.

The transformation of the coverage path planning into finding the optimal path through
a graph, allows the problem to be solved rapid and efficiently with proven methods to find
the shortest paths in graphs. In particular, we adapt the Bellman-Ford algorithm [140]
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in two ways. Instead of the shortest distance, we look for the highest accumulated error
per vertex and, therefore, we initialize our metric to −∞ for all the nodes of the graph.
Additionally, since the aim is to maximize this metric, the path to a vertex is updated and
the vertex appended to the priority queue if the previously stored value of the metric is lower
than the new one. These modifications do not alter the optimality of the method, that is
still guaranteed to find the optimal paths, and also maintain the worst-case complexity of
O(|Vi| |Ei|).

6.4 Simulation Results

In this section we present simulation results for the partitioning algorithms and the
complete approach to the persistent coverage problem. For the partitioning, we consider five
different, non-convex environments of 10x8m and increasing complexity. We call them Open
Rooms, Rooms, Spiral, Maze and Random, respectively. The last one is an environment
with a 25% of randomly occupied cells. They can be seen in Fig. 6.4.1. These simulations
have been carried out with N = 5 robots of size ri = 0.1m, a circular coverage area Ωi of
radius rcovi = 0.2m, a production αi = 1, ∀q ∈ Ωi, and ρmax

i = 20. The objective, decay and
importance of the coverage are

Z∗ = 80 + 20
qy
|Q|y

,

d = 0.999− 0.005 e

(
−

(
qy−

|Q|y
2

)2
8 |Q|y

−

(
qx−

|Q|x
2

)2
8 |Q|x

)
,

φ = 0.5 + 0.5
qy
|Q|y

,

where qx and qy are the x- and y-coordinates of point q and |Q|x and |Q|y are the x- and
y-sizes of the environment Q. The resulting work function λ(q) can be seen in Fig. 6.3 for
the Rooms environment, normalized by

∫
Q λ(q) dq and multiplied by 100. The upper part

of the environment requires less work because of its lower importance and objective and the
central and lower parts require more work due to the peak of the decay in the center and
the higher importance and objective at the bottom.

The positive constant of the saturation function (6.13) is set to ksat = 3 and, in order
to speed up the convergence of the partitions, the gains of the control law are different for
the different environments and are changed online depending on the value of ∂H/∂wi. In
particular, kg takes the values from Table 6.1 and kw is assigned according to

kw =


k1
w, if |∂H/∂wi| > α1,

k2
w, if α1 ≤ |∂H/∂wi| < α2,

k3
w, if α2 ≤ |∂H/∂wi| < α3,

k4
w, if |∂H/∂wi| ≤ α3,

(6.19)

with the values of the constants presented in Table 6.2.
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Figure 6.3: Normalized work function λ(q) over the Open Rooms environment. White areas
represent obstacles.

Table 6.1: Values for kg depending on the environment type

Open Rooms Rooms Spiral Maze Random

0.1 0.1 0.01 5 · 10−4 0.05

Table 6.2: Values for kw depending on the environment

Open Rooms Rooms Spiral Maze Random

k1
w 0.01 0.02 0.01 0.01 0.01

k2
w 0.2 0.4 0.1 0.1 0.1

k3
w 1 2 0.5 1 1

k4
w 10 20 2.5 10 10

α1 5 · 10−3 5 · 10−3 0.01 0.01 0.01

α2 3 · 10−4 2 · 10−4 10−3 10−3 10−3

α3 10−5 10−5 10−4 10−4 10−4

6.4.1 Partitioning Example

In the first place we present an example of the partitioning algorithms in the five differ-
ent environments. In the top row of Fig. 6.4.1 we show the resulting equitable partitions
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(a) Open Rooms. (b) Rooms. (c) Spiral. (d) Maze. (e) Random.

(f) Open Rooms. (g) Rooms. (h) Spiral. (i) Maze. (j) Random.

Figure 6.4: Example of partitioning in the five different environments under control law (6.3)
(top row) and under control law (6.12) (bottom row). The resulting partitions of the robots
are shown in different colors. The initial locations of the generators are represented with red
crosses; the final location with magenta crosses; and the locations of the centroid with black
crosses. Blue lines represent the path of the generators until the convergence and magenta
lines, the remaining geodesic paths from the generators to the centroids.

under (6.3), i.e., when only the weights are modified and the positions of the generators
remain fixed. Although in some cases such as Fig. 6.4a or 6.4b the resulting partitions are
connected, it can be seen that for more complex scenarios such as the Spiral (Fig. 6.4c) or
the Maze (Fig. 6.4d) they are not. These disconnections are avoided under (6.12) as can be
seen in the bottom row of Fig. 6.4.1. In this case, moving the generators to the centroids
of the connected components with the highest workload at the same time as the weights are
changing, allows the robots to find equitable and connected partitions.

Now we focus in the particular example of the Maze environment to assess the evolution
and convergence under both (6.3) and (6.12). In Fig. 6.5 we represent the evolution of the
workload, the weight and the gradient of the cost function with respect to the weight for
each robot in a different color under (6.3). It is interesting to see that initially the evolution
of the weights and the workload is slow although the gradient of the cost function is high.
At iteration 295, kw is increased from 0.01 to 0.1, according to (6.19) and Table 6.2. Thanks
to this, the weights vary faster and the evolution of the workload is sped up. The same
happens at iteration 375 and allows the team to finally converge to the equitable partition in
641 iterations. Convergence is assumed when the maximum difference between the workload
of the partitions is lower that a 5%.

Under (6.12), in the beginning the weights and workloads also evolve slowly as shown
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Figure 6.5: Evolution of the workload, weight and gradient of the cost function with respect
to the weight for the Maze environment under control law (6.3). Different colors represent
the variables for the different robots.

in Fig. 6.6. This evolution is sped up at iterations 290 and 506 when the value of kw
increases. Apart from that, the value of fsat in Fig. 6.6d shows that the generators do not
move in the 375 initial iterations. This means that up to this point their movement would
not have improved the partitioning. At iteration 375 the generators start to move and the
movement makes the workload change faster than before. This also makes the weights adapt
to the new positions of the generators and, for this reason, they also adjust rapidly. Then,
the movements stop between iterations 431 and 520, where the weights almost make the
partitions converge. In the final part, the positions of the generators and the weights are
adjusted to finally reach the equitable partition.

The evolution with (6.12) is not as smooth as with (6.3) but the all the resulting partitions
are connected and, in this case, the locations of the generators coincide with their respective
centroids. In the following section we carry out a parametric analysis to be able to generalize
the results.

6.4.2 Parametric Analysis of the Partitioning Algorithms

We analyze now the evolution of the performance of the partitioning algorithm when the
parameters of the problem change. In particular, we performed a Monte Carlo analysis of
10 runs of the algorithm for different initial positions of the generators and different work
functions in the five different environments. In order to represent the results concisely, we
refer to the different environments by their initials as follows: Open Rooms as OR, Rooms
as R, Spiral as S, Maze as M and Random as Ra. The 10 initial positions of the generators
were selected randomly and the variation of the work function was done through the decay
function. In (6.4) the decay is set to be a 2D gaussian centered at |Q|x/2 and |Q|y/2, i.e., in
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Figure 6.6: Evolution of the workload, weight, gradient of the cost function with respect
to the weight, and saturation function for the Maze environment under control law (6.12).
Different colors represent the variables for the different robots.

the middle of the environment. Instead of this center, we chose a random point for each trial.
We execute this analysis for (6.3) and (6.12) and refer to them as W and WG respectively,
representing that only the power weights or the power weights and the generator positions
are modified.

In the first place we show in Fig. 6.7 two boxplots of the number of iterations required for
the algorithm to converge to the equitable partition. Fig. 6.7a shows the results for different
initial positions of the generators and Fig. 6.7b, for different decay functions. The most
important feature of this results is that, for the same environment, WG converges much
faster than W. Between the different environments, the speed of convergence depends on
the complexity of the environment and on the tuning of the gains. The results show that
under W, the Rooms and the Maze environments required more time to converge since their
non-convexities are bigger and more complicated. Nevertheless, this does not hold under
WG because the movement of the generators influences greatly the speed of convergence.
Another interesting feature is on the Random environment. Although it seems to be the most
complicated, the convergence is really fast because every two points of the environment are
connected through many different paths.

In the second place we pay attention to the connectivity of the partitions. Table 6.3 gath-
ers the number of partitions that resulted disconnected out of the 50 regions corresponding to
each cell. As expected, this number is drastically reduced with the WG control law. In fact,
for the easiest environments, Open Rooms and Rooms, it converges to connected partitions
in all cases. However, for the most complicated, in some cases the partitions result discon-
nected. It is particularly surprising the number of disconnected partitions in the Random
environment for which a great rate of connectivity was expected.
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(a) Different initial positions.
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(b) Different decay functions.

Figure 6.7: Boxplot of the number of iterations required to converge to the equitable parti-
tion.

Table 6.3: Number of disconnected partitions

Different Positions Different Decays

W WG W WG

Open Rooms 5 0 10 0

Rooms 25 0 18 0

Spiral 17 3 13 7

Maze 27 9 26 10

Random 18 6 28 13

To evaluate the nature and the quality of the still non-connected partitions in Fig. 6.8
we represent in percentage the relative workload of the biggest connected component with
respect to the workload of the entire partition. One can see that under WG, this value
is on average above the 93% in the three environments with disconnected partitions. This
means that almost all the work of the partition is on the biggest component, whose centroid
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was followed by the generator. Therefore, a simple reassignment of the smaller disconnected
regions could be done to reach total connectivity with only a small deviation from the
equitable partition.
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Figure 6.8: Boxplot of the relative workload of the biggest connected component with respect
to the workload of the entire partition.

(a) Converged equitable partition. (b) Zoom of the disconnected component of
the yellow partition.

Figure 6.9: Example of convergence to the equitable partition with one disconnected region.
The rectangle in (a) bounds the area zoomed in (b).

From the two previous results it follows that in the Random environment there are many
disconnected partitions but more than the 99.5% of the work is on the biggest component.
This happens due to the discretization of the environment for the computation, as can be
seen in Fig. 6.9. In Fig. 6.9a we show an example of a converged partition. Apparently all
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the partitions are connected but if we enlarge the area within the rectangle, Fig. 6.9b, we
can see that a small region of the yellow partitions is disconnected from the rest. However,
this small region only represents the 0.11% of the workload of the partition.

6.4.3 Coverage Planning Results

In this part of the simulations we analyze the coverage planning solution and the perfor-
mance of the entire approach with an example. Fig. 6.10 shows the partition of the Rooms
environment and the path graphs of the robots. According to the work map from Fig. 6.3,
the robot assigned to the blue partition has to cover a bigger area than the other four. These
other four share the peak of the work map and each of them is additionally in charge of a
big room on the right-hand side or one and a half small rooms on the left-hand side.

Figure 6.10: Example of partitions and path graphs for the Rooms environment.

In order to evaluate the quality of the paths and the provided coverage we normalize the
coverage error at a single point at time k,

ε(k) ≡ ε(q, k) =
e(k)

Z∗2
,

and calculate the mean normalized error over the environment as

ε(k) =

∫
Qf
ε(k)dq

|Qf |
.

In Fig. 6.11 we show the coverage error e(q, k) of the environment for eight different time
instants. In Fig. 6.11a the robots are starting to cover the environment and, therefore, the
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coverage error is initially proportional to the importance of the points and their objective.
The paths of the top row, Fig. 6.11a-6.11d, represented in magenta, cover the partitions
from bottom to top in a sweep-like manner. This demonstrates that the paths go through
the points with the highest coverage error In Fig. 6.11e, almost all the robots have already
covered their partitions for the first time. The blue robot needs a little more time since
it has the biggest partition. The paths of the robots in Fig. 6.11e and 6.11f, fill the gaps
that they have previously left uncovered. At this point, the coverage error is already small
in the majority of the points. Eventually, in the steady state, Fig. 6.11g-6.11h, the robots
keep moving to maintain the coverage as close as possible to the objective, paying special
attention to the zones where more work is required.

(a) k = 60. (b) k = 275 (c) k = 400. (d) k = 500

(e) k = 1150. (f) k = 1700. (g) k = 2000.
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1

(h) k = 2500.

Figure 6.11: Example of evolution of the coverage. The background color map represents
the value of ε(k). The robots are depicted in different colors with their coverage areas as
dash dotted circumferences. Magenta lines show the current paths of the robots.

