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Abstract—In this paper we propose a periodic solution to the
problem of persistently covering a finite set of interest points
with a group of autonomous mobile agents. These agents visit
periodically the points and spend some time carrying out the
coverage task, which we call coverage time. Since this periodic
persistent coverage problem is NP-hard, we split it into three
subproblems to counteract its complexity. In the first place, we
plan individual closed paths for the agents to cover all the points.
Second, we formulate a quadratically constrained linear program
to find the optimal coverage times and actions that satisfy the
coverage objective. Finally, we join together the individual plans
of the agents in a periodic team plan by obtaining a schedule
that guarantees collision avoidance. To this end, we solve a mixed
integer linear program that minimizes the time in which two or
more agents move at the same time. Eventually, we apply the
proposed solution to an induction hob with mobile inductors for
a domestic heating application and show its performance with
experiments on a real prototype.

I. INTRODUCTION

In recent years, the development of autonomous mobile
agents has experienced an important growth and has provided
them the capabilities to carry out a great variety of tasks
while being affordable. This has motivated an increasing
research interest in multi-agent systems that are capable of
accomplishing tasks as a team that a single agent cannot [1],
[2]. A particularly interesting problem in this context is that
of persistent coverage, which finds applications in many fields
such as cleaning [3], environmental monitoring [4], [5] or
aerial delivery [6]. The objective of persistent coverage is to
maintain covered over time a dynamic environment in which
the coverage level persistently deteriorates. Coverage can be
seen as a measure of how dirty is the environment in a cleaning
application, how hot in a heating one or how well observed
in monitoring. As time goes by, the environment gets dirty,
cools down or the accuracy of the observations degrades,
respectively. The agents must spend some time at each point
of the environment and keep moving to maintain the coverage
of the entire environment at a desired level. This is the main
difference with more traditional coverage approaches [7].
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Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza,
Zaragoza, Spain. {jmpala, emonti, csagues}@unizar.es

S. Llorente is with Research and Development Department, Induction
Technology, Product Division Cookers, BSH Home Appliances Group, 50016,
Zaragoza, Spain. sergio.llorente@bshg.com

This work was partially supported by projects RTC-2014-1847-6 of Retos-
Colaboración, DPI2015-69376-R from Ministerio de Economı́a y Competi-
tividad/Unión Europea, DGA T04-FSE, CUD2016-17 and DGA Scholarship
C076/2014, partially funded by European Social Fund.

A. Related Work

Different types of solutions, which can be indefinitely
applied [8], have been proposed. The first type are controller-
based approaches as [9], where a gradient descent method
together with an assignment of objectives is proposed. In [10]
a control policy decides to which cell move next to minimize
the maximum time between visits to all cells and Branch and
Bound is used in [11] to find the optimal control inputs of the
agents for a finite prediction horizon.

The second kind of proposals intend to plan closed paths
that the agents repeatedly follow. The objective is to min-
imize some coverage metric while periodically visiting all
the points of the environment. To minimize the estimation
uncertainty, a parametric optimization is formulated in [12],
Rapidly-exploring Random Trees are used in [13] and Rapidly-
exploring Random Cycles in [14]. In [15], they aim to
minimize the maximum time that points remain unvisited
by planning paths through the vertices of a graph and [16]
guarantees that full awareness is eventually reached in some
interest points. In these proposals, the time that each agent
needs to perform the coverage task at each point is not
considered and the movements have priority over the coverage
of particular points.

In discrete environments, where only a finite set of points
requires coverage, approaches are related to Task Assign-
ment [17] and Vehicle Routing Problems (VRP) as addressed
in operational research [18]. Since VRP are known to be
NP-hard, three different types of solutions appear in the
literature: based on heuristics, formulated as Mixed Integer
Programs (MIP), although they suffer from complexity for
large problems, or a combination of both. In [19] a Mixed-
Integer Linear Program (MILP) and a genetic algorithm are
compared for the scheduling of mission trajectories. To find
a closed path to visit all the points of the environment with
a single UAV, heuristic solutions are presented with refueling
depots [20] and with revisit constraints [21]. In [22], they seek
the optimal routing strategy using a linear MIP that allows a
fleet of vehicles to periodically visit a set of targets while
trying to minimize the energy consumption. Similarly, in [6]
they maximize the frequency of task completion allowing
online calculation of task costs to avoid energy depletion.
These approaches assume that only one agent covers each
point. In [23] a utility metric is maximized through a quadratic
MIP to find the best tours for the agents when correlation
between the points of interest is considered.

Most of the aforementioned works assume that the times
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required to complete the coverage task at each point are known
or do not consider them. The latter is acceptable in monito-
ring or surveillance applications [24], since the information
gathering can be considered instantaneous, but the same does
not hold in problems such as heating or watering, where the
coverage action of the agent requires some time. Moreover,
the possibility of collisions between agents along their paths
is usually not addressed.

The problem of calculating the times that the agents have to
spend at each point to satisfy the coverage objective has not
been deeply studied in the literature. In [16] and [25] velocity
controllers are calculated to spend more time covering the
points where the environment changes quickly. In our previous
work [26], on which this work builds, the optimal coverage
times for each pair agent-point are calculated when the actions
that the agents apply are fixed. Without a coverage objective to
accomplish, in [27] a single agent obtains a reward depending
on the time that it covers each point and a path is calculated
to obtain the maximum reward with a limited amount of fuel.

The problem of collision avoidance is considered in other
multi-agent works by scheduling the agent trajectories. This is
usually solved by introducing time delays at the beginning of
the paths [28]. In [29] they also assign goals to interchangeable
agents to minimize the maximum cost over all trajectories.

B. Contributions

In this paper we propose a solution to persistently cover a
finite set of points with a team of agents. These agents must
spend some time at each point to improve its coverage. We
find a periodic strategy for the team, composed of individual
periodic paths, coverage times and actions, that guarantees
the satisfaction of the coverage objective for all the points,
optimizes the actions of the agents and avoids collisions
between them.

Our main contribution is a complete solution to the problem
using a divide-and-conquer strategy. We separate the problem
into three subproblems: (i) planning individual, closed paths
for the agents that cover all the points of the environment;
(ii) calculating the coverage time and coverage action of each
agent at each point of its path to satisfy the coverage objective;
and (iii) scheduling the start of the agent paths to obtain a team
plan in which collisions are avoided.

