
M O D E L S A N D A L G O R I T H M S F O R S O RT I N G P E R M U TAT I O N S
W I T H TA N D E M D U P L I C AT I O N A N D R A N D O M L O S S

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E RTAT I O N

zur Erlangung des akademischen Grades

D O C T O R R E R U M N AT U R A L I U M
(Dr. rer. nat.)

im Fachgebiet

I N F O R M AT I K

Vorgelegt

von Dipl.-Math. Tom Hartmann

geboren am 21. Januar 1989 in Bergen

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Martin Middendorf, Universität Leipzig
2. Prof. Dr. Jean-Stéphane Varré, Université de Lille

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 16.04.2019 mit dem Gesamtprädikat magna cum laude.

[April 25, 2019 at 13:18 – classicthesis 4.4]

Tom Hartmann: Models and Algorithms for Sorting Permutations with
Tandem Duplication and Random Loss, © April 2019

[April 2019 at 13:18 – classicthesis 4.4]

A B S T R A C T

A central topic of evolutionary biology is the inference of phylogeny,
i. e., the evolutionary history of species. A powerful tool for the in-
ference of such phylogenetic relationships is the arrangement of the
genes in mitochondrial genomes. The rationale is that these gene ar-
rangements are subject to different types of mutations in the course of
evolution. Hence, a high similarity in the gene arrangement between
two species indicates a close evolutionary relation. Metazoan mito-
chondrial gene arrangements are particularly well suited for such
phylogenetic studies as they are available for a wide range of species,
their gene content is almost invariant, and usually free of duplicates.
With these properties gene arrangements of mitochondrial genomes
are modeled by permutations in which each element represents a
gene, i. e., a specific genetic sequence. The mutations that shape the
gene arrangement of genomes are then represented by operations
that rearrange elements in permutations, so-called genome rearrange-
ments, and thereby bridge the gap between evolutionary biology and
optimization. Many problems of phylogeny inference can be formu-
lated as challenging combinatorial optimization problems which
makes this research area especially interesting for computer scien-
tists. The most prominent examples of such optimization problems
are the sorting problem and the distance problem. While the sort-
ing problem requires a minimum length sequence of rearrangements
that transforms one given permutation into another given permuta-
tion, i. e., it aims for a hypothetical scenario of gene order evolution,
the distance problem intends to determine only the length of such
a sequence. This minimum length is called distance and used as a
(dis)similarity measure quantifying the evolutionary relatedness.

Most evolutionary changes occurring in gene arrangements of mito-
chondrial genomes can be explained by the tandem duplication ran-
dom loss (TDRL) genome rearrangement model. A TDRL consists
of a duplication of a consecutive set of genes in tandem followed
by a random loss of one copy of each duplicated gene. In spite of
the importance of the TDRL genome rearrangement in mitochondrial
evolution, its combinatorial properties have rarely been studied. In
addition, models of genome rearrangements which include all types
of rearrangement that are relevant for mitochondrial genomes, i. e.,
inversions, transpositions, inverse transpositions, and TDRLs, while
admitting computational tractability are rare. Nevertheless, especially
for metazoan gene arrangements the TDRL rearrangement should be
considered for the reconstruction of phylogeny. Realizing that a better
understanding of the TDRL model is indispensable for the study of
mitochondrial gene arrangements, the central theme of this thesis is
to broaden the horizon of TDRL genome rearrangements with respect
to mitochondrial genome evolution. For this purpose, this thesis pro-
vides combinatorial properties of the TDRL model and its variants

[April 2019 at 13:18 – classicthesis 4.4]

as well as efficient methods for a plausible reconstruction of rear-
rangement scenarios between gene arrangements. The methods that
are proposed consider all types of genome rearrangements that pre-
dominately occur during mitochondrial evolution. More precisely, the
main points contained in this thesis are as follows:

The distance problem and the sorting problem for the TDRL model
are further examined in respect to circular permutations, a formal
concept that reflects the circular structure of mitochondrial genomes.
As a result, a closed formula for the distance is provided.

Recently, evidence for a variant of the TDRL rearrangement model
in which the duplicated set of genes is additionally inverted have
been found. Initiating the algorithmic study of this new rearrange-
ment model on a certain type of permutations, a closed formula solv-
ing the distance problem is proposed as well as a quasilinear time
algorithm that solves the corresponding sorting problem.

The assumption that only one type of genome rearrangement has
occurred during the evolution of certain gene arrangements is most
likely unrealistic, e. g., at least three types of rearrangements on top
of the TDRL rearrangement have to be considered for the evolution
metazoan mitochondrial genomes. Therefore, three different biologi-
cally motivated constraints are taken into account in this thesis in or-
der to produce plausible evolutionary rearrangement scenarios. The
first constraint is extending the considered set of genome rearrange-
ments to the model that covers all four common types of mitochon-
drial genome rearrangements. For this 4-type model a sharp lower
bound and several close additive upper bounds on the distance are
developed. As a byproduct, a polynomial-time approximation algo-
rithm for the corresponding sorting problem is provided that guaran-
tees the computation of pairwise rearrangement scenarios that devi-
ate from a minimum length scenario by at most two rearrangement
operations. The second biologically motivated constraint is the rela-
tive frequency of the different types of rearrangements occurring dur-
ing the evolution. The frequency is modeled by employing a weight-
ing scheme on the 4-type model in which every rearrangement is
weighted with respect to its type. The resulting NP-hard sorting prob-
lem is then solved by means of a polynomial size integer linear pro-
gram. The third biologically motivated constraint that has been taken
into account is that certain subsets of genes are often found in close
proximity in the gene arrangements of many different species. This
observation is reflected by demanding rearrangement scenarios to
preserve certain groups of genes which are modeled by common in-
tervals of permutations. In order to solve the sorting problem that
considers all three types of biologically motivated constraints, the ex-
act dynamic programming algorithm CREx2 is proposed. CREx2 has a
linear runtime for a large class of problem instances. Otherwise, two
versions of the CREx2 are provided: The first version provides exact
solutions but has an exponential runtime in the worst case and the
second version provides approximated solutions efficiently. CREx2 is
evaluated by an empirical study for simulated artificial and real bio-
logical mitochondrial gene arrangements.

[April 2019 at 13:18 – classicthesis 4.4]

A RT I S T I C A L A B S T R A C T

“Transforming ducklings into puffins.” by Philipp Zins

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

To my grandmothers who were often in
my thoughts on this journey – you are missed.

A C K N O W L E D G M E N T S

During the past five years of PhD student life, I was supported by
many people who I now like to express my gratitude to.

First of all, I am genuinely thankful to my advisor Prof. Dr. Martin
Middendorf for providing me with the excellent and inspiring sci-
entific environment and the ongoing support, guidance, and advice.
He taught me how to do research and generously shared his deep
knowledge and expertise that continues to inspire me in personal life
as well. I was indeed fortunate to have him as my advisor.

A gigantic thanks to all my current and past colleagues of the
Swarm Intelligence and Complex Systems group, especially to Dr.
Matthias Bernt and Dr. Nicolas Wieseke, for introducing me to fas-
cinating research fields, always providing me with almost unsolvable
riddles, sharing the very personal enthusiasm for discovery, and for
being helpful coauthors and inspiring mentors. It has been a pleasure
to work with you.

I had the great privilege to visit research groups around the world.
First of all, I want to thank Prof. Dr. Yao-Ting Huang from the Na-
tional Chung Cheng University and Yih-Chun Cheng for very infor-
mative and inspiring cooperation, for introducing me to Taiwanese
culture, and for showing me the breathtaking beauty of Taiwanese
nature. Furthermore, I want to thank Prof. Dr. Millie Pant and Dr.
Sunil Kumar Jauhar from the Indian Institute of Technology Roorkee
and Prof. Dr. Gabriel Valiente from the Technical University of Cat-
alonia for hosting me and sharing their helpful thoughts.

A special thank you goes to Dr. Matthias Bernt, Dr. Nicolas Wieseke,
Max Bannach, and Laura Schiele for proof-reading this thesis. I also
thank Philipp Zins for providing me the artistical abstract illustrating
what he thinks I am doing during the past five years.

I thank my wonderful girlfriend Julia Witzlack for always being
by my side, loving, supporting, and believing in me. I would like to
thank my family, especially my parents, Britta and Rene Hartmann,
for their unconditional love and support, and for being there when-
ever I needed them.

Finally, I would like to gratefully acknowledge funding from the
Leipzig University which granted me a three year doctoral scholar-
ship; the German Israeli Foundation (GIF) through the project
G-1051-407.4-2013; and the German Research Foundation (DFG)
through MI439/14-1. My visit in Yao-Ting Huang’s lab and the ex-
change program with the IIT Roorkee were funded by the German
Academic Exchange Service (DAAD) through the project “Taiwan
Summer Institute Programme” within 57342485 and the grant
57130298, respectively.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

C O N T E N T S

1 introduction 1

2 background and related work 7

2.1 Evolution and Mitochondria in a Nutshell 7

2.1.1 What is DNA? . 8

2.1.2 Where there is DNA, there must be mutations! 10

2.1.3 What are mitochondria and how do they evolve? 12

2.1.4 Mitochondrial Gene Orders for Phylogeny In-
ference . 18

2.2 Formal Background . 22

2.2.1 Gene Orders and Permutations 22

2.2.2 Gene Clusters and Common Intervals 26

2.2.3 Mutations and Genome Rearrangements 31

2.2.4 Tracing Evolution and Rearrangement Problems 32

2.3 Background on Genome Rearrangements 38

2.3.1 Inversion . 38

2.3.2 Transposition . 43

2.3.3 Inverse Transposition 44

2.3.4 Tandem Duplication Random Loss 44

2.3.5 Inverse Tandem Duplication Random Loss . . . 49

2.3.6 Mixed Rearrangement Models 50

2.3.7 Multichromosomal Rearrangements and Content
Modifications . 52

3 tandem duplication random losses on circular

permutations 55

3.1 Solving the Distance Problem and Sorting Problem . . 56

3.1.1 Basic Definitions and Preliminaries 56

3.1.2 Properties of Circular Chains 59

3.1.3 Properties of TDRLs on Circular Permutations . 61

3.1.4 Tandem Duplication Random Loss Distance on
Directed Circular Permutations 68

3.1.5 Tandem Duplication Random Loss Distance on
Undirected Circular Permutations 70

3.2 Consequences for Biological Applications 79

3.2.1 Rearrangement Distance Differences 79

3.2.2 Evaluation of the Tandem Duplication Non-Random
Loss Model . 85

3.3 Conclusion . 88

4 inverse tandem duplication random losses on

linear permutations 91

4.1 Solving the Distance and the Sorting Problem 92

4.1.1 Basic Definitions and Preliminaries 92

4.1.2 Structural Characterization of Permutations Gen-
erated by Repeated Application of iTDRLs . . . 95

[April 25, 2019 at 13:18 – classicthesis 4.4]

x contents

4.1.3 Inverse Tandem Duplication Random Loss Dis-
tance on Signed Linear Permutations 105

4.2 Impact on a General Model for Mitochondrial Evolution 109

4.2.1 Bounding the Distance Problem under Major
Mitochondrial Rearrangements 110

4.3 Conclusion . 113

5 algorithms for sorting by mitochondrial rear-
rangements 115

5.1 Basic Definitions and Preliminaries 117

5.2 Exploring the 4-type Rearrangement Model 118

5.2.1 Bounding the 4-type Rearrangement Distance . 118

5.2.2 Approximation Algorithm for Sorting By Mito-
chondrial Rearrangements 127

5.2.3 Consequences for Biological Applications 131

5.3 ILP for Sorting by Weighted Rearrangements 132

5.3.1 Integer Linear Programming GeRe-ILP 134

5.3.2 Implementation 139

5.4 Sorting by Weighted Preserving Rearrangements . . . 140

5.4.1 Common Intervals and Strong Interval Trees . . 142

5.4.2 Generalized Preserving Rearrangements 145

5.4.3 Weighted Preserving Rearrangements 152

5.4.4 Dynamic Programming Algorithm CREx2 160

5.5 Evaluation . 162

5.5.1 CREx2 on Simulated Gene Order Data Sets . . . 163

5.5.2 CREx2 on Mitochondrial Gene Order Data Sets . 175

5.6 Conclusion . 180

6 conclusion 183

bibliography 187

[April 2019 at 13:18 – classicthesis 4.4]

P U B L I C AT I O N S

Several parts of this thesis have already been published in the follow-
ing publications:

1. T. Hartmann, A.-C. Chu, M. Middendorf, and M. Bernt (2018b).
“Combinatorics of tandem duplication random loss mutations
on circular genomes.” In: IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 15.1, pp. 83–95

2. T. Hartmann, N. Wieseke, R. Sharan, M. Middendorf, and
M. Bernt (2017). “Genome Rearrangement with ILP.” In:
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 15.5, pp. 1585–1593

3. T. Hartmann, M. Middendorf, and M. Bernt (2018d). “Genome
Rearrangement Analysis: Cut and Join Genome Rearrange-
ments and Gene Cluster Preserving Approaches.” In: Compar-
ative Genomics: Methods and Protocols. Springer, pp. 261–289

4. T. Hartmann, M. Bernt, and M. Middendorf (2018a). “An Exact
Algorithm for Sorting by Weighted Preserving Genome Rear-
rangements.” In: IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics. (in press)

5. T. Hartmann, M. Bernt, and M. Middendorf (2018c). “EqualT-
DRL: illustrating equivalent tandem duplication random loss
rearrangements.” In: BMC Bioinformatics 19.192

6. T. Hartmann, M. Bannach, and M. Middendorf (2018e). “Sorting
Signed Permutations by Inverse Tandem Duplication Random
Losses.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics. (in press)

A complete list of all my publications can be found at the end of
this thesis.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

1
I N T R O D U C T I O N

What do scientific fields like shuffling cards, scheduling, lo-
gistics, statistical physics as well as molecular evolution
(and many more) have in common? Indeed, all these areas

comprise remarkably rich combinatorial structures, e. g., elements of
finite sets are either arranged sequentially representing specific or-
ders or already ordered sequences are rearranged into new ones. In
the corresponding contexts such ordered sequences of finite sets of el-
ements, which are commonly called permutations, may represent, e. g.,
sets of cards that should be randomized (Aldous and Diaconis, 1986),
shortest routes connecting a finite set of locations (Applegate et al.,
2006), or the creation of a schedule for a number of employees (Burke
et al., 2004). Besides applications in various scientific fields, the appli-
cation of permutations in Comparative Genomics is a fascinating area
of research and the main topic of this thesis.

In this prominent scientific field, the genetic information of differ-
ent species – which may be represented by permutations – are com-
paratively analyzed to characterize similarities and differences in ge-
nomic features to obtain insights into evolutionary relations between
the considered species (Xia, 2013). This principle is based on the fun-
damental idea that specific features of two closely related species are
often conserved within the genomes of these organisms in the course
of evolution (Hardison, 2003) which permits us to formulate hypothe-
ses on evolutionary relations: a high similarity of common features
indicates a close evolutionary relation between species. Since the ge-
netic information in species is organized in a highly complex man-
ner (Krebs et al., 2014) features vary from lower levels such as the
genomic sequence (Brocchieri, 2001), i. e., the deoxyribonucleic acid
(DNA), to higher levels such as the spatial structure that results from
the condensed conformation of the DNA (Simonaitis and Swenson,
2018). A certain feature that has gotten a lot of attention for providing
support for existing or new hypotheses for phylogenetic relationships
among species is the arrangement of certain segments of DNA on the
chromosomes of species. Those segments which are commonly called
genes are of particular importance as they play a crucial role in the or-
ganisms cellular processes such as providing blueprints to construct
essential biochemical materials.

That the arrangement of genes in genomes offers an opportunity
to shed new light on the mechanisms of evolution has firstly been
proposed in a pioneering series of articles by two of the leading
Drosophilists Theodosius Dobzhansky and Alfred H. Sturtevant. The
authors noticed that some sequences of genes had been flipped over
in the DNA of certain Drosophila species collected from different geo-
graphic regions (Sturtevant and Beadle, 1936). These differences in
the gene arrangements were further linked to the phenotype and

[April 2019 at 13:18 – classicthesis 4.4]

2 introduction

the reproduction rate of those individuals (Sturtevant and Dobzhan-
sky, 1936a). The authors concluded that such genetic rearrangements
could help in reconstructing a plausible path of evolution which
later has been proposed for different species of Drosophila (Sturtevant
and Dobzhansky, 1936b; Dobzhansky and Sturtevant, 1938). The mile-
stone idea of their work was to realize that the considered genomes,
which exhibit a striking resemblance in the genomic sequence, dif-
fer dramatically in the arrangement of their genes. This observation
lead to genomes being modeled as permutations. The quantification
of the evolutionary relatedness between two genomes was then done
by a manual calculation of a minimum number of rearrangement op-
erations between those permutations (Sturtevant and Novitski, 1941).
Almost 40 years later, the first theoretical problem formulation for
this procedure has been proposed by Watterson et al., 1982 bridging
two – up to this time – predominantly independent research areas: the
evolution of species and combinatorial optimization. More precisely,
assuming that evolutionary events which change the arrangement of
the genes (i. e., to reorder the elements in the permutations in the
combinatorial context) are rare (Rokas and Holland, 2000) led to the
conclusion that evolutionary scenarios which minimize their number
are more likely to be close to reality (Fertin et al., 2009). This assump-
tion connects evolutionary problems to combinatorial optimization by
the principle of maximum parsimony, a widely used method that aims
for an explanation of the considered data while requiring a minimum
number of evolutionary events.

Taking this combinatorial background into account, the arrange-
ment of unique genes of the considered genomes are represented
by permutations and evolutionary events (which change the arrange-
ment of these genes in the genomes) are represented by so-called
genome rearrangements, i. e., operations which rearrange elements in
permutations. In the light of combinatorics, for two given permu-
tations and a set of considered genome rearrangements two funda-
mental genome rearrangement problems are then solved to acquire
information on parsimonious scenarios of genome rearrangement. In
particular, the two problems are the sorting problem and the distance
problem. The sorting problem demands a parsimonious sequence of
rearrangements that transforms one given permutation into another
given permutation. The distance problem aims to determine only the
number of rearrangements in such a sequence. From a biological
perspective, the solution of the sorting problem is then interpreted
as a hypothetical path of evolution and its length, i. e., the number
of rearrangement events, acts as a (dis)similarity measure between
genomes. The computational complexity of these problems depends
on the types of the considered genome rearrangements. However, in
many cases major computational challenges are faced even on per-
mutations representing small gene arrangements, which makes this
research area particularly interesting for computer scientists.