The performance of our coverage strategy is assessed in Fig. 6.12a. We depict the mean
coverage error and its standard deviation for the simulation. One can see that, at the
beginning, when the environment is totally uncovered, the error is around 0.7 due to the
importance function. After that, it decreases rapidly and converge to a small steady-state
value. In fact, on average, the points have under a 7% of error. The standard deviation
increases at the beginning because the undercovered points keep deteriorating and some
others become slightly overcovered when the robots go over them. However, it also decreases
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to a small steady-state value around 0.09.
A similar tendency persists inside the partitions of the robots as shown in Fig. 6.12b,

where ε(k) is calculated only within Pi. Nevertheless, it is interesting to see the differences
between the biggest partition, the blue one, and the smaller ones, the magenta and green
ones. The error in the beginning in the magenta and green ones is higher because the
importance of the points inside them is higher, as opposed to the blue one. On the other
hand, the reduction of the error in those partitions is faster because they are smaller and
the robots need less time to cover them completely. On the contrary, the blue robot needs
more time to cover its region and, therefore, its error decreases slower.
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Figure 6.12: Evolution of the mean coverage error (solid lines) and its standard deviation
(dashed lines). (Top) Complete environment. (Bottom) Separated by partitions.

Although the coverage error is the metric that defines the optimality of the coverage, it
is difficult to visualize. A more intuitive representation is shown in Fig. 6.13. The mean
coverage level of the environment increases rapidly towards the mean coverage objective.
However, its steady-state value is smaller due to the different importance of the points. This
happens because the robots pay more attention to the most important points at the expense
of leaving the least important worse covered. For this reason, the mean value lays between
the mean coverage objective and the mean coverage objective weighted by the importance.

Finally, we show in Fig. 6.14 the number of times that the robots covered each point
of the environment. The resemblance with the work map make it clear that the robots
visit more frequently the most important points and those with a lower decay, because the
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Figure 6.13: Evolution of the mean coverage level of the environment (blue line) with its
standard deviation (red dashed line). The blue dash-dotted line represents the mean cove-
rage objective and the green dash-dotted one, the mean coverage objective weighted by the
importance of each point.

coverage deteriorates faster on them.
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Figure 6.14: Number of times that the robots have covered each point of the environment.

6.5 Conclusions

In this chapter we have proposed a partitioning approach based on power diagrams along
with a graph-based coverage planning strategy to solve the persistent coverage problem in
complex, non-convex environments. We have introduced in the first place an algorithm
to find the power weights that correspond an equitable partition of the environment. This
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strategy can be applied to any kind of environment thanks to the geodesic distance derivation
that we introduce. Moreover, this distance allows the partitions to take into account the
shape of the environment. We have also presented two extensions for this strategy. The first
one is an energy-aware update of the partitions. According to the battery level of the robots,
the partitions can be modified to keep them equitable. This results specially appealing when
one or more robots stop covering to recharge or they simply fail. The second extension drives
the generator of each partition to the centroid of the connected component with the highest
workload. The objective of this strategy is to reduce the disconnections of the partitions to
the extent possible. In the second place, we have presented a planning algorithm that allows
each robot to locally find the optimal path in terms of the current coverage error. This
algorithm is based on the construction of a path graph that covers the entire partition of the
robot with sweep-like paths. We assign the coverage errors of the head nodes to the edge
weights and, therefore, the problem reduces to finding the optimal path through a graph,
that can be achieved efficiently with state-of-the-art methods. Finally, we include simulation
results to support our contributions and show how our solution can be applied to a real world
scenario.

So far in this thesis, we have addressed the persistent coverage problem in all kind of con-
tinuous environments with different settings. Most of our solutions and, more importantly,
they have demonstrated to be applicable to real world scenarios and perform very well. The
next step, gathered in the second objective of this thesis, is to explore solutions for discrete
environment which are applicable to domestic induction heating.
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Chapter 7

Cooperative, Periodic Coverage for
Discrete Environments

In this chapter, the robots have to visit periodically a discrete set of points of interest
and spend some time on them carrying out the coverage task. We use a divide-and-conquer
strategy and split the problem into three smaller subproblems to counteract its complexity.
In the first place, we plan individual infinite-horizon paths for the robots to cover all the
points periodically. Secondly, we formulate a quadratically constrained linear program to find
the optimal coverage times and actions that satisfy the coverage objective. The third step
is to join together the individual plans of the robots in a periodic team plan by obtaining a
schedule with a MILP that guarantees collision avoidance. Eventually, we present thorough
simulation results to assess the performance of our solution.

7.1 Introduction

One of the main contributions of this thesis is to particularize the persistent coverage
problem to the application of domestic induction heating with mobile inductors. This appli-
cation introduces some particularities to the setting in which the problem has to be solved
and also some restrictions to the movement of the robots. The most important change with
respect to the previous chapters is that the environment is now discrete, since only a finite
set of points has to be covered. This environment is limited to the appliance itself and,
therefore, a distributed solution is no longer necessary since all the computations are carried
out in the same processing unit. On the other hand, the space is cluttered due to the relative
size of the inductors and collision avoidance becomes a priority. Also the limited length of
the robotic arms to which they are attached prevents them from reaching all the points of
the hob or, equivalently, reduces their reachability.

In discrete environments, where only a finite set of points requires coverage, approaches to
persistent coverage [87] are related to Task Assignment [141] and Vehicle Routing Problems
(VRP) as addressed in operational research [142]. However, most of the these approaches
assume that the times required to complete the coverage task at each point are known or
neglect them. This is not acceptable in problems such as heating, where the coverage action
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of the robot is not instantaneous.
In this chapter we propose a general solution to persistently cover a finite set of points

with a team of robots, which must spend some time at each point to improve its coverage.
We find a periodic strategy for the team, composed of individual periodic paths, and coverage
times and actions at each point, that guarantees the satisfaction of the coverage objective for
all the points, optimizes the actions of the robots and avoids collisions between them. To do
so we use a divide-and-conquer strategy and separate the problem into three subproblems:

(i) Plan individual, closed paths for the robots that cover all the points of the environment.

(ii) Calculate the coverage time and coverage action of each robot at each point of its path
to satisfy the coverage objective.

(iii) Scheduling the start of the robot paths to obtain a team plan in which collisions are
avoided.

We do not elaborate specifically on the first subproblem since it reduces to solve an
instance of the Traveling Salesman Problem (TSP) for which there are state-of-the-art solu-
tions. Therefore, the most important contributions of this chapter are:

• A strategy to calculate the time and the coverage that each robot has to provide at
each point, depending on the different production rates and the demands of the points,
by solving a quadratic program. In this scenario we provide sufficient conditions for
the existence of a solution to the problem.

• An iterative algorithm that refines the original solution, removing the points with
coverage times equal to zero from the paths of the robots, thus letting the robots
spend more time working at other points.

• A modified version of the cost function that intrinsically accounts for the length of the
trajectories, yet still requiring to solve the same quadratic program.

• A procedure to schedule the robot paths that provides collision avoidance guarantees
and minimizes simultaneous movements of the robots.

The remainder of the chapter is structured as follows. In Section 7.2 we introduce the
formulation of this particular version of the problem. We calculate the optimal coverage
times and actions in Section 7.3 with predefined paths and propose an iterative algorithm in
Section 7.4 to shorten them. We face the problem with non-predefined paths in Section 7.5
and the team plan scheduling problem is solved in Section 7.6. Finally, we present simulation
results in Section 7.7.

7.2 Problem Formulation and Solution Overview

Let Q = {q1, . . . ,qQ} be a finite set of Q points of interest that must be covered. At
each point, we define the coverage level with a scalar field, Z(q, t) ≥ 0. The objective is
to maintain a desired level Z∗(q, t) ≥ 0 by providing a certain coverage action P ∗(q, t) ≥ 0
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over time, not necessarily the same for all the points. This is equivalent to model that
the coverage level deteriorates over time due to a physical phenomenon or a measurement
degradation with a constant decay rate. This is achieved using a team of N ∈ N mobile
robots I = {i1, . . . , iI} of radius ri, i ∈ I. They are capable of increasing the level at the
points in which they are located according to a production function, Pi(q, t):

Pi(q, t) =

{
0, if pi(t) 6= q,

ρi(q), if pi(t) = q,
(7.1)

where pi(t) is the position of the robot at time t ≥ 0 and 0 ≤ ρi(q) ≤ ρmax
i (q) is the coverage

action of the robot, which can also be controlled. The maximum production ρmax
i (q) can be

different for each robot-point pair.
Each robot may not be capable of reaching all the points due to physical constraints. The

subset Qi ⊆ Q represents the reachable set of points for robot i, with the team satisfying
∪i∈IQi = Q. Reciprocally, each point q ∈ Q can be covered by a set of visiting robots,
Iq ⊆ I. In this context, the coverage provided at each point can be calculated as

Z(q, t) =

∫ t

0

∑
i∈Iq

Pi(q, τ)dτ, (7.2)

assuming Z(q, 0) = 0 as initial condition, and the desired coverage as

Z∗(q, t) =

∫ t

0

P ∗(q, τ)dτ. (7.3)

A solution that maintains all the time Z(q, τ) = Z∗(q, τ) requires at least as many
robots as points and does not exist if the number of robots is lower than the number of
points. Since this is usually the case, an optimization metric is defined to try to maintain
Z(q, τ) as close as possible to Z∗(q, τ) over time. Some optimality criteria, as in the previous
chapter, could be to minimize over time the quadratic difference between the required and the

provided coverage, i.e., minimize
∫ t

0

∑
q∈Q

(
Z∗(q, τ)−Z(q, τ)

)2
dτ, or minimize the maximum

difference between Z(q, t) and Z∗(q, t) over time, i.e., minimize max
(
Z∗(q, t) − Z(q, t)

)
.

However, recall that trying to minimize globally a function associated with these metrics
results in a problem that has been proven to be NP-hard. For these reasons, we seek to
guarantee that the desired coverage is provided periodically with period T . A periodic
approach, though inherently suboptimal with respect to such metrics and still NP-hard,
allows us to guarantee that all the points receive on average the coverage that they require,
with a repetitive strategy that can be calculated in advance. In this scenario, the periodic
objective requires that

(i) at some time t ≤ T the coverage reaches Z(q, t) = Z∗(q, t), and

(ii) from that time on, Z(q, t+ kT ) = Z∗(q, t+ kT ), ∀ k ∈ Z.

We can formulate the second condition equivalently as

Z(q, t+ kT )− Z
(
q, t+ (k − 1)T

)
= Z∗(q, t+ kT )− Z∗

(
q, t+ (k − 1)T

)
, (7.4)
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and we can assume that P ∗(q) ≡ P ∗(q, t) is constant over time, or at least periodic, since the
rate of change of P ∗(q) is usually much bigger than the period. Thus, the problem can be
consider stationary between changes. Then, the right term is equal to P ∗(q, τ)T according
to (7.3) and, introducing (7.2), the objective becomes∫ t+kT

t+(k−1)T

∑
i∈Iq

Pi(q, τ)dτ = P ∗(q)T. (7.5)

In order to satisfy this objective, the robots follow a periodic path, Γi, between reachable
points, i.e., an ordered subset of Qi. Along these paths, the robots spend some time, θi,Γi(j),
covering each point. With these times already normalized by the period, the periodic cove-
rage objective can be stated as∑

i∈Iq
ρi,Γi(j) θi,Γi(j) = P ∗(q), (7.6)

for each point q of the environment. The equation is also normalized by the period and
represents an average over it. With a little abuse of notation we represent q as the j-th point
in the path of robot i, i.e., Γi(j) ≡ q, even when j may be different for each robot i. In the
following we refer to it only with subindex j for simplicity. Thus, the objective is∑

i∈Iq
ρi,j θi,j = P ∗(q). (7.7)

Each point is visited only once per period by the robot and each visit has associated
three different times:

• arrival time, ai,j, the instant in which the robot arrives and starts covering a point;

• coverage time, θi,j, the duration of the coverage of the point; and

• departure time, di,j, the instant in which the robot stops covering the point and leaves
towards the next one.

The total moving time, i.e., the time that robot i would need to traverse Γi without making
any stops, is θmi . All these times are also normalized by the period T and they belong to the
interval [0, 1]. Note that the periodic plans can be repeated as long as all Qi, Iq and P ∗(q)
remain constant. Besides, they are independent of the value of the period and such value
can be chosen differently depending on the application.

The solution that we propose to this problem follows a divide-and-conquer strategy, as
shown in Alg. 4. We separate the problem into three subproblems (Steps 1, 2 and 4) to
reduce its complexity and make it tractable. Even though this does not guarantee global
optimality, it allows us to solve efficiently the three subproblems, each of them in an optimal
manner.

For the first step, we use an order-first split-second approach [143] and solve a Traveling
Salesman Problem (TSP) [144] to find such paths. For the second step, we pose a quadrat-
ically constrained linear program (QCLP) with the restrictions of satisfying the periodic
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Algorithm 4 Solution Overview

1: Plan initial paths.
2: Calculate optimal coverage times and actions.
3: Shorten paths and recalculate times and actions.
4: Schedule the path starts to avoid collisions.

coverage objective from (7.7). We also propose an algorithm to shorten these paths and a
variation of the same QCLP that takes into account the lengths of the paths. In the last
step, we calculate a schedule that allows us to include the individual periodic plans of the
robots in a periodic team plan in which collision avoidance is guaranteed. We formulate this
scheduling as a MILP to minimize the time in which two or more robots are moving at the
same time. In the following sections we explain in detail the two main steps of our solution,
namely Steps 2 with its extensions and 4.