As mentioned before, the complete problem is hard to
solve at once because the computational complexity grows
exponentially with the number of agents and points. The
divide-and-conquer methodology counteracts this growth and
allows us to find the optimal solution for each subproblem
independently. Moreover, although the final solution to the
entire problem may not be the optimal, this is a conceptually
simple and piecewise optimal way of calculating a solution
to the problem. In fact, this is the first attempt to calculate
simultaneously the paths and the coverage times and actions,
that allows the collaboration of several agents at the same point
and guarantees collision avoidance.

In the paper we do not elaborate on subproblem (i), since
it reduces to solve an instance of the Traveling Salesman
Problem (TSP) for which there are state-of-the-art solutions.

Regarding subproblems (ii) and (iii), our contributions in this
work are:
• A generalization of our previous work [26] that includes

the coverage actions with the coverage times in subprob-
lem (ii). It allows us to optimize the coverage satisfying
the objective and minimizing the instantaneous actions of
the agents.

• A procedure to schedule the agent paths that provides col-
lision avoidance guarantees and minimizes simultaneous
movements of the agents.

• An application of the solution to the problem of domestic
induction heating with mobile inductors, that is an open
problem which offers a significant opportunity to increase
the flexibility of domestic hobs at a moderate increase of
cost.

• Real experiments with a prototype for this application.
The remainder of the paper is structured as follows. In

Section II we introduce the problem formulation and an
overview of the proposed solution. We calculate the optimal
coverage times and actions in Section III and face the team
plan scheduling problem in Section IV. Finally, we present
simulation results in Section V, the application to domestic
induction heating with experimental results in Section VI and
conclusions in Section VII.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

Let Q = {q1, . . . ,qQ} be a finite set of Q points of interest
that must be covered. At each point, we define the coverage
level with a scalar field, Z(q, t) ≥ 0. The objective is to
maintain a desired level Z∗(q, t) ≥ 0 by providing a certain
coverage action P ∗(q, t) ≥ 0 over time, not necessarily the
same for all the points. This is achieved using a team of I ∈ N
mobile agents I = {i1, . . . , iI} of radius ri, i ∈ I. They are
capable of increasing the level at the points in which they are
located according to a production function, Pi(q, t):

Pi(q, t) =

{
0, if pi(t) 6= q,

ρi(q), if pi(t) = q,

where pi(t) is the position of the agent at time t ≥ 0 and 0 ≤
ρi(q) ≤ ρmax

i (q) is the coverage action of the agent, which
can also be controlled. The maximum production ρmax

i (q) can
be different for each agent-point pair.

Each agent may not be capable of reaching all the points
due to physical constraints. The subset Qi ⊆ Q represents the
reachable set of points for agent i, with the team satisfying
∪i∈IQi = Q. Reciprocally, each point q ∈ Q can be covered
by a set of visiting agents, Iq ⊆ I.

In this context, the coverage provided at each point can be
calculated as

Z(q, t) =

∫ t

0

∑
i∈Iq

Pi(q, τ)dτ, (1)

assuming Z(q, 0) = 0 as initial condition, and the desired
coverage as

Z∗(q, t) =

∫ t

0

P ∗(q, τ)dτ. (2)
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A solution that maintains all the time Z(q, τ) = Z∗(q, τ)
requires at least as many agents as points and does not exist if
the number of agents is lower than the number of points. Since
this is usually the case, an optimization metric is defined to
try to maintain Z(q, τ) as close as possible to Z∗(q, τ) over
time. Some optimality criteria could be to minimize over time
the quadratic difference between the required and the provided
coverage, i.e., minimize

∫ t
0

∑
q∈Q

(
Z∗(q, τ) − Z(q, τ)

)2
dτ,

or to minimize the maximum difference between Z(q, t) and
Z∗(q, t) over time, i.e., minimize max

(
Z∗(q, t) − Z(q, t)

)
.

However, trying to minimize globally a function associated
with these metrics results in a problem that has been proven
to be NP-hard. For these reason, we seek to guarantee that the
desired coverage is provided periodically with period T . A
periodic approach, though inherently suboptimal with respect
to such metrics and still NP-hard, allows us to guarantee that
all the points receive on average the coverage that they require,
with a repetitive strategy that can be calculated in advance. In
this scenario, the periodic objective requires that (i) at some
time t ≤ T the coverage reaches Z(q, t) = Z∗(q, t), and (ii)
from that time on, Z(q, t + kT ) = Z∗(q, t + kT ), ∀ k ∈ Z.
Equivalently,

Z(q, t+ kT )− Z
(
q, t+ (k − 1)T

)
=

Z∗(q, t+ kT )− Z∗
(
q, t+ (k − 1)T

)
.

We can assume that P ∗(q) ≡ P ∗(q, t) is constant over time,
or at least periodic, since the rate of change of P ∗(q) is
usually much bigger than the period. Thus, the problem can be
considered stationary between changes. Then, the right term is
equal to P ∗(q, τ)T according to (2) and introducing (1) the
objective becomes∫ t+kT

t+(k−1)T

∑
i∈Iq

Pi(q, τ)dτ = P ∗(q)T.

In order to satisfy this objective, the agents follow a periodic
path, Γi, between reachable points, i.e., an ordered subset of
Qi. Along these paths, the agents spend some time, namely
the coverage time θi,Γi(j), covering each point. These times
are normalized by the period, i.e., they represent the fraction
of the period that a robot is covering a point and allow us
to formulate the problem independently of the actual value
of the period. With this normalization, the periodic coverage
objective for each point q of the environment can be stated as∑

i∈Iq
ρi,Γi(j) θi,Γi(j) = P ∗(q).

With a little abuse of notation we refer to q as the j-th point in
the path of agent i, i.e., Γi(j) ≡ q, although j may be different
for each agent i. In the following we refer to it only with
subindex j for simplicity. Thus, the objective of the problem
is to find the paths Γi, coverage times θi,j and productions
ρi,j that satisfy ∑

i∈Iq
ρi,j θi,j = P ∗(q) (3)

and do not lead to a collision.
Each point is visited only once per period by the agent and

each visit has associated two additional times: the arrival time,

ai,j , the instant in which the agent arrives and starts covering
a point, and the departure time, di,j , the instant in which the
agent stops covering the point and leaves towards the next
one. The total (normalized) moving time, i.e., the time that
agent i would need to traverse Γi without making any stops,
is θmi . Note that the periodic plans can be repeated as long
as all Qi, Iq and P ∗(q) remain constant. Also note that they
are independent of the value of the period and that such value
can be chosen differently depending on the application.