The gene arrangement of mitochondrial genomes which is available
for a wide range of species is well suited for comparative analyses
(Boore, 1999; San Mauro et al., 2005). Especially metazoan gene ar-

[April 2019 at 13:18 – classicthesis 4.4]

introduction 3

rangements can easily be represented by permutations as their gene
content is nearly invariant among all animals. In the last decade,
the mitochondrial gene arrangements in Metazoa have been proven
to be a powerful source of information for the inference of phylo-
genetic relationships at different taxonomic levels (Boore, 2006). At
least four types of genome rearrangements have to be considered in
order to model mitochondrial gene arrangement evolution: inversion,
transposition, inverse transposition, and tandem duplication random loss
(TDRL) (Bernt et al., 2013b; Boore, 1999). Of the several mechanisms
which have been proposed to explain gene order rearrangements in
mitochondria, most evolutionary changes in mitochondrial gene ar-
rangements can be explained by the TDRL rearrangement model (San
Mauro et al., 2005). A TDRL consists of a duplication of a contiguous
set of genes in tandem followed by a random loss of one copy of
each duplicated gene. Moreover, the TDRL rearrangement was once
described as the “most important rearrangement operation” for verte-
brate mitogenomes (San Mauro et al., 2005). In spite of the importance
of the TDRL genome rearrangement in mitochondrial evolution, its
combinatorial properties have rarely been studied (Bernt, 2009). How-
ever, the mere fact that genome rearrangement models which include
TDRL rearrangements while admitting computational tractability are
scarce proves that a better understanding of the TDRL model is indis-
pensable for the study of mitochondrial gene arrangements. There-
fore, the central theme of this thesis is to broaden the horizon of the
TDRL genome rearrangement model with respect to mitochondrial
genome evolution. For this purpose this work provides combinato-
rial properties of the TDRL genome rearrangement and its variants
as well as efficient methods for a biological feasible reconstruction of
genome rearrangements between mitochondrial gene arrangements
using all genome rearrangements that predominately occur during
mitochondrial evolution.

structure of this thesis

Chapter 2 provides a broad overview over the considerable progress
which has been made in the development of computational methods
solving the fundamental genome rearrangement problems during the
last 30 years. In particular, for conceptual purposes Section 2.1 pro-
vides a brief introduction to molecular evolution. A key to the nota-
tion used in this thesis is provided within Section 2.2. Existing compu-
tational methods related to different types of (mitochondrial) genome
rearrangements are reviewed in Section 2.3. Some concepts and ideas
surveyed in this chapter have previously been discussed in Hartmann
et al. (2018d).

The usual mitochondrial genome is organized in a single circular
structure (Bernt et al., 2013b). Since the TDRL rearrangement is preva-
lent in such genomes it is important to consider the circularity in com-
binatorial analyses. For this purpose, the combinatorial properties of
the TDRL rearrangement on circular permutations are investigated in

[April 2019 at 13:18 – classicthesis 4.4]

4 introduction

Chapter 3. More precisely, the distance problem and the sorting prob-
lem for circular permutations under the TDRL rearrangement model
are studied in Section 3.1. The circularity of mitochondrial genomes
entail practical consequences for biological applications which are fur-
ther discussed in Section 3.2. The results obtained in Chapter 3 have
already been covered to a large extent in Hartmann et al. (2018b) and
Hartmann et al. (2018c).

In order to compute more realistic scenarios of rearrangements, sev-
eral authors considered combinations of different types of genome
rearrangements. Unfortunately, tracing gene arrangement evolution
under combined genome rearrangement models often turns out to
be computationally intractable. Nevertheless, in Chapter 4 a tractable
genome rearrangement model, called the inverse tandem duplication
random loss rearrangement (iTDRL) model which generalizes all major
mitochondrial rearrangements is introduced. Evidence for the iTDRL
model as evolutionary mechanism has recently been found by several
authors, e. g., Jühling et al. (2011) and Shi et al. (2013). The algorith-
mic study of this new model of genome rearrangement is initiated
in Section 4.1 in which it is proven that the sorting problem for per-
mutations under iTDRLs can be solved in quasilinear time and that
the corresponding distance problem can be solved in linear time. The
first step towards a general and tractable model of genome rearrange-
ments for mitochondrial evolution is made in Section 4.2. Most of
the work presented in Chapter 4, including the main theorems and
algorithmic ideas, was recently published in Hartmann et al. (2018e).

Besides TDRL rearrangements, three other types of genome rear-
rangements are assumed to be prevalent in the evolution of metazoan
mitochondrial genomes (Bernt et al., 2013b). Chapter 5 is devoted to
investigate the combined 4-type rearrangement model that consid-
ers all four types of mitochondrial genome rearrangements. More
precisely, Section 5.1 recapitulates the notation used in Chapter 5.
The distance problem for permutations under the 4-type rearrange-
ment model is studied in Section 5.2. The theoretical findings result
in a polynomial-time approximation algorithm for the corresponding
sorting problem that guarantees to compute pairwise rearrangement
scenarios that deviate from a parsimonious scenario by at most two
rearrangement operations. In addition, the insight is gained that the
general sorting problem with respect to the 4-type model is inconve-
nient for the inference of plausible reconstructions of mitochondrial
gene order evolution. Methods that reconstruct pairwise rearrange-
ment scenarios of mitochondrial gene arrangements under variants of
the 4-type model have been developed in Section 5.3 and Section 5.4.
Thereby, different biologically motivated constraints are taken into
account in order to improve the plausibility of the reconstructed re-
arrangement scenarios between pairs of gene arrangements. The first
biologically motivated constraint that has been considered is the rela-
tive frequency of the different types of rearrangements to occur dur-
ing the evolution. This frequency is modeled by employing a weight-
ing scheme on the 4-type rearrangement model in which every rear-
rangement is weighted with respect to its type. Section 5.3 studies the

[April 2019 at 13:18 – classicthesis 4.4]

introduction 5

corresponding sorting problem for permutations. In the same section,
the sorting problem is tackled by the polynomial-size integer linear
programming GeRe-ILP. The second biologically motivated constraint
that has been taken into account in the reconstruction of pairwise re-
arrangement scenarios is, that certain subsets of genes are often found
in close proximity in the gene arrangements of many different species
(Krebs et al., 2014). This observation is reflected in Section 5.4 where
the sorting problem for permutations under the (weighted) 4-type re-
arrangement model is studied under the additional constraint that
certain groups of genes (which are modeled by common intervals of
permutations) have to be preserved in pairwise rearrangement sce-
narios. In order to solve this problem, the exact dynamic program-
ming algorithm CREx2 is proposed. The accuracy of the CREx2 recon-
structions is analyzed in an empirical study with simulated artificial
and real biological mitochondrial gene arrangements in Section 5.5.
Algorithms GeRe-ILP and CREx2 have been published in advance in
(Hartmann et al., 2017) and (Hartmann et al., 2018a), respectively.

Lastly, a conclusion is drawn and opportunities for future research
are outlined in Chapter 6.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

2
B A C K G R O U N D A N D R E L AT E D W O R K

The research area of comparative genomics is exceedingly con-
nected to aspects of evolutionary biology. In order to under-
stand the major terms in gene order analysis, Section 2.1 gives

an introduction to molecular biology and evolution. In particular,
the structure of the genetic information of species and the way it is
shaped during evolution is outlined. Since the main objective of this
work is the provision of computationally methods which formulate
hypotheses for the evolution of mitochondrial gene arrangements,
the major differences between nuclear and mitochondrial genomes
are described. However, readers who are interested in a more de-
tailed introduction to molecular evolution are referred to Krebs et al.
(2014). Section 2.2 formally introduces the notation used in this the-
sis. Particularly, the formal concepts for gene arrangements, genome
rearrangements as well as the corresponding optimization problems
are formalized. The computational and algorithmic study of gene ar-
rangements and the mechanisms they are affected by has been ini-
tiated more than thirty years ago by Watterson et al. (1982). Over
that period, a dramatic expansion of scientific work has lead this re-
search area into a fascinating field. Section 2.3 aims to provide an
overview over the achievements obtained by many outstanding re-
searchers. The overview is by no means exhaustive and some topics
are only being touched on briefly. A detailed study can be found in
Fertin et al. (2009).

2.1 evolution and mitochondria in a nutshell

The main aspect of this thesis is combinatorially in the sense of pro-
viding efficient algorithms, finding evolutionary plausible mathemat-
ical models for fundamental genome rearrangement problems as well
as providing theoretical results for them. However, most of the used
concepts and ideas are motivated by empirical observations on the ge-
netic information of certain species. Examples for such observations
are the mechanisms that are assumed to shape gene arrangements
of mitochondrial genomes, see Section 2.1.3. Therefore, this chapter
gives a short introduction to the structure of DNA and molecular
evolution.

This section is organized as follows: Section 2.1.1 gives an overview
of the structure of DNA and its genetic aspects. Section 2.1.2 presents
a brief review of mechanisms shaping the genetic information of
species during evolution. The DNA of mitochondria serves as run-
ning example for an application of the theory and the algorithms
which are presented in this thesis. Therefore, Section 2.1.3 aims to
outline general aspects of mitochondrial genomes such as their ori-
gin and types of evolutionary processes driving their evolution. In

[April 2019 at 13:18 – classicthesis 4.4]

8 background and related work

recent years mitochondrial gene arrangements have gotten a lot of at-
tention for the reconstruction of phylogeny. Section 2.1.4 summarizes
the merits and demerits of gene arrangements analyses for phylogeny
inference.

2.1.1 What is DNA?

Every living organism on earth is made up of individual and identi-
fiable cells. The number of cells of an organism varies from one cell
in bacteria to trillions of cells, e. g., in the human body (Bianconi et al.,
2013). Every cell itself has all characteristics of live: it arises, it me-
tabolizes, it reproduces, and perishes eventually. The processes and
the workings within a cell guaranteeing its viability are extremely
complex and raise many interesting research questions in a variety
of areas. It is, however, generally accepted that the blueprint for the
construction and functionality of a cell (and therefore the organism)
is encoded in one or more molecules of deoxyribonucleic acid (DNA)
forming the hereditary basis of every living organism.

Physically, the DNA of an organism may be divided into a num-
ber of different DNA molecules called chromosomes which altogether
make up the genome of an organism. Figure 2.1 (a) illustrates a typ-
ical appearance of a chromosome in an animal cell. The primary
building block of the DNA is called nucleotide. It consists of three
components: a single nitrogenous base of adenine, cytosine, guanine,
or thymine; a sugar called deoxyribose; and at least one phosphate
group, see Figure 2.1 (b) for an illustration. A long succession of nu-
cleotides that are bonded together by covalent bonds between the
phosphate and the sugar form a polynucleotide strand with an alter-
nating sugar-phosphate backbone. The complementary nitrogenous
bases of two separate polynucleotide strands tend to pair by hydro-
gen bounds: adenine and thymine are chemically attracted to each
other as are cytosine and guanine, forming a double-stranded heli-
cally coiled macromolecule, the DNA (Watson and Crick, 1953). Fig-
ure 2.1 (c) illustrates the double helix shape of the DNA. The result of
this process is that the DNA is composed of two strands which are the
complement of each other with each strand uniquely distinguishable
by its alternating sugar-phosphate backbone which implies a direc-
tionality from sugar to phosphate (called 3 ′ end and 5 ′ end) and vice
versa. The order of the nucleotides, each abbreviated with the first
letter of the nitrogenous base it contains (i. e., either A, C, G, or T),
within the strand from the 5 ′ end to the 3 ′ end serve to represent the
DNA of an organism as succession of letters, the nucleic acid sequence
or DNA sequence for brevity. An example for a DNA sequence is given
in Figure 2.1 (b).

Functionally, a genome is divided into genes which are consecu-
tive sequences of DNA which encode the information to construct
other molecules such as proteins or ribonucleic acids (e. g., tRNAs
and rRNAs). It is worth mentioning that alternative concepts defin-
ing a gene as a combination of structural and functional components

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 9

(a) Chromosome (b) Structure of DNA

(c) DNA double helix

Figure 2.1: Schematic representations of DNA and its structure. (a) Typ-
ical structure of a eukaryotic chromosome; (b) DNA as a se-
quence of two bonded polynucleotide strands. Illustrated are a
nucleotide (bright gray square); the nitrogenous bases adenine
(yellow nine-sided shape), cytosine (blue hexagon), guanine (or-
ange nine-sided shape), and thymine (green hexagon); the sugar
deoxyribose (blue and red pentagon); a phosphate group (black
filled circle); one sugar-phosphate backbone (dark gray square);
and hydrogen bonds (dotted lines). The nucleic acid sequence of
the exemplified DNA in 5 ′ end to the 3 ′ end direction is GACT
and its complementary nucleic acid sequence is AGTC. (c) The
double-stranded helically coiled shape of the DNA. Nucleotides
and sugar-phosphate backbones are illustrated in the same color
as in (b). Sequences of DNA that encode a specific function are
called genes and the sequence between two genes is called inter-
genic region.

of a genome are subject of intense discussions, e. g., see Gerstein et al.
(2007) and Stadler et al. (2009). A gene can appear on either of both
strands of the DNA and each chromosome may contain a large num-
ber of genes, e. g., 19000 protein-encoding genes in human (Ezkurdia
et al., 2014). The succession of the genes and their partition into chro-
mosomes, commonly termed as its gene order, is known to have a cru-
cial influence on an organism’s cellular processes (Li and Reinberg,
2011). Sequences of DNA located between genes are called intergenic
regions. There are indications that intergenic DNA has an influence
on genes nearby, however most of its function is currently unknown
(ENCODE Project Consortium, 2012).

Since the publishing of the pioneering work done by Woese et al.
(1990) all life on earth is classified into the three different domains
Archaea, Bacteria, and Eukaryota which form the highest taxonomic
rank of an organism1. Based on their level of cellular organization the
first two domains are also grouped together, forming the prokaryotes.
Prokaryotes and eukaryotes are very different in various aspects, e. g.,

1 Intriguingly, since non of these three domains includes non-cellular life, it is still
under debate whether or not (large) viruses should be considered as a fourth domain,
as it has been proposed by, e. g., Nasir et al. (2012).

[April 2019 at 13:18 – classicthesis 4.4]

10 background and related work

Figure 2.2: Schematic structure of a eukaryotic animal cell (left) and a
prokaryotic cell (right).

see Figure 2.2 for a comparison of the structure of a eukaryotic cell
and a prokaryotic cell. However, some primary differences that hold
true for the majority of the cells are specified: eukaryotic cells contain
a nucleus, a membrane-enclosed subunit within a cell that contains
DNA whereas prokaryotes do not have a nucleus. A second differ-
ence is that prokaryotes are single-celled organisms whereas eukary-
otic cells usually combine to form multicellular organisms. Lastly, the
number and the structure of the chromosomes is prevalently different:
while eukaryotes tend to have multiple chromosomes that are linear,
i. e., each chromosome has two endpoints called telomeres, prokary-
otes tend to possess a single circular chromosome, i. e., the chromo-
some forms a circular molecule which does not have telomeres. A
genome containing only a single chromosome is called unichromoso-
mal and a genome that contains multiple chromosomes is called mul-
tichromosomal.

The genome of a cell does not solely include nuclear DNA but
also additional genomic DNA sequences which are separated from
the nucleus, e. g., prokaryotic cells often contain small circular DNA
molecules called plasmids and eukaryotes often exhibit organellar
DNA of chloroplasts in plant and algal cells which derive energy from
photosynthesis. Furthermore, nearly all eukaryotes have a subunit
called mitochondrion that is responsible for supplying the cell with
energy (Bernt et al., 2013b; McBride et al., 2006). As outlined in Chap-
ter 1, the DNA sequence of the mitochondrion which is also called
mitochondrial genome, and the arrangement of its genes is well suited
for the study of evolutionary relationships of species and is the main
application for the theory and the algorithms presented in the follow-
ing chapters.

2.1.2 Where there is DNA, there must be mutations!

All living species are subject to various kinds of mutations that shape
their genetic information. Many of these changes in the DNA induce
an effect on the fitness of species in nature, e. g., they produce dis-
cernible changes in the phenotype of an organism (Sturtevant and
Dobzhansky, 1936a), prevent some genes from functioning properly,

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 11

and cause death (Krebs et al., 2014). Occasionally, a mutation either
has no effect on the functionality of a gene or it alters the product of
a gene which leads to the survival of the cell. As a result, offspring
with a slightly different genome is produced and the mutation may
be passed on through the generations. This inaccuracy in the repro-
duction process as well as the biological fitness it implies on species,
is the principle of molecular evolution.

The DNA is subject to various kinds of mutations which are clas-
sified by the extent of genetic information they affect. Small-scale mu-
tations (commonly called point mutations) affect single nucleotides or
a few nucleotides by either adding one or more extra nucleotides
into the DNA (insertion), removing one or more nucleotides from the
DNA (deletion) or exchanging a single nucleotide for another (substitu-
tion). The detection of these small-scale evolutionary events is the goal
of sequence alignment, see Jones and Pevzner (2004) and Rosenberg
(2009) for an introduction into this topic. Large-scale mutations mod-
ify the arrangement of genes or their quantity on the chromosomes
by acting on large segments of DNA rather than single nucleotides.
They are categorized into genome rearrangements (or rearrangements for
brevity) which alter the organization of the genes in the genome, e. g,
genes are moved to other positions or their complementary strand
in the genome; and content modifications which change the quantity
of genes on the chromosomes by adding, removing, or duplicating a
gene (Dörr, 2016). The study of large-scale mutations is the subject of
gene order analysis, e. g., see Fertin et al. (2009) for a recent overview.

Large-scale mutations are caused by a considerable amount of vary-
ing processes whereby the following two mechanisms are well estab-
lished. As every living organism on earth, cells are mortal and there-
fore they must reproduce to ensure their survival. A significant part
of the cell reproduction is the replication of its genome. Regardless of
the type of the replication which again is fundamentally different in
eukaryotes and prokaryotes, this process is not flawless, e. g., mech-
anisms such as slipped strand mispairing (Levinson and Gutman,
1987) and imprecise termination (Mueller and Boore, 2005) during
replication are assumed to cause duplicated or partially missing ge-
netic sequences in mitochondrial genomes. Another event that shapes
the genetic information of species is an occasionally occurring break
of chromosomes caused by some outside force, e. g., a chemical mu-
tagen (Drake and Baltz, 1976) or oxidative damage (Harman, 1972).
Finally, the repair process meant to prevent mutations is sometimes
error-prone (Alexeyev et al., 2013) which leads to a change of the
genome organization (Gredilla, 2011; Rodgers and McVey, 2016).