7.3 Optimal Times and Powers

The periodic coverage objective requires the calculation of the coverage times and cove-
rage actions over the paths that the robots travel. The problem of calculating these times
and productions reduces to find the times θi,j and productions ρi,j that comply with (7.7) and
with the periodicity of the system. To this end, we consider a cost function on the times and
the productions, f(θi,j, ρi,j), and the resulting QCLP that represents the persistent coverage
problem is

minimize
θi,j , ρi,j

f(θi,j, ρi,j)

subject to
∑
i∈Iq

ρi,j θi,j = P ∗(q), ∀q ∈ Q, (7.8a)

∑
q∈Qi

θi,j ≤ 1− θmi , ∀ i ∈ I, (7.8b)∑
i∈Iq

θi,j ≤ 1, ∀q ∈ Q. (7.8c)

Eq. (7.8a) is the quadratic restriction on the coverage objective. The set of equa-
tions (7.8b) imposes that, for each robot, the time spent covering the points plus the time
to move along the path must be lower than the period, and the set (7.8c) represents that
each point cannot be covered for more time than the period. This restriction is only needed
in the case that it is not allowed that two robots cover the same point at the same time,
because otherwise it would be impossible to avoid collisions between robots. The selection
of the cost function is entirely dependent on the performance expected from the particular
application of the persistent coverage problem. For this reason, in Section 7.7 we explore
and analyze different linear cost functions that are appropriate for many applications.
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7.3.1 Existence of Solution

This section is devoted to analyze in which conditions there exists a feasible solution
for (7.8). In particular, we find sufficient conditions to ensure a feasible solution in two
particular cases, one where all the robots go through all the points and a more realistic second
scenario, where the points visited by different robots are not the same. These conditions
allow us to know a priori if the robots are capable of satisfying the coverage actions required
by the points.

We define the minimum production that each point can receive when all robots provide
their maximum,

ρmin(q) = min
i∈Iq

ρmax
i (q),

to take advantage of the implications of the following remark.

Remark 7.3.1. If a feasible solution exists for (7.8), a feasible solution also exists for the
same problem with ρi(q) = ρmax

i (q).

In the first place, we focus on a scenario in which all the robots visit all the points each
period, i.e., Qi = Q, ∀ i ∈ I, and Iq = I, ∀q ∈ Q, and spend some time covering them.
We present in the following theorem the conditions for this case while the intuition is the
following: the maximum time that the robots need to cover a point is given by the minimum
production that any robot can give at the point divided by the required production at that
point, P ∗(q). Since the minimum production at each point can be applied by any robot,
the robots become interchangeable at all the points. Therefore, if the sum of the maximum
times for all the points is lower than the total available time of the robots, there exists a
feasible solution.

Theorem 7.3.2 (Sufficient Conditions for Full Reachability). Assume that all the robots
visit all the points in each period, Qi = Q, ∀ i ∈ I, and Iq = I, ∀q ∈ Q. If

ρmin(q) ≥ P ∗(q), ∀q ∈ Q,

and ∑
q∈Q

P ∗(q)

ρmin(q)
≤ N −

∑
i∈I

θmi , (7.9)

then, there exists a feasible solution for (7.8).

Proof. It is clear that ∑
i∈I

ρi,j · θi,j ≥ ρmin(q)
∑
i∈I

θi,j, ∀q ∈ Q.

Then, the restriction on the coverage (7.8a) is satisfied if

ρmin(q)
∑
i∈I

θi,j ≥ P ∗(q), ∀q ∈ Q,
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that is, if ρmin(q) ≥ P ∗(q), ∀q ∈ Q. Therefore, we can choose θi,j such that

1 ≥
∑
i∈I

θi,j ≥
P ∗(q)

ρmin(q)
, ∀q ∈ Q, (7.10)

and, consequently, restrictions (7.8a) and (7.8c) are satisfied.
Since all the robots can visit all the points, the coverage task of the robot with the

minimum production rate, ρmin(q), can be exchanged with any other robot of the team.
Therefore, the restrictions on the period of the robots (7.8b) can be gathered as the sum of
all of them: ∑

i∈I

∑
q∈Q

θi,j =
∑

i∈I
(1− θmi ),

or, equivalently, ∑
q∈Q

∑
i∈I

θi,j = N −
∑
i∈I

θmi .

If we introduce the right hand-side inequality of (7.10) we have∑
q∈Q

P ∗(q)

ρmin(q)
≤ N −

∑
i∈I

θmi ,

and according to (7.9) the proof is complete.

In some application the robots may not be able to reach all the points of the environment
or may not be able to perform the coverage task of some points [145]. In that case, for
some i ∈ I, Qi 6= Q. In the following theorem we relax the assumption of all the robots
having to visit all the points and assure the existence of a solution when the ratio available
production/required production is sufficiently high.

Theorem 7.3.3 (Sufficient Conditions for Partial Reachability). If there exists a subset
I ′ ⊆ I such that

ρmax
i (q) ≥ P ∗(q), ∀q ∈ Qi, i ∈ I ′, (7.11)∑
q∈Qi

P ∗(q)

ρmax
i (q)

≤ 1− θmi , ∀ i ∈ I ′, (7.12)⋃
i∈I′
Qi = Q, (7.13)

then, there exists a feasible solution for (7.8).

Proof. First, we prove that if a robot i satisfies (7.11) and (7.12), it can cover all q ∈ Qi.
Particularizing the restriction on the coverage (7.8a) for a single robot i covering each point
q ∈ Qi, we have

ρi,j · θi,j = P ∗(q), ∀q ∈ Qi.
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Introducing the restriction on the period of the points (7.8c) and formulating as a sufficient
condition, it becomes

1 ≥ θi,j ≥
P ∗(q)

ρi,j
, ∀q ∈ Qi. (7.14)

Then, if (7.11) holds, we can choose θi,j such that (7.8a) and (7.8c) are satisfied.
On the other hand, substituting (7.14) in the restriction on the period of robot i (7.8b),

we have ∑
q∈Qi

θi,j = 1− θmi ≥
∑
q∈Qi

P ∗(q)

ρi,j

and the first part of the proof is complete.
Similarly, for all the robots which satisfy (7.11) and (7.12), i.e., which can belong to I ′,

their reachable points q ∈ Qi can be covered. Therefore, if (7.13) holds, all the points of the
environment can be covered, completing the proof.

The main reason for which a feasible solution may not exist is that the points require more
coverage than the team is able to provide, since initially the paths of the robots go over all of
their reachable points. In that case, the solution is to maximize the coverage provided to the
points or to minimize the error between the coverage provided and the coverage objective.

7.4 Optimal Times and Powers with Shortened Paths

A particularity of the solutions obtained for (7.8) is that some of the times θi,j may be
equal to zero. This happens especially in those robot-point pairs in which giving a production
equal to zero is better than spending some time in terms of cost. This implies that those
robots are not required to cover such points. Thus, equivalent paths can be followed, but
only through points with coverage times greater than zero, reducing the moving times θmi
and, therefore, the total time required for the coverage of the environment.

We exploit this with a strategy that builds from (7.8) but allows us to find a solution
with lower cost and shortened paths. This strategy is summarized in Algorithm 5.

Algorithm 5 Iterative Solution to Shorten the Paths

Require: Initial paths Γi and moving times θmi .
1: Pose and solve the initial problem (7.8).
2: while any θi,j = 0 do
3: Eliminate j from Γi.
4: Plan a shorter path with the points in Γi.
5: Recalculate θmi of Γi.
6: Repose and resolve (7.8).
7: end while
8: return Optimal θi,j, ρi,j and final paths Γi.

In the first place, we pose the program (7.8), with twice decision variables as points in the
initial paths of the robots, and find an initial solution for θi,j and ρi,j. Such initial solution
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may include several points whose times or actions for one or more robots are equal to zero.
These points are erased from the paths of the corresponding robots,

Γi = Γi \ j, ∀ j such that θi,j = 0 or ρi,j = 0.

At this point, a shorter trajectory is computed between the remaining points. This
reduces the moving times, θmi , and therefore, the robots have more time available to cover
the points of their current paths.

Finally, the recalculated moving times allow us to repose the program and find a new
solution for θi,j and ρi,j. If this solution has any time or action equal to zero, the process is
repeated and, when all the times and actions are different from zero, they form the optimal
solution to the persistent coverage problem with shortened paths. In fact, in the following
proposition we study the maximum number of iterations that the previous algorithm can be
executed.

Proposition 7.4.1. The maximum number of iterations that Algorithm 5 needs to be com-
pleted is (I − 1)Q.

Proof. The total number of times that are initially assigned is, in the worst case, I ·Q for a full
reachability. If all the times are greater than zero the algorithm has finished. Assume that
this is not the case and that at each iteration only one new decision variable is set to zero,
which represents the worst case. Since a feasible solution contains at least one coverage time
greater than zero for each point, then the minimum number of non-zero decision variables
must be Q and consequently the maximum number of iterations of the algorithm is equal to
(I − 1)Q.

The result of the algorithm is that, at each iteration, the robot paths are optimized using
the results of the previous optimal coverage times and productions. Then, the times and
productions are optimized again for the new refined paths. This makes the combination of
both to iteratively improve the global solution achievable with this periodic approach.

7.5 Optimal Times and Powers with Non-Predefined

Paths

In the previous section we have seen that the moving times, θmr , also affect the optimal
coverage. This is particularly relevant in cases where they represent a substantial fraction of
time from each period, i.e., in situations where moving from one point to another takes a lot
of time compared to covering each point. Therefore, if the paths can be modified to reduce
these times, the robots have more time to spend covering other points. Since including these
times in the problem is highly complex, we instead present a modified version of the original
problem (7.8) that indirectly includes the paths to reduce the distance traveled by the robots,
as if the paths where not predefined. The idea is to use a linear cost function that includes
coefficients, ωi,j, associated to the times θi,j:

f(θi,j) =
∑

q∈Q

∑
i∈I
ωi,j θi,j. (7.15)
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These weights account for the moving times of the robots in the sense that they modify the
cost of covering each point and allow us to favor that each robot covers only close points,
thus reducing the traveled distance. It is important to note that, if the problem (7.8) has
a feasible solution, it is also feasible for any value of the coefficients, i.e., the coefficients do
not modify the existence of solution. Additionally, although the optimal solution for (7.15)
will most likely be suboptimal for (7.8), the length of the paths, represented by the moving
times θmr , can be drastically reduced by defining appropriate coefficients.

7.5.1 Coefficient Calculation

To calculate the coefficients we present a strategy in Algorithm 6. The intuition behind
this strategy is the following. Firstly, we divide the points in as many clusters as the number
of robots and assign a cluster to each robot according to some distance function from the
centroid of the clusters to the robots. Next, we check if all the points can be reached by their
assigned robots, reassigning the ones that cannot be reached to the robot whose assigned
cluster is the closest to the point. Finally, we calculate the coefficient of each pair point-robot
depending on the final assignment. Note that this procedure is only used for the calculation
of the coefficients of the cost function and it is not definitive in the sense that each robot
may finally visit any point of its Qi regardless of this assignment, i.e., our objective remains
in (7.15).

Algorithm 6 Coefficient Calculation

1: Divide Q in N clusters.
2: Find the optimal robot-cluster assignment A∗ (7.16), (7.17).
3: Find non-reachable points qnri,ri in each cluster.
4: Assign qnri,ri to the closest cluster Kj such that qnri,ri ∈ Qrj (7.18).
5: Remove qnri,ri from previous cluster Ki (7.19).
6: Calculate coefficients (7.20).

The first step of the algorithm is to divide the set of points that must be covered in
N clusters. For this we use a k-means solution, considering that there are state-of-the-
art algorithms that minimize the within-cluster sum of squares and, as a consequence, the
distance that a robot would need to travel to visit all the points in a cluster.

Then, we find the assignment,

A =
{

(i,Ki)∀ i ∈ I | i 6= j ⇐⇒ Ki 6= Kj
}
, (7.16)

that associates each robot i with its own cluster Ki. The optimal assignment minimizes the
total distance from the cluster centroids to the assigned robots,

A∗ = argmin
A

∑
i∈I

g(i,K) ‖ cK − pi‖, (7.17)

where cK is the centroid of cluster K and

g(i,K) =

{
1, if K ∩Qi 6= ∅,
G, otherwise,
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with G > 1, is a function that penalizes the pairs in which the cluster cannot be reached
by the robot. This assignment is obtained in polynomial time using the Hungarian algo-
rithm [146].

The third step is to find the points of each cluster whose assigned robot cannot reach:

Qnri = {q ∈ Ki |q /∈ Qi}.

