2,804 research outputs found

    Gene order rearrangement methods for the reconstruction of phylogeny

    Get PDF
    The study of phylogeny, i.e. the evolutionary history of species, is a central problem in biology and a key for understanding characteristics of contemporary species. Many problems in this area can be formulated as combinatorial optimisation problems which makes it particularly interesting for computer scientists. The reconstruction of the phylogeny of species can be based on various kinds of data, e.g. morphological properties or characteristics of the genetic information of the species. Maximum parsimony is a popular and widely used method for phylogenetic reconstruction aiming for an explanation of the observed data requiring the least evolutionary changes. A certain property of the genetic information gained much interest for the reconstruction of phylogeny in recent time: the organisation of the genomes of species, i.e. the arrangement of the genes on the chromosomes. But the idea to reconstruct phylogenetic information from gene arrangements has a long history. In Dobzhansky and Sturtevant (1938) it was already pointed out that “a comparison of the different gene arrangements in the same chromosome may, in certain cases, throw light on the historical relationships of these structures, and consequently on the history of the species as a whole”. This kind of data is promising for the study of deep evolutionary relationships because gene arrangements are believed to evolve slowly (Rokas and Holland, 2000). This seems to be the case especially for mitochondrial genomes which are available for a wide range of species (Boore, 1999). The development of methods for the reconstruction of phylogeny from gene arrangement data has made considerable progress during the last years. Prominent examples are the computation of parsimonious evolutionary scenarios, i.e. a shortest sequence of rearrangements transforming one arrangement of genes into another or the length of such a minimal scenario (Hannenhalli and Pevzner, 1995b; Sankoff, 1992; Watterson et al., 1982); the reconstruction of parsimonious phylogenetic trees from gene arrangement data (Bader et al., 2008; Bernt et al., 2007b; Bourque and Pevzner, 2002; Moret et al., 2002a); or the computation of the similarities of gene arrangements (Bergeron et al., 2008a; Heber et al., 2009). 1 1 Introduction The central theme of this work is to provide efficient algorithms for modified versions of fundamental genome rearrangement problems using more plausible rearrangement models. Two types of modified rearrangement models are explored. The first type is to restrict the set of allowed rearrangements as follows. It can be observed that certain groups of genes are preserved during evolution. This may be caused by functional constraints which prevented the destruction (Lathe et al., 2000; SĂ©mon and Duret, 2006; Xie et al., 2003), certain properties of the rearrangements which shaped the gene orders (Eisen et al., 2000; Sankoff, 2002; Tillier and Collins, 2000), or just because no destructive rearrangement happened since the speciation of the gene orders. It can be assumed that gene groups, found in all studied gene orders, are not acquired independently. Accordingly, these gene groups should be preserved in plausible reconstructions of the course of evolution, in particular the gene groups should be present in the reconstructed putative ancestral gene orders. This can be achieved by restricting the set of rearrangements, which are allowed for the reconstruction, to those which preserve the gene groups of the given gene orders. Since it is difficult to determine functionally what a gene group is, it has been proposed to consider common combinatorial structures of the gene orders as gene groups (Marcotte et al., 1999; Overbeek et al., 1999). The second considered modification of the rearrangement model is extending the set of allowed rearrangement types. Different types of rearrangement operations have shuffled the gene orders during evolution. It should be attempted to use the same set of rearrangement operations for the reconstruction otherwise distorted or even wrong phylogenetic conclusions may be obtained in the worst case. Both possibilities have been considered for certain rearrangement problems before. Restricted sets of allowed rearrangements have been used successfully for the computation of parsimonious rearrangement scenarios consisting of inversions only where the gene groups are identified as common intervals (BĂ©rard et al., 2007; Figeac and VarrĂ©, 2004). Extending the set of allowed rearrangement operations is a delicate task. On the one hand it is unknown which rearrangements have to be regarded because this is part of the phylogeny to be discovered. On the other hand, efficient exact rearrangement methods including several operations are still rare, in particular when transpositions should be included. For example, the problem to compute shortest rearrangement scenarios including transpositions is still of unknown computational complexity. Currently, only efficient approximation algorithms are known (e.g. Bader and Ohlebusch, 2007; Elias and Hartman, 2006). Two problems have been studied with respect to one or even both of these possibilities in the scope of this work. The first one is the inversion median problem. Given the gene orders of some