The genomes of species are not modified arbitrarily during the
course of evolution, but rather certain types of rearrangements have
been deduced from comparative analysis of closely related species.
The types of observed rearrangements depend on the way they influ-
ence the genetic information. For example, one aspect in the classifica-
tion of genome rearrangements is the number of chromosomes which
are influenced by a rearrangement. Section 2.3 provides an overview
on computational and algorithmic results in this area.

[April 2019 at 13:18 – classicthesis 4.4]

12 background and related work

(a) Structure of a mitochondrion (b) Mitochondrial genome

Figure 2.3: (a) Structure of a mitochondrion; (b) modified image of the circu-
lar and unichromosomal mitochondrial genome of the Taiwanese
black bear Ursus thibetanus formosanus (NCBI reference sequences
database (Pruitt et al., 2007); accession: NC_009331.1); the image
is generated by OGDRAW (Lohse et al., 2007); the genes are colored
with respect to product they encode: proteins (green), rRNAs
(red), and tRNAs (blue). (The image of U. thibetanus is published
under Creative Commons licence.)

2.1.3 What are mitochondria and how do they evolve?

Mitochondria are small enclosed subunits within the cytoplasm of al-
most all eukaryotic cells. They are enclosed in a double-layered mem-
brane, see Figure 2.3 (a) for an illustration of the structure of a mi-
tochondrion. Mitochondria supply most of the adenosine triphosphate
(ATP) that powers the cells metabolic activities by taking energy from
the oxidation of food molecules (e. g., glucose) and oxygen (Alberts
and Walter, 2003). This is the reason why the mitochondrion is called
the powerhouse of the cell. In addition, the mitochondrion is also heav-
ily involved in many other cellular processes such as the control of
the cell cycle, cell growth, and the regulation of cellular metabolism
(McBride et al., 2006). Initiated by pioneering works of Wallace et al.
(1988) and Holt et al. (1988) which have described a direct connec-
tion between mutations of mitochondrial DNA and human genetic
diseases, it is now widely believed that mitochondrial defects are im-
plicated in age-dependent neurological diseases such as Alzheimer’s
disease (Wallace, 2005) and Parkinson’s disease (Abou-Sleiman et al.,
2006).

Intriguingly, mitochondria show the evolutionary connection be-
tween prokaryotes and eukaryotes. While mitochondria have many
general similarities with certain bacteria such as Rickettsiales proteobac-
teria (Thrash et al., 2011), e. g., the unichromosomal circular structure
of the genome and some genes which are clearly of prokaryotic ori-
gin (Gissi et al., 2008), some mitochondrial genes possess introns (i. e.,
specific regions inside a gene) that resemble eukaryotic nuclear genes
(Rot et al., 2006; Vallès et al., 2008). It is almost certain that mitochon-

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 13

dria originated from free-living oxygen-metabolizing bacterial ances-
tors by a process called endosymbiosis (Gray, 1989; Krebs et al., 2014;
Lang et al., 1999; Martijn et al., 2018; Thrash et al., 2011). In this pro-
cess a bacterial cell was engulfed by a eukaryotic prototype. Escaping
digestion, the bacterial cell dwelled within the cytoplasm of its host
cell receiving shelter and nourishment in return for providing the abil-
ity to make use of oxygen to produce energy, see Lang et al. (1999)
and Scheffler (2011) for a more detailed description. This symbiotic
partnership is thought to has been established about 1.35 billion years
ago (Alberts and Walter, 2003). However, the identity and nature of
the mitochondrial ancestor is still controversial (Martijn et al., 2018).

Mitochondrial genomes are generally small genomes that encode
a restricted number of functions. They are usually (but not always)
circular unichromosomal and the total size of mitochondrial genomes
can vary by more than an order of magnitude, e. g., the mitochondrial
genomes of mammals are small in size of approximately 16.6 kilo
base pairs (Chan, 2006) while fungal mitochondrial genomes are con-
siderably larger with approximately 19− 100 kilo base pairs (Krebs
et al., 2014). Mitochondrial genomes are extremely compact and their
gene content is well conserved in animals, i. e., duplicated and miss-
ing genes are unusual (Boore and Brown, 1998; Oxusoff et al., 2018).
Metazoan mitochondrial genomes typically encode 37 genes: 13 pro-
teins (atp6/8, cob, cox1-3, nad1-6, nad4l), 2 ribosomal subunits of mito-
chondrial ribosomes (rRNAs) (rrnL, rrnS), and 22 transfer ribonucleic
acid (tRNA) (trnA-trnY, trnL1/L2, trnS1/S2), see Figure 2.3 (b) for an
illustration of the mitochondrial genome of the Taiwanese black bear
Ursus thibetanus formosanus.

Different notations are commonly used to represent gene arrange-
ments in the literature, see Section 2.2.1. Mitochondrial genomes are
usually represented as a sequence of genes each assigned to a sign
+ or − with respect to their strandedness, see Example 2.1. In se-
quences that contain every gene exactly once; this is consistent with
the concept of a (signed) permutation, see Section 2.2.1.

Example 2.1. A potential representative of the mitochondrial genome of U.
thibetanus formosanus illustrated in Figure 2.3 (b) is: cox1 -trnS2 trnD
cox2 trnK atp8 atp6 cox3 trnG nad3 trnR nad4l nad4 trnH trnS1 trnL1
nad5 -nad6 -trnE cob trnT -trnP trnF rrnS trnV rrnL trnL2 nad1 trnI
-trnQ trnM nad2 trnW -trnA -trnN -trnC -trnY.

The nucleotide composition of both complementary polynucleotide
strands has been found to differ asymmetrically in mitochondrial
genomes, e. g., one strand has been reported to be rich in G (and
T) the other is G (and T) lacking (Reyes et al., 1998). Due to different
proportions of heavier nucleotides both strands have different masses,
therefore the heavy strand is termed H-strand and the light strand is
called L-strand.

During its evolution most of the genes of the mitochondria have
been transferred to the nuclear DNA, thereby lacking genes that are
necessary for independent life (Adams et al., 2000; Thorsness and Fox,
1990). Interestingly, those nuclear DNA sequences of mitochondrial

[April 2019 at 13:18 – classicthesis 4.4]

14 background and related work

(a) (b) (c) (d) (e)

Figure 2.4: Schematic representation of the strand displacement model of
mitochondrial replication. Illustrated are the H-strand (blue); L-
strand (green); newly synthesized strands (red); and the heavy
(light) strand origin OH (respectively OL). (a) Mitochondrial
genome before replication; (b) H-strand synthesis has been ini-
tiated at OH and proceeds towards OL. Synthesis proceeds re-
placing the original H-strand, thereby displacing the original
H-strand which remains single-stranded, forming a displacement-
loop (D-loop). (c) D-loop expands until it reaches OL, where L-
strand synthesis is initiated, proceeding in opposite direction to
the H-strand synthesis. (d) H-strand synthesis finishes and seg-
regates while L-strand synthesis has proceeded only a part of
the strand (in mammals this part is one third of the way around
the circle (Clayton, 1991)). (e) L-strand synthesis is finished af-
ter the segregation. Finally, the newly synthesized strands are
sealed and form two daughter genomes of covalently closed cir-
cular DNA, where every genome possesses one parental strand
as template.

origin can form a noticeable fraction of a species’ nuclear genome
(Hazkani-Covo and Graur, 2006). While the gene content in mitochon-
drial genomes is mostly conserved, there are extensive differences in
the arrangement of the genes in distinct taxonomic groups across the
Metazoa (Boore, 1999; Bernt et al., 2013b). Aguileta et al. (2014) veri-
fied that fungal mitochondrial gene orders also display a remarkable
variation within the major fugal phyla.

Deviations from the typical genomic organization of a metazoan
mitochondrial genome are rare and appear to be restricted to indi-
vidual clades (Bernt et al., 2013b). Such aberrant genome structures
include tRNA losses (Jühling et al., 2011), loss of protein-coding genes
(Lavrov and Pett, 2016), disintegration of the mitochondrial genome
into multiple small chromosomes (Shao et al., 2009), linear chromo-
somes (Kayal et al., 2011), and mitochondrial genomes composed of
linear and circular chromosomes (Raimond et al., 1999). For a survey
on aberrant mitochondrial genome structures the reader is referred
to Bernt et al. (2013b).

A common phenomenon of mitochondria is its ability to replicate
independently from the replication of the nuclear genome. The com-
monly accepted model for mitochondrial replication is the strand dis-
placement model (Clayton, 1982; Clayton, 1991; Robberson et al., 1972;
Shadel and Clayton, 1997), see Figure 2.4 for a brief depiction and
Scheffler (2011) for a detailed description of the replication process.

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 15

It is also worth mentioning that alternative replication models, i. e.,
the strand-couple-model (Holt et al., 2000; Holt, 2009) and a model in-
volving recombination presented in Pohjoismäki et al. (2010), have
been proposed. For a critical discussion on the different models of
mitochondrial replication see, e. g., Pohjoismäki and Goffart (2011).

A comparison of the mitochondrial genome of closely related
species that exhibit different mitochondrial gene arrangements im-
plies that at least five types of genome rearrangements, see also
Figure 2.5, are relevant for the evolution of mitochondrial genomes
(Bernt et al., 2013b; Boore, 1999):

• Transposition (e. g., Macey et al. (1997)): A continuous sequence
of genes is moved to another position on the same chromosome.

• Inversion or reversal (e. g., Asakawa et al. (1995)): A continuous
sequence of genes is reversed in the chromosome. In conse-
quence, the gene order of the involved sequence is reversed and
the direction of each affected gene is flipped.

• Inverse transposition (e. g., Boore et al. (1998)): A continuous se-
quence of genes is transposed to another position on the same
chromosome where it is inserted inversely.

• Tandem duplication random loss (TDRL) (e. g., Boore (2000)): A
continuous sequence of genes is duplicated in tandem followed
by the random loss of one copy of each duplicated gene.

• Inverse tandem duplication random loss (iTDRL) (e. g., Jühling et al.
(2011)): A continuous sequence of genes is duplicated in tandem
in a way that the duplicated sequence is inverted, followed by
the random loss of one copy of each duplicated gene.

Up to now, it is still not entirely clear whether the observed rear-
rangements deduced from the comparative analyses correspond to
distinct molecular mechanisms. The reason is that the observed re-
arrangements can also be a product of a composition of several sub-
sequent steps, e. g., the effect of an inverse transpositions can be ob-
tained by a composite of a transposition and an inversion. Another
example is the transposition model which can also be interpreted as a
special case of the TDRL rearrangement model. However, convincing
arguments have been found for the TDRL (San Mauro et al., 2005) and
the iTDRL (Jühling et al., 2011) models by detecting remnants of such
processes as intergenic regions at positions where the deleted genes
would be expected (Bernt et al., 2013b). While the TDRL model is well
established in the evolution of metazoan mitochondrial genomes, the
support for the iTDRL rearrangement model has just recently been
proposed, see Jühling et al. (2011). Consequently, the role of the differ-
ently types of rearrangements in mitochondrial gene order evolution
is still not entirely clear and should be treated with caution. Moreover,
the mechanisms leading to these rearrangements are subject of con-
troversal discussions. While intra-mitochondrial recombination could
provide plausible explanations for inversions, transpositions and in-
verse transpositions (Mueller and Boore, 2005), it fails to explain the

[April 2019 at 13:18 – classicthesis 4.4]

16 background and related work

A B C D E

A D EB C

(a) Transposition

A B C D E

A
BCD

E

(b) Inversion

A B C D E

A
D

EB
C

(c) Inverse transposition

A B C D E

A B C D E A B C D E

A DE BC

(d) Tandem duplication random loss

A B C D E

A B C D E
ABCDE

A D
E BC

(e) Inverse tandem duplication random loss

Figure 2.5: Elementary types of mitochondrial rearrangements exemplified
for an artificial gene order of five genes (arrows A-E): (a) trans-
position; (b) inversion; (c) inverse transposition; (d) tandem du-
plication random loss; (e) and inverse tandem duplication ran-
dom loss. The development of pseudogenes is represented by
transparent genes without borders. The two DNA strands are
illustrated by a continuous and a dashed black line and the ori-
entation of a gene is represented by its location on one of the two
strands.

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 17

(a) Slipped strand mispairing (b) Imprecise termination

Figure 2.6: Errors in the mitochondrial replication process which may result
in duplicated genes: (a) slipped strand mispairing and (b) im-
precise termination. Illustrated are one parental strand (green
line) and the complementary newly synthesized strand (red
line). (a) Ordinary replication process partially replicates the
parental strand encountering genetic sequences with high sim-
ilarity (black squares, the corresponding sequences on the com-
plementary strand are illustrated by white squares) (A); replica-
tion suspends and the newly synthesized strand temporarily sep-
arates from parental template strand (B); the high sequence simi-
larity allows the newly synthesized strand to pair to the parental
strand at an upstream location and replication proceeds (dotted
red line) leading to a tandem duplication of the slipped sequence
(C). (b) In the ordinary replication process the origin (O) and
termination (T) location of replication on the parental strand co-
incide, an identical replicate is produced (A); premature termi-
nation of replication leads to an incomplete synthesized strand
lacking the sequence between T and O (B); missing the ordinary
termination location followed by an alternative termination leads
to a replicate with (partially) duplicated genetic sequences (C).

existence of pseudogenes (i. e., segments of DNA which are related
to real genes and have lost its functionality as a result of disabling
mutations) which require at least one duplication event (Macey et al.,
1998).

A plausible explanation for the existence of pseudogenes is given
by the tandem duplication random loss rearrangement model. In
this model, the existence of pseudogenes is expected to represent
evolutionary intermediate steps as briefly explained in the follow-
ing. The TDRL rearrangement event is initiated by errors such as
slipped strand mispairing (Levinson and Gutman, 1987) and impre-
cise termination (Mueller and Boore, 2005) during replication caus-
ing duplicated genes in mitochondrial genomes. Figure 2.6 illustrates
both mechanisms, for a detailed explanation the reader is referred to
Boore and Brown (1998) and Boore (2000). Alternative models such
as dimerization (Raimond et al., 1999) and recombination (Awadalla
et al., 1999; Lunt and Hyman, 1997; Mao et al., 2013) may also explain
gene duplication in mitochondrial genomes, however, these models
are still under debate. After the duplication, whichever copy of a
duplicated gene that experienced the first disabling mutation is de-
termined for turning into a pseudogene by subsequent accumulation
of point mutations such as substitutions and deletions (Castellana et
al., 2011). Strong selection pressure on the size and the gene num-

[April 2019 at 13:18 – classicthesis 4.4]

18 background and related work

ber of the mitochondrial genome will then rapidly remove the non-
functional pseudogenes (Wolstenholme, 1992). Remnants of such de-
generating pseudogenes as intermediate steps fully satisfying predic-
tions from the TDRL model have been detected for several groups
of species, e. g., Echinodermata (Arndt and Smith, 1998), Caecilian (San
Mauro et al., 2005), Vertebrata (Macey et al., 1997), and Amphibia (Xia
et al., 2016), which suggests that TDRLs are a major mechanism in
the evolution of metazoan mitochondrial genomes. Especially for ver-
tebrate mitochondrial genomes, TDRL is considered to be the most
important mechanism explaining gene order rearrangements, e. g.,
see San Mauro et al. (2005). Large scale analyses on the properties
of mitochondrial gene order evolution of Hymenoptera (Dowton et al.,
2009) and Metazoa (Bernt and Middendorf, 2011; Miklós and Hein,
2004) support this hypothesis by showing that transpositions, which
can be interpreted as special cases of the TDRL model, are the major-
ity of the reconstructed rearrangements. It has also been shown that
three-fourths of the reconstructed rearrangements only affect tRNA
genes, which suggests that the position of mitochondrial tRNAs is
selectively neutral, i. e., a change in their position is adaptive with re-
spect to the functionality of a gene (Brown, 1985; Dowton et al., 2009).
Therefore, the position of these genes may not be informative to infer
evolutionary information.

In a variant of the TDRL model it was suggested that the deletion
process is not random for each single gene. Instead, genes belonging
to the same transcript are lost jointly due to deleterious mutations
in the promotor (Beckenbach, 2011; Lavrov et al., 2002). Motivated
by evidence from comparative analyses (Jühling et al., 2011; Kong et
al., 2009) and the fact that inverted duplications often occur in the
control region of Insecta mitochondrial genomes (Liu et al., 2017), the
inverse tandem duplication random loss (iTDRL) model has recently
been proposed. Up to now, it is not entirely clear whether the iTDRL
model corresponds to a distinct molecular mechanism or to a con-
secutive occurrence of TDRL and an inversion. However, additional
support for the iTDRL model has recently been provided by Shi et
al. (2013). In their work the authors suggested a special case of the
iTDRL mechanism termed dimer-mitogenome and non-random loss in
which the loss of a gene is not random but dependent on the polarity.

Since inversions and inverse transpositions cannot be explained by
the TDRL model alone (recall that TDRLs cannot affect the orientation
of a gene), there might be several different molecular mechanisms af-
fecting the organization of mitochondrial genes. Another explanation
may be given by iTDRL model which can explain both pseudogeniza-
tion and modification gene orientation.

2.1.4 Mitochondrial Gene Orders for Phylogeny Inference

Understanding the origin of the rich diversity of living beings is one
of the central problems of evolutionary biology. Although it may be
impossible to unequivocally infer how species have evolved, mankind

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 19

is already able to reliably hypothesize on the evolutionary history of
some species. A common form to represent such a hypothesis on
the evolutionary history of a collection of organisms is a phylogenetic
tree or for brevity a phylogeny. The information on evolutionary rela-
tionships that are necessary for the reconstruction of phylogenies are
drawn from genetic features of contemporary species. Thereby, phy-
logenetic conclusions are based on the principle that the evolutionary
history of species can be reconstructed from similarities between the
considered organisms, i. e., a high similarity of some genetic features
indicates a close evolutionary relation (Xia, 2013). Different features
can be regarded for this task, e. g., morphology (i. e., the form and the
structure of organisms), DNA sequences, and gene arrangements. An
example of a genomic feature that is frequently used to infer phyloge-
nies is the similarity of the DNA sequences of certain genes, e. g., the
genes’ coding for the large subunit of eukaryotic ribosomes. Many of
the existing methods deduce good estimations of phylogenies based
on sequence information. However, they suffer from the similar limi-
tations such as the impact of homoplasy, i. e., multiple point mutations
at the same position lead to species independently sharing a feature
(e. g., similar DNA sequences) that is mistakenly interpreted as mu-
tual information of ancestry. It becomes even more challenging to
reconstruct deep evolutionary relationships as the impact of homo-
plasy becomes greater the further back one looks (Moret et al., 2002;
Moret and Warnow, 2005; Nakhleh et al., 2001). Another limitation
is the lack of genomic resources, e. g., through large variations in the
size of DNA sequences as in Crustacea (Tan et al., 2018).