Finally, these points are assigned to the closest cluster between the ones whose assigned
robots can reach them,

Kj = Kj ∪ q ⇐⇒ ‖cKj
− q‖ ≤ ‖cK`

− q‖ ∀ j, ` ∈ I |q ∈ Qnri ,Qj,Q`, (7.18)

and removed from the previous ones

Ki = Ki \ q. (7.19)

According to the previous assignment we calculate the coefficients from (7.15), with
H > 1, as

ωi,j =

{
1, if q ∈ Ki,
H, otherwise.

(7.20)

7.5.2 Optimal Coverage Solution

Once the coefficients in (7.15) are completely known, the only thing left to solve the
problem (7.8) are the moving times since here we assume that the paths are not initially set.
To compute these times, we calculate an upper bound for each robot as a TSP through all
the points in its Qi. With these values the QCLP is solved, obtaining the optimal solution
for (7.15). As mentioned before, the coefficients of the cost function will favor that each
robot has only positive coverage times for the points on its assigned cluster and the rest of
them equal to zero. Nevertheless, different outcomes can be obtained, i.e., if some robot
cannot cover all the points inside its cluster or if there is another robot that can apply the
required consumption in less time, even with the extra weight of the coefficient. Finally, if
we obtain some coverage time equal to zero, the approach can be iteratively refined using
the same procedure as in Algorithm 5.

7.5.3 Problem Reduction

The previous strategy favors that robots cover some points preferentially but considers
any other feasible solution. Now we propose a sufficient condition that allows us to separate
the optimization problem in several smaller subproblems and reduce the computational cost.
The key idea is that, if every robot can cover its assigned points, we can calculate the optimal
times and productions independently for each robot since there are no points visited by more
than one robot.
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Proposition 7.5.1 (Sufficient Condition for Problem Reduction). Consider the persistent
coverage problem from (7.8). If every robot i ∈ I satisfies that

ρmax
i (q) ≥ P ∗(q), ∀q ∈ Ki,∑

q∈Ki

P ∗(q)

ρmax
i (q)

≤ 1− θmi ,

then, there exists a feasible solution for the problem in which each robot only covers its
assigned points. Moreover, the problem can be solved by solving I subproblems of one robot
with Q = Ki.

Proof. The proof for the first statement is the same as for Theorem 7.3.3 and for the second
is trivial.

7.6 Team Plan Scheduling

The periodic paths and the optimal coverage times and actions obtained in the previous
sections guarantee that the periodic persistent coverage objective is satisfied. However, this
solution does not take into account the physical restrictions of the team. In particular, if all
the robots start their periodic plans with no previous agreement, they may try to cover the
same point at the same time resulting in a collision or they may also collide in their path
from one point to the following. To solve this problem, the robots could be equipped with
a collision avoidance system. However, handling a potential collision and, thus, modifying
the original path, would vary the total moving time of the robot and violate the periodicity
constraints or the periodic objective.

We devote this section to the calculation of a scheduling for the start of the periodic paths
of the robots. It avoids collisions while covering a point and in the movements between points.
The intuitive idea of the scheduling is to shift the individual plans of the robots in time to
obtain a collision-free plan for the entire team, that is, to find a time, 0 ≤ ϕi < 1, for each
robot i ∈ {2, . . . , I} such that the execution of its periodic plan shifted by this time leads to
no collision with the others. We refer the initial times to the beginning of the path of robot
i = 1, i.e., we fix ϕ1 = 0, and that the paths remain the same through the scheduling.

In Fig. 7.1 we show an example of scheduling for I = 3 robots of size ri = 5 and
Q = 5 points. Fig. 7.1a shows the individual plan of each robot, which includes the path
(order in which points are visited) and the coverage times (width of the colored rectangles).
The beginning and end of the colored rectangles correspond to the arrival and departure
times, ai,j and di,j, respectively, and the gray rectangles represents the time needed to move
from one point to the following. It can be seen that some coverages of the same point are
overlapped in time and, therefore, the execution of these individual plans leads to collisions.
For instance, it happens when i1 and i3 try to cover q1 or q3, or when i2 and i3 try to cover
q4 or q5. In Fig. 7.1b, where the team plan after the scheduling is depicted, it can be seen
that the individual plans of robots i2 and i3 have been shifted a 88% and a 59% of the period
respectively and that in the resulting plan there are no overlaps between coverages of the
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same point. Fig. 7.1c shows the locations of the points and the paths followed by the robot.
It can be seen that no collisions occurs after the scheduling.
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(a) Individual plans before scheduling.
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(b) Team plan after scheduling.
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(c) Robot paths.

Figure 7.1: Example of scheduling. (a)-(b) Each row represents the plan of a robot. The
points qi that each robot covers are represented in different colors. The coverage times are
depicted by the width of the colored rectangles and the gray rectangles represent the time
needed to move between points.

The calculation of the optimal schedule is done by solving a MILP with constraints. In
the following subsections we develop the formulation, the restrictions and the cost function,
and finally pose the problem and discuss its suitability.

7.6.1 Transformation of Individual Times to Team Plan

The previous step to calculate the schedule that avoids collisions is to refer the individual
times of the robots to the team plan. The arrival times can be expressed as follows:

Ai,j = ϕi + ai,j, if ϕi + ai,j ≤ 1, (7.21a)

Ai,j = ϕi + ai,j − 1, if ϕi + ai,j > 1, (7.21b)
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for all j ∈ {2, . . . , |Γi|}, i ∈ {2, . . . , I}. Note that for j = 1, (7.21) does not apply since
ai,1 = 0 and Ai,1 = ϕi, and recall that for robot i = 1 we set ϕ1 = 0 and, therefore, its
corresponding times do not need transformation.

To be able to include these times in the MILP formulation, we introduce the binary
variables, cai,j, such that,

cai,j, = 0 if ϕi + ai,j ≤ 1,

cai,j, = 1 otherwise.

These variables represent if the arrival times in the team plan are bigger than 1 and they
have to be shifted to the left side of the team plan by subtracting 1, e.g., the arrival time of
i2 to q4 in Fig. 7.1b.

Thus, we can express the arrival times as

Ai,j = ϕi + ai,j − cai,j (7.22)

subject to

ϕi + ai,j ≤ 1 +Rcai,j, (7.23a)

−(ϕi + ai,j) ≤ −1 +R (1− cai,j), (7.23b)

obtained with the big number method [147]. This method activates or deactivates the
constraints depending on the value of the binary variable, with R being a sufficiently big
number. In this case, cai,j = 0 if (7.21a) has to be used and cai,j = 1 if (7.21b) is needed.

The same formulation can be developed for the departure times:

Di,j = ϕi + di,j, if ϕi + di,j ≤ 1, (7.24a)

Di,j = ϕi + di,j − 1, if ϕi + di,j > 1, (7.24b)

for all j ∈ {1, . . . , |Γi|}, i ∈ {2, . . . , I}. Introducing the binary variables cdi,j, we have

Di,j = ϕi + di,j − cdi,j (7.25)

subject to

ϕi + di,j ≤ 1 +Rcdi,j, (7.26a)

−(ϕi + di,j) ≤ −1 +R (1− cdi,j). (7.26b)

Since the binary variables cai,j and cdi,j are variables of the problem, we include the following
restrictions on their values to guarantee that the order of the paths is followed:

cai,j − cdi,j ≤ 0, ∀ j ∈ {2, . . . , |Γi|}, (7.27a)

cdi,j − cai,j+1 ≤ 0, ∀ j ∈ {1, . . . , |Γi| − 1}. (7.27b)
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7.6.2 Collision Avoidance During Coverage

A thorough consideration of collisions requires the inclusion of spatio-temporal restric-
tions in the problem, which implies a discretization of the environment and an analysis of
what happens at each point [94]. Nevertheless, for large environments or with many robots
or points to cover, the problem becomes computationally unaffordable or even intractable.
For this reason, we include the collision avoidance as planning constraints. Although it is
overprotective, it is much lighter in terms of computational cost.

The first situation in which a collision may occur is when two or more robots try to
cover the same point at the same time. From the planning perspective, this happens if the
coverages of such point by different robots are overlapped in the team plan. We avoid this
type of collisions with two groups of constraints. The first group is

Ai1,j1 − Ai2,j2 ≤ −ε+R (1− ccci1.j1,i2,j2), (7.28a)

Ai1,j1 −Di1,j1 ≤ −ε+R (1− ccci1.j1,i2,j2), (7.28b)

Di1,j1 − Ai2,j2 ≤ −ε+R (1− ccci1.j1,i2,j2), (7.28c)

Di2,j2 − Ai1,j1 ≤ R (1− ccci1.j1,i2,j2) +R(1− cdi2,j2 + cai2,j2), (7.28d)

for all j1, j2 such that Γi1(j1) = Γi2(j2), where the constant ε is the minimum separation
between departures and arrivals to the same point. The first restriction, Eq. (7.28a), activates
this group if Ai1,j1 ≤ Ai2,j2 , that is, if the coverage of robot i1 starts before the coverage of
robot i2. When this happens, the binary variable ccci1.j1,i2,j2 = 1. Since i1 starts covering
earlier, we have to assure that its coverage is not split by the end of the period, that is,
its departure time is not translated to the first part of the period, as for the coverage of q3

by i3 in Fig. 7.1b. Eq. (7.28b) guarantees this. In the third place, Eq. (7.28c) assures that
the coverage of robot i2 starts after the coverage of i1 has ended, i.e., Di1,j1 ≤ Ai2,j2 . The
last restriction guarantees that, if the coverage of i2 has to be split, i.e., cdi2,j2 − c

a
i1,j1

= 1, it
finishes before the coverage of i1 starts.

The second group of restrictions is

Ai2,j2 − Ai1,j1 ≤ −ε+Rccci1.j1,i2,j2 , (7.29a)

Ai2,j2 −Di2,j2 ≤ −ε+Rccci1.j1,i2,j2 , (7.29b)

Di2,j2 − Ai1,j1 ≤ −ε+Rccci1.j1,i2,j2 , (7.29c)

Di1,j1 − Ai2,j2 ≤ Rccci1.j1,i2,j2 +R (1− cdi1,j1 + cai1,j1). (7.29d)

Opposite to the first one, this second group is activated when Ai2,j2 ≤ Ai1,j1 or, equivalently,
when ccci1.j1,i2,j2 = 0.

7.6.3 Collision Avoidance During Motion

The second situation in which a collision between a pair of robots may occur is when
both of them are moving or one is moving and the other is covering a point. This can be
prevented in the same way that the collisions during coverage, by avoiding the overlap of the

147



movements and coverages that may cause a conflict. In fact, we propose the same restrictions
as in (7.28)-(7.29) for the two cases: the movements of two robots, and a movement of a
robot and a coverage of a point by another robot.

We define as δi,j and αi,j the initial and final times of the movement between Γi(j) and
Γi(j + 1), respectively. They are defined opposite to the coverage times since δi,j = di,j is
the departure of the movement and αi,j = ai,j+1, j ∈ {1, . . . , |Γi| − 1}, is the arrival of the
movement. For j = |Γi|, we have αi,|Γi| = 1. Similarly to the coverage times, we can express
the departure and arrival times of the movements in the team plan as a function of the times
in the robot period and the binary variables cai,j and cdi,j as follows:

∆i,j = ϕi + δi,j − cdi,j, (7.30a)

Λi,j = ϕi + αi,j − cai,j+1. (7.30b)

For j = |Γi|, we define the binary variable cai that represents if the final time of the last
movement of each robot is greater than one or not. It requires the following restrictions:

ϕi + αi,|Γi| ≤ 1 +Rcai , (7.31a)

−(ϕi + αi,|Γi|) ≤ −1 +R (1− cai ), (7.31b)

cdi,|Γi| − c
a
i ≤ 0. (7.31c)

In order to decide if two movements can lead to a collision, we calculate the minimum
distance between the two trajectories of the movements, dmmi1.j1,i2,j2 and determine that a
collision is possible if such distance is lower than the sum of the sizes of the robots, i.e.,
dmmi1.j1,i2,j2 < ri1 + ri2 . If the pair of movements may result into conflict, the following two
sets of constraints are included in the problem. These sets are the same as (7.28)-(7.29),
respectively, but for the departure and arrival times of the movements. The first set,

∆i1,j1 −∆i2,j2 ≤ −ε+R (1− cmmi1.j1,i2,j2), (7.32a)

∆i1,j1 − Λi1,j1 ≤ R (1− cmmi1.j1,i2,j2), (7.32b)

Λi1,j1 −∆i2,j2 ≤ −ε+R (1− cmmi1.j1,i2,j2), (7.32c)

Λi2,j2 −∆i1,j1 ≤ −ε+R (1− cmmi1.j1,i2,j2) +R (1− cdi2,j2 + cai2,j2+1), (7.32d)

is active when the movement of robot i1 starts before the movement of i2, i.e., ∆i1,j1 ≤ ∆i2,j2

in Eq. (7.32a). This is represented by the binary variable cmmi1.j1,i2,j2 = 1. The second constraint
represents that the movement of robot i1 cannot be split by the end of the period; the third
one, that the movement of i2 must start after the movement of i1 has ended; and the last one
that, if the movement of i2 is split by the end of the period, it must finish before i1 starts
moving.