The solution that we propose to this problem follows a
divide-and-conquer strategy, as shown in Alg. 1. We separate
the problem into three subproblems (Steps 1, 2 and 4) to
reduce its complexity and make it tractable. Even though
it does not guarantee global optimality, this allows us to
solve efficiently the three subproblems and guarantee periodic
coverage. In fact, the second and third subproblems can be
solved in an optimal manner and for the first one, that has
been deeply studied in the literature, there are many efficient
methods with guaranteed closeness to the optimum.

Algorithm 1 Solution Overview
1: Plan initial paths.
2: Calculate optimal coverage times and actions.
3: Shorten paths and recalculate times and actions.
4: Schedule the path starts to avoid collisions.

In the first step, we find the initial path for each robot. This
path is the shortest, closed one that visits all the reachable
points of the robot, Qi. To do so, we solve a simple Traveling
Salesman Problem (TSP) [30] using an order-first split-second
approach [31]. We do not elaborate further on this step
since many solutions have been proposed and analyzed in
the literature. For the second step, we pose a quadratically
constrained linear program with the restrictions of satisfying
the periodic coverage objective from (3). The algorithm to
shorten the paths can be seen in our previous work [26]. In
the last step, we calculate a schedule that allows us to include
the individual periodic plans of the agents in a periodic team
plan in which collision avoidance is guaranteed. We formulate
this scheduling as a MILP to minimize the time in which two
or more agents are moving at the same time while satisfying
collision avoidance restrictions. The problem could be limited
to satisfy them but it is worth to optimize another criteria at
the same time. Actually, the restrictions might be included
in the problem of the times and production, but this would
exponentially increase the complexity of the problem and
would still not guarantee the global optimum to be found.

In the following sections we explain in detail the two main
steps of our solution, namely Steps 2 and 4.

III. OPTIMAL TIMES AND PRODUCTIONS

The periodic coverage objective requires the calculation of
the coverage times and coverage actions to be guaranteed,
with the periodic paths that the agents travel. The problem
of calculating these times and productions reduces to find the
times θi,j and productions ρi,j that comply with (3) and with
the periodicity of the system. To this end, we consider a cost
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function on the times and the productions, f(θi,j , ρi,j), and
the resulting quadratically constrained program is

minimize
θi,j ,ρi,j

f(θi,j , ρi,j)

subject to
∑
i∈Iq

ρi,j θi,j = P ∗(q), ∀q ∈ Q, (4a)

∑
q∈Qi

θi,j ≤ 1− θmi , ∀ i ∈ I, (4b)∑
i∈Iq

θi,j ≤ 1, ∀q ∈ Q. (4c)

Eq. (4a) is the quadratic restriction on the coverage ob-
jective. of a linear program that has already been solved
distributedly [32] for multi-robot systems [33]. The set of
equations (4b) imposes that for each agent the time spent
covering the points plus the time to move along the path must
be lower than the period, and the set (4c) represents that each
point cannot be covered for more time than the period. This
restriction is only needed in the case that it is not allowed
that two agents cover the same point at the same time because
otherwise it would be impossible to avoid collisions between
agents. The selection of the cost function is entirely dependent
on the performance expected from the particular application.
For this reason, in Section V we explore and analyze different
linear cost functions that are appropriate for many applications.

This optimization problem is a generalization of our previ-
ous approach [26] and includes the productions of the agents
at each point as variables of the problem. Nevertheless, the
sufficient conditions on the existence of solution presented
in [26] are still valid. These conditions allow us to know
a priori if the agents are capable of satisfying the coverage
objective.

A particularity of the solutions obtained for (4) is that some
of the times θi,j may be equal to zero. This implies that agent
i is not required to cover point j. Thus, shorter paths can be
followed only through points with coverage times greater than
zero, reducing the moving times θmi and, therefore, the total
time required for the coverage of the environment.

In our previous work [26] we proposed an iterative algo-
rithm to shorten the paths based on this property that links
the first two subproblems. At each iteration, the algorithm
optimizes the agent paths using the results of the previous
optimal coverage times and productions. Then, the times and
productions are optimized again for the new refined paths.
This makes the combination of both to iteratively improve the
global solution achievable with this periodic approach.

IV. TEAM PLAN SCHEDULING

We devote this section to the calculation of a scheduling for
the start of the periodic paths of the agents. It avoids collisions
while covering a point and while moving between points. The
intuitive idea of the scheduling is to shift the individual plans
of the agents in time to obtain a collision-free plan for the
entire team, that is, to find a time, 0 ≤ ϕi < 1, for each agent
i ∈ {2, . . . , I} such that the execution of its periodic plan
shifted by this time leads to no collision with the others. We
refer the initial times to the beginning of the path of agent

i = 1, i.e., we fix ϕ1 = 0, and the paths remain the same
through the scheduling.

In Fig. 1 we show an example of scheduling for I = 3
agents of size ri = 5 and Q = 5 points. Fig. 1a shows the
individual plan of each agent, which includes the path (order
in which points are visited) and the coverage times (width of
the colored rectangles). The beginning and end of the colored
rectangles correspond to the arrival and departure times, ai,j
and di,j , respectively, and the gray rectangles represents the
time needed to move from one point to the following. It can
be seen that some coverages of the same point are overlapped
in time and, therefore, the execution of these individual plans
leads to collisions. For instance, it happens when i1 and i3 try
to cover q1 or q3, or when i2 and i3 try to cover q4 or q5. In
Fig. 1b, where the team plan after the scheduling is depicted, it
can be seen that the individual plans of agents i2 and i3 have
been shifted an 88% and a 59% of the period respectively
and that in the resulting plan there are no overlaps between
coverages of the same point. Fig. 1c shows the locations of
the points and the paths followed by the agents. It can be seen
that no collisions occur after the scheduling.
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(a) Individual plans before scheduling.
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(b) Team plan after scheduling.
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(c) Agent paths.

Fig. 1. Example of scheduling. (a)-(b) Each row represents the plan of an
agent. The points qi that each agent covers are represented in different colors.
The coverage times are depicted by the width of the colored rectangles and the
gray rectangles represent the time needed to move between points. (c) Paths
followed by the agents i1, i2 and i3 in blue, red and green, respectively. The
radius of the agents is ri = 5 units.

The calculation of the optimal schedule is done by solving
a MILP with constraints. In the following subsections we
develop the formulation, the restrictions and the cost function,
and finally pose the problem and discuss its suitability.