A feature that has been proven to be powerful for larger-scale
comparisons that focus on ancient relationships (San Mauro et al.,
2005) are mitochondrial gene arrangements (Bernt et al., 2013b; Boore,
2006). The benefit of using (mitochondrial) gene arrangements for
phylogeny inference is that it considers the entire (mitochondrial)
genome. This reflects organismal evolution, rather than just segments
of the DNA sequence such as cob or 16S ribosomal RNA, in combina-
tion with a simplified representation of the genome that allows to
ignore point mutations. Instead, phylogenetic information is inferred
only on the basis of gene content and gene order (Moret and Warnow,
2005). A common way to do this is to represent two genomes by their
order of genes and to define an evolutionary distance measure that
aims to approximate the actual number of evolutionary events. This
method has the advantage that computationally hard problems that
occur in the presence of gene and species trees can be avoided, e. g.,
see Felsenstein (2004) and Maddison (1997). Since the true number of
evolutionary events cannot be inferred in consequence of homoplasy,
the minimum number of evolutionary events that can transform one
genome into another, i. e., the edit distance, is used instead. Given such
an edit distance, phylogenetic trees can be obtained by a two-staged
procedure: Evolutionary conclusions are drawn by computing pair-
wise distances between a collection of different gene orders. In the
second step a phylogenetic tree has to be found that is consistent
with these distances. Figure 2.7 demonstrates such a procedure using

[April 2019 at 13:18 – classicthesis 4.4]

20 background and related work

N. cepedianus A. flammea H. anura
Notorynchus cepedianus 0 1 12

Acanthis flammea 1 0 14

Hasora anura 11 12 0

(a) Pairwise edit distance matrix

(b) Phylogenetic tree

Figure 2.7: Minimalist example of phylogeny inference based on pairwise
edit distances. (a) Pairwise edit distance matrix of the mitochon-
drial gene orders of Notorynchus cepedianus (NC_022731.1), Acan-
this flammea (NC_027285.1), and Hasora anura (NC_027263.1). The
corresponding gene orders were obtained from the NCBI RefSeq
(Pruitt et al., 2007). The edit distances were computed by CREx2,
see Chapter 5.4. CREx2 considers the following types of rearrange-
ments: transposition, inversion, inverse transposition, and TDRL.
A close evolutionary relationship of N. cepedianus and A. flammea
can be inferred by the observation that one rearrangement sepa-
rates their gene orders. However, several rearrangements are nec-
essary to obtain the gene order of H. anura from N. cepedianus or
A. flammea (and vice versa) indicating a distant relationship. (b)
A corresponding phylogenetic tree that is consistent with these
observations. (The image of N. cepedianus and H. anura is pub-
lished under Creative Commons licence with the former one be-
ing given from the Naturalis Biodiversity Center; the image of
A. flammea is taken from Naumann (1900) “Naturgeschichte der
Vögel Mitteleuropas”.)

a minimalist example of three mitochondrial gene orders. Indeed, the
example illustrated in Figure 2.7 is simplified and there may be cases
in which there is no phylogenetic tree that is consistent with the pair-
wise distances. However, in such cases the pairwise distances may
be interpreted as helpful hint indicating evolutionary relatedness in
a framework that considers a variety of genomic features, e. g., see
Perrin et al. (2015).

The usage of mitochondrial gene orders as a source of phylogenetic
information has exceptional advantages:

• Mitochondrial gene orders are small in size and extremely com-
pact as typically only 37 genes are encoded, see Section 2.1.3.
Furthermore, mitochondrial gene orders have been determined
for a wide range of species, e. g., currently more than 104 mito-

[April 2019 at 13:18 – classicthesis 4.4]

2.1 evolution and mitochondria in a nutshell 21

chondrial gene orders are available on the National Center for
Biotechnology Information database (Pruitt et al., 2007).

• The gene content of mitochondrial genomes is nearly invariant
and provides a unique data set that facilitates broad compar-
isons, e. g., almost all genes commonly found in metazoan mi-
tochondrial genomes have homologs (i. e., genes that share the
same ancestry) in mitochondrial genomes of plants, fungi, and
protists (Boore and Brown, 1998).

• Large-scale mutations such as genome rearrangements are as-
sumed to be – with respect to point mutations and the exception
of certain taxa such as Tunicata (Iannelli et al., 2007) – rare ge-
nomic events because functional genomes must be maintained
to ensure survivability. Therefore, the gene order of mitochon-
drial genomes is believed to evolve slowly (Rokas and Holland,
2000) potentially retaining the signal of ancient common ances-
try (Boore and Brown, 1998).

• Different mitochondrial gene orders and the potential options
of genome rearrangements affecting them are great in num-
ber which limits the impact of homoplasy (Moret and Warnow,
2005; Rokas and Holland, 2000), i. e., it supports the concept
that gene orders are shared only as a result of common ances-
try (Boore et al., 1995; Boore and Brown, 1998).

• The inheritance on metazoan mitochondrial genomes is strictly
maternal with a single exception in unionid mussels (Breton et
al., 2010), therefore recombination between parental genomes
does not occur (Krebs et al., 2014; Scheffler, 2011) which lim-
its the number of mechanisms that simultaneously shape meta-
zoan mitochondrial gene orders.

Several studies using mitochondrial gene orders have been shown
to be valuable for the support of phylogenetic hypotheses, e. g., for
Annelids (Bleidorn et al., 2007), Annomura (Tan et al., 2018), Cnidaria
(Kayal et al., 2015), Coleoptera (Yuan et al., 2016), and Arthropoda (Xu
et al., 2006), characterizing unique gene rearrangements on ancient
relationships, e. g., in birds (Härlid et al., 1997), marsupials (Janke et
al., 1994), and echinoderms (De Giorgi et al., 1996; Scouras and Smith,
2001), and being a rich source of phylogenetic information even on
more recent taxonomic levels, e. g., see Basso et al. (2017), Gan et al.
(2018), Tan et al. (2017), and Weigert et al. (2016).

As pointed out in the groundbreaking work done by Darwin (1859),
a single feature is not always sufficient for the classification of evo-
lutionary relationships. Although mitochondrial gene orders have
helped to broaden our understanding of phylogenetic relationships
at different taxonomic levels, it has, at times, been disappointing to
rely on gene orders to infer evolutionary relationships (Shao et al.,
2003). An explanation for this outcome may be an apparent lack of
an evolutionary signal in some lineages due to an extreme variety of

[April 2019 at 13:18 – classicthesis 4.4]

22 background and related work

gene orders. For example, the mitochondrial gene orders in some lin-
eages have been unchanged for long periods of time, e. g., human and
shark share the same mitochondrial gene order (Boore, 2000). There-
fore, no evolutionary signal may have been accumulated during the
period of shared history. Another example is given by lineages such
as Mollusca (Hoffmann et al., 1992; Yamazaki et al., 1997) in which
mitochondrial gene orders can highly vary. Thereby, the evidence
of relatedness might have been eroded by unusually high rates of
molecular evolution leading to homoplasious gene orders (Bernt et
al., 2013a; Oxusoff et al., 2018). Although the inference of phylogeny
might not be resolved for some lineages, it is still believed that gene
arrangements may serve as a model for interpreting broader aspects
of genome evolution (Boore and Brown, 1998).

2.2 formal background

The following sections provide an introduction to the mathematical
objects that serve as formal models facilitating a computational com-
parison of gene orders. In particular, Section 2.2.1 focuses on formal
models which represent biological gene arrangements. In nature one
can often observe sets of genes that are similar in close proximity in
several gene arrangements. One particularly interesting approach of
gene order analysis aims to reconstruct gene order evolution while
preserving such sets of genes. In Section 2.2.2 an introduction to this
approach is given. The evolutionary mechanisms that are relevant
for the evolution of metazoan mitochondrial gene arrangements are
defined in Section 2.2.3. The solution of different combinatorial opti-
mization problems can be utilized to infer phylogenetic information
from gene order data. Section 2.2.4 describes the central combinato-
rial problems that are relevant for this thesis.

2.2.1 Gene Orders and Permutations

This section presents models that facilitate the study of gene or-
ders on an abstract level. In order to do so, certain assumptions are
imposed on the genomes that are modeled in this thesis: 1) Every
genome contains exactly one copy of each gene; 2) genes do not over-
lap; and 3) all considered genomes contain the same set of genes.
While these assumptions are very plausible for the representation of
metazoan mitochondrial gene orders, they are too restrictive to model
gene orders of nuclear genomes in which gene duplications can be
spotted frequently (Shao and Moret, 2017).

Gene arrangements are commonly represented in the literature by
permutations or adjacencies. The focus of this work lies in represent-
ing linear (or circular) unichromosomal genomes as a sequence of
genomic markers that appear only once in the genome. With this as-
sumption, such sequences are correctly modeled by permutations in
which each element of the permutation represents one genetic marker
in the chromosomes, usually a gene. Different kinds of permutations

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 23

can be regarded for this task. While linear chromosomes are mod-
eled by linear permutations, circular chromosomes are represented
by circular permutations. Another aspect that may be regarded is the
double-stranded structure of DNA. This is done by adding a sign
to each element of the permutation that represents the strandedness
of the corresponding genetic marker. If the strandedness is consid-
ered in the representation of unichromosomal genomes, one speaks
of signed (linear/circular) permutations and otherwise, i. e., if the repre-
sentation of gene orientation is not of interest, unsigned (linear/circular)
permutations. Another aspect that is taken into account by modeling
gene orders is that chromosomes of species usually have no preferred
reading direction, hence they may be read in both directions. If this in-
formation is regarded in the representation of gene orders, one speaks
of undirected permutations, otherwise they are called directed permuta-
tions.

With a few exceptions, the representation of unichromosomal
genomes as permutations is especially well suited for metazoan mito-
chondrial genomes, since these genomes commonly contain the same
37 non-duplicated genes, see Section 2.1.3. For this reason, the follow-
ing section defines the concept of permutations.

An (unsigned linear) permutation π of size n ∈N is a bijection of the
set [1 : n] to itself, i. e., π : [1 : n] → [1 : n]. Traditionally, an unsigned
linear permutation π of size n is denoted by its two-line notation(

1 2 ··· n
π(1) π(2) ··· π(n)

)
. The first line of the two-line notation is always

the same, therefore the classical notation is partially adopted in this
thesis by representing an unsigned linear permutation π only by its
bottom row (π(1) π(2) . . . π(n)), where the i-th element of π with
i ∈ [1 :n] is denoted by π(i). The size of an unsigned linear permu-
tation may be omitted if the context is clear. The set of all unsigned
linear permutations of size n is denoted by Pn. For every π ∈ Pn
there is a unique permutation π−1 ∈ Pn that is called inverse permu-
tation (of π) defined by π−1(j) = i if and only if π(i) = j, i. e., π−1(j)
is the position of element j in π. The permutation ι := (1 2 . . . n) is
called identity. The composition of two permutations π and σ of size
n, denoted by π ◦ σ, is defined by applying σ first followed by π

which results in the permutation (π(σ(1)) π(σ(2)) . . . π(σ(n))), i. e.,
(π ◦ σ)(i) := π(σ(i)) for all i ∈ [1 :n], see Example 2.2. The operation
◦ induces a group structure on the set Pn by satisfying associativity,
i. e., (π ◦ σ) ◦ λ = π ◦ (σ ◦ λ), the existence of the neutral element ι, i. e.,
for all π ∈ Pn it holds that π ◦ ι = π, and the existence of the inverse
permutation as inverse element, i. e., for every permutation π ∈ Pn
there exists a π−1 ∈ Pn such that π ◦ π−1 = ι. Therefore, the pair
(Pn, ◦) is also called symmetric group.

As introduced in Section 2.1.1, the DNA of species is double-
stranded and thereby facilitates the possibility that genes can be
located on different DNA strands. Signed permutations make it
easier to take the relative orientation of genes into account. There-
fore, signed permutations constitute a biologically relevant structure
to model gene orders (Fertin et al., 2009). Less formally, a signed

[April 2019 at 13:18 – classicthesis 4.4]

24 background and related work

4
3

2
1

(a)

σ◦ −4

5
2

3
−1

(b)

Figure 2.8: (a) Example of a unichromosomal gene order with a single linear
chromosome. (b) Illustration of the signed circular permutation
σ◦ = [(−1 3 2 5 −4)]∼. The circular illustration gives each repre-
sentatives of σ◦ when read clockwise (respectively clockwise and
counterclockwise) if π◦ is considered to be directed (respectively
undirected), see Example 2.3.

linear permutation is an unsigned linear permutation where each
element has an additional sign + or − indicating the strandedness
of the gene it represents. Formally, a (signed linear) permutation π of
size n ∈ N is a bijection π : [−n :n] \ {0} → [−n :n] \ {0} that satisfies
π(−i) = −π(i) for all i ∈ [−n : n] \ {0}, where X \ Y denotes the set
difference, i. e., the set of all elements that are in set X but not in set Y.
Consequently, the two-line notation of a signed linear permutation π
of size n is

(
−n ... −2 −1 1 2 ··· n

−π(n) ... −π(2) −π(1) π(1) π(2) ··· π(n)

)
. In accordance to

unsigned linear permutations, signed linear permutations are repre-
sented by (π(1) . . . π(n)) since the mapping of the negative elements
[−n : − 1] is unambiguously given by π(−i) = −π(i), see Example 2.2.
The set of all signed linear permutations of size n is denoted by sPn.
Obviously, it holds that Pn ⊂ sPn. For the sake of simplicity the +

sign of an element of a signed permutation is usually omitted. The
composition operation ◦ is defined for signed linear permutations
analogously to unsigned linear permutations. The inverse permutation
π−1 of a π ∈ sPn is defined by π−1(j) = −i if and only if π(i) = −j,
see Example 2.2. A group structure is induced on sPn by the com-
position operation, therefore the pair (sPn, ◦) is called the hyperocta-
hedral group. For more information about permutation group theory
see, e. g., Bóna (2004).

Example 2.2. Consider the linear gene order of the double-stranded chro-
mosome illustrated in Figure 2.8 (a). This chromosome can be modeled by
the signed linear permutation µ = (4 −3 −1 2). The inverse permutation of
µ is µ−1 = (−3 4 −2 1), since µ ◦ µ−1 = (µ(µ−1(1)) . . . µ(µ−1(4))) =

(µ(−3) µ(4) µ(−2) µ(1)) = (−µ(3) µ(4) −µ(2) µ(1)) = (1 2 3 4). An
example for an unsigned linear permutation of size 5 is π = (4 2 1 5 3).
The inverse permutation of π is π−1 = (3 2 5 1 4), because π ◦ π−1 =

(π(π−1(1)) . . . π(π−1(5))) = (π(3) π(2) π(5) π(1) π(4)) = (1 2 3 4 5) =

ι. Now consider the two signed linear permutations σ = (−5 4 −2 1 −3)

and σ ′ = (−1 3 2 5 −4). The composition of σ and σ ′ is σ ◦ σ ′ =

(σ(σ ′(1)) . . . σ(σ ′(5))) = (σ(−1) σ(3) σ(2) σ(5) σ(−4)) =

(−σ(1) σ(3) σ(2) σ(5) −σ(4)) = (5 −2 4 −3 −1).

As pointed out in Section 2.1.3, chromosomes are not linear in gen-
eral, therefore circular permutations are used to model gene orders

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 25

of circular unichromosomal genomes, e. g., mitochondrial genomes.
Intuitively, a circular permutation is the set of all permutations that
become equivalent when the first and the last element of a (linear)
permutation are considered to be adjacent. The following section de-
fines the notion of (directed) circular permutations as it is usually
done in mathematical literature, e. g., see Wielandt (1964).

The shift operation φ : sPn → sPn is defined by
π = (π(1) π(2) . . . π(n)) 7→ (π(2) . . . π(n) π(1)). The k-shift
φk(π) for a k ∈ N is recursively defined by φk := φ ◦ φk−1 and
φ1 := φ. Note that φk(π) = π for all k ∈ N that is a multiple of
n, i. e., there exists an m ∈ N with km = n. Two permutations
π,σ ∈ sPn are equivalent or shifts of each other, denoted by π ∼ σ, if
and only if there exists a k ∈ [1 :n] such that φk(π) = σ. Hence, ∼
induces equivalence classes on sPn. The equivalence class π◦ := [π]∼
of ∼ on sPn is called (signed circular) permutation of size n and the set
of all signed circular permutations of size n is denoted by sP◦n, i. e.,
sP◦n := {[π]∼ :π ∈ sPn}. In other words, a signed circular permutation
π◦ is the set of all signed linear permutations that are equivalent with
respect to ∼, i. e., π◦ = {π,φ(π), . . . ,φn−1(π)}. Usually signed circular
permutations are also represented as signed linear permutations
by cutting them at some position, these signed linear permutations
π ∈ π◦ are called representatives of π◦. The equivalence relation ∼ can
be restricted to the set of all unsigned linear permutations and define
the subset of all signed circular permutations whose elements are
unsigned, i. e., the set P◦n := {[π]∼ : π ∈ Pn} of all (unsigned circular)
permutations of size n. Example 2.3 exemplifies the definitions
concerning circular permutations and Figure 2.8 (b) illustrates a
signed circular permutation.

Example 2.3. Consider the signed linear permutation σ = (−1 3 2 5 −4).
Permutations σ and (2 5 −4 −1 3) are shifts of each other, since
φ2(σ) = (2 5 −4 −1 3). The signed circular permutation [σ]∼ is the
set of all signed linear permutations that are shifts of σ, i. e., the set
{(−1 3 2 5−4), (3 2 5−4−1), (2 5−4−1 3), (5−4−1 3 2), (−4−1 3 2 5)}.
An illustration of [σ]∼ is shown in Figure 2.8 (b).