Equivalently, the second set of constraints activates when the movement of robot i2 starts
before the movement of i1:

∆i2,j2 −∆i1,j1 ≤ −ε+Rcmmi1.j1,i2,j2 , (7.33a)

∆i2,j2 − Λi2,j2 ≤ Rcmmi1.j1,i2,j2 , (7.33b)

Λi2,j2 −∆i1,j1 ≤ −ε+Rcmmi1.j1,i2,j2 , (7.33c)

Λi1,j1 −∆i2,j2 ≤ −ε+Rcmmi1.j1,i2,j2 +R (1− cdi1,j1 + cai1,j1+1), (7.33d)

148



and the meaning is the same as (7.32) replacing i1 by i2 and vice versa.
The second type of collisions during the motion of a robot i1 is with another robot i2

that is covering a point. In that case, we calculate the minimum distance between the
trajectory of the movement of i1 and the point where i2 is covering, dmci1.j1,i2,j2 . If a collision
may happen, i.e., dmci1.j1,i2,j2 < ri1 + ri2 , we include the same two sets of constraints as before
with the departure and arrival times of the movement of i1 and the arrival and departure
times of i2 to the point that it must cover. The first set,

∆i1,j1 − Ai2,j2 ≤ −ε+R (1− cmci1.j1,i2,j2), (7.34a)

∆i1,j1 − Λi1,j1 ≤ R (1− cmci1.j1,i2,j2), (7.34b)

Λi1,j1 − Ai2,j2 ≤ −ε+R (1− cmci1.j1,i2,j2), (7.34c)

Di2,j2 −∆i1,j1 ≤ −ε+R (1− cmci1.j1,i2,j2) +R (1 + cdi2,j2 − c
a
i2,j2

), (7.34d)

is active if the movement starts before the coverage and the second,

Ai2,j2 −∆i1,j1 ≤ −ε+Rcmci1.j1,i2,j2 , (7.35a)

Ai2,j2 −Di2,j2 ≤ Rcmci1.j1,i2,j2 , (7.35b)

Di2,j2 −∆i1,j1 ≤ −ε+Rcmci1.j1,i2,j2 , (7.35c)

Λi1,j1 − Ai2,j2 ≤ −ε+Rcmci1.j1,i2,j2 +R (1− cdi1,j1 + cai1,j1+1), (7.35d)

if the opposite happens. The interpretation of these constraint sets is the same as for (7.28)-
(7.29) and (7.32)-(7.33).

7.6.4 Cost Function

The proposed restrictions guarantee that in the resulting schedule no collisions between
robots occur at any time. In some applications, finding such solution may be enough and
the problem can be posed as a Constraint Satisfaction Problem. Nevertheless, in many other
applications, it is desirable to find a solution that is not only feasible but also optimizes some
kind of metric. In particular, we aim to minimize the time in which two or more robots are
moving simultaneously:

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

max
(
0,min(Λik1 ,jk1

−∆ik2 ,jk2
)
)
, (7.36)

with k1, k2 = 1, 2. fschedule represents the sum of the times in which each pair of movements
of different robots are overlapped. This function is motivated by the mobile induction ap-
plication that we introduce in Chapter 8 and is intended to minimize the changes in power
requested from the electric grid.

The problem of minimizing (7.36) can be transformed to the standard MILP formulation
as follows. First, we introduce the auxiliary variables zi1,j1,i2,j2 to be greater or equal to the
maximum inside (7.36):

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

zi1,j1,i2,j2 , (7.37)
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such that

zi1,j1,i2,j2 ≥ 0, (7.38a)

zi1,j1,i2,j2 ≥ xi1,j1,i2,j2 . (7.38b)

Second, we introduce the auxiliary variables xi1,j1,i2,j2 to be greater or equal to the mini-
mum inside (7.36), that is,

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

max(0, xi1,j1,i2,j2), (7.39)

with

xi1,j1,i2,j2 ≥ min(Λi1,j1 −∆i1,j1 ,Λi1,j1 −∆i2,j2 ,Λi2,j2 −∆i1,j1 ,Λi2,j2 −∆i2,j2). (7.40)

This can be reduced to one of the following constraints

xi1,j1,i2,j2 ≥ Λi1,j1 −∆i1,j1 −Re1
i1,j1,i2,j2

, (7.41a)

xi1,j1,i2,j2 ≥ Λi1,j1 −∆i2,j2 −Re2
i1,j1,i2,j2

, (7.41b)

xi1,j1,i2,j2 ≥ Λi2,j2 −∆i1,j1 −Re3
i1,j1,i2,j2

, (7.41c)

xi1,j1,i2,j2 ≥ Λi2,j2 −∆i2,j2 −Re4
i1,j1,i2,j2

, (7.41d)

e1
i1,j1,i2,j2

+ e2
i1,j1,i2,j2

+ e3
i1,j1,i2,j2

+ e4
i1,j1,i2,j2

= 3, (7.41e)

where eki1,j1,i2,j2 , k ∈ {1, . . . , 4}, are binary variables to activate the constraint between (7.41a)
and (7.41d) that gives the minimum value of xi1,j1,i2,j2 , thanks to (7.41e). Since the objec-
tive (7.37) is to minimize the sum of zi1,j1,i2,j2 , it can be seen that xi1,j1,i2,j2 will also be
minimized by activating such constraint.

Constraints (7.41a)-(7.41d) capture the duration of the overlap between each pair of
movements. In the case that one of the movements is completely overlapped with the other,
the duration of the overlap is equal to the duration of such movement. Therefore, we can
express (7.41a) and (7.41d) as

x1,2 ≥ Λ1 −∆1 −Re1
1,2, (7.42)

x1,2 ≥ Λ2 −∆2 −Re4
1,2. (7.43)

Note that from now on, we substitute subindices i1, j1 and i2, j2 by 1 and 2 for simplicity.
On the other hand, if the movements are only partially overlapped, the duration of

such overlap is only bounded by (7.41b) or (7.41c). Since they depend on cai,j and cdi,j
through (7.30), the difference Λik1 ,jk1

− ∆ik2 ,jk2
may not represent such duration if any of

the movements is split between the end and the beginning of the team plan. This happens
if cdk ≡ cdik,jk = 0 and cai ≡ caik,jk+1 = 1. In the following we formulate restrictions for all
the cases in which none, one or both movements are split, that are conditionally activated,
applying the big number method, depending on cdk and cak. In particular, if cak − cdk = 0, the
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movement is not split, and its corresponding constraints activated, and if 1 − cak + cdk = 0,
the movement is split.

We set these two restrictions for the case in which none of the movements is split:

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (ca1 − cd1)−R (ca2 − cd2), (7.44a)

x1,2 ≥ Λ2 −∆1 −Re4
1,2 −R (ca1 − cd1)−R (ca2 − cd2). (7.44b)

Similarly, when both are split, the constraints are

x1,2 ≥ Λ1 − (∆2 − 1)−Re1
1,2 −R(1− ca1 − cd1)−R (1− ca2 − cd2), (7.45a)

x1,2 ≥ Λ2 − (∆1 − 1)−Re4
1,2 −R(1− ca1 − cd1)−R (1− ca2 − cd2). (7.45b)

In this case we only subtract 1 to the initial times to overcome the split.
We proceed in a similar way when only one of the movements is split although in these

cases it is slightly more complicated. In the first place we focus in the case in which the
movement of robot 1 is split. We check which part of the movement may overlap with the
movement of robot i2. This is done by introducing a binary variable b1

1,2 such that b1
1,2 = 1

if ∆1 ≤ Λ2, meaning that the second part is overlapped, and b1
1,2 = 0, otherwise, meaning

that the candidate for overlap is the first part. This variable is obtained from the following
constraints:

∆1 − Λ2 ≤ R (1− ca1 − cd1) +R (ca2 − cd2) +R (1− b1
1,2), (7.46a)

Λ2 −∆1 ≤ R (1− ca1 − cd1) +R (ca2 − cd2) +R b1
1,2. (7.46b)

Depending on the value of b1
1,2 we transform the constraints differently. When b1

1,2 = 1 we
add one to the final time of the movement of i1. This can be seen as moving the part of the
movement that is at the beginning of the plan to the right side. Thus, the constraints are

x1,2 ≥ (Λ1 + 1)−∆2 −Re1
1,2 −R (1− ca1 − cd1)−R (ca2 − cd2)−R (1− b1

1,2), (7.47a)

x1,2 ≥ Λ2 −∆1 −Re4
1,2 −R (1− ca1 − cd1)−R (ca2 − cd2)−R (1− b1

1,2). (7.47b)

On the contrary, when b1
1,2 = 0, we subtract one to the initial time of the movement to

compare the movement of robot i2 with the left part of the movement of i1. The constraints
result in

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (1− ca1 − cd1)−R (ca2 − cd2)−R b1

1,2, (7.48a)

x1,2 ≥ Λ2 − (∆1 − 1)−Re4
1,2 −R (1− ca1 − cd1)−R (ca2 − cd2)−R b1

1,2. (7.48b)

The same procedure can be followed for the case in which the movement of i2 is split.
We include the binary variable b2

1,2 with

∆2 − Λ1 ≤ R (ca1 − cd1) +R (1− ca2 − cd2) +R (1− b2
1,2), (7.49a)

Λ1 −∆2 ≤ R (ca1 − cd1) +R (1− ca2 − cd2) +R b2
1,2. (7.49b)
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When b2
1,2 = 1, the constraints are

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (ca1 − cd1)−R (1− ca2 − cd2)−R (1− b2

1,2), (7.50a)

x1,2 ≥ (Λ2 + 1)−∆1 −Re4
1,2 −R (ca1 − cd1)−R (1− ca2 − cd2)−R (1− b2

1,2), (7.50b)

and, otherwise,

x1,2 ≥ Λ1 − (∆2 − 1)−Re1
1,2 −R (ca1 − cd1)−R (1− ca2 − cd2)−R b2

1,2, (7.51a)

x1,2 ≥ Λ2 −∆1 −Re4
1,2 −R (ca1 − cd1)−R (1− ca2 − cd2)−R b2

1,2. (7.51b)

7.6.5 Optimal Schedule

Finally, we are in position to formulate the complete problem of finding the optimal
schedule for the team of robots.

Problem 7.6.1. The optimal periodic schedule, in which each robot executes its own periodic
plan and which guarantees that no collisions occur and that the time in which two or more
movements overlap is minimum, is the solution of the following MILP:

min fschedule

subject to the restrictions introduced between (7.23) and (7.51).

The variables that define the team schedule are ϕi, that represent the time that each
individual plan has to be shifted to produce the team plan. Recall that only I − 1 of these
variables are needed. Additionally, we have included the variables that are summarized in
Table 7.1. In particular, xi1,j1,i2,j2 and zi1,j1,i2,j2 are real-valued while the others are binary.

It is important to emphasize that, although the number of variables and restrictions
is high, the problem can be solved efficiently using standard state-of-the-art solvers [148].
Particularly, for a size of 3 robots and 6 points, that can be appropriate for the the application
in which we focus, the problem is solved in less than 15ms on an average laptop. We provide
more details on the computational time in the simulations, Section 7.7. In addition, the
solution to the problem is independent of the value of the period since all the times are
obtained as a fraction of such period. In fact, the period can be calculated separately
depending on the desired performance of the system. For instance, it can be set to the
maximum time that a point can remain uncovered to ensure that it is covered more frequently.
Another alternative is to calculate the period depending on the maximum time allocated to
move.

On the downside, there are several reasons for which a feasible solution may not exist.
For instance, it may happen if two agents have a common path but in opposite directions, if
the space in which the agents can move is limited, or if an agent has to go through a point
of the environment that is never left unoccupied by another agent. They can be avoided
by modifying the paths of the agents in at least three ways: (i) invert the direction of the
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Name Number of variables

zi1,j1,i2,j2 , xi1,j1,i2,j2
∑I−1

i1=1

∑I
i2=i1+1 |Qi1||Qi2 |

ek|Qi1
|, k ∈ {1, . . . , 4} 4

∑I−1
i1=1

∑I
i2=i1+1 |Qi1||Qi2|

cai,j
∑I

i=2 |Qi| − 1

cdi,j
∑I

i=2 |Qi|

cai I − 1

ccci1,j1,i2,j2 Number of possible coverage overlaps

cmmi1,j1,i2,j2 , c
mc
i1,j1,i2,j2

Number of possible collisions

Table 7.1: Name and number of additional variables included to formulate the problem as a
MILP.

movement, (ii) change the points that are assigned to each agent, or (iii) use a different
cost function for the path optimization (7.8). The best solution in each case depends on the
application.

Finally, recall that this schedule minimizes the simultaneous motion of agent while sat-
isfying the collision avoidance restrictions. The problem could be limited to satisfy them
but it is worth to optimize another criteria at the same time. Actually, the restrictions
might be included in the problem of the times and production, but this would exponentially
increase the complexity of the problem and would still not guarantee the global optimum to
be found.