A. Transformation of Individual Times to Team Plan
The previous step to calculate the schedule that avoids

collisions is to refer the individual times of the agents to the
team plan. The arrival times can be expressed as follows:

Ai,j = ϕi + ai,j , if ϕi + ai,j ≤ 1, (5a)
Ai,j = ϕi + ai,j − 1, if ϕi + ai,j > 1, (5b)

for all j ∈ {2, . . . , |Γi|}, i ∈ {2, . . . , I}. Note that (5) does not
apply for j = 1 since ai,1 = 0 and Ai,1 = ϕi, and recall that
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for agent i = 1 we set ϕ1 = 0 and, therefore, its corresponding
times do not need transformation.

To be able to include these times in the MILP formulation,
we introduce the binary variables, cai,j , such that, cai,j = 0
if ϕi + ai,j ≤ 1 and cai,j = 1, otherwise. These variables
represent if the arrival times in the team plan are bigger than
1 and they have to be shifted to the left side of the team plan
by substracting 1, e.g., the arrival time of i2 to q4 in Fig. 1b.

Thus, we can express the arrival times as

Ai,j = ϕi + ai,j − cai,j

subject to

ϕi + ai,j ≤ 1 +Rcai,j , (6a)

−(ϕi + ai,j) ≤ −1 +R (1− cai,j), (6b)

obtained with the big number method [34]. This method
activates or deactivates the constraints depending on the value
of the binary variable with R being a sufficiently big number.
In this case, cai,j = 0 if (5a) has to be used and cai,j = 1 if (5b)
is needed.

The same formulation can be developed for the departure
times:

Di,j = ϕi + di,j , if ϕi + di,j ≤ 1,

Di,j = ϕi + di,j − 1, if ϕi + di,j > 1,

for all j ∈ {1, . . . , |Γi|}, i ∈ {2, . . . , I}. Introducing the
binary variables cdi,j , we have

Di,j = ϕi + di,j − cdi,j

subject to

ϕi + di,j ≤ 1 +Rcdi,j ,

−(ϕi + di,j) ≤ −1 +R (1− cdi,j).

Since the binary variables cai,j and cdi,j are variables of the
problem, we include the following restrictions on their values
to guarantee that the order of the paths is followed:

cai,j − cdi,j ≤ 0, ∀ j ∈ {2, . . . , |Γi|},
cdi,j − cai,j+1 ≤ 0, ∀ j ∈ {1, . . . , |Γi| − 1}.

B. Collision Avoidance During Coverage

A thorough consideration of collisions requires the inclusion
of spatio-temporal restrictions in the problem, which implies
a discretization of the environment and an analysis of what
happens at each point [28]. Nevertheless, for large environ-
ments or with many agents or points to cover the problem
becomes computationally unaffordable or even intractable. For
this reason, we include the collision avoidance as planning
constraints. Although it is overprotective, it is much lighter in
terms of computational cost.

The first situation in which a collision may occur is when
two or more agents try to cover the same point at the same
time. From the planning perspective, this happens if the
coverages of such point by different agents are overlapped

in the team plan. We avoid this type of collisions with two
groups of constraints. The first group is

Ai1,j1 −Ai2,j2 ≤ R (1− ccci1.j1,i2,j2), (7a)

Ai1,j1 −Di1,j1 ≤ R (1− ccci1.j1,i2,j2), (7b)

Di1,j1 −Ai2,j2 ≤ −ε+R (1− ccci1.j1,i2,j2), (7c)

Di2,j2 −Ai1,j1 ≤ −ε+R (1− ccci1.j1,i2,j2)

+R(1− cdi2,j2 + cai2,j2), (7d)

for all j1, j2 such that Γi1(j1) = Γi2(j2), where the constant
ε is the minimum separation between departures and arrivals
to the same point. The first restriction, Eq. (7a), activates this
group if Ai1,j1 ≤ Ai2,j2 , that is, if the coverage of agent i1
starts before the coverage of agent i2. When this happens, the
binary variable ccci1.j1,i2,j2 = 1. Since i1 starts covering earlier,
we have to assure that its coverage is not split by the end of the
period, that is, its departure time is not translated to the first
part of the period, as for the coverage of q3 by i3 in Fig. 1b.
Eq. (7b) guarantees this. In the third place, Eq. (7c) assures
that the coverage of agent i2 starts after the coverage of i1
has ended, i.e., Di1,j1 ≤ Ai2,j2 . The last restriction guarantees
that, if the coverage of i2 has to be split, i.e., cdi2,j2−c

a
i1,j1

= 1,
it finishes before the coverage of i1 starts.

The second group of restrictions is

Ai2,j2 −Ai1,j1 ≤ Rccci1.j1,i2,j2 , (8a)

Ai2,j2 −Di2,j2 ≤ Rccci1.j1,i2,j2 , (8b)

Di2,j2 −Ai1,j1 ≤ −ε+Rccci1.j1,i2,j2 , (8c)

Di1,j1 −Ai2,j2 ≤ −ε+Rccci1.j1,i2,j2
+R (1− cdi1,j1 + cai1,j1). (8d)

Opposite to the first one, this second group is activated when
Ai2,j2 ≤ Ai1,j1 or, equivalently, when ccci1.j1,i2,j2 = 0.

C. Collision Avoidance During Motion

The second situation in which a collision between a pair
of agents may occur is when both of them are moving or
one is moving and the other is covering a point. This can be
prevented in the same way that the collisions during coverage,
by avoiding the overlap of the movements and coverages that
may cause a conflict. In fact, we propose the same restrictions
as in (7)-(8) for the two cases: the movements of two agents,
and a movement of an agent and a coverage of a point by
another agent.

We define as δi,j and αi,j the initial and final times of the
movement between Γi(j) and Γi(j + 1), respectively. They
are defined opposite to the coverage times since δi,j = di,j
is the departure of the movement and αi,j = ai,j+1, j ∈
{1, . . . , |Γi|−1}, is the arrival of the movement. For j = |Γi|,
we have αi,|Γi| = 1. Similarly to the coverage times, we can
express the departure and arrival times of the movements in
the team plan as a function of the times in the agent period
and the binary variables cai,j and cdi,j as follows:

∆i,j = ϕi + δi,j − cdi,j , (9a)

Λi,j = ϕi + αi,j − cai,j+1. (9b)
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For j = |Γi|, we define the binary variable cai that represents
if the final time of the last movement of each agent is greater
than one or not. It requires the following restrictions:

ϕi + αi,|Γi| ≤ 1 +Rcai ,

−(ϕi + αi,|Γi|) ≤ −1 +R (1− cai ),

cdi,|Γi| − c
a
i ≤ 0.