Chromosomes have no prescribed reading direction, e. g., linear
chromosomes can be read from left to right (or vice versa) and circular
chromosomes can be read clockwise or counterclockwise. If this infor-
mation is not considered, as it is done in the aforementioned defini-
tions, then permutations are called directed. Directed permutations are
usually used in the literature to model linear permutations (Fertin et
al., 2009). On the other hand, if this information is taken into account,
the corresponding permutations are called undirected and they are de-
fined as follows: For an unsigned (respectively signed) linear permu-
tation π = (π(1) . . . π(n)) the corresponding permutation where the
order (and the sign of all elements) is reversed is defined as permu-
tation π with π(i) = π(n+ 1− i) (respectively π(i) = −π(n+ 1− i))
for all i ∈ [1 : n]. Note that π is uniquely defined for all π ∈ Pn
(respectively π ∈ sPn). If both reading directions of linear gene or-
ders are taken into account, then unsigned (respectively signed) lin-

[April 2019 at 13:18 – classicthesis 4.4]

26 background and related work

ear permutations are considered to be undirected. In other words, this
means that the permutations π and π are equivalent. To define undi-
rected circular permutations2, the equivalence classed of the directed
circular permutations are broadened such that an undirected circu-
lar permutation $◦ contains {π, . . . ,φn−1(π)} and {π, . . . ,φn−1(π)},
i. e., $◦ := {π, . . . ,φn−1(π),π, . . . ,φn−1(π)}. The set of all undirected
signed (unsigned) circular permutations of size n is denoted by usP◦n
(respectively uP◦n), i. e., usP◦n := {[π]∼ ∪ [π]∼ : π ∈ sPn} (respectively
uP◦n := {[π]∼ ∪ [π]∼ :π ∈ Pn}).

Throughout this thesis the different kinds of permutations are con-
sidered. For each combinatorial problem studied in the following
chapters, it is mentioned which type of permutation is used. To sim-
plify the notation, the prefix “unsigned/signed linear/circular direct-
ed/undirected” may be omitted if it is apparent from the context.

The study of multichromosomal genomes in terms of permutations
can be realized by the innovative idea of capping, e. g., see Hannen-
halli and Pevzner (1995). However, the representation of gene orders
as permutations is too restrictive to model genomes with unequal
gene content and duplicated genes. These genomes are usually repre-
sented by sets of adjacencies of the considered genomic marker. The
use of adjacencies has the advantage that it is well suited for a theo-
retical analysis of genome rearrangements that are based on the two
operations to cut a chromosome into fragments and (re-)join such
fragments into new chromosomes. For an introduction to this nota-
tion the reader is referred to, e. g., Fertin et al. (2009) and Hartmann
et al. (2018d).

2.2.2 Gene Clusters and Common Intervals

Many groups of genes that can be observed in nature are found in
close proximity in the genomes of different species (Krebs et al., 2014).
Those groups of genes are called gene clusters. Motivated by this obser-
vation there has been a growing interest in the computational analysis
of gene clusters that have been preserved throughout evolution. Sev-
eral reasons may explain the persistence of such gene groups. Presum-
ably, gene clusters are formed due to functional constraints or evolu-
tionary inertia, e. g., clustered genes encode functionally associated
proteins (Galperin and Koonin, 2000; Heber and Stoye, 2001a; Lathe
3rd et al., 2000; Sémon and Duret, 2006; Tamames, 2001), the preva-
lence of short rearrangements (Sankoff, 2002), and the restrictions of
the replication mechanism (Tillier and Collins, 2000). Although there
is strong evidence to suggest the preservation of certain gene clusters
there is also the possibility that a gene cluster emerged or was not
separated by chance.

Considering the information of gene clusters in comparative analy-
ses motivated the exploration of interesting subjects such as the iden-
tification of functionally related gene groups and protein function pre-

2 These permutations are often called genomic circular permutations, e. g., see Fertin et
al. (2009), Meidanis et al. (2000), and Solomon et al. (2003).

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 27

diction (Huynen et al., 2000; Mering et al., 2003; Overbeek et al., 1999;
Tamames et al., 1997) and the computation of ancestral gene orders
from the preserved gene clusters (Bernt et al., 2008a; Ouangraoua et
al., 2011a) and similarity measures between genomes (Angibaud et
al., 2006; Bergeron and Stoye, 2006). Another example, which is also
performed in this thesis, is the computation of scenarios of rearrange-
ments that regard the information on conserved gene clusters (Adam
et al., 2007; Angibaud et al., 2007; Bernt et al., 2007). In the latter ap-
proach algorithms should enforce scenarios of rearrangements which
preserve gene clusters in all intermediate gene orders. Such scenarios
and the corresponding rearrangements are called preserving3. The fun-
damental idea of preserving rearrangement scenarios is that the uni-
versal presence of certain gene clusters in a collection of gene orders
requires those clusters to be present in the gene orders of ancestral
species. That means that they have not been separated during evolu-
tion (Fertin et al., 2009). The computation of gene cluster preserving
scenarios of rearrangements is one of the main topics of this work. In
particular, Section 5.4 presents the dynamic programming algorithm
CREx2 that computes a shortest scenario of rearrangements of type in-
version, transposition, inverse transposition, and tandem duplication
random loss between two given gene orders. The scenario obtained
by CREx2 does not break any common interval of both given gene
orders. The following section provides a brief overview on relevant
computational approaches on gene clusters.

Gene clusters are commonly modeled as sets of genes that fulfill
some proximity constraints. A simple and formal model for gene clus-
ters of gene orders are common intervals (Heber and Stoye, 2001b) of
permutations. Common intervals represent groups of neighboring el-
ements that are not necessarily in the same order or have the same ori-
entation within (signed) permutations. This work exclusively focuses
on common intervals to model gene clusters. However, it is worth
mentioning that other models that regard positional constraints have
already been studied. For example, the spatial structure of chromo-
some conformation have been considered in Simonaitis and Swenson
(2018), Swenson et al. (2016), and Véron et al. (2011). Another exam-
ple are gene teams which allow for gaps of a certain size between
successive elements of a gene cluster, e. g., see Bergeron et al. (2002c),
Luc et al. (2003), and Zhang and Leong (2008).

Consider a (possibly signed) linear permutation π of size n, an in-
terval I of π is a non-empty subset of unsigned elements of π that
forms a consecutive segment in π, i. e., for I there exists a unique pair
(i, j) of indices with 1 6 i 6 j 6 n such that I = {|π(x)| : i 6 x 6 j}.
The set of all intervals of permutation π is denoted by I(π). For a set
of permutations Π ⊆ sPn a common interval is a subset of (unsigned)
elements of the permutations within Π that is an interval in each per-
mutation of Π. With C(Π) the set of all common intervals of a set
of permutations Π is denoted, i. e., C(Π) =

⋂
π∈Π I(π). The set [1 :n]

of all elements of the permutations within Π and the singleton sets

3 Sometimes the term perfect is used instead of preserving, e. g., see Sagot and Tannier
(2005) and Ouangraoua et al. (2010).

[April 2019 at 13:18 – classicthesis 4.4]

28 background and related work

{1}, . . . , {n} are called trivial common intervals, see Example 2.4. Vari-
ations of the definition of common intervals for multichromosomal,
circular gene orders, and for incorporating the orientation informa-
tion of genes have been explored in Heber et al. (2011) and Heber
and Stoye (2001a).

Example 2.4. Consider Π = {π, ι} with π = (1 −2 4 3 −6 5). The com-
mon intervals of Π are the trivial common intervals (i. e., {1, 2, 3, 4, 5, 6},
{1}, {2}, {3}, {4}, {5}, {6}) and {2, 3, 4, 5, 6}, {1, 2, 3, 4}, {3, 4, 5, 6}, {2, 3, 4},
{1, 2}, {3, 4}, and {5, 6}. For example, the common interval {3, 4, 5, 6} is
an interval of π, since for the unique pair of indices (3, 6) it holds that
{3, 4, 5, 6} = {|π(x)| : 3 6 x 6 6}.

The computational analysis of common intervals of permutations
has gained a lot of attention during the last decade. Uno and Yagiura
(2000) have demonstrated that the common intervals of two permuta-
tions of size n can be computed in O(n+ β) time, where β 6

(
n
2

)
is

the number of all common intervals. Realizing the value of common
intervals for gene order comparison, the algorithm proposed by Uno
and Yagiura (2000) has been extended to arbitrary-sized sets of per-
mutations by several authors that prove that the common intervals of
a set ofm permutations of size n can be computed in time O(mn+β)

and O(n) space (Bergeron et al., 2008; Heber and Stoye, 2001a; Heber
et al., 2011; Heber and Stoye, 2001b). Those algorithms are based on
the fundamental insight that the set of all common intervals of a set
of permutations can be obtained by a smaller generating subset of
common intervals called irreducible intervals (Heber and Stoye, 2001a)
and strong intervals (Bergeron et al., 2008). While the different algo-
rithms have the same asymptotic runtime behavior, the approach by
Bergeron et al. (2008) has the advantage of using only very basic data
structures. In the following, both concepts are outlined.

Two common intervals I1 and I2 overlap if and only if I1 ∩ I2 6= ∅
and neither includes the other, i. e., neither I1 ⊆ I2 nor I2 ⊆ I1. A
sequence I1, . . . , Ij of common intervals of a set of permutations is
called a chain of common intervals (of length j) if for all i ∈ [1 : j− 1] the
intervals Ii and Ii+1 overlap. A common interval I is called irreducible
if there is no chain I1, . . . , Ij of common intervals with j > 2 such
that I =

⋃
i∈[1 : j] Ii. The definition of irreducible common intervals

is illustrated in Example 2.5. Heber and Stoye (2001a) observed that
the set of irreducible intervals, which is smaller than n, generates the
set of common intervals which is smaller than

(
n
2

)
. In the algorithm

they proposed the irreducible common intervals are constructed first
in time O(mn), followed by generating the set of common interval
from the irreducible common intervals in time O(n+β).

Example 2.5. Let Π = {π1,π2,π3} with π1 = (1 2 −3 4 −5 6 7 8),
π2 = (−8 4 5 6 7 1 −2 3), and π3 = (1 2 3 −8 −7 −4 −5 −6). The com-
mon intervals of Π are {1, 2}, {2, 3}, {4, 5}, {5, 6}, {1, 2, 3}, {4, 5, 6}, {4, 5, 6, 7},
{4, 5, 6, 7, 8}, and the trivial common intervals. The common intervals {1, 2}
and {2, 3} (respectively {4, 5} and {5, 6}) overlap because they do not have
an empty intersection and neither is included in the other. Moreover, the se-
quences {1, 2}, {2, 3} and {4, 5}, {5, 6} are chains of common intervals of length

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 29

2. All common intervals of Π are irreducible except for {1, 2, 3} (and {4, 5, 6})
for which there exists the chain {1, 2}, {2, 3} (respectively {4, 5}, {5, 6}) such
that {1, 2, 3} = {1, 2}∪ {2, 3} (respectively {4, 5, 6} = {4, 5}∪ {5, 6}).

A simple and general notion for generators of common intervals,
which gave rise to strong common intervals, has been proposed by
Bergeron et al. (2008). A common interval I ∈ C(Π) is strong if every
other common interval J ∈ C(Π) is either disjoint to I, included in I,
or includes I, i. e., I ∩ J = ∅, J ⊆ I, or I ⊆ J. Since every two strong
intervals are either disjoint or one includes the other, the strong inter-
vals of Π form a hierarchy which is captured by the strong interval
tree – an extension of the PQ tree data structure (Booth and Lueker,
1976; Parida, 2006). The strong interval tree (Bergeron et al., 2008;
Bui-Xuan et al., 2005) is an important data structure for efficient pre-
serving rearrangement analysis, since it can encode all O(n2) com-
mon intervals of a set of permutations with O(n) nodes (Bérard et al.,
2007). Consider a set of permutations Π ⊆ sPn and a permutation
λ ∈ sPn that is consistent with Π, i. e., C(Π) = C(Π ∪ λ). The strong
interval tree (SIT) of Π and λ, denoted by Tλ(Π), is an ordered and
rooted tree where the node set is the set of strong common intervals
of Π, the edge set is defined by their minimal inclusion relation, and
the child nodes of a node are ordered as the corresponding intervals
in λ. The degree of a node N, denoted by deg(N), is the number of
its child nodes. Let π ∈ sPn be consistent with Π. For every inner
node N of a SIT with the child nodes N1, . . . ,Ndeg(N) in this order,
the quotient permutation of N (with respect to π) is the permutation
π|N of size deg(N) that satisfies that π|N(i) precedes π|N(j) if and
only if the interval Ni is to the left of the interval Nj in π for i 6= j.
A quotient permutation π|N is linear increasing (linear decreasing) if
π|N = (1 2 . . . deg(N)) (respectively π|N = (deg(N) . . . 2 1)) holds.
Permutation π|N is prime if it is neither linear increasing nor linear
decreasing. Node N is linear (prime) with respect to π if π|N is linear
increasing or linear decreasing (respectively prime). Observe that the
following facts hold true for a strong interval tree Tλ(Π): i) since λ is
consistent with Π each node is an interval in λ, ii) the leaves are the
single elements 1, . . . ,n; and iii) the root is the set {1, . . . ,n}. Given a
SIT Tλ(Π), the common intervals of Π can be characterized in terms
of the SIT: every union of consecutive children of a linear node and
the union of all children of a prime node form a common interval of
Π (Bérard et al., 2007; Bernt, 2009). An example illustrating a SIT for
a set of permutations is shown in Figure 2.9 and Example 2.6.

Example 2.6. Consider the set of permutations Π defined in Example 2.4,
i. e., Π = {(1 −2 4 3 −6 5), ι}. The permutation λ = (1 2 3 4 −6 5) is
consistent with Π, since every I ∈ C(Π) is an interval in λ, hence C(Π) =
C(Π ∪ λ) is implied. The strong common intervals of Π are {1, 2, 3, 4, 5, 6},
{1, 2}, {3, 4}, {5, 6}, {1}, {2}, {3}, {4}, {5}, and {6}.

One particularly interesting application is to use common intervals
for the comparison of gene orders, see for instance Heber and Stoye
(2001a). Of growing interest is the use of the strong interval tree data

[April 2019 at 13:18 – classicthesis 4.4]

30 background and related work

(a) (b)

Figure 2.9: (a) SIT Tσ(Σ) for Σ = {(7 6 5 −2 1 −3 −4) = σ, ι}. The
set C(Σ) is represented in Tσ(Σ) since every union of con-
secutive children of each node is a common interval of Σ.
Node {2, 1} is linear decreasing since its quotient permutation
is (2 1) and the quotient permutation (1 2 3) of node {2, 1, 3, 4}
implies that it is linear increasing. (b) SIT T ι(Π) for Π =
{ι, (−7 1 3 2 4 6 −5), (6 −5 −4 3 −1 2 7), (−5 −6 7 3 4 2 −1)}.
The trivial common intervals, {5, 6}, and {1, 2, 3, 4} are the strong
common intervals of Π. Prime nodes and linear nodes are rep-
resented by ellipses and rectangles, respectively. The root node
and node {1, 2, 3, 4} are prime and node {5, 6} is linear increasing.

structure for the computation of scenarios of rearrangements that pre-
serve common intervals, i. e., no genome rearrangement is allowed to
break a common interval. Recently, an even more restrictive defini-
tion for the preservation of common intervals (of two gene orders)
has been proposed by Ouangraoua et al. (2011b). In this work, the au-
thors study the computation of a shortest scenario of rearrangements
between two gene orders which ensures that every sub-scenario pre-
serves the common intervals of the respective gene orders as well.
Several of such optimization problems have been studied intensively,
see Hartmann et al. (2018d) for a recent overview and Section 2.3
for a summary of certain fundamental results of those approaches.
In addition to that, Section 5.4 presents an algorithm, called CREx2,
that computes scenarios of rearrangements that preserve common in-
tervals. CREx2 considers all types of predominant mitochondrial rear-
rangements.

Recently, Rusu (2014b) proposed a unifying and efficient algorith-
mic framework for finding different types of common intervals, e. g.,
nested intervals (Blin et al., 2010; Hoberman and Durand, 2005) or con-
served intervals (Bergeron and Stoye, 2006), for an arbitrarily-sized set
of permutations. In contrast to algorithms that search for intervals di-
rectly in the permutations, their approach first extracts helpful infor-
mation from the permutations followed by progressively computing
the suitable intervals. The information extracted from the permuta-
tions is called MinMax-profile and it focuses on the minimum (and
maximum) value that is located between each pair i and i+ 1 of el-
ements, with i ∈ [1 :n− 1], in a permutation, see Rusu (2014b) for a
formal definition.

Moreover, the value of common intervals has also been recognized
in other scientific areas. For example, common intervals are used for
the design of crossover operators for genetic algorithms (Uno and
Yagiura, 2000) that solve permutation problems like the prominent
traveling salesperson problem (Held and Karp, 1970). Another interest-

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 31

ing aspect is, that finding the common intervals of permutations re-
verses the consecutive ones problem which asks for a permutation of
a set X in which the elements of each set of a certain subset of the
power set of X occur consecutively (Booth and Lueker, 1976; Heber
and Stoye, 2001a). Recently, Pelletier and Rusu (2018) used common
intervals to prove that the Directed MinMax-Betweenness problem (Rusu,
2016) which asks whether there is a permutation that agrees with a
given MinMax-profile, is solvable in polynomial time for a certain
class of MinMax-profiles.

Algorithms for the computation of generalized concepts of com-
mon intervals have been investigated in several ways. One example
is the computation of common intervals (respectively their subclass
of conserved intervals) of arbitrary strings (Didier, 2003; Rusu, 2014a;
Schmidt and Stoye, 2004) (respectively Angibaud et al. (2009) and
Bourque et al. (2005)). Another example is the computation of gene
teams which generalize the common interval model to allow for gaps
between genes in the same cluster that are smaller than a given con-
stant (Luc et al., 2003). Gene teams can be computed in polynomial
time (Béal et al., 2004; Bergeron et al., 2002c). For a broad overview on
gene teams the reader is referred to Hoberman and Durand (2005).

2.2.3 Mutations and Genome Rearrangements

Mutations that change the arrangement of genes are modeled as
genome rearrangements, i. e., operations that rearrange the elements
of permutations. Inversion, transposition, inverse transposition,
tandem duplication random loss (TDRL), and (possibly) inverse tan-
dem duplication random loss (iTDRL) are assumed to be major mech-
anisms for the evolution of metazoan mitochondrial gene orders. The
effect of those rearrangements on the gene order is illustrated in Fig-
ure 2.5, the five considered mutations are defined as follows: Let π be
a (signed linear) permutation. A rearrangement ρ for π is an operation
that, when applied to π, changes the position (and/or sign) of certain
elements of π. The resulting permutation is denoted by ρ ◦π. The rear-
rangements that are considered in this thesis are characterized by the
intervals of elements that they influence as described in the following
(see also Figure 2.10).

• An inversion ρI(X) for π ∈ sPn is an operation that reverses
the order and switches the sign of every element within an
interval X ∈ I(π). (Recall that I(π) is the set of all intervals
of π.) Formally, let X = {|π(i)|, . . . , |π(j)|} be an interval of
π = (π(1) π(2) . . .π(n)) and (i, j) the unique pair of indices
with 1 6 i 6 j 6 n such that X = {|π(x)| : i 6 x 6 j}, then
ρI(X) ◦ π := (π(1) . . .π(i− 1) −π(j) . . .−π(i) π(j+ 1) . . .π(n)).