7.7 Simulations

In this section we present simulation results for the proposed approach to the persistent
coverage of a discrete environment. We focus on the existence of solution for the calculation
of the coverage times and actions from Section 7.3.1; on the influence of the paths in the final
solution (Sections 7.3-7.5); on the influence of the cost function used to calculate the optimal
times and action; and on the computational cost of the different parts of the solution.

The simulations are implemented in Matlab, most of them have been carried out through
a Monte-Carlo analysis and the results are aggregated for different values of the parameters,
specifically, they are averaged results.

Existence of Solution

In the first place we present simulation results on the accuracy of the sufficient conditions
on the existence of solution. The environment is a rectangle of 1×1.5 units in which Q = 20
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interest points are deployed randomly and covered by I = 5 robots. We have simulated
different values for the productions of the robots, which are fixed to the maximum, and the
desired coverage, including a random component, and the result are shown in Figure 7.2.
The solid lines represent how much production of the robots is required on average per
desired coverage unit to satisfy the conditions and the dashed lines, for the problem to have
a solution. Therefore, the difference between the solid and dashed lines of the same color
represents how accurate is our sufficient condition with respect to the existence of solution.
It can be seen that they are close to each other and that this accuracy increases when the
number of robots and points is lower.
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(b) Partial reachability.

Figure 7.2: Sufficient conditions. Solid lines represent the quotient between the average
consumption and the average accumulation when the sufficient condition is satisfied and
dashed lines when the problem has a solution. Different results are depicted in blue, red,
green and black for I = 4, 8, 12, 16 robots, respectively.

Influence of Paths

In the second place, we show an example of the evolution of the resulting trajectories
for the initial solution with predefined paths, Fig 7.3a, for the iterated solution to shorten
the paths, Fig. 7.3b and the entire solution with non-predefined paths, Fig. 7.3c. Table 7.2
reports the numerical results of this example where the cost function is

∑
q∈Q,r∈R θq,r and

the productions are again fixed to their maximum value. It can be seen that the initial paths
of different robots are overlapped and a long traveled distance is required. However, there
are many points that do not need to be covered by more than one robot since the iterated
solution provides much shorter paths and shorter moving times while keeping the values of
the times. In the third case, the solution with variable paths obtains slightly longer coverage
times but drastically reduces the moving times and the distance. For this reason, we use the
sum of the coverage times and the move times as a metric for performance comparison, as
in the third row of Table 7.2.
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(a) Initial solution with predefined paths.
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(b) Solution with shortened paths.
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(c) Solution for non-predefined paths.

Figure 7.3: Example of the evolution of the resulting paths for the different solutions with
Nr = 5 and Nq = 20. The blue asterisks represent the interest points and the paths are
represented in different colors and line types for each robot.
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Paths Predefined Shortened Non-Predefined∑
q∈Q,r∈R θq,r 1.572 1.572 1.601∑

r∈R θ
m
r 0.629 0.402 0.210∑

q∈Q,r∈R θq,r +
∑

r∈R θ
m
r 2.201 1.974 1.811

Distance 11.358 7.270 3.793

Table 7.2: Results on problem reduction.

Now we focus on the iterative solution. In practice, the final coverage times do not differ
from the initial ones (first row of Table 7.2) but, as can be seen in Fig. 7.4, the improvement
of the total traveled distance is important. The greatest improvement takes place in the first
iteration and the improvement of the second and subsequent iterations is smaller, specially
when there are few robots in the environment. This means that a fast solution found in the
first iteration can be enough and avoid more computations.
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Figure 7.4: Evolution of the distance for the iterative solution. Solid lines represent the
values for the initial solution; dashed lines, for the first iteration; and dash-dotted lines,
for the second iteration. Different results are depicted in blue, red, green and black for
I = 4, 8, 12, 16 robots, respectively.

We also compare the entire coverage performance of the iterated solution and the solution
with non-predefined paths. We calculate the relative improvement of the solution with non-
predefined paths with respect to the iterated solution in two situations: when the moving
times represent a substantial part of the period (dash-dotted lines) and the opposite (dashed
lines). As mentioned before, the metric that we use is the sum of the coverage times plus
the move times. Thus, we calculate the relative difference on this metric calculated for
both solutions. Fig. 7.5 shows that, in the first case, the solution with non-predefined
paths performs between a 15 and a 40% better than the iterated. In the second case, the
improvement is less significant, being more pronounced when the ratio robots/points is low.
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Figure 7.5: Relative difference in the sum of times θq,r and θmr between the iterated solution
and the solution with non-predefined paths. Dash-dotted lines represent the results when
motion takes much more time than coverage and dashed lines the opposite. Different results
are depicted in blue, red, green and black for I = 4, 8, 12, 16 robots, respectively.

Influence of the Cost Function

In this section we evaluate the results of our solution for different cost functions used
in the calculation of the optimal times and productions. This function has an important
influence in the final paths of the robots and, therefore, in the team plan and the quality of
the coverage provided. In particular, we focus on the case of linear functions because they
simplify the problem and are appropriate for the application of mobile induction heating,
that we introduce in Chapter 8. The first function that we evaluate is

f1(θq,r) =
∑
i∈I

∑
j∈Γi

(
−θi,j +

1

ρmax
i

ρi,j

)
, (7.52)

in which the goal is to maximize the assigned times and minimize the normalized productions
to provide a coverage as homogeneous in time as possible. The second alternative only tries
to minimize the productions in order to reduce the maximum actions of the robots:

f2(θq,r) =
∑
i∈I

∑
j∈Γi

1

ρmax
i

ρi,j, (7.53)

In the third function we include a weight to the times with respect to f1 that is the inverse
of the normalized distance from the robot to the point,

f3(θq,r) =
∑
i∈I

∑
j∈Γi

(
− 1

dp0
i ,q

θi,j +
1

ρmax
i

ρi,j

)
, (7.54)
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and in the fourth one we also weight the productions with the relative importance of the
required coverage P ∗(q) with respect to the maximum production of the robot ρmax

i .

f4(θq,r) =
∑
i∈I

∑
j∈Γi

(
− 1

dp0
i ,q

θi,j +
P ∗(q)

ρmax
i

2 ρi,j

)
, (7.55)

In the last two alternatives the times are weighted using the clustering procedure introduced
in Section 7.5, without the productions in

f5(θq,r) =
∑
i∈I

∑
j∈Γi

−ωi,j θi,j, (7.56)

and with weighted productions in

f6(θq,r) =
∑
i∈I

∑
j∈Γi

(
−ωi,j θi,j +

P ∗(q)

ρmax
i

2 ρi,j

)
. (7.57)

The evaluation consisted in 10 runs of the algorithm with different positions of the points
for different numbers of robots and points, all of them for the six cost functions. The required
coverage was randomly selected between 400 and 2200 units while the maximum production
of the robots was 5000 units. The number of robots and points was selected in a way that
the team had enough production to cover the points which results in at most twice more
points than robots.

Since the cost function influences the points that each robot finally visits, we first evaluate
in how many cases the optimal solution was found, both for the calculation of times and
productions and for the team plan scheduling. In Fig. 7.6 it can be seen that a solution was
found in all the 190 runs for the times and production. However, the first two cost functions
only allowed a solution for the scheduling in the 75% and 68% of the cases while the others
allowed more than 95% of solutions. Recall that the existence of solution is discussed in
Section 7.6.5.
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Figure 7.6: Number of solutions found for the times and productions (dark blue) and for the
scheduling (yellow).

In Table 7.3 we compare six different metrics obtained from the simulations to give an
idea of the behavior with each function. The first metric is the average number of iterations
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f1 f2 f3 f4 f5 f6

Iterations 1.11 1.10 1.27 1.12 1.36 1.13

Movements 1.43 1.44 1.44 1.44 1.45 1.44

Total Coverage 0.95 0.95 0.94 0.95 0.97 0.97

Uncovered Time 0.30 0.30 0.32 0.31 0.29 0.29

Max Production 0.73 0.73 0.93 0.69 0.81 0.68

Homogeneity 3.03 2.93 3.18 3.16 3.45 3.24

Table 7.3: Comparison of metrics between cost functions.

of Algorithm 5 to find the final solution. With f3 and f5 it is slightly bigger, which means
that these cost functions allow the paths to be progressively shortened more than the others.
The second metric is the average number of movements per robot during each period, which
is really similar for all the functions. The third row includes the average time that each
robot dedicates to cover the points in a period. The differences are again small with f5

and f6 producing a 2% better results. In the fourth place we calculate the maximum time
that a point remains uncovered every period. The same functions f5 and f6 give better
results even though there is not much difference between all of them. The fifth metric
shows the maximum production required to the robots and normalized by the maximum
production available. In this case, f3 performs much worse than the others while f4 and f6

require the smaller maximum productions. Finally we compute a metric that determines the
homogeneity of the coverage. It is defined as

h =
∑
q∈Q

∑
i∈I

(
θi,j −

P ∗(q)

ρmax
i

)2

, (7.58)

and the results show that, on average, the cost functions f1 and f2 provide the most homo-
geneous coverage. As a conclusion, one can see that all the alternatives have advantages and
disadvantages and the selection must be made depending on the application.

Computational Time

Finally we pay attention to the computational times of the two main steps of our solu-
tion. In Fig. 7.7 we show the computation cost incurred to obtain the coverage times and
productions solving problem (7.8). Although in all the cases the increase of the time is more
than linear with the number of robots and points, for a team of 13 or 15 robots, the compu-
tation requires around 20 seconds in the worst case, i.e., with f3. This time is negligible for
most persistent coverage applications in which the robots are required to carry out the task
indefinitely. In addition, the difference between cost functions is significant. The worst-case
computation required with f3 is around 5 times lower with f5 and in some cases, such as
with f1, the computation increases only with the number of robots.

159



4 6 8 10 12 14 16
Q

0

5

10

15
T

im
e
 [
s
]

I=3

I=5

I=7

I=9

I=11

I=13

I=15

(a) f1.

4 6 8 10 12 14 16
Q

0

2

4

6

8

T
im

e
 [

s
]

(b) f2.

4 6 8 10 12 14 16

Q

0

10

20

30

T
im

e
 [

s
]

(c) f3.

4 6 8 10 12 14 16
Q

0

5

10

15

T
im

e
 [

s
]

(d) f4.

4 6 8 10 12 14 16

Q

0

2

4

6

T
im

e
 [

s
]

(e) f5.

4 6 8 10 12 14 16
Q

0

5

10

T
im

e
 [

s
]

(f) f6.

Figure 7.7: Mean calculation time of the coverage times and productions solving pro-
blem (7.8). Each figure represents the results with a different cost function and different
colors represent different number of robots.

The results on the computation time of the scheduling are very similar for all the cost
function and, therefore, we only show in Fig. 7.8 the times for f1. These times are in the
order of milliseconds for small teams and only increase to approximately one second for
the biggest teams and numbers of points. According to these results, the computational
complexity resides in problem (7.8) rather than in Problem 7.6.1.
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Figure 7.8: Mean calculation time of the scheduling solving Problem 7.6.1.

7.8 Conclusions

In this chapter we have introduced a periodic solution to the persistent coverage of a
discrete environment. We have proposed a divide-and-conquer solution to divide the entire
problem in three smaller subproblems. We obtain the optimal coverage times and actions
to satisfy the coverage objective of the environment by solving a QCLP. We have presented
guarantees on the existence of solution for this program, an algorithm to iterate its solution
and shorten the robots paths, and an alternative cost function to include the lengths of the
paths in the problem. We have also formulated a MILP to find a periodic team schedule in
which no collisions occur.

The complete problem is hard to solve at once or even intractable and the computational
complexity typically grows exponentially with the number of robots and points. Our divide-
and-conquer strategy counteracts this growth and allows us to find the optimal solution for
each subproblem independently. In fact, simulation results support our proposal and demon-
strate that it is tractable for significant team and environment sizes. Moreover, although the
final solution to the entire problem may not be the optimal, this is a conceptually simple and
piecewise optimal way of solving the problem. In fact, this is the first attempt to calculate
simultaneously the paths and the coverage times and actions, that allows the collaboration
of several robots at the same point and guarantees collision avoidance.

The solution presented in this paper is valid for general discrete environments but it has
been designed keeping in mind its applicability to the problem of domestic induction heating
with mobile inductors. In the following chapter we particularize it to this problem to fulfill
the second objective of this thesis.
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Chapter 8

Application to Mobile Induction
Heating

In this chapter we particularize the previous solution to the application of domestic in-
duction heating with mobile induction. The problem is to persistently heat a finite set of pots
with a team of mobile inductors. Since the motion of the inductors is very constrained due
to the small size of the hob with respect to them, we develop a particular collision avoidance
policy to guarantee the heating of all the pots. We show the performance of the entire solution
with experiments on a real prototype of an induction hob with mobile inductors carried by
robotic arms.