In order to decide if two movements can lead to a col-
lision, we calculate the minimum distance between the two
trajectories of the movements, dmmi1.j1,i2,j2 and determine that a
collision is possible if such distance is lower than the sum of
the sizes of the agents, i.e., dmmi1.j1,i2,j2 < ri1 + ri2 . If the pair
of movements may result into conflict, the following two sets
of constraints are included in the problem. These sets are the
same as (7)-(8), respectively, but for the departure and arrival
times of the movements. The first set,

∆i1,j1 −∆i2,j2 ≤ R (1− cmmi1.j1,i2,j2), (10a)

∆i1,j1 − Λi1,j1 ≤ R (1− cmmi1.j1,i2,j2), (10b)

Λi1,j1 −∆i2,j2 ≤ −ε+R (1− cmmi1.j1,i2,j2), (10c)

Λi2,j2 −∆i1,j1 ≤ −ε+R (1− cmmi1.j1,i2,j2)

+R (1− cdi2,j2 + cai2,j2+1), (10d)

is active when the movement of agent i1 starts before the
movement of i2, i.e., ∆i1,j1 ≤ ∆i2,j2 in Eq. (10a). This is
represented by the binary variable cmmi1.j1,i2,j2 = 1. The second
constraint represents that the movement of agent i1 cannot be
split by the end of the period; the third one, that the movement
of i2 must start after the movement of i1 has ended; and the
last one that, if the movement of i2 is split by the end of the
period, it must finish before i1 starts moving.

Equivalently, the second set of constraints activates when
the movement of agent i2 starts before the movement of i1:

∆i2,j2 −∆i1,j1 ≤ Rcmmi1.j1,i2,j2 , (11a)

∆i2,j2 − Λi2,j2 ≤ Rcmmi1.j1,i2,j2 , (11b)

Λi2,j2 −∆i1,j1 ≤ −ε+Rcmmi1.j1,i2,j2 , (11c)

Λi1,j1 −∆i2,j2 ≤ −ε+Rcmmi1.j1,i2,j2
+R (1− cdi1,j1 + cai1,j1+1), (11d)

and the meaning is the same as (10) replacing i1 by i2 and
vice versa.

The second type of collisions during the motion of an
agent i1 is with another agent i2 that is covering a point.
In that case, we calculate the minimum distance between
the trajectory of the movement of i1 and the point where
i2 is covering, dmci1.j1,i2,j2 . If a collision may happen, i.e.,
dmci1.j1,i2,j2 < ri1 + ri2 , we include the same two sets of
constraints as before with the departure and arrival times of
the movement of i1 and the arrival and departure times of i2
to the point that it must cover. The first set,

∆i1,j1 −Ai2,j2 ≤ R (1− cmci1.j1,i2,j2),

∆i1,j1 − Λi1,j1 ≤ R (1− cmci1.j1,i2,j2),

Λi1,j1 −Ai2,j2 ≤ −ε+R (1− cmci1.j1,i2,j2),

Di2,j2 −∆i1,j1 ≤ −ε+R (1− cmci1.j1,i2,j2)

+R (1 + cdi2,j2 − c
a
i2,j2),

is active if the movement starts before the coverage and the
second,

Ai2,j2 −∆i1,j1 ≤ Rcmci1.j1,i2,j2 ,
Ai2,j2 −Di2,j2 ≤ Rcmci1.j1,i2,j2 ,
Di2,j2 −∆i1,j1 ≤ −ε+Rcmci1.j1,i2,j2 ,

Λi1,j1 −Ai2,j2 ≤ −ε+Rcmci1.j1,i2,j2
+R (1− cdi1,j1 + cai1,j1+1),

if the opposite happens. The interpretation of these constraint
sets is the same as for (7)-(8) and (10)-(11).

D. Cost Function

The proposed restrictions guarantee that in the resulting
schedule no collisions between agents occur at any time. In
some applications, finding such solution may be enough and
the problem can be posed as a Constraint Satisfaction Problem.
Nevertheless, in many other applications, it is desirable to find
a solution that is not only feasible but also optimizes some
kind of metric. In particular, we aim to minimize the time in
which two or more agents are moving simultaneously:

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

max
(
0,min(Λik1

,jk1
−∆ik2

,jk2
)
)
,

(12)
with k1, k2 = 1, 2. fschedule represents the sum of the
times in which each pair of movements of different agents
are overlapped. This function is motivated by the mobile
induction application, that we introduce in Section VI, where
the cost function intends to minimize the changes in power
requested from the electric grid. Although the cost could also
be expressed as a restriction if only one agent were allowed
to move at the same time, it is more appropriate to define
it as we propose to yield a feasible solution that minimizes
simultaneous motion.

The problem of minimizing (12) can be transformed to the
standard MILP formulation as follows. First, we introduce the
auxiliary variables xi1,j1,i2,j2 to be greater or equal to the
minimum inside (12), that is,

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

max(0, xi1,j1,i2,j2), (13)

with

xi1,j1,i2,j2 ≥ min(Λi1,j1 −∆i1,j1 ,Λi1,j1 −∆i2,j2 ,

Λi2,j2 −∆i1,j1 ,Λi2,j2 −∆i2,j2).

This can be reduced to one of the following constraints

xi1,j1,i2,j2 ≥ Λi1,j1 −∆i1,j1 −Re1
i1,j1,i2,j2 , (14a)

xi1,j1,i2,j2 ≥ Λi1,j1 −∆i2,j2 −Re2
i1,j1,i2,j2 , (14b)

xi1,j1,i2,j2 ≥ Λi2,j2 −∆i1,j1 −Re3
i1,j1,i2,j2 , (14c)

xi1,j1,i2,j2 ≥ Λi2,j2 −∆i2,j2 −Re4
i1,j1,i2,j2 , (14d)

e1
i1,j1,i2,j2 + e2

i1,j1,i2,j2 + e3
i1,j1,i2,j2 + e4

i1,j1,i2,j2 = 3, (14e)

where eki1,j1,i2,j2 , k ∈ {1, . . . , 4}, are binary variables to
activate the constraint between (14a) and (14d) that gives
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the minimum value of xi1,j1,i2,j2 , thanks to Eq. (14e). Note
that (14a)-(14d) depend on cai,j and cdi,j through (9) and the
difference Λik1

,jk1
−∆ik2

,jk2
may be different depending on

their values, i.e., if any of the movements is split between
the end and the beginning of the team plan. For the sake of
readability we develop a more detailed description of these
constraints in Appendix A.