• A transposition ρT(X, Y) for π ∈ sPn is an operation that
switches the order of two disjoint intervals X and Y of π
that are consecutive, i. e., X, Y,X ∪ Y ∈ I(π). Formally, let
X = {|π(i)|, . . . , |π(j)|} and Y = {|π(j+ 1)|, . . . , |π(k)|} be two dis-
joint and consecutive intervals of π = (π(1) π(2) . . .π(n)) and

[April 2019 at 13:18 – classicthesis 4.4]

32 background and related work

(i, j) and (j + 1,k) the unique pairs of indices with 1 6 i 6
j 6 k 6 n, i 6= k, such that X = {|π(x)| : i 6 x 6 j} and
Y = {|π(x)| : j + 1 6 x 6 k}, then ρT(X, Y) ◦ π := (π(1) . . .
π(i− 1) π(j+ 1) . . .π(k) π(i) . . . π(j) π(k+ 1) . . .π(n)).

• An inverse transposition ρiT(X, Y) for π ∈ sPn is an operation that
switches the order of two disjoint and consecutive inter-
vals X and Y of π and, in addition, it reverses the order
and switches the sign of every element in X. Formally, let
X = {|π(i)|, . . . , |π(j)|} and Y = {|π(j+ 1)|, . . . , |π(k)|} be two dis-
joint and consecutive intervals of π = (π(1) π(2) . . .π(n))
and (i, j) and (j + 1,k) the unique pairs of indices
with 1 6 i 6 j 6 k 6 n, i 6= k, such that
X = {|π(x)| : i 6 x 6 j} and Y = {|π(x)| : j + 1 6 x 6 k},
then ρiT(X, Y) ◦ π := (π(1) . . .π(i − 1) π(j + 1) . . .π(k) −π(j) . . .
−π(i) π(k + 1) . . .π(n)) and ρiT(Y,X) ◦ π := (π(1) . . .
π(i− 1) −π(k) . . .−π(j+ 1) π(i) . . .π(j) π(k+ 1) . . .π(n)).

• Let X, Y be a bipartition of an interval of π ∈ sPn, i. e.,
X ∪ Y ∈ I(π) and X ∩ Y = ∅. A tandem duplication random loss
ρTDRL(X, Y) for π is an operation that duplicates the interval
X∪ Y of π such that the duplicated interval is placed adjacently
to the original one, followed by the loss of every element con-
tained in Y (respectively X) in the left (respectively right) copy
of the duplicated interval. The resulting permutation is denoted
by ρTDRL(X, Y) ◦ π.

• Let X, Y be a bipartition of an interval of π ∈ sPn, i. e., X ∪ Y ∈
I(π) and X ∩ Y = ∅. A left (respectively right) inverse tandem du-
plication random loss ρliTDRL(`,X, Y) (respectively ρriTDRL(r,X, Y))
for π is an operation that duplicates the interval X∪ Y of π such
that the duplicated interval is placed adjacently to the left (re-
spectively right) of the original one, the order of all genes in the
duplicated interval is reversed and the sign of every element is
switched, followed by the loss of every element contained in Y
in the left copy and every element contained in X in the right
copy of the duplicated interval. The resulting permutation is
denoted by ρliTDRL(`,X, Y) ◦ π (respectively ρriTDRL(r,X, Y) ◦ π).

Note that the definitions of the aforementioned rearrangements can
be restricted to unsigned linear permutations by ignoring the sign of
each element of a permutation.

2.2.4 Tracing Evolution and Rearrangement Problems

The assumption that genome rearrangements occur rarely bridges the
gap between the research areas of evolutionary biology and combina-
torial optimization by the principle of maximum parsimony. Following
this principle, the most succinct explanation is always considered to
be the best or, in the context of genome rearrangements, a series of
rearrangements that explains some given gene orders using a mini-
mum number of rearrangements is more likely to be close to reality

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 33

(a) Transposition (b) Inversion (c) Inverse transposi-
tion

(d) Tandem duplication random loss

(e) Left inverse tandem duplication ran-
dom loss

(f) Right inverse tandem duplication ran-
dom loss

Figure 2.10: Examples of rearrangements applied to the identity. Il-
lustrated are the rearrangements (a) ρT({2, 3}, {4, 5}); (b)
ρI({2, 3, 4}; (c) ρiT({1, 2}, {3, 4}); (d) ρTDRL({2, 4}, {1, 3, 5}); (e)
ρliTDRL(`, {2, 3, 5}, {1, 4}); and (f) ρriTDRL(r, {1, 3, 5}, {2, 4}). Bright
and dark gray squares illustrate the sets X and Y of
ρI(X), ρliTDRL(`,X, Y), ρriTDRL(r,X, Y), and ρZ(X, Y) with Z ∈
{T, iT, TDRL}.

[April 2019 at 13:18 – classicthesis 4.4]

34 background and related work

than another series of rearrangements with a greater number of rear-
rangement operations. Subsequently, the research field of genome re-
arrangements gives rise to a varying spectrum of fascinating and chal-
lenging algorithmic and combinatorial problems. This diversity of
problems results from various aspects. For example, properties of the
miscellaneous gene order representations (e. g., permutations or sets
of adjacencies), the relevance of the strandedness of the genes (e. g.,
signed or unsigned), the importance of the orientation of the gene
orders (e. g., directed or undirected), or some biological constraints
(e. g., preservation of gene clusters). The set of rearrangements that
are considered is of importance for the algorithmic problems and the
biological relevance of the results. However, not every combination of
these aspects results in a reasonable optimization problem, e. g., the
use of TDRLs only on signed permutations makes no sense as TDRLs
cannot change the orientation of a gene and only permutations hav-
ing exactly the same gene orientations could be compared which is
equivalent to comparing unsigned permutations.

Throughout this thesis, the set of possible rearrangements that are
of interest (for a certain problem) is called a (rearrangement) model.
Formally, a model M is a set of rearrangements that are considered
for a certain problem. Examples are the models where only a sin-
gle type of rearrangement operation is considered, e. g., MI, MT, MiT,
MTDRL, and MiTDRL are the rearrangement models that include all in-
versions, transpositions, inverse transpositions, TDRLs and iTDRLs,
respectively. Another example with a high biological relevance is the
rearrangement model that considers all rearrangements which are fre-
quently encountered in mitochondrial gene orders. Here, the model
that is used to represent those rearrangements is denoted by M4-type

and it contains all predominant mitochondrial rearrangements, i. e.,
inversions, transpositions, inverse transpositions, and TDRLs. All
models that are mentioned in this thesis as well as their definition
are summarized in Table 2.1.

With regard to a general definition of the fundamental genome
rearrangement problems, formal notions representing gene orders
are denoted by ξ, ξ1, . . . , ξk in the following. In particular, a ξ ∈ Ξ
serves as representation for (unsigned/signed undirected/directed
linear/circular) permutations (or adjacencies) and Ξ denotes the set
of all those gene order representatives. A considered rearrangement
model is denoted by M. Let ξ be a gene order. A sequence for ξ of
length t ∈N is a series of rearrangements ρ1, . . . , ρt ∈M such that ρi
is a rearrangement for ρi−1 ◦ . . . ◦ρ1 ◦ξ for all i ∈ [1 : t]. A sequence of
length t is denoted as (ρ1, . . . , ρt) ∈Mt, where Mt is the t-fold Carte-
sian product on M, i. e., Mt := { (ρ1, . . . , ρt) : ρ1, . . . , ρt ∈M}. In order
to simplify the notation the application of a sequence S = (ρ1, . . . , ρt)
for ξ (to ξ) is denoted by S ◦ ξ := ρt ◦ . . . ◦ ρ1 ◦ ξ. The length of a
sequence S is denoted by |S|. If a sequence S = (ρ1, . . . , ρt) for ξ1
transforms ξ1 into ξ2, i. e., S ◦ ξ1 = ξ2, then S is called a scenario for
ξ1 and ξ2. The set of all scenarios for ξ1 and ξ2 under the model M
is denoted by SM(ξ1, ξ2).

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 35

Table 2.1: Summary of rearrangement models that are mentioned in this the-
sis and their definition. For every model M there is also a model
Mp that preserves the common intervals of a given set of gene
orders.

Model Definition

MI {ρI(X) :X ⊆ [1 :n],X 6= ∅}
MT {ρT(X, Y) :X, Y ⊆ [1 :n],X, Y 6= ∅,X∩ Y = ∅}
MI;T MI ∪MT

MiT {ρiT(X, Y) :X, Y ⊆ [1 :n],X, Y 6= ∅,X∩ Y = ∅}
MT;iT MT ∪MiT

MI;T;iT MI ∪MT ∪MiT

MTDRL {ρTDRL(X, Y) :X, Y ⊆ [1 :n],X∪ Y = [1 :n],X∩ Y = ∅}
MiTDRL {ρliTDRL(X, Y), ρriTDRL(X, Y) : X, Y ⊆ [1 : n],X ∪ Y = [1 : n],

X∩ Y = ∅}
M4-type MI ∪MT ∪MiT ∪MTDRL

The problem of tracing the number of mutations that might have oc-
curred during the evolution of two contemporary species motivates
the formulation of the distance problem. This problem asks for the
minimum number of rearrangements that are necessary to transform
one given gene order into another given gene order as formally de-
fined in the following.

Problem (Distance problem). The distance problem for two gene orders
ξ1 and ξ2 under a considered rearrangement model M is to find the mini-
mum number dM(ξ1, ξ2) of rearrangements from M that are necessary to
transform ξ1 into ξ2, i. e., dM(ξ1, ξ2) := minS∈SM(ξ1,ξ2) |S|.

The value dM(ξ1, ξ2) is called the distance between ξ1 and ξ2 under
M or, if the context is clear, the M distance. Observe that a distance
between two gene orders under M provides just a lower bound on
the actual number of mutations that might have occurred during the
evolution of the considered species. This even holds true if the model
M perfectly reflects the set of mutations that have affected the con-
sidered gene orders. The rationale behind this is that successive mu-
tations can neutralize each other, e. g., two successive inversions that
affect the same set of genes. Therefore, the information on such mu-
tations is not preserved in the contemporary gene orders and, thus,
these mutations cannot be revealed. Of particular interest for a rear-
rangement model M is the diameter DM(Ξ) which is the maximum
value of the M distance that can be obtained for a set Ξ of given gene
orders, i. e., DM(Ξ) := maxξ1,ξ2∈Ξ dM(ξ1, ξ2). The reason is that the
diameter allows to measure the variability of the M distance for a
considered set Ξ.

The sorting problem is closely related to the distance problem. In-
stead of seeking a genomic distance, the sorting problem aims to find
one particular scenario that uses a minimum number of considered
rearrangements as defined in the following.

[April 2019 at 13:18 – classicthesis 4.4]

36 background and related work

Problem (Sorting problem). The sorting problem for two gene orders
ξ1 and ξ2 under a considered rearrangement model M is to find a scenario
S ∈ SM(ξ1, ξ2) such that S ∈ argminS ′∈SM(ξ1,ξ2)|S

′|.

A scenario S that solves the sorting problem for ξ1 and ξ2 under M

is called a parsimonious scenario (for ξ1 and ξ2 under M).
It is worth pointing out that the sorting problem and the distance

problem (for two gene orders under a certain model M) are two dis-
tinct problems, whereby the sorting problem often turns out to be
harder, see Section 2.3. However, both problems are not completely
independent from each other. For example, it is not hard to see that if
the sorting problem can be solved efficiently, then the M distance can
be computed efficiently as well. On the other hand, if the M distance
problem can be solved in polynomial time and the considered model
contains a polynomial number of rearrangements, then the sorting
problem can also be solved in polynomial time by iteratively search-
ing for a rearrangement that decreases the M distance. However, the
sorting problem can sometimes be solved faster than by testing all
possible rearrangements, e. g., see the sorting problem for signed lin-
ear permutations under MI in Section 2.3.1.

If permutations are considered to represent gene orders, these prob-
lems are usually studied for a single (directed/undirected signed/un-
signed linear/circular) permutation π and the identity ι, which justi-
fies the common term “Sorting π by M”. The reason for this is that
the number of rearrangements transforming one permutation into
another is not dependent on the way genes are numbered, since the
genes of both permutations can be renamed without changing the dis-
tance between the considered permutations. To see this, consider two
permutations π, σ, and a model M. It holds true that dM(ι,π−1 ◦σ) =
dM(π−1 ◦ π,π−1 ◦ σ) = dM(π,σ) = dM(σ−1 ◦ π,σ−1 ◦ σ) = dM(σ−1 ◦
π, ι). Hence, the sorting (distance) problem is equivalent to searching
for a minimum length scenario (respectively minimum M distance)
that transforms the identity into a given (signed) permutation or vice
versa. The underlying concept behind this transformation is the left-
invariance of permutations, e. g., see Fertin et al. (2009) for more infor-
mation. For all these reasons, the term sorting (distance) problem for Ξ
under M is often used in this thesis, where Ξ denotes a considered set
of permutations such as Pn, sPn, P◦n, or uP◦n.

The rearrangement problem that is considered to be most impor-
tant for reconstructing phylogenetic trees from gene orders is the me-
dian problem. It asks for a gene order minimizing the sum of some
distance to a set of given gene orders. The aim of solving this prob-
lem is to identify a putative ancestral gene order, called a median, for
the given set of gene orders as defined in the following.

Problem (Median Problem). The median problem for a set of k > 2

gene orders ξ1, . . . , ξk under a rearrangement model M aims for a gene
order µ such that µ ∈ argminξ∈Ξ

∑
i∈[1 :k] dM(ξ, ξi), where Ξ is the set

of all (possible) gene orders.

Interestingly, the solution of the case k = 3 is the foundation of many
algorithms that reconstruct phylogenetic trees from gene orders, e. g.,

[April 2019 at 13:18 – classicthesis 4.4]

2.2 formal background 37

see Bourque and Pevzner (2002), Moret et al. (2001), and Zhang et al.
(2009).

If a model considers more than one type of rearrangement, realistic
reconstructions are computed in a parsimony framework by employ-
ing a weighting scheme (on the considered model) that reflects the
likelihood of the occurrence of different rearrangement events dur-
ing the evolution of different taxa. Weighted rearrangements have
been explored in various aspects, e. g., using weights which respect
to the number of genes that are affected by a rearrangement. Dif-
ferent approaches that are relevant for this thesis are summarized
in Section 2.3. Another possibility is to use different weights for each
type of rearrangement as explained in the following. Let M be a given
model and TM be the set of rearrangement types that are considered,
e. g., for M4-type it holds that TM = {I, T, iT, TDRL}. The miscellaneous
rearrangements of M are assigned to types in order to classify their
similarity. Therefore, the mapping type :M → P(TM), where P(X)

is the powerset of a set X, assigns every rearrangement to a set of
types. Note that the mapping type is eventually not bijective. The
motivation for this definition is that some rearrangements can be of
several types, e. g., the effect of a transposition can also be obtained
by a TDRL and some iTDRLs have the same effect as inversions or
inverse transpositions, see Example 2.7 for more details. The weight
of a rearrangement in M is given by a weight function ω :M → R>0

such that ω(ρ) := min {ωX : X ∈ type(ρ)}, where ωX denotes the
given weight of a rearrangement of type X. Given such a weighting
scheme ω, the weight of a sequence (scenario) S = (ρ1, . . . , ρ|S|) for ξ1
(and ξ2) is defined by the sum of the weights of its rearrangements
and, with a slight abuse of the notation, it is denoted by ω(S), i. e.,
ω(S) :=

∑
i∈[1 : |S|]ω(ρi). However, considering a weight function ω

generalizes the aforementioned problems leading to the weighted dis-
tance problem, the weighted sorting problem, and the weighted median
problem by minimizing the weight of a scenario for the given gene or-
ders instead of its length. Certainly, for equally weighted rearrange-
ments, the sorting (respectively median) problem coincides with its
weighted version.

Example 2.7. Consider the TDRL ρTDRL(Y,X) and the transposition
ρT(X, Y) for a permutation π ∈ sPn. If X is to the left of Y in π and
X ∪ Y ∈ I(π), then ρTDRL(Y,X) ◦ π = ρT(X, Y) ◦ π, thus {TDRL, T } ⊆
type(ρTDRL(Y,X)). As an example consider π = (1 −3 4 2 −5) with
X = {3, 4} and Y = {2, 5} for which it holds that ρTDRL({2, 5}, {3, 4}) ◦ π =

(1 2 −5 −3 4) = ρT({3, 4}, {2, 5}) ◦ π. In a similar fashion, it holds that
ρI(X) ◦ π = ρliTDRL(X, ∅) ◦ π = ρriTDRL(∅,X) ◦ π and ρiT(X, Y) ◦ π =

ρriTDRL(Y,X) ◦ π.

The preservation of common intervals of a set of given gene or-
ders is considered in this work in Section 5.4. Genome rearrange-
ment problems that regard the preservation of common intervals are
called preserving genome rearrangement problems. The preservation of
common intervals is realized by restricting a considered model to
contain only those rearrangements that do not break the common

[April 2019 at 13:18 – classicthesis 4.4]

38 background and related work

intervals of the given set of gene orders. Formally, let M be a con-
sidered model, Π ⊆ sPn and π ∈ sPn be consistent to Π, then a
rearrangement ρ ∈ M for π is preserving for Π if ρ ◦ π is consistent
with Π, i. e., C(π) = C({ρ ◦π}∪Π). Analogously, a sequence (scenario)
(ρ1, . . . , ρt) ∈Mt for π (and σ) is preserving for Π if for all i ∈ [1 : t] the
permutations ρi ◦ . . . ◦ ρ1 ◦ π is consistent with Π. If a model M pre-
serves a set of common intervals, it is denoted by Mp. For example,
the model M

p
4-type which contains all common mitochondrial rear-

rangements (note that iTDRLs are excluded) and preserves the com-
mon intervals of set of given gene orders, is studied in Section 5.4.

2.3 background on genome rearrangements

The following section gives a brief overview of algorithmics on
genome rearrangements. In particular, Section 2.3.1, Section 2.3.2, and
Section 2.3.3 review approaches considering rearrangement problems
under MI, MT, and MiT, respectively. A particular focus is being put
on combinatorics on the TDRL and the iTDRL rearrangement model
in Section 2.3.4 and Section 2.3.5. In addition, approaches are out-
lined that preserve gene clusters which are represented by common
intervals of permutations. The reason is that this work proposes new
results for all of these aspects. The assumption that only one type
of rearrangement has occurred during the evolution of certain gene
arrangements is often unrealistic. For example, while TDRLs may ex-
plain the existence of pseudogenes in mitochondrial genomes that
cannot be caused by inversions for example, TDRLs are unable to
change orientation of genes which can be explained by inversions.
Therefore, the development of approaches that consider a combina-
tion of different rearrangements is outlined in Section 2.3.6. Another
highly active subfield of comparative genomics considers multichro-
mosomal gene arrangements that eventually have an unequal gene
content. Section 2.3.7 briefly outlines certain approaches for multi-
chromosomal rearrangements and content modifications.