taxa, this problem asks for potential ancestral gene orders such that the corresponding inversion scenario is parsimonious, i.e. has a minimum length. Solving this problem is an essential component 2 of algorithms for computing phylogenetic trees from gene arrangements (Bourque and Pevzner, 2002; Moret et al., 2002a, 2001). The unconstrained inversion median problem is NP-hard (Caprara, 2003). In Chapter 3 the inversion median problem is studied under the additional constraint to preserve gene groups of the input gene orders. Common intervals, i.e. sets of genes that appear consecutively in the gene orders, are used for modelling gene groups. The problem of finding such ancestral gene orders is called the preserving inversion median problem. Already the problem of finding a shortest inversion scenario for two gene orders is NP-hard (Figeac and VarrĂ©, 2004). Mitochondrial gene orders are a rich source for phylogenetic investigations because they are known for more than 1 000 species. Four rearrangement operations are reported at least in the literature to be relevant for the study of mitochondrial gene order evolution (Boore, 1999): That is inversions, transpositions, inverse transpositions, and tandem duplication random loss (TDRL). Efficient methods for a plausible reconstruction of genome rearrangements for mitochondrial gene orders using all four operations are presented in Chapter 4. An important rearrangement operation, in particular for the study of mitochondrial gene orders, is the tandem duplication random loss operation (e.g. Boore, 2000; Mauro et al., 2006). This rearrangement duplicates a part of a gene order followed by the random loss of one of the redundant copies of each gene. The gene order is rearranged depending on which copy is lost. This rearrangement should be regarded for reconstructing phylogeny from gene order data. But the properties of this rearrangement operation have rarely been studied (Bouvel and Rossin, 2009; Chaudhuri et al., 2006). The combinatorial properties of the TDRL operation are studied in Chapter 5. The enumeration and counting of sorting TDRLs, that is TDRL operations reducing the distance, is studied in particular. Closed formulas for computing the number of sorting TDRLs and methods for the enumeration are presented. Furthermore, TDRLs are one of the operations considered in Chapter 4. An interesting property of this rearrangement, distinguishing it from other rearrangements, is its asymmetry. That is the effects of a single TDRL can (in the most cases) not be reversed with a single TDRL. The use of this property for phylogeny reconstruction is studied in Section 4.3. This thesis is structured as follows. The existing approaches obeying similar types of modified rearrangement models as well as important concepts and computational methods to related problems are reviewed in Chapter 2. The combinatorial structures of gene orders that have been proposed for identifying gene groups, in particular common intervals, as well as the computational approaches for their computation are reviewed in Section 2.2. Approaches for computing parsimonious pairwise rearrangement scenarios are outlined in Section 2.3. Methods for the computation genome rearrangement scenarios obeying biologically motivated constraints, as introduced above, are detailed in Section 2.4. The approaches for the inversion median problem are covered in Section 2.5. Methods for the reconstruction of phylogenetic trees from gene arrangement data are briefly outlined in Section 2.6.3 1 Introduction Chapter 3 introduces the new algorithms CIP, ECIP, and TCIP for solving the preserving inversion median problem. The efficiency of the algorithm is empirically studied for simulated as well as mitochondrial data. The description of algorithms CIP and ECIP is based on Bernt et al. (2006b). TCIP has been described in Bernt et al. (2007a, 2008b). But the theoretical foundation of TCIP is extended significantly within this work in order to allow for more than three input permutations. Gene order rearrangement methods that have been developed for the reconstruction of the phylogeny of mitochondrial gene orders are presented in the fourth chapter. The presented algorithm CREx computes rearrangement scenarios for pairs of gene orders. CREx regards the four types of rearrangement operations which are important for mitochondrial gene orders. Based on CREx the algorithm TreeREx for assigning rearrangement events to a given tree is developed. The quality of the CREx reconstructions is analysed in a large empirical study for simulated gene orders. The results of TreeREx are analysed for several mitochondrial data sets. Algorithms CREx and TreeREx have been published in Bernt et al. (2008a, 2007c). The analysis of the mitochondrial gene orders of Echinodermata was included in Perseke et al. (2008). Additionally, a new and simple method is presented to explore the potential of the CREx method. The new method is applied to the complete mitochondrial data set. The problem of enumerating and counting sorting TDRLs is studied in Chapter 5. The theoretical results are covered to a large extent by Bernt et al. (2009b). The missing combinatorial explanation for some of the presented formulas is given here for the first time. Therefor, a new method for the enumeration and counting of sorting TDRLs has been developed (Bernt et al., 2009a)