Second, we introduce the auxiliary variables zi1,j1,i2,j2 to
be greater or equal to the maximum inside (12):

fschedule =
I−1∑
i1=1

I∑
i2=i1+1

zi1,j1,i2,j2 , (15)

such that

zi1,j1,i2,j2 ≥ 0, (16a)
zi1,j1,i2,j2 ≥ xi1,j1,i2,j2 . (16b)

Since the objective (15) is to minimize the sum of zi1,j1,i2,j2 ,
it can be seen that xi1,j1,i2,j2 will also be minimized by
activating only the proper constraint in (14a)-(14d).

E. Optimal Schedule

Finally, we are in position to formulate the complete pro-
blem of finding the optimal schedule for the team of agents.

Problem IV.1. The optimal periodic schedule, in which each
agent executes its own periodic plan and which guarantees
that no collisions occur and that the time in which two or
more movements overlap is minimum, is the solution of the
following MILP:

min fschedule (17)

subject to the restrictions introduced between (6) and (16).

The variables that define the team schedule are ϕi, which
represent the time that each individual plan has to be shifted to
produce the team plan. Recall that only I−1 of these variables
are needed. It is important to emphasize that, although the
number of additional variables and restrictions is high, the
problem can be solved efficiently using standard state-of-the-
art solvers [35]. We provide more details on the computational
time in the simulations, Section V. In addition, the solution to
the problem is independent of the value of the period since all
the times are obtained as a fraction of such period. In fact, the
period can be calculated separately depending on the desired
performance of the system. For instance, it can be set to the
maximum time that a point can remain uncovered or calculated
depending on the maximum time allocated to move.

On the downside, there are several reasons for which a
feasible solution may not exist. For instance, it may happen
if two agents have a common path but in opposite directions,
if the space in which the agents can move is limited, or if
an agent has to go through a point of the environment that is
never left unoccupied by another agent. They can be avoided
by modifying the paths of the agents in at least three ways:
(i) invert the direction of the movement, (ii) change the points
that are assigned to each agent, or (iii) use a different cost
function for the path optimization (4). The best solution in
each case depends on the application.

V. SIMULATION RESULTS

In this section we evaluate in simulation the results and
computational times of our solution for different cost functions
used in the calculation of the optimal times and productions.
This function has an important influence in the final paths of
the agents and, therefore, in the team plan and the quality of
the coverage provided. In particular, we focus on the case of
linear functions because they simplify the problem and are
appropriate for the application of mobile induction heating,
that we introduce in Section VI. The first function that we
evaluate is

f1(θq,r) =
∑
i∈I

∑
j∈Γi

(
−θi,j +

1

ρmax
i

ρi,j

)
,

in which the goal is to maximize the assigned times and
minimize the normalized productions to provide a coverage
as homogeneous in time as possible. The second alternative
only tries to minimize the productions in order to reduce the
maximum actions of the agents:

f2(θq,r) =
∑
i∈I

∑
j∈Γi

1

ρmax
i

ρi,j ,

In the third function we include a weight to the times with
respect to f1 that is the inverse of the distance from the agent
to the point, normalized by the maximum distance that the
agent can reach,

f3(θq,r) =
∑
i∈I

∑
j∈Γi

(
− 1

dp0
i ,q

θi,j +
1

ρmax
i

ρi,j

)
,

and in the fourth one we also weight the productions with
the relative importance of the required coverage P ∗(q) with
respect to the maximum production of the agent ρmax

i .

f4(θq,r) =
∑
i∈I

∑
j∈Γi

(
− 1

dp0
i ,q

θi,j +
P ∗(q)

ρmax
i

2 ρi,j

)
,

In the last two alternatives the times are weighted using the
clustering procedure introduced in [26], without the produc-
tions in

f5(θq,r) =
∑
i∈I

∑
j∈Γi

−ωi,j θi,j ,

and with weighted productions in

f6(θq,r) =
∑
i∈I

∑
j∈Γi

(
−ωi,j θi,j +

P ∗(q)

ρmax
i

2 ρi,j

)
.

The evaluation consisted in 10 runs of the algorithm with
different positions of the points for different numbers of agents
and points, all of them for the six cost functions. The required
coverage was randomly selected between 400 and 2200 units
while the maximum production of the agents was 5000 units.
The number of agents and points was selected in a way that the
team had enough production to cover the points. This restricts
to at most twice more points than agents.

Since the cost function influences the points that each agent
finally visits, we first evaluate in how many cases the optimal
solution was found, both for the calculation of times and
productions and for the team plan scheduling. In Fig. 2 it can
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be seen that a solution was found in all the 190 runs for the
times and production. However, the first two cost functions
only allowed a solution for the scheduling in the 75% and
68% of the cases while the others allowed more than 95%
of solutions. This supports the discussion on the existence of
solution from in Section IV-E.
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Fig. 2. Number of solutions found for the times and productions (dark blue)
and for the scheduling (yellow).

In Fig. 3 we show the computation times to obtain the
coverage times and productions solving problem (4). Although
in all the cases the increase of the time is more than linear
with the number of agents and points, for a team of 13
or 15 agents, the computation requires around 20 seconds
in the worst case, i.e., with f3. This time is negligible for
most persistent coverage applications in which the agents are
required to carry out the task indefinitely. In addition, the
difference between cost functions is significant. The worst-
case computation required with f3 is around 5 times lower
with f5 and in some cases, such as with f1, the computation
increases only with the number of robots.

The results on the computation time of the scheduling are
very similar for all the cost function and, therefore, we only
show in Fig. 4 the times for f1. These times are in the
order of milliseconds for small teams and only increase to
approximately one second for the biggest teams and numbers
of points. According to these results, the computational com-
plexity resides in problem (4) rather than in Problem IV.1.
Moreover, the small computation time with respect to potential
period values supports the recalculation of the solution when
P ∗(q) changes.