2.3.1 Inversion

The first combinatorially studied problems in the field of gene order
analysis consider the inversion rearrangement. In this section, a brief
overview on computational and combinatorial findings with respect
to inversions is given. For more details the reader is referred to Fertin
et al. (2009), Gusfield (1997), Pevzner (2000), and Setubal and Meida-
nis (1997).

Surprisingly, inversions have already been observed in fruit flies in
Sturtevant and Beadle (1936), yet almost half a century has passed
before the exploration of computational and combinatorial problems
has been taken up in gene order analysis with respect to inversions.
Creating the basis for decades of scientific work, Watterson et al.
(1982) introduced the distance problem (and the sorting problem)
for unsigned circular permutations and they described a greedy al-

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 39

gorithm that later turned out to be a 2-approximation (Hannenhalli
and Pevzner, 1995). The idea of their algorithm was simple: for ev-
ery element i from 1 to n of a given permutation π of size n ∈ N

the algorithm moves element i to the i-th position if π(i) 6= i. Conse-
quently, the algorithm requires at most n− 1 steps. A second pioneer-
ing work has been presented by Sankoff (1992) which was the first
that formalized the sorting problem for unsigned linear permutations.
Subsequently, a greedy 2-approximation algorithm and a branch-and-
bound approach with exponential runtime for the sorting problem
for signed linear permutations has been presented in Kececioglu and
Sankoff (1995).

A particularly intuitive notation that captures the similarities and
dissimilarities of permutations has been introduced in Sankoff and
Blanchette (1997). For two given (possibly signed) linear permuta-
tions π and σ a so-called breakpoint of π represents a pair of con-
secutive elements of π that are not consecutive in σ. More formally,
let π,σ ∈ Pn, a pair (π(i),π(i+ 1)) with i ∈ [1 :n− 1] of consecutive
elements of π is called a breakpoint of π (with respect to σ) if and
only if neither π(i) and π(i+ 1) nor π(i+ 1) and π(i) are consecutive
in σ. However, if π,σ ∈ sPn, then the definition is slightly modified
as follows. A pair (π(i),π(i+ 1)) with i ∈ [1 :n− 1] of consecutive el-
ements of π is called a breakpoint of π (with respect to σ) if and only
if neither π(i) and π(i+ 1) nor −π(i+ 1) and −π(i) are consecutive
in σ. The number of breakpoints of a permutation π with respect to ι
is denoted by bp(π). It is easy to see that the breakpoints of π (with
respect to σ) can be obtained in linear time.

Linear permutations are either unsigned or signed. In the following
paragraphs unsigned permutations are considered first. A single in-
version can remove at most two breakpoints, hence an intuitive bound
for the MI distance of a permutation π ∈ sPn and the identity ι ∈ sPn
is given by dMI(π, ι) > dbp(π)/2e. Bafna and Pevzner recognized the
profound value of the breakpoints in the theory of sorting permu-
tations by inversions. For a given unsigned linear permutation, they
represent the information of breakpoints in a graph which is called
the breakpoint graph (Bafna and Pevzner, 1996). More precisely, the
breakpoint graph of π = (π(1) . . . π(n)) ∈ Pn is an edge-colored graph
whose nodes are {0,π(1), . . . ,π(n),n+ 1}. Two nodes π(i) and π(j) are
connected by a black edge if and only if π(i) and π(j) are adjacent in
π and by a gray edge if they are adjacent in the identity permuta-
tion. Auxiliary nodes 0 and n+ 1 are appended to ensure that every
node of {π(1), . . . ,π(n)} has exactly two incident black and gray edges.
Therefore, the breakpoint graph for π can completely be decomposed
into edge-disjoint alternating cycles, where an alternating cycle is a cy-
cle that has alternatingly colored edges. The number of edge-disjoint
alternating cycles of a breakpoint graph of π is denoted by ac(π).

Making use of the breakpoint graph, Bafna and Pevzner (1996)
showed that every inversion changes bp(π) − ac(π) by at most
one, which implies that dMI(π, ι) > bp(π) − ac(π). They fur-
ther proved that the diameter DMI(Pn) is n − 1, which is
reached only by the Gollan permutation and its inverse, i. e.,

[April 2019 at 13:18 – classicthesis 4.4]

40 background and related work

(1 3 5 7 . . . n−1 n . . . 8 6 4 2) and (1 n 2 n−1 . . . n/2 n/2+1)

(respectively (1 3 5 7 . . . n n−1 . . . 8 6 4 2) and
(1 n 2 n−1 . . . dn/2e+1 dn/2e)) if n is even (respectively odd). In
addition, they presented a 1.75-approximation algorithm with O(n2)

runtime for the sorting problem for unsigned linear permutations
under MI. This method is based on finding a maximal alternating
cycle decomposition using properties of the breakpoint graph. How-
ever, it turned out that finding such a decomposition is the main
obstacle for efficient algorithms that optimally solve the sorting prob-
lem for unsigned linear permutations, since it has been shown to be
NP-hard through a reduction from the Eularian cycle decomposition
(Caprara, 1997b). Moreover, the sorting problem for inversions and
unsigned linear permutations is not approximable within 1, 0008 un-
less P = NP (Berman and Karpinski, 1999). Consequently, the sorting
problem for unsigned circular permutations under MI is NP-hard
as well (Solomon et al., 2003). Those results motivate the numer-
ous algorithmic studies on fast and constant factor approximation
algorithms for the sorting problem for unsigned permutations un-
der MI. Notable examples are a 1.5-approximation (Christie, 1998a),
a (1.4348+ε)-approximation (Caprara and Rizzi, 2002), a (1.4193+ε)-
approximation (Lin and Jiang, 2004), and the (up to now) best known
approximation guarantee of 11/8 (Berman et al., 2002). In addition,
exact algorithms that exhibit a potentially exponential runtime have
been presented: a branch and bound algorithm (Caprara et al., 1999)
and two integer linear programming approaches (Caprara et al., 2000;
Dias and Souza, 2007). The possibility to solve the distance prob-
lem for unsigned linear permutations under MI with evolutionary
algorithms has been explored in Silveira et al. (2017) (and references
therein).

The concept of the breakpoint graph extends naturally to signed
linear permutations. A signed permutation π ∈ sPn can be trans-
formed into an unsigned permutation π ′ ∈ P2n by replacing every
element i ∈ [−n :n] \ {0} by the elements 2i− 1 and 2i (respectively
2i and 2i− 1) in that order if i is positive (respectively negative). Fur-
thermore, it holds that inversions for π can be replaced by inversions
for π ′ by replacing the set of affected elements as explained above,
see Figure 2.11 for an example. Consequently, the sorting problem
for signed linear permutations under MI can be described as the sort-
ing problem of transformed unsigned linear permutations under MI

(Bafna and Pevzner, 1996).
A breakthrough in the genome rearrangement analysis has been

made with the milestone paper of Hannenhalli and Pevzner (1999)
which showed that the sorting problem (and therefore the distance
problem) for signed linear permutations under MI can be solved in
polynomial time. More precisely, they detected certain parameters
in configurations of connected components in the breakpoint graph
(called hurdle and fortress) of a considered π ∈ sPn that separate
the bound bp(π) − ac(π) from the actual distance dMI(π, ι). Based on
their findings an exact algorithm with O(n4) runtime has been pre-
sented. It is also worth mentioning that the sorting problem for signed

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 41

Figure 2.11: Breakpoint graph for the signed linear permutation
(5 −2 −1 −3 −4). Black edges (horizontal lines) represent
the adjacent elements of π and gray edges the adjacent ele-
ments in the identity permutation ι. An alternating cycle in the
breakpoint graph is formed by the nodes 3 and 2.

circular permutations under MI is essentially equivalent to the anal-
ogous problem for linear permutations (Meidanis et al., 2000). Over
the last two decades, the runtime of Hannenhalli and Pevzner’s algo-
rithm has been progressively improved by Berman and Hannenhalli
(1996), Kaplan et al. (2000) and Kaplan and Verbin (2003), and Tan-
nier and Sagot (2004) and Tannier et al. (2007) to O(n3/2

√
logn). The

currently best runtime has been presented by Swenson et al. (2010)
which presented a simple and fast randomized algorithm that runs
in time O(n logn+αn), where α is a data-dependent parameter. The
authors concluded by extensive experiments on α that almost all per-
mutations can be sorted in O(n logn).

For the case that only the MI distance for signed permutations is of
interest, a linear time algorithm based on the breakpoint graph has
been presented (Bader et al., 2001). Recently, lower and upper bounds
on the average number of inversions that are needed to sort a signed
linear permutation have been presented by Lima and Ayala-Rincon
(2018). The diameter DMI(sPn) is n + 1 for n > 4 (Christie, 1998b)
and it is achieved by the permutation (n n−1 . . . 1) (see also Knuth
(1997)). The formal aspects for solving the sorting problem under MI

have been significantly simplified by Bergeron (2001) and Bergeron
et al. (2004).

Finding the median of three or more unsigned (or signed) linear
permutations under MI has been shown to be NP-hard (Caprara,
1997a). However, near-optimal solutions can be obtained within an
acceptable amount of time even for large permutations, e. g., see Ra-
jan et al. (2010).

The computational exploration of the preservation of common in-
tervals in gene order analysis with respect to inversions has been
initiated by Figeac and Varré. In Figeac and Varré (2004) the sorting
problem for sPn under Mp

I has been introduced with the objective to
produce more biologically relevant results. (Recall that Mp denotes
the variant of a rearrangement model M that regards the preserva-
tion of common intervals.) The authors proved that the sorting prob-
lem for sPn under M

p
I is NP-hard. However, it is fixed-parameter

tractable (Bouvel et al., 2011), hence there are polynomial runtime al-
gorithms for many relevant instances (Bérard et al., 2004; Bérard et al.,
2007; Bérard et al., 2008), and algorithms with a polynomial average
runtime (Bouvel et al., 2011). For example, algorithms have been pre-
sented which partition the set of problem instances into three subsets

[April 2019 at 13:18 – classicthesis 4.4]

42 background and related work

of instances that can be solved in linear time, subquadratic time, and
exponential time (Bérard et al., 2007). In the following, the three algo-
rithms are described more precisely. Therefore, the definition of the
strong interval tree (SIT) is recalled, followed by a characterization
of the three subsets of problem instances in terms of the SIT. Finally,
for every subset of problem instances it is outlined how the sorting
problem for sPn under Mp

I is solved by Bérard et al. (2007).
Let π and ι be two signed linear permutations of size n. Recall

that the SIT of {π, ι} and π is the tree Tπ({π, ι}) that has all strong
common intervals of {π, ι} as nodes that are connected by an edge
with respect to their minimal inclusion relation, and the nodes are
ordered according to π. Recall also that for every inner node N of
Tπ({π, ι}) there exists a unique permutation (i. e., the quotient permu-
tation ι|N) that reflects the order of the strong common intervals of
π with respect to ι. An inner node is linear decreasing, linear increas-
ing, or prime if and only if the corresponding quotient permutation
is (1 2 . . . deg(N)), (deg(N) . . . 2 1), or neither of those, respectively.
(Note that leaf nodes are always considered to be linear.) The set of
all possible SITs is categorized into three subsets: A SIT is unambigu-
ous if every prime node has a linear parent and ambiguous otherwise.
SITs without prime nodes are called definite. For example, the SIT
illustrated in Figure 2.9 (a) (respectively Figure 2.9 (b)) is definite (re-
spectively ambiguous). Bérard et al. (2007) showed that the sorting
problem for sPn under M

p
I can be solved in linear time for problem

instances with a definite SIT, those with an unambiguous SIT can be
solved in subquadratic time, and instances with an ambiguous SIT
have an exponential runtime in the worst case.

The key for solving the sorting problem for π ∈ sPn and ι ∈ sPn
under Mp

I is that an inversion ρI(X) is preserving for {π, ι} (i. e., it does
not break a common interval of π and ι) if and only if it is a node or
a union of children of a prime node of Tπ({π, ι}) (Bérard et al., 2007).
Thus, linear nodes can only be reversed as a whole and the children
of prime nodes can be rearranged freely. With respect to the SIT the
sorting problem for π ∈ sPn and ι ∈ sPn under Mp

I is to apply a min-
imum length sequence S of preserving inversions to π such that all
quotient permutations in TS◦π({π, ι}) are transformed into the identity
permutation, i. e., the nodes in TS◦π({π, ι}) become linear increasing.
Bérard et al. (2007) proved that if a node N of Tπ({π, ι}) is linear in-
creasing and its parent node is linear decreasing (or vice versa), it
holds that the inversion ρI(N) is always part of any parsimonious
sorting scenario, i. e., the inversions that correspond to nodes with
a different orientation than their parent node define a parsimonious
rearrangement scenario if the considered SIT is definite (Bérard et al.,
2007). It is not difficult to see that this procedure can be implemented
to run in linear time with respect to the number of nodes. Exam-
ple 2.8 illustrates the algorithm for definite SITs. Interestingly, since
the inversions in a parsimonious preserving scenario for a problem
instance with a definite strong interval tree do not overlap, the order
of the inversions in the scenario can arbitrary be changed. Hence, the
set of all parsimonious scenarios can be obtained as well.

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 43

Example 2.8. Consider the SIT Tσ(Σ) with Σ = {σ =

(7 6 5−2 1−3−4), ι} illustrated in Figure 2.9 (a). The SIT Tσ(Σ) is definite
since it does not contain prime nodes. A scenario for σ and ι is obtained by ap-
plying inversions ρI({7}), ρI({6}), ρI({5}), ρI({4}), ρI({3}), ρI({1}), ρI({1, 2}),
ρI({1, 2, 3, 4}), and ρI({1, . . . , 7}) to σ.

For a problem instance with unambiguous SIT Tπ({π, ι}) a method
is needed to transform the quotient permutation of every prime node
into the identity permutation by using a minimum number of inver-
sions. Therefore, every element of a quotient permutations is assigned
to the + (respectively -) sign if the corresponding child node is lin-
ear increasing (respectively decreasing). Since the children of a prime
nodeN can freely be rearranged, the sorting problem for ι|N and ι un-
der MI has to be solved. Note that this problem is an unconstrained
sorting problem. Applying the obtained parsimonious scenarios S to
π results in a definite SIT TS◦π({π, ι}) which can be processed as ex-
plained beforehand. The runtime of the algorithm for unambiguous
SITs is dominated by solving the sorting problem for prime nodes
which can be done for example by the algorithm presented in Tan-
nier and Sagot (2004) in O(n3/2

√
log (n)) time.

Ambiguous SITs represent computationally hard problem in-
stances, since the information on linear increasing/decreasing child
nodes is unknown. Therefore, an exact solution can be obtained by
considering both possible signs for every element of a prime node’s
quotient permutation and by applying the algorithm for unambigu-
ous SITs. Assume that α ∈ N prime nodes (with prime parent node)
exist in a given SIT, the described algorithm for ambiguous SITs has
an exponential runtime of O(2αn3/2

√
log (n)) in the worst case.

Algorithms for the median problem for sPn under M
p
I that have a

polynomial runtime for many relevant data sets have been proposed
in Bernt et al. (2008b). In this work an exact algorithm – called TCIP –
was presented. TCIP uses the bijective relations between consistent
permutations and preserving inversions which yields a linear run-
time for definite SITs. For ambiguous SITs, different unconstrained
versions of the median problem have to be solved for the quotient
permutations of prime nodes which significantly increases the run-
time of TCIP. However, it has been empirically shown that median
problems of random gene orders as well as organellar gene orders
often have a definite SIT and TCIP has a good performance on such
instances.

2.3.2 Transposition

Since transpositions cannot change the signs of elements, this sec-
tion only considers unsigned permutations. The distance problem for
Pn under MT has been introduced in Bafna and Pevzner (1995). In
their work, the authors gave lower and upper bounds for the MT dis-
tance: dMT(π, ι) > dbp(π)/3e holds true since a transposition can re-
duce the number of breakpoints by at most 3. In addition, a quadratic
runtime approximation algorithm with approximation factor 1.5 was

[April 2019 at 13:18 – classicthesis 4.4]

44 background and related work

given. Up to now, only little is known about the diameter for trans-
positions: it lies between b(n+ 1)/2c (Bafna and Pevzner, 1995) and
2n/3 (Eriksson et al., 2001). The algorithm by Bafna and Pevzner was
simplified and the runtime was reduced to O(n3/2

√
logn) (Hartman,

2003; Hartman and Shamir, 2006). Walter et al. (2000) also studied the
distance problem for Pn under MT and presented an approximation
algorithm that is based on a very simple structure called breakpoints
diagram, thereby yielding the approximation guarantee of 2.25. By us-
ing a variant of balanced binary trees to encode permutations, the
runtime of the algorithm of Hartman and Shamir was improved to
O(n logn) (Feng and Zhu, 2007). Currently, the best known approxi-
mation algorithm runs in O(n2) time and guarantees an approxima-
tion of 1.375 (Elias and Hartman, 2006). However, a set of heuristics
that outperform this approximation factor on small sized permuta-
tions has been presented (Dias and Dias, 2013).

A longstanding open problem was to categorize the computational
complexity of the distance problem for transpositions. This problem
was successfully resolved by proving its NP-hardness (Bulteau et al.,
2012). Interestingly, the median problem for Pn under MT is also
proven to be NP-complete (Bader, 2011).

2.3.3 Inverse Transposition

An inverse transposition can be mimicked by a transposition followed
by an inversion of one of the transposed sequences. Therefore, au-
thors usually study the sorting problem and the distance problem for
sPn (Pn) under MI;T instead of the MiT, e. g., see Brito et al. (2018)
and Gu et al. (1999). Nevertheless, it is worth mentioning that both
problems are different. The approaches on the MI;T model are out-
lined in Section 2.3.6. If the number of genes affected by an inverse
transposition is limited by two and the considered permutations are
unsigned, then the sorting problem (and the distance problem) for
Pn under MiT is equivalent to the same problem under MT which
can be solved in time O(n logn) (Dwork et al., 2001). However, apart
from these cases many research questions concerning the algorith-
mical and computational aspects of inverse transpositions still need
further investigation.

2.3.4 Tandem Duplication Random Loss

A generalization of the transposition rearrangement model is the
TDRL rearrangement model. As well as for transpositions, TDRLs
cannot affect the sign of an element of a permutation, therefore only
unsigned permutations are considered in this section.