    Models and Algorithms for Sorting Permutations with Tandem Duplication and Random Loss

    Get PDF
    A central topic of evolutionary biology is the inference of phylogeny, i. e., the evolutionary history of species. A powerful tool for the inference of such phylogenetic relationships is the arrangement of the genes in mitochondrial genomes. The rationale is that these gene arrangements are subject to different types of mutations in the course of evolution. Hence, a high similarity in the gene arrangement between two species indicates a close evolutionary relation. Metazoan mitochondrial gene arrangements are particularly well suited for such phylogenetic studies as they are available for a wide range of species, their gene content is almost invariant, and usually free of duplicates. With these properties gene arrangements of mitochondrial genomes are modeled by permutations in which each element represents a gene, i. e., a specific genetic sequence. The mutations that shape the gene arrangement of genomes are then represented by operations that rearrange elements in permutations, so-called genome rearrangements, and thereby bridge the gap between evolutionary biology and optimization. Many problems of phylogeny inference can be formulated as challenging combinatorial optimization problems which makes this research area especially interesting for computer scientists. The most prominent examples of such optimization problems are the sorting problem and the distance problem. While the sorting problem requires a minimum length sequence of rearrangements that transforms one given permutation into another given permutation, i. e., it aims for a hypothetical scenario of gene order evolution, the distance problem intends to determine only the length of such a sequence. This minimum length is called distance and used as a (dis)similarity measure quantifying the evolutionary relatedness. Most evolutionary changes occurring in gene arrangements of mitochondrial genomes can be explained by the tandem duplication random loss (TDRL) genome rearrangement model. A TDRL consists of a duplication of a consecutive set of genes in tandem followed by a random loss of one copy of each duplicated gene. In spite of the importance of the TDRL genome rearrangement in mitochondrial evolution, its combinatorial properties have rarely been studied. In addition, models of genome rearrangements which include all types of rearrangement that are relevant for mitochondrial genomes, i. e., inversions, transpositions, inverse transpositions, and TDRLs, while admitting computational tractability are rare. Nevertheless, especially for metazoan gene arrangements the TDRL rearrangement should be considered for the reconstruction of phylogeny. Realizing that a better understanding of the TDRL model is indispensable for the study of mitochondrial gene arrangements, the central theme of this thesis is to broaden the horizon of TDRL genome rearrangements with respect to mitochondrial genome evolution. For this purpose, this thesis provides combinatorial properties of the TDRL model and its variants as well as efficient methods for a plausible reconstruction of rearrangement scenarios between gene arrangements. The methods that are proposed consider all types of genome rearrangements that predominately occur during mitochondrial evolution. More precisely, the main points contained in this thesis are as follows: The distance problem and the sorting problem for the TDRL model are further examined in respect to circular permutations, a formal concept that reflects the circular structure of mitochondrial genomes. As a result, a closed formula for the distance is provided. Recently, evidence for a variant of the TDRL rearrangement model in which the duplicated set of genes is additionally inverted have been found. Initiating the algorithmic study of this new rearrangement model on a certain type of permutations, a closed formula solving the distance problem is proposed as well as a quasilinear time algorithm that solves the corresponding sorting problem. The assumption that only one type of genome rearrangement has occurred during the evolution of certain gene arrangements is most likely unrealistic, e. g., at least three types of rearrangements on top of the TDRL rearrangement have to be considered for the evolution metazoan mitochondrial genomes. Therefore, three different biologically motivated constraints are taken into account in this thesis in order to produce plausible evolutionary rearrangement scenarios. The first constraint is extending the considered set of genome rearrangements to the model that covers all four common types of mitochondrial genome rearrangements. For this 4-type model a sharp lower bound and several close additive upper bounds on the distance are developed. As a byproduct, a polynomial-time approximation algorithm for the corresponding sorting problem is provided that guarantees the computation of pairwise rearrangement scenarios that deviate from a minimum length scenario by at most two rearrangement operations. The second biologically motivated constraint is the relative frequency of the different types of rearrangements occurring during the evolution. The frequency is modeled by employing a weighting scheme on the 4-type model in which every rearrangement is weighted with respect to its type. The resulting NP-hard sorting problem is then solved by means of a polynomial size integer linear program. The third biologically motivated constraint that has been taken into account is that certain subsets of genes are often found in close proximity in the gene arrangements of many different species. This observation is reflected by demanding rearrangement scenarios to preserve certain groups of genes which are modeled by common intervals of permutations. In order to solve the sorting problem that considers all three types of biologically motivated constraints, the exact dynamic programming algorithm CREx2 is proposed. CREx2 has a linear runtime for a large class of problem instances. Otherwise, two versions of the CREx2 are provided: The first version provides exact solutions but has an exponential runtime in the worst case and the second version provides approximated solutions efficiently. CREx2 is evaluated by an empirical study for simulated artificial and real biological mitochondrial gene arrangements

    The elusive evidence for chromothripsis.