Finally we compare in Table I six different metrics obtained
from the simulations to give an idea of the behavior with each
function. The first metric is the average number of iterations of
Algorithm 1 in [26] to find the final solution. With f3 and f5 it
is slightly bigger, which means that these cost functions allow
the paths to be progressively shortened more than the others.
The second metric is the average number of movements per
agent during each period, which is really similar for all the
functions. The third row includes the average time that each
agent dedicates to cover the point in a period. The differences
are again small with f5 and f6 producing only 2%-better
results. In the fourth place we calculate the maximum time that
a point remains uncovered every period. The same functions
f5 and f6 give better results even though there is no much
difference between all of them. The fifth metric shows the
maximum production required to the agents and normalized by
the maximum production available. In this case, f3 performs
much worse than the others while f4 and f6 require the
smallest maximum productions. Finally we compute a metric

TABLE I
COMPARISON OF METRICS BETWEEN COST FUNCTIONS.

f1 f2 f3 f4 f5 f6

Iterations 1.11 1.10 1.27 1.12 1.36 1.13

Movements 1.43 1.44 1.44 1.44 1.45 1.44

Total Coverage 0.95 0.95 0.94 0.95 0.97 0.97

Uncovered Time 0.30 0.30 0.32 0.31 0.29 0.29

Max Production 0.73 0.73 0.93 0.69 0.81 0.68

Homogeneity 3.03 2.93 3.18 3.16 3.45 3.24

that determines the homogeneity of the coverage. It is defined
as

h =
∑
q∈Q

∑
i∈I

(
θi,j −

P ∗(q)

ρmax
i

)2

,

and the results show that, on average, the cost functions f1 and
f2 provide the most homogeneous coverage. As a conclusion,
one can see that all the alternatives have advantages and
disadvantages and the selection must be made depending on
the application.

VI. APPLICATION TO MOBILE INDUCTION HEATING

Throughout the paper we have presented a solution to
persistent coverage with a team of generic agents. Now we
particularize the proposal to the application of induction heat-
ing in a domestic hob for cooking. In this application, a finite
set of cooking pots have to be persistently heated to maintain
their temperature or received power as close as possible to the
reference determined by the user. This is achieved by means
of induction technology with a group of inductors that are
capable of transferring power to the pots and can move inside
the hob. In particular, we apply our solution to the prototype
shown in Fig. 5.

The size of the prototype is 726 × 482 mm and it has three
inductors of 180 mm of diameter. Each one is attached to a
robotic arm with two rotational joints. This design allows two
configurations of the arms in many positions of the inductors,
one with the second joint to the left of the inductor and another
with the joint to the right. However, when moving closer to
the hob limits, only one configuration may be feasible without
colliding with the border and to change between configurations
the inductor must go through its home position.

The motion of the arms is given by stepper motors, which
are controlled with Arduino boards and specific drivers. The
strategies are computed in Matlab and transmitted to the
Arduino boards through the serial bus. Since the interest of
this validation is in the movements of the inductors and the
periodic strategy, in these experiments the pots have been
simulated and the power has not been actually provided in
order to accelerate the experimentation and guarantee the
safety of the motion system.

In this context, the discrete points represent the pots, the
coverage level is their received power and the agents are the
inductors. The coverage level deteriorates over time because
the pots cool down if they are not heated. The maximum
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Fig. 3. Mean calculation time of the coverage times and productions solving problem (4). Each figure represents the results with a different cost function
and different colors represent different number of agents.
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Fig. 4. Mean calculation time of the scheduling solving Problem IV.1.

Fig. 5. Prototype of induction hob with mobile inductors.

production depends on the design of the inductor and the
coupling pot-inductor and the inductors may not be able to
reach all the pots due to the physically-limited reachability of
the robotic arms.

The cost function that we have proposed for the team plan
scheduling, that aims to minimize the time in which two or
more agents are moving simultaneously, is motivated by this
application as follows. When an inductor starts moving from
one pot to the following, it stops heating and, therefore, it
stops requesting power from the electric grid. In the same
way, when it reaches a new pot and starts heating, it starts
requesting power from the grid. These changes in requested
power are limited by the European norm UNE-EN 61000-3-3,
2013. In order to comply with this norm, we minimize the
time of simultaneous movements so that, when an inductor
stops (starts) requesting power, we can increase (decrease) the
request of the others to compensate the total request of the

system.
Given the particular features of the prototype and its spatial

restrictions, there may appear cases in which the scheduling
may not have a feasible solution due to the collision avoidance
restrictions. For instance, if an inductor is in charge of only one
pot, i.e., it remains all the time under such pot, and another
inductor has to heat a different pot sufficiently close to the
first one, then the second inductor may not be capable of
reaching it without colliding with the first one. To solve these
issues, geometric solutions have been implemented ad hoc and,
since we focus on the general approach to periodic persistent
coverage, it is out of the scope of this paper.

For this particular application we calculate the period as
T = maxi∈I t

m
i /θ

m
max, where tmi are the actual times that the

robots need to traverse the path and θmmax is the maximum
portion of the period that we allow for the motion, in this
case, 0.3.

A. Experimental Results

We provide experimental results of the periodic heating
strategy with the prototype introduced before. The results ob-
tained for different configurations of the pots are conceptually
the same and, therefore, we only show an example.
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Fig. 6. Layout of one of the experiments. Blue circumferences represent the
pots; orange circumferences, the two coils of the inductors; and grey segments,
the two links of the robotic arms.
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In Fig. 6 the layout of the example is shown. There are
6 virtual pots which are circles of diameter 18cm. The pots
require a constant P ∗(q) = 800, 1500, 500, 1500, 2000 and
1500W , respectively. At this particular time instant, the three
inductors are heating their assigned pots.
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Fig. 7. Optimal schedule obtained for the experiment.

The optimal schedule obtained for this configuration of
inductors and pots is shown in Fig. 7. It can be seen that
the inductor i2, the right one in Fig. 5, has to spend most of
its time heating pots q3 and q6 and also move to heat pot q5

in cooperation with inductor i3, the top one, that is also in
charge of pot q4. On the other hand, inductor i1 alternatively
heats pots q1 and q2.

The power received by the pots can be seen in Fig. 8a-
8f. One can see that all the pots receive power periodically
for a period of time and then have to wait some time until
the following coverage. This is a requirement of the system
since there are more pots than inductors. However, the average
received power quickly tends to the required power, meaning
that, on average, the pots receive the desired power.

It is important to note that, although the curly power profile
may result in important variations of the temperature of the
pot, this effect can only be negative in boiling processes, where
the bubbles can appear and disappear with the power changes.
In other processes, such as deep frying or just warming, the
variation of the temperature can hardly be appreciated by
the user. Moreover, if a boiling process is taking place, the
assignment of the inductors can be adjusted to keep an inductor
under the boiling pot all the time while the other share the rest
of the pots.