8.1 Introduction

This chapter of the thesis is devoted to the application of a persistent coverage solution
to the problem of domestic heating with mobile inductors. In particular, we apply and
particularize the solution from the previous chapter, that was already developed for a discrete
environment and with some choices taken keeping in mind this application.

The most important feature of this proposal is that it addresses an open problem which
offers a significant opportunity to increase the flexibility of domestic hobs at a moderate
increase of cost. Moreover, it can change the way in which daily cooking is confronted and
transform it to a new family experience that can be combined with many other tasks at
the same time. This can be done by offering really big cooking areas in the countertop or
even in other kind of furniture that no one could think of it as a hob (Fig. 1.6). The mobile
inductors provide the flexibility to reach and cover such big areas while being cheaper than
current flexible solutions and our periodic strategies guarantee a perfect heating of the pots.
In fact, the main advantage of this solution is that it guarantees that the set of pots placed
by the user receive the desired power. In particular, if each pot can have its own inductor
assigned, the power is guaranteed all the time and, if the inductors have to be shared between
the pots, it is guaranteed periodically or, equivalently, on average. Not only there are few
previous attempts to find these kind of periodic coverage strategies with cooperation of the
robots but none of them has been applied to induction heating before.
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The main restrictions that have to be faced for mobile induction heating are twofold:

• Requested power restrictions: all the devices connected to the electric grid must
comply with the European norm UNE-EN 61000-3-3, 2013, that limits the temporal
changes in power requested from the grid. In this application, this changes occurs
when an inductor arrives at a pot and starts heating it or stops heating it to move to
the next one in its path. To overcome this limitation we minimize the simultaneous
motion of the inductors with the cost function of the scheduling in Section 7.6. The
changes of requested power are therefore minimized when there is no need to overlap
movements since the minimum change occurs when only one inductor stops requesting
power before requesting it again. Otherwise, finding the minimum overlap maximizes
the possibility of compensating the requested power with other inductors to comply
with the norm.

• Spatial restrictions: they come from the limited space that the inductors have to
share inside the hob and the motion restrictions of the robotic arms. In this cluttered
environment, an effective collision avoidance policy is critical for a good performance
of the system and, for this reason, we modify the scheduling of the previous chapter
to provide a more precise and efficient collision avoidance.

In summary, in this chapter we apply our periodic solution to the problem of persistently
heating a finite set of pots with a team of mobile inductors. In the first place, we calculate
a static assignment in which each pot is heated by the same inductor all the time, if it is
possible. If not, we apply our periodic strategy. To do so, we introduce some particularities
in the planning of the robot paths and a new collision avoidance method, more appropriate
for the environment. Finally, we carry out a thorough experimental validation of the proposal
with a real prototype.

The remainder of this chapter is structured as follows. In Section 8.2 we present the static
assignment and in Section 8.3 the particularities of the periodic coverage strategy. Finally,
we present the experimental results in Section 8.4 and conclusions in Section 8.5.

8.2 Static Assignment

In general, persistent coverage is applied in environments where the number of points to
be covered is higher than the number of available robots. This always leads to strategies
in which the robots have to move from one point to another to cover them. However, in
domestic heating, most of the time the user cooks with only one or two pots at the same
time, even though he usually has three or four heating zones. In a flexible hob like the one
that we propose, this is not expected to change and at least three inductor can be placed
in the hob. This means that, in many situations, there are more available inductors, i.e.,
robots, than pots, i.e., points. For these reason we need to find an static assignment,

S =
{

(q, iq),q ∈ Riq | q1 6= q2 ⇐⇒ iq1 6= iq2 , ∀q,q1,q2 ∈ Q
}
,
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in which each pot is covered by only one inductor that remains static covering it, that is,
∀ k ≥ 0

pi(k) = q,

ρi(q) = P ∗(q).

Such a static assignment guarantees that the original coverage objective, Z(q, t) = Z∗(q),
can be maintained all the time.

In the first place, we formalize in which conditions the reachability of the robots allows
such static assignment to exist.

Proposition 8.2.1. Consider that I ≥ Q. If for any pair q1,q2 ∈ Q with q1 6= q2, the
conditions

|Iq1| = 1, (8.1a)

|Iq2| = 1, (8.1b)

Iq1 = Iq2 (8.1c)

hold, then, a feasible static assignment does not exist.

It is clear that the condition I ≥ Q is necessary for the assignment to exist, since at
least as many inductors as pots must be available, but it is not sufficient. The conditions
from (8.1) are needed to guarantee that there is no pair of pots that can only be covered by
the same inductor. Recall that ∪i∈IQi = Q.

Additionally, every inductor must be able to provide exactly the power required by its
assigned pot.

Proposition 8.2.2. A static assignment S must satisfy

ρmax
iq (q) ≥ P ∗(q), ∀ (q, iq) ∈ S,

to be valid.

In the case that at least a feasible assignment exists, we seek the one that minimizes the
time needed by the inductors to reach their assigned pots. We call fi(q) the function that
gives the time needed by inductor i to arrive at pot q. Thus, the optimal assignment is the
solution to

minimize
S

∑
q∈Q

∑
i∈I

fi(q)x(i,q),

subject to
∑
q∈Q

x(i,q) ≤ 1, ∀ i ∈ I,∑
i∈I

x(i,q) = 1, ∀q ∈ Q,

(8.2)

where x(i,q) = 1 if (q, i) ∈ S and x(iq,q) = 0, otherwise. To find the optimal assignment,
which solves (8.2) in polynomial time we make use of the Hungarian algorithm [146]. Follow-
ing such assignment, the inductors move to their respective destinations and start covering.
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The coverage action that they must in the transient is their maximum coverage action to
reach the coverage objective in the minimum time and in the steady-state is equal to the
instant power requested by the potsto maintain the desired level. Therefore,

ρiq(q) =

{
P ∗(q), if Z(q, t) = Z∗(q),

min(ρmax
iq (q), Z∗(q)− Z(q, t)), if Z(q, t) < Z∗(q),

8.3 Periodic Coverage

The main difficulty of heating a set of pots with mobile inductors appears when there
are more pots than available inductors or, more generally, when a static assignment is not
possible. Although it does not happen very frequently, it is required to make the hob flexible
and provide the user total freedom in his daily cooking. In the cases that it happens, we
transform the coverage objective in the periodic one from (7.7) and apply the strategy from
Chapter 7. In this section we introduce the different modifications that it requires.

8.3.1 Water Boiling

There is a particular situation in which a periodic strategy or any other approach that
relies on heating the pots from time to time is not suitable. This situation is the process of
boiling water, that is very frequent in domestic cooking.

The temperature of the pots suffers variations when the inductors start and stop heating
them. In most cooking processes, such as deep frying or just warming, the variation of the
temperature can hardly be appreciated by the user. However, this effect can be negative in
boiling processes, where the bubbles can appear and disappear when the power changes. An
example can be seen in Fig. 8.1. When the pot is receiving power from the inductor, the
water is boiling gently (Fig. 8.1a) but as soon as the power is swithed off, the boiling stops
(Fig. 8.1b) and the bubbles disappear (Fig. 8.1c).

In order to avoid this undesirable situations, when a boiling process is taking place, the
assignment of the inductors can be adjusted to keep an inductor under the boiling pot all
the time. From the team perspective, this can be solved in two different manners. The fist
one is to directly assign an inductor to the boiling pot and solve the periodic coverage for
the rest of the pots with the rest of the inductors. The second alternative is to solve the
problem for all the pots and inductors but fixing Qi = q and θmi = 0, with q, the pot in
which we want to boil water and i, the inductor that we want to assign to the pot. Both
solutions are simple and computationally negligible.

8.3.2 Configuration Change and Path Planning

The first step of the periodic coverage strategy presented in Algorithm 4 is to calculate the
paths that the robots must follow. However, this is not straightforward for mobile inductors
due to the robotic arms that are in charge of moving them.
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(a) (b)

(c)

Figure 8.1: Example of the effect of switching off the power of a pot with water boiling on
it. (a) Water boiling at maximum power. (b) Water 5 seconds after switching off the power.
(c) Water 10 seconds after switching off the power.

The arms are composed of two rotational joints and two link. The first link connects
the joint that is attached to the hob chassis with the second joint, that we call elbow. The
second link connects the elbow with the inductor. We define the origin of the inductor with
the first link perpendicular to the hob side and the second link in a 180◦-angle with the first
one, that is, with the arm totally folded. From this origin there are two possible directions of
turn for the motor of the second joint. Depending on the direction of the turn, the arm can
adopt two different configurations as we show in Fig. 8.2 for the top arm. If we trace a line
from the first joint to the inductor center, the elbow can be placed at the right side, leading
to the elbow-right configuration (Fig. 8.2a), or at the left side, leading to the elbow-left
configuration (Fig. 8.2b).

Most of the points of the hob can be reached with the arm in both configurations. Never-
theless, some areas are only reachable with one configuration because the arm would collide
with the hob borders in the other configuration. An example can be seen in Fig. 8.2a for
the bottom arm. The elbow-left configuration is not feasible for this position of the inductor
because it is too close to the border. This forces to change the configuration of the arm when
it tries to reach a position in which the current configuration is not feasible and, to this end,
it is necessary to go through the origin to change the configuration without collisions. This
has to be taken into account when planning the paths of the inductors between pots. In
particular, when solving the TSP that gives the closed paths of the inductors, we include
this configuration change in the cost of the path between any two pots. This should also
be taken into account for the collision avoidance, since the path between two points may
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(a) (b)

Figure 8.2: Example of the two different configuration of the top robotic arm. (a) Elbow-
right configuration. (b) Elbow-left configuration.

no longer be the straight line between them. However, the new avoidance method that we
introduce next is inherently capable of handling this.

8.3.3 Collision Avoidance

The collision avoidance policy presented in 7.6 is overprotective in the sense that, if the
movements of two robots may result into a collision, one of them is executed first and the
other one has to wait until it finished to start. For instance, in Fig. 7.1c the movement
between q1 and q3 of i1 (blue path) may collide with the movement between q5 and q1 of i3
(green path), specifically at q1. The restrictions express that i1 cannot start moving from q5

until i1 has reached q3. This is more restrictive than needed. In fact, the is avoided collision
if only i1 starts moving before i3 reaches q1.

The hob environment is significantly small in comparison with general environments and
the number of robots and points is very limited. In these conditions, a discretization of the
environment and an analysis of what happens at each point becomes affordable and permits
to include spatio-temporal restrictions, instead of planning constraints, to avoid collisions
between the inductors. These constraints provide a solution much less overprotective than
the previous one, which is necessary in such an environment where the space occupied by the
inductors is significant with respect to the free space. It is important to note that the arms
are designed and attached to the hob in such a way that the first links of any pair of them
cannot collide. Therefore, only the collisions between the inductors have to be avoided.

The idea of the new policy that we propose is to discretize the hob and determine the
time that each inductor is occupying each cell of the hob where a collision may occur as
a function of the scheduling time, ϕi. Then, the restrictions only avoids that any inductor
starts occupying a cell that is already occupied by another inductor.

In the first place, the hob is discretized using a square grid, as shown in Fig. 8.3. Each
cell is referred to as c.

Since the individual paths of the inductors are known, the cells in which a collision
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Figure 8.3: Example of the discretization of the hob.

between two inductors is possible are determined and the times in which the inductors
arrive to those cells, a′i,c, and depart from them, d′i,c are found. These arrival times can be
transformed to the team plan as

A′i,c = ϕi + a′i,c, if ϕi + a′i,c ≤ 1,

A′i,c = ϕi + a′i,c − 1, otherwise,

and the departure times as

D′i,c = ϕi + d′i,c, if ϕi + d′i,c ≤ 1,

D′i,c = ϕi + d′i,c − 1, otherwise.

These times are calculated keeping in mind that an inductor can go through the same cell
several times in the same period although we do not formulate it explicitly for the sake of
simplicity of notation.

In order to make the arrival times amenable for the MILP formulation from Problem 7.6.1,
we introduce the binary variables ca

′
i,c so that ca

′
i,c = 0 if ϕi + a′i,c ≤ 1 and ca

′
i,c = 1, otherwise.