    Get PDF
    The chromothripsis hypothesis suggests an extraordinary one-step catastrophic genomic event allowing a chromosome to 'shatter into many pieces' and reassemble into a functioning chromosome. Recent efforts have aimed to detect chromothripsis by looking for a genomic signature, characterized by a large number of breakpoints (50-250), but a limited number of oscillating copy number states (2-3) confined to a few chromosomes. The chromothripsis phenomenon has become widely reported in different cancers, but using inconsistent and sometimes relaxed criteria for determining rearrangements occur simultaneously rather than progressively. We revisit the original simulation approach and show that the signature is not clearly exceptional, and can be explained using only progressive rearrangements. For example, 3.9% of progressively simulated chromosomes with 50-55 breakpoints were dominated by two or three copy number states. In addition, by adjusting the parameters of the simulation, the proposed footprint appears more frequently. Lastly, we provide an algorithm to find a sequence of progressive rearrangements that explains all observed breakpoints from a proposed chromothripsis chromosome. Thus, the proposed signature cannot be considered a sufficient proof for this extraordinary hypothesis. Great caution should be exercised when labeling complex rearrangements as chromothripsis from genome hybridization and sequencing experiments

    A variant of the tandem duplication - random loss model of genome rearrangement

    Get PDF
    In Soda'06, Chaudhuri, Chen, Mihaescu and Rao study algorithmic properties of the tandem duplication - random loss model of genome rearrangement, well-known in evolutionary biology. In their model, the cost of one step of duplication-loss of width k is αk\alpha^k for α=1\alpha =1 or α>=2\alpha >=2 . In this paper, we study a variant of this model, where the cost of one step of width kk is 1 if kKk K, for any value of the parameter KinNK in N. We first show that permutations obtained after pp steps of width KK define classes of pattern-avoiding permutations. We also compute the numbers of duplication-loss steps of width KK necessary and sufficient to obtain any permutation of SnS_n, in the worst case and on average. In this second part, we may also consider the case K=K(n)K=K(n), a function of the size nn of the permutation on which the duplication-loss operations are performed

    Posets and Permutations in the duplication-loss model

    Get PDF
    Version courte de "Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.", présentée à GASCom'08In this paper, we are interested in the combinatorial analysis of the whole genome duplication - random loss model of genome rearrangement initiated in a paper of Chaudhuri, Chen, Mihaescu, and Rao in SODA 2006 and continued by Bouvel and Rossin in 2007. In this model, genomes composed of n genes are modeled by permutations of the set of integers [1..n], that can evolve through duplication-loss steps. It was previously shown that the class of permutations obtained in this model after a given number p of steps is a class of pattern-avoiding permutations of finite basis. The excluded patterns were implicitly described as the minimal permutations with d=2^p descents, minimal being intended in the sense of the pattern-involvement relation on permutations. Here, we give a local and simpler characterization of the set B_d of minimal permutations with d descents. We also provide a more detailed analysis - characterization, bijection and enumeration - of a particular subset of B_d, namely the patterns in B_d of size 2d

    The Tandem Duplication Distance Is NP-Hard

    Get PDF
    In computational biology, tandem duplication is an important biological phenomenon which can occur either at the genome or at the DNA level. A tandem duplication takes a copy of a genome segment and inserts it right after the segment - this can be represented as the string operation AXB ? AXXB. Tandem exon duplications have been found in many species such as human, fly or worm, and have been largely studied in computational biology. The Tandem Duplication (TD) distance problem we investigate in this paper is defined as follows: given two strings S and T over the same alphabet, compute the smallest sequence of tandem duplications required to convert S to T. The natural question of whether the TD distance can be computed in polynomial time was posed in 2004 by Leupold et al. and had remained open, despite the fact that tandem duplications have received much attention ever since. In this paper, we prove that this problem is NP-hard, settling the 16-year old open problem. We further show that this hardness holds even if all characters of S are distinct. This is known as the exemplar TD distance, which is of special relevance in bioinformatics. One of the tools we develop for the reduction is a new problem called the Cost-Effective Subgraph, for which we obtain W[1]-hardness results that might be of independent interest. We finally show that computing the exemplar TD distance between S and T is fixed-parameter tractable. Our results open the door to many other questions, and we conclude with several open problems
    • 

    corecore