In Fig. 9 the power provided by the inductors is depicted
along with the total power of the hob. The cost function of the
scheduling, that minimizes the time in which more than one
inductor is moving at the same time, favors that the variations
of the total power are minimal. In addition, it allows us to
adjust the total power of the hob when one inductor starts or
stops requesting power with the other two inductors to satisfy
the flicker norm.

Finally, we carried out an evaluation of all the possible
solutions for this experiment using brute force. In particular,
we calculated all the possible combinations of trajectories of
the three inductors and tried to solve the second and fourth
steps of Algorithm 1. Out of the 1270 combinations, only
10 were feasible and the solution provided by our method
was only a 1.41% away from the best one in terms of cove-
rage quality measured by

∫ t
0

∑
q∈Q

(
Z∗(q, τ)−Z(q, τ)

)2
dτ,.

Finding such best solution took 181s while our method only
needed 0.95s.

VII. CONCLUSIONS

In this paper we have introduced a periodic solution to
the persistent coverage problem. We have proposed a path
planning strategy for each individual agent and a quadratically
constrained linear program to obtain the optimal coverage
times and actions to satisfy the coverage objective of the envi-
ronment. We have also presented an MILP to find a periodic
team schedule in which no collisions occur. Simulation results
support our proposal and demonstrate that it is tractable for
significant team and environment sizes. Moreover, we have
shown experimental results for a heating application in which
a set of pots is homogeneously heated in a domestic hob with
mobile inductors.

APPENDIX A
COST FUNCTION CONSTRAINTS

The constraints that arise from the minimum function in (12)
capture the duration of the overlap between each pair of move-
ments. In the case that one of the movements is completely
overlapped with the other, the duration of the overlap is equal
to the duration of such movement. Therefore, we can express
Eq. (14a) and (14d) as

x1,2 ≥ Λ1 −∆1 −Re1
1,2,

x1,2 ≥ Λ2 −∆2 −Re4
1,2.

In this appendix, we substitute subindices i1, j1 and i2, j2 by
1 and 2 for simplicity.

On the other hand, if the movements are only partially over-
lapped, the duration of such overlap is bounded by Eq. (14b)
or Eq. (14c). However, the differences Λ1 −∆2 or Λ2 −∆1

may not represent such duration if one or both movements
are split between the end and the beginning of the team plan,
that happens if cdk ≡ cdik,jk = 0 and cai ≡ caik,jk+1 = 1.
In the following we formulate the restrictions for all the
cases in which none, one or both movements are split. Each
constraint is conditionally activated, applying the big number
method, depending on cdk and cak. In particular, if cak− cdk = 0,
the movement is not split, and its corresponding constraints
activated, and if 1− cak + cdk = 0, the movement is split.

We set these two restrictions for the case in which none of
the movements is split:

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (ca1 − cd1)−R (ca2 − cd2),

x1,2 ≥ Λ2 −∆1 −Re4
1,2 −R (ca1 − cd1)−R (ca2 − cd2)

Similarly, when both are split, the constraints are

x1,2 ≥ Λ1 − (∆2 − 1)−Re1
1,2 −R(1− ca1 − cd1)

−R (1− ca2 − cd2),

x1,2 ≥ Λ2 − (∆1 − 1)−Re4
1,2 −R(1− ca1 − cd1)

−R (1− ca2 − cd2).

In this case we only subtract 1 to the initial times to overcome
the split.

We proceed in a similar way when only one of the move-
ments is split although in these cases it is slightly more
complicated. In the first place we focus in the case in which
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(f) Pot 6.

Fig. 8. Power received by the pots during the experiment. The green line represents the instant received power; the red line, the requested power; and the
blue line, the average received power.
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Fig. 9. Power provided by the inductors during the experiment. The red, blue
and green lines represent the power of each inductor and the magenta line,
the total power.

the movement of agent 1 is split. We check which part of the
movement may overlap with the movement of agent i2. This is
done by introducing a binary variable b11,2 such that b11,2 = 1
if ∆1 ≤ Λ2, meaning that the second part is overlapped, and
b11,2 = 0, otherwise, meaning that the candidate for overlap
is the first part. This variable is obtained from the following
constraints:

∆1 − Λ2 ≤ R (1− ca1 − cd1) +R (ca2 − cd2) +R (1− b11,2),

Λ2 −∆1 ≤ R (1− ca1 − cd1) +R (ca2 − cd2) +Rb11,2.

Depending on the value of b11,2 we transform the constraints
differently. When b11,2 = 1 we add one to the final time of
the movement of i1. This can be seen as moving the part of
the movement that is at the beginning of the plan to the right
side. Thus, the constraints are

x1,2 ≥ (Λ1 + 1)−∆2 −Re1
1,2 −R (1− ca1 − cd1)

−R (ca2 − cd2)−R (1− b11,2),

x1,2 ≥ Λ2 −∆1 −Re4
1,2 −R (1− ca1 − cd1)

−R (ca2 − cd2)−R (1− b11,2).

On the contrary, when b11,2 = 0, we subtract one to the initial
time of the movement to compare the movement of agent i2
with the left part of the movement of i1. The constraints result

in

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (1− ca1 − cd1)

−R (ca2 − cd2)−Rb11,2,
x1,2 ≥ Λ2 − (∆1 − 1)−Re4

1,2 −R (1− ca1 − cd1)

−R (ca2 − cd2)−Rb11,2.

The same procedure can be followed for the case in which
the movement of i2 is split. We include the binary variable
b21,2 with

∆2 − Λ1 ≤ R (ca1 − cd1) +R (1− ca2 − cd2) +R (1− b21,2),

Λ1 −∆2 ≤ R (ca1 − cd1) +R (1− ca2 − cd2) +Rb21,2.

When b21,2 = 1, the constraints are

x1,2 ≥ Λ1 −∆2 −Re1
1,2 −R (ca1 − cd1)

−R (1− ca2 − cd2)−R (1− b21,2),

x1,2 ≥ (Λ2 + 1)−∆1 −Re4
1,2 −R (ca1 − cd1)

−R (1− ca2 − cd2)−R (1− b21,2),

and, otherwise,

x1,2 ≥ Λ1 − (∆2 − 1)−Re1
1,2 −R (ca1 − cd1)

−R (1− ca2 − cd2)−Rb21,2,
x1,2 ≥ Λ2 −∆1 −Re4

1,2 −R (ca1 − cd1)

−R (1− ca2 − cd2)−Rb21,2.

Finally, note that for the implementation and resolution of
the problem, the constraints (14a)-(14d) have to be substituted
by all the restrictions of this appendix.
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