Therefore, the times can be expressed as

A′i,c = ϕi + a′i,c − ca
′

i,c,

subject to

ϕi + a′i,c ≤ 1 +Rca
′

i,c, (8.3a)

−(ϕi + a′i,c) ≤ −1 +R (1− ca′i,c), (8.3b)

with R a sufficiently big number. Note that ca
′
i,c has the effect of activating the appropriate

constraint. The same can be done to the departure times, introducing cd
′
i,c:

D′i,c = ϕi + d′i,c − cd
′

i,c,
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subject to

ϕi + d′i,c ≤ 1 +Rcd
′

i,c, (8.4a)

−(ϕi + d′i,c) ≤ −1 +R (1− cd′i,c). (8.4b)

Finally, we are in the positions to impose the two sets of restrictions to these times that
avoid collisions between inductors. The first set avoids that an inductor i2 occupies a cell
when inductor i1 is already on it:

A′i1,c − A
′
i2,c
≤ R (1− c′i1,i2,c), (8.5a)

A′i1,c −D
′
i1,c
≤ R (1− c′i1,i2,c), (8.5b)

D′i1,c − A
′
i2,c
≤ −ε+R (1− c′i1,i2,c), (8.5c)

D′i2,c − A
′
i1,c
≤ −ε+R (1− c′i1,i2,c) +R (1− cd′i2,c − c

a′

i2,c
), (8.5d)

where ε is the minimum separation between a departure and an arrival to the same cell.
The first restriction, (8.5a), activates the whole group if A′i1,c ≤ A′i2,c, that is, if i1 arrives
to the cell before i2. When this happens, the binary variable c′i1,i2,c = 1. The second
restriction, (8.5b), ensures that the time in which i1 stays in the cell is not split by the end
of the period. Following this, (8.5c) guarantees that i2 does not arrive to the cell until i1
has left it, i.e., D′i1,c + ε ≤ A′i2,c. In the last one, (8.5b), the departure of i2 is restricted to
happen before the arrival of i1 when the time that i2 stays in the cell is split by the end of
the period. In the same way, the second set avoids that i1 occupies a cell when i2 is already
on it:

A′i2,c − A
′
i1,c
≤ Rc′i1,i2,c, (8.6a)

A′i2,c −D
′
i2,c
≤ Rc′i1,i2,c, (8.6b)

D′i2,c − A
′
i1,c
≤ −ε+Rc′i1,i2,c, (8.6c)

D′i1,c − A
′
i2,c
≤ −ε+Rc′i1,i2,c +R (1− cd′i1,c − c

a′

i1,c
), (8.6d)

With these restriction, the scheduling of the team plan is summarized in the following
problem.

Problem 8.3.1. The optimal periodic schedule, in which each robot executes its own periodic
plan and which guarantees that no collisions occur and that the time in which two or more
movements overlap is minimum, is the solution of the following MILP:

min fschedule

subject to the restrictions (7.23), (7.26), (7.27), (8.3) - (8.6) and those coming from the
cost function in Section 7.6.4.

The number of restrictions in this case does not depend so strongly on the number
of coverages and movements of the inductor, it does no the number of cells in which the
environment is discretized.
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8.4 Experiments

In this section we provide experimental results of the periodic heating strategy with the
prototype of mobile inductors introduced before. Since the interest of this validation is in
the movements of the inductors and the periodic strategy, in these experiments the pots
have been simulated and the power has not been actually provided in order to accelerate the
experimentation and guarantee the safety of the motion system. We have carried out rounds
of 20 experiments for Q = 4, 5 and 6 pots. The results obtained for different configurations
of the pots are very similar and, therefore, we only show results for the case of 6 pots.

(a) (b)

Figure 8.4: (a) Layout of one of the experiments. Blue circumferences represent the pots;
orange circumferences, the two coils of the inductors; and grey segments, the two links of
the robotic arms. (b) Snapshot of the prototype.

In Fig. 8.4a the layout of one of the experiments is shown. There are 6 virtual pots which
are circles of diameter 18cm. The pots require a constant P ∗(q) = 1300, 1300, 1600, 800, 1500
and 900W , respectively. In Fig. 8.4b a snapshot of the prototype for the instant 0.3 of the
period can be seen. Note that that, for instance, the right inductor has to go through
its home position to change its configuration. Otherwise it could not reach pot 4 without
colliding with the borders of the hob. This is one of the particularities of the system that
have been addressed in this chapter.

The optimal schedule obtained for this configuration of inductors and pots, using the
cost function (7.52) and solving Problem 8.3.1, is shown in Fig. 8.5. In this particular case
each inductor was assigned to two different pots but this is not necessarily the result, as we
show at the end of this section.

The power received by the pots can be seen in Fig. 8.6. One can see that all the pots
receive power periodically for a period of time and then have to wait some time until the
following coverage. This is a requirement of the system since there are more pots than
inductors. However, the average received power quickly tends to the required power, meaning
that, on average, the pots receive the desired power.

In Fig. 8.7 the power provided by the inductors is depicted along with the total power
of the hob. The cost function of the scheduling that minimizes the time in which more than
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Figure 8.5: Optimal schedule obtained for the experiment. R1 to R6 refer to pots q1 to q6.

one inductor is moving at the same time favor that the variations of the total power are
minimal. In addition, it allows us to adjust the total power of the hob when one inductor
starts or stops requesting power with the other two inductors to satisfy the norm on the
power requested to the grid.

Finally we show the results for four other experiments with the same cost function for
the calculation of the optimal times and actions and different configurations of pots. One
can see that each inductor is not necessarily assigned to two different pots.

8.5 Conclusions

In this chapter we have particularized the periodic coverage solution from the previous one
to a domestic heating environment with mobile inductors. We have introduced an optimal
static assignment for the cases in which the inductors do not need to move to provide the
power required by the pots. For the cases in which a periodic heating is needed, we have
discussed the problem of boiling water in one of the pots and how the configuration of the
arms affects the path planning. We have also presented a new collision avoidance policy
for this application, that is much less overprotective and computationally affordable. This
entire solution for mobile induction guarantees that the pots receive their required power
periodically and a thorough experimental validation supports our proposal and demonstrates
that a set of pots can be homogeneously heated with mobile inductors.

This proposal opens the possibility to create really innovative, high-value domestic hobs
with immense opportunities for the designers and for the customers. In fact, it fulfills the
technical solution of an innovation with a great potential.
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Figure 8.6: Power received by the pots during the experiment. The green line represents
the instant received power; the red line, the requested power; and the blue line, the average
received power.
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Figure 8.7: Power provided by the inductors during the experiment. The red, blue and green
lines represent the power of each inductor and the yellow line, the total power.

Figure 8.8: Experiment 2.
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Figure 8.9: Experiment 3.

Figure 8.10: Experiment 4.
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Figure 8.11: Experiment 5.
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Chapter 9

Conclusions

Persistent coverage with a team of mobile robots has been proven to be NP-hard and
many years of research have demonstrated that it is a difficult problem. In this thesis
we have addressed those challenges with the intention of developing solutions which can
be used for real life applications outside the laboratory while at the same time providing
as many optimality guarantees as possible. We have tackled the problem for continuous
environments and we have proposed solutions for increasingly more complicated settings,
from a centralized solution in a convex environment to a distributed solution in a complex,
non-convex environment, all of them with variable decay and importance of the coverage.
Prior to this thesis, these issues were untackled. We have also worked in general discrete
environments and focused in a particularly appealing application of persistent coverage:
domestic induction heating, that is of interest for the home appliances industry.

In the beginning of this thesis, we have concentrated on the simplest version of the
problem: a convex environment covered with a centralized system. We have demonstrated
that a finite-horizon globally-optimal solution can be found for the whole team. Our proposed
solution is based on a cost function that quantifies the quality of the coverage provided by
the team in a finite horizon. Minimizing this function we obtain the paths and actions
that the robots have to execute to optimize the coverage. We find them by transforming
the problem in a discrete optimization problem with restriction solved with a branch-and-
bound algorithm. This solution proves that the optimal can be found although it has the
disadvantages of being centralized and computationally expensive.

Centralized solutions have robustness problems to failures of the central node and require
really intense communications. For these reasons we have devoted our efforts to distributed
solutions, which are robust, efficient and scalable. However, the first step to cover an envi-
ronment distributedly is to have an estimate of the global coverage. To this end, we have
introduced a distributed estimation algorithm based on max-consensus that allows each robot
to have perfect information of the coverage in its surroundings and with a bounded error in
the whole environment. This algorithm provides the robots enough accurate information to
reach distributedly the same solution that a centralized gradient-based method. In addition,
it has also proven to be communication-effective since each robot is capable of deciding which
information is needed by its neighbors.

Using this estimation strategy, we have developed two different methods to define the
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motion of the robots. The idea in both of them is to lead the robots to the points in which
they can improve the coverage the most, that we call coverage goals. To quantify this, we
have presented the improvement function, that is key to optimize the coverage. The first
method includes a motion controller that combines an action based on the gradient of the
improvement and an action to direct the robots to their goals. This method performs very
well in convex environments, even with a fixed coverage action, although it does not provide
any kind of optimality guarantees. The second method is based on planning the optimal
coverage paths to a set of possible goals using an FMM and selecting the one that maximizes
the overall improvement. Apart from giving an optimal path, this method is suitable for
environment with obstacles and is capable of handling dynamic obstacles.

To deal with the most complex environments, we use a very common technique in coverage
that consist in dividing the environment in as many regions as robots and assigning each
area to one of them. Nevertheless, we go a step further and divide a complex, non-convex
environment in equitable partitions based on the coverage that each robot is capable of
providing, not based purely on geometry. Each robot is responsible of its own region and
we have proposed a method to find the optimal coverage path through a graph of sweep-like
paths that cover the entire partition. The whole approach takes into account the energy
and the status of the robots, the shape of the environment and allows a very efficient path
planning with existing methods.

In the final part of the thesis we have devoted our efforts to discrete environments where
only a finite set of points has to be covered by the team of robots. In these environments,
when there are more points than available robots, it is not possible to maintain the coverage
level of all the point at their desired level at all times. For this reason, we have develo-
ped a periodic formulation with which we can guarantee that all the points receive their
required coverage periodically or, equivalently, on average. Finding the periodic solution is
still NP-hard and to counteract this complexity we use a divide-and-conquer approach and
separate the problem into three smaller subproblem which can be solved optimally. For the
first subproblem, that is planning closed paths for the robots, we use a state-of-the-art TSP
algorithm. For the second subproblem, that is calculating the optimal times and coverage
action that each robot has to spend and provide at each point, we solve a QCLP that guar-
antees the required coverage periodically. For the third subproblem, that avoids collisions
scheduling a team plan with the individual plans of the robots, we solve a MILP that ad-
ditionally minimizes the simultaneous motion of the robots. The entire solution is not only
conceptually simple but also piece-wise optimal and computationally affordable for relatively
big teams and environments. In fact, this is the first attempt to calculate simultaneously
the paths and the coverage times and actions, that allows the collaboration of several robots
at the same point and guarantees periodic coverage and collision avoidance.

This periodic solution has been applied to the novel problem of domestic cooking with
mobile inductors. We have particularized the solution to heat a finite number of pots with
some mobile inductor and to do so we have proposed a static assignment, when the user places
on the hob less pots than inductors, a method to deal with pots boiling water, and a new
collision avoidance method. This method is no longer overprotective and allows the inductor
to make the most of the already cluttered space inside the hob. We have proven through real
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experiments the great performance of our solution for a really innovative industrial problem
with an enormous potential impact in the experience of domestic cooking.

Open Problems and Future Work

We believe that our solutions to the different setting in which persistent coverage can be
applied provide a solid base for future developments in the field. Some interesting contribu-
tions that remain open are the following.

More elaborated coverage evolution models can be defined for individual applications. In
some cases, such as lawn growing, or exponential model or even a simpler linear one may
be enough. In this sense, it would be interesting to validate these ideas. Nevertheless, other
phenomena that cause the need of persistence may not be well modeled with them and,
therefore, new models would certainly provide more accuracy to the coverage solutions. For
instance, one that takes into account the influence of each point on its neighbors as in heat
transfer models. The main challenge with this phenomenon is that it introduces spacial
dependencies that in the end become temporal dependencies of the coverage of each point
and, as analyzed during this thesis, this is the most difficult issue in persistent coverage.

An alternative to modeling the evolution of the coverage is to execute persistent coverage
based on sensor measurements. This variant can be probably addressed adopting some ideas
from the exploration problem, where the uncertainty in the knowledge of the environment
or, equivalently, on its coverage, is a key aspect.

Communication constraints and the possible loss of information are a current research
topic in multi-robot systems. Since they can affect the performance of persistent coverage
solutions, it would be interesting to quantify how and how much. The same happens with
errors in the localization of the robots, which affect the actual coverage of the environment.

Another open problem that has the potential to outperform current solutions is planning
infinite horizon paths that allow redundancy. This is the way to find an optimal solution for
infinite time for environments where the decay and the importance are not constant.

A formal taxonomy of solutions and a framework to compare the multiple persistent
coverage algorithms proposed so far in the literature and the ones to come would definitely
gather the efforts of all the researchers that focus on the problem and provide an overview
and the insights of the state of the art.

The last topic that is worth mentioning is the combination of persistent tasks with other
tasks of higher instantaneous priority and high occurrence periods. An example is persistent
coverage with target detection and tracking for surveillance and patrolling applications, such
as UAVs and policemen protecting a city.
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non-convex environments with graph-based optimal planning,” International Journal
of Robotics Research, 2017, submission Pending.

[123] J. M. Palacios-Gasós, E. Montijano, C. Sagüés, and S. Llorente, “Multi-robot persistent
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