Combinatorial properties of the TDRL rearrangement were initially
studied by Chaudhuri et al. (2006) for linear permutations. In their
work, the authors presented a weight value of α` to weight a single
TDRL that affects ` ∈N genes, where α > 1 is a constant. The authors

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 45

presented polynomial time algorithms that solve the sorting problem
(and therefore the distance problem) for the cases α > 2 and α = 1.

For α > 2 it was shown by Chaudhuri et al. (2006) that it is suf-
ficient to consider TDRLs duplicating intervals of length two, hence
the TDRL distance is exactly the Kentall-Tau distance which can be
computed in time O(n logn) (Dwork et al., 2001). The Kentall-Tau
distance is also known as bubble sort distance since it is equivalent to
the number of swaps that the bubble sort algorithm uses to sort one
permutation into another. The bubble sort distance for a permutation
π ∈ Pn that has to be rearranged to ι is |{(i, j) : j < i,π(j) > π(i)}|, e. g.,
see Knuth (1997).

For α = 1 it was shown by Chaudhuri et al. (2006) that it is suf-
ficient to consider TDRLs which copy the whole permutation. Since
the length of the duplicated intervals has no influence on the weight
of a TDRL, all TDRLs have a weight of 1 in this case. Furthermore, the
TDRLs that duplicate the whole permutation implicitly cover TDRLs
which duplicate a permutation only partially. This is because a par-
tial permutation duplication TDRL ρTDRL(L,R) can be mimicked by a
whole permutation duplication TDRL where the elements before (re-
spectively after) the duplicated interval L ∪ R are added to the set L
(respectively R), see Figure 2.12 for an example. Also for circular per-
mutations it is sufficient to consider TDRLs that duplicate the whole
permutation if α = 1. This case is covered in Chapter 3.

Chaudhuri et al. (2006) showed that the sorting problem and the
distance problem for Pn under MTDRL can be solved in polynomial
time. Their approach is based on the insight that a TDRL is equiva-
lent to one step of the classical radix sort algorithm, e. g., see Knuth
(1997). The presented algorithm for computing a TDRL scenario for ι
and π ∈ Pn and the MTDRL distance is based on the notion of maximal
increasing substrings of a permutation that is defined in the follow-
ing for π = (π(1) . . . π(n)) ∈ Pn. A subsequence of π is a sequence
π(i1)π(i2) . . . π(ik) with 1 6 i1 < i2 < . . . < ik 6 n. When all ele-
ments in a subsequence S of π appear consecutively, then S is called a
substring of π. A substring S = π(i) . . . π(k) (of π with 1 6 i 6 k 6 n)
is called increasing if either i = k or π(j) < π(j+ 1) for all j ∈ [i :k− 1].
An increasing substring is called maximal if and only if it cannot be
extended into a longer increasing substring. The set of all maximal in-
creasing substrings of a permutation π is denoted by S(π). Moreover,
|S(π)| denotes the number of maximal increasing substrings of π.

The algorithm that transforms the identity permutation ι into π
starts off by computing S(π) and consecutively numbering every max-
imal increasing substring of π from the left to the right. Then every el-
ement of the i-th maximal increasing substring is labeled with the bi-
nary representation of i. The identity permutation is rearranged into
π by applying the radix sort algorithm to the binary representation of
the maximal increasing substring index of an element. More precisely,
in the k-th step of the algorithm a whole TDRL ρTDRL(L,R) is applied,
where an element is in L (respectively R) if the element has a 0 (respec-
tively 1) at the k-th least significant digit in the binary representation
of the element’s maximal increasing substring index. Since a TDRL is

[April 2019 at 13:18 – classicthesis 4.4]

46 background and related work

(a) Partial duplication TDRL (b) Whole duplication TDRL

Figure 2.12: (a) TDRL ρTDRL({5, 7}, {3, 4, 6, 8}) duplicating the per-
mutation ι partially and (b) the corresponding TDRL
ρTDRL({1, 2, 5, 7}, {3, 4, 6, 8, 9, 10}) that duplicates the whole
permutation and yields the same result. For α = 1 both TDRLs
have a weight of 1. Bright and dark gray squares illustrate the
sets L and R of a TDRL ρTDRL(L,R), respectively.

applied for every digit of the binary representation of |S(π)|, it holds
that the MTDRL distance is given by dMTDRL(ι,π) = dlog2 |S(π)|e. It
is not hard to see that the MTDRL distance can be computed in time
O(n) and that the diameterDMTDRL(Pn) is dlog2 ne, which is achieved,
e. g., for the permutation (n . . . 2 1). Figure 2.13 (a) and Example 2.9
illustrate the algorithm presented by Chaudhuri et al. (2006).

Example 2.9. Consider the permutation π = (5 2 4 3 1 6). Permutation
π has four maximal increasing substrings 5, 2 4, 3, and 1 6, which are in-
dexed with 1, 2, 3, and 4, respectively. Since dlog2 |S(π)|e = dlog2 4e = 2

exactly two TDRLs are necessary to obtain π from ι. Every element of
[1 : 6] is assigned to a binary representation of the maximal increasing sub-
string index it belongs to, i. e., 5 is assigned to 0 0, 2, 4 are assigned to
0 1, 3 is assigned to 1 0, and 1, 6 are assigned to 1 1. The first TDRL
ρTDRL(L,R) that has to be applied (to ι) is characterized by the second
digits of the assigned binary representations: if an element e has a 0 (re-
spectively 1) at the last digit, then e ∈ L (respectively e ∈ R). Conse-
quently, it holds that 3, 5 ∈ L and 1, 2, 4, 6 ∈ R. Analogously, the sec-
ond TDRL is characterized by the first digits of the assigned binary rep-
resentations, which gives ρTDRL({2, 4, 5}, {1, 3, 6}). For the inferred TDRLs
holds ρTDRL({2, 4, 5}, {1, 3, 6}) ◦ ρTDRL({3, 5}, {1, 2, 4, 6}) ◦ ι = π, see Fig-
ure 2.13 (a) for an illustration.

While Chaudhuri et al. (2006) were interested in an algorithm that
transforms the identity into a given permutation π, Bernt et al. (2011)
investigated the opposite. Thereby, the algorithm by Bernt et al. (2011)
is based on the notation of chains of permutations. A chain of a per-
mutation π ∈ Pn is a maximal list (e1, . . . , ek) of elements of π such
that either k = 1 or for all i ∈ [1 :k− 1] it holds that ei+1 = ei + 1 and
π−1(ei) < π

−1(ei+1). Thus, two elements e and e+ 1 of π are in the
same chain if and only if element e+ 1 is positioned to the right of
e in π, see Example 2.10 and Figure 2.13 (b). Clearly, each element of
π belongs to exactly one chain. A permutation π ∈ Pn has at least 1
and at most n chains. These extremes are given by ι which has one

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 47

(a) (b)

Figure 2.13: TDRL scenario of length 2 for (a) ι and π = (5 2 4 3 1 6) con-
structed by the algorithm presented by Chaudhuri et al. (2006)
and (b) π and ι obtained with the method from Bernt et al.
(2011). (a) The maximum increasing substrings of π and the bi-
nary representation of their indices are depicted by horizontal
lines at the bottom of the subfigure. The binary representation
that is assigned to every element is shown on the top of every
element. (b) The chains of π (and the intermediate permutation)
are depicted above the permutations. Example 2.9 (respectively
Example 2.10) clarifies how the corresponding TDRLs are ob-
tained from the binary representations assigned to the elements
(respectively the chains of the permutations).

chain, and (n . . . 2 1) which has n chains. The number of chains of a
permutation π is denoted by ϑ(π). The chains of a permutation are
strictly ordered as follows: c < c ′ holds for two chains c and c ′ of π
if and only if for all e ∈ c and for all e ′ ∈ c ′ it holds that e < e ′.

Interestingly, there exists an one-to-one correspondence between
the maximal increasing substrings and the chains of a permutation.
In particular, a substring S = π−1(i)π−1(i+ 1) . . . π−1(k) of π−1 is
a maximal increasing substring of π−1 if and only if (i, i+ 1, . . . ,k)
is a chain of π. (A formal proof of this correspondence can be
found in Bernt (2009).) Consequently, the authors proved that ϑ(π) =
|S(π−1)| and by the left-invariance of Pn it follows that dMTDRL(π, ι) =
dlog2 ϑ(π)e = dlog2 |S(π

−1)|e = dMTDRL(ι,π
−1).

Moreover, Bernt et al. (2011) presented an algorithm that trans-
forms a permutation π into ι and uses a minimum number of TDRLs.
Their algorithm is based on the insights that 1) ι is the only permu-
tation of size n that contains only one chain, 2) ϑ(π) cannot be re-
duced by more than half by one TDRL, 3) a TDRL ρTDRL(L,R) can
connect successive chains depending on the sets L and R, and 4) a
chain c cannot be split by a TDRL ρTDRL(L,R) if all elements of c
are entirely contained in either L or R. Therefore, a permutation π
can be iteratively transformed into ι by the application of a so-called
restricted TDRL that bisects the number of it chains. In this context,
bisecting ϑ(π) means that the application of a TDRL ρ to π gives a
permutation ρ ◦ π with ϑ(ρ ◦ π) = dϑ(π)/2e. For a permutation π and
total order c1 < c2 < . . . < cϑ(π) of all its chains, the application of

[April 2019 at 13:18 – classicthesis 4.4]

48 background and related work

the TDRL ρTDRL(L,R) with L := {e ∈ ci : ∃n ∈ N0 with i = 2n+ 1}

and R := {e ∈ ci : ∃n ∈ N with i = 2n} to π gives always a per-
mutation ρTDRL(L,R) ◦ π that has half as many chains as π. Therefore,
ρTDRL(L,R) is a restricted TDRL and applying such a TDRL iteratively
gives ι after dlog2 ϑ(π)e steps. Figure 2.13 (b) and Example 2.10 illus-
trate the algorithm presented by Bernt et al. (2011).

Example 2.10. Consider the unsigned permutation π = (5 2 4 3 1 6). Per-
mutation π has the four chains c1 = (1), c2 = (2, 3), c3 = (4), and c4 =

(5, 6). Since dlog2 ϑ(π)e = dlog2 4e = 2 exactly two (restricted) TDRLs
are necessary to transform π into ι. The first TDRL ρTDRL(L,R) of such a
scenario for π and ι contains all chains with odd (respectively even) index in
L (respectively R), i. e., ρTDRL({1, 4}, {2, 3, 5, 6}) has to be applied to π. The re-
sulting permutation ρTDRL({1, 4}, {2, 3, 5, 6}) ◦π = (4 1 5 2 3 6) has the two
chains c1 = (1, 2, 3) and c2 = (4, 5, 6). The TDRL ρTDRL({1, 2, 3}, {4, 5, 6})
transforms (4 1 5 2 3 6) into ι. An illustration of this example is given in
Figure 2.13 (b).

The median problem for Pn under MTDRL has been studied with
respect to the Kendall-Tau distance in Dwork et al. (2001). The authors
showed that it is NP-hard for more than three permutations. However,
it is still unknown whether the median problem with α = 1 under
MTDRL is solvable in polynomial time.

One exceptional property that characterizes the TDRL model is
its asymmetry, i. e., the MTDRL distance dMTDRL(π,σ) is in general
not equal to dMTDRL(σ,π). Moreover, TDRLs are strongly asymmet-
ric, hence the effect of a TDRL cannot be reversed with a single TDRL
in general (Chaudhuri et al., 2006). More precisely, the only excep-
tions are TDRLs that only swap two adjacent intervals, i. e., they have
the same effect as a transposition, and the TDRLs which leave a per-
mutation unchanged. Since the number of these symmetric TDRLs is
O(n3) and the number of all possible TDRLs is 2n, the probability of
an asymmetric TDRL is exponential in the size n, if the loss of each
TDRL in MTDRL is considered to be uniformly at random.

In Bernt et al. (2011) the set of all sorting TDRLs, which are TDRLs
that reduce the distance of one gene order towards another given
gene order, has been investigated.

Different variants of the TDRL model have been studied. In Bouvel
and Rossin (2009) one variant was studied in which the maximum
number of genes that are allowed to be duplicated by a single TDRL
is restricted. In particular, Bouvel and Rossin (2009) investigated the
minimum number of TDRLs (each affecting only ` genes) that are
necessary and sufficient to obtain any linear permutation from any
other linear permutation and they proved that all permutations that
can be obtained after a given number of such TDRLs define classes
of pattern-avoiding permutations (which were further analyzed and
enumerated in Bouvel and Pergola (2010)). Therefore, the authors
used a modified weight function: the weight of a TDRL of width `
is 1 if ` 6 β and ∞ otherwise, where β ∈ N ∪∞ is a constant pa-
rameter. A tandem duplication variant has been suggested in Lavrov

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 49

et al. (2002) where the subsequent loss is not completely random but
dependent on gene orientation or transcript structure.

The inverse operation of a TDRL is a riffle shuffle. In a riffle shuf-
fle a deck of cards is split in two stacks followed by a riffle of both
parts into a single stack again. The riffle shuffle distance of a permu-
tation which is identical to the TDRL distance for the inverse of the
permutation, was studied in, e. g., Bayer and Diaconis (1992). Some
interesting results are available for this operation. For example, in
their famous paper (see the chapter on card shuffling in Aigner et
al. (2010)) Aldous and Diaconis (1986) analyzed the number of riffle
shuffles necessary to randomize a deck of cards.

Mitochondrial genomes are commonly circular. Consequently, rep-
resenting their gene order by circular permutations appears to be
more sensible than using linear permutations. However, the TDRL
model has not been studied for circular permutations up to now. In
Chapter 3 this gap in the literature is closed by showing that the dis-
tance problem and the sorting problem for P◦n under MTDRL can be
solved in polynomial time.

2.3.5 Inverse Tandem Duplication Random Loss

The inverse tandem duplication random loss rearrangement (iTDRL)
has been investigated in terms of pattern-avoiding permutations in
Baril and Vernay (2010). More precisely, the authors studied the right
inverse tandem duplication random loss rearrangement (riTDRL) on
unsigned linear permutations. In order to outline their work, the fol-
lowing definitions are crucial.

Let π be an unsigned linear permutation of size n. A valley of π is
a position i ∈ [2 :n− 1] with π(i− 1) > π(i) < π(i+ 1). The number
of valleys of π is denoted by val(π). Let σ be an unsigned linear
permutation of size m with m 6 n. Permutation σ is a pattern of π
if there is a subsequence of π which is order-isomorphic to σ, i. e., if
there is a subsequence π(i1)π(i2) . . . π(im) of π such that 1 6 i1 <

. . . < im 6 n and for all ` ∈ [1 :m− 1] it holds that π(i`) < π(i`+1) if
and only if σ(`) < σ(`+ 1). Otherwise, if σ is not a pattern of π, then π
is said to avoid σ. Permutation π is called alternating if and only if each
element of π is alternately less or greater than its preceding element,
i. e., it holds that π(1) > π(2) < π(3) > . . . > π(n) (respectively
π(1) > π(2) < π(3) > . . . < π(n)) if n is even (respectively odd). See
Example 2.11 for an illustration of these definitions.

Example 2.11. Consider the unsigned linear permutation π =

(4 1 3 2 6 7 5). Since 4 > 1 < 3 and 3 > 2 < 6, the positions 2 and 4
are valleys of π and, thus, val(π) = 2. The permutation σ = (1 3 4 2) is a
pattern of π, since the subsequence 1 2 7 5 of π is order-isomorphic to σ. Now
consider the permutation γ = (6 3 7 1 4 2 5). Permutation γ is alternating,
since it holds that 6 > 3 < 7 > 1 < 4 > 2 < 5. It is not difficult to see
that there is no subsequence of π which is order-isomorphic to γ. Therefore,
permutation π avoids γ.

[April 2019 at 13:18 – classicthesis 4.4]

50 background and related work

Let π be an unsigned linear permutation of size n. Baril and Ver-
nay (2010) have proven that the distance for ι and π under the riTDRL
model is dlog2(val(π) + 1)e+ 1. In addition, it has been shown that
the corresponding sorting problem can be solved in time O(n logn)
by an algorithm that utilizes the reflected binary Gray code (Gray,
1953). Furthermore, they showed that every permutation that can be
obtained from ι by the application of k ∈ N riTDRLs contains at
most 2k−1− 1 valleys. Interestingly, the set of all these obtainable per-
mutations forms the class of permutations that avoid the alternating
permutations of size 2k + 1.

However, apart from this exceptional case, the iTDRL rearrange-
ment has not been investigated computationally. In Chapter 4 this
circumstance is addressed by showing that the sorting problem and
the distance problem for signed linear permutations under MiTDRL

can both be solved in polynomial time.

2.3.6 Mixed Rearrangement Models

The assumption that only one type of rearrangement has occurred
during the evolution of certain gene orders is most likely unrealistic,
e. g., at least inversions, (inverse) transpositions, TDRLs, and poten-
tially iTDRLs have to be considered for mitochondrial gene arrange-
ments (Bernt et al., 2013b). This limitation is addressed by considering
a combination of different types of rearrangements for the construc-
tion of combined rearrangement scenarios which is briefly outlined
in the following.

The sorting problem for Pn under MI;T has been investigated with
exact algorithms having an exponential runtime (e. g., see Dias and
Souza (2007), Sankoff (1992), and Sankoff et al. (1992)), with a ma-
chine learning approach (Silva et al., 2017), and approximation algo-
rithms, e. g., see Walter et al. (1998). For signed linear permutations,
approximation algorithms have been designed (e. g., Gu et al. (1999)).
If the number of genes affected by a rearrangement of MI;T is never
greater than two, then the sorting problem (and therefore the dis-
tance problem) can be solved in polynomial time, e. g., see Oliveira et
al. (2018b) and references therein. Eriksen (2001) studied a weighted
variant of the sorting problem Pn under MI;T, where a transposition
is always weighted twice as much as an inversion. The reason is that
transpositions are favored in minimum-weight scenarios compared
to inversions if the more powerful transposition is weighted less than
twice as much as the less powerful inversion (Jiang and Alekseyev,
2011). Recently, two general heuristics that improve solutions for the
sorting problem for sPn under MI;T have been presented (Brito et al.,
2018).

The sorting problem for sPn under MT;iT has been investigated in
Hartman and Sharan (2005), where a 1.5-approximation algorithm
has been presented.

Computational approaches considering combinations of the rear-
rangement types inversion, transposition, and inverse transposition,

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 51

i. e., the model MI;T;iT, have been explored by several authors. The ap-
proximation algorithm from Walter et al. (1998) has been extended by
Lin and Xue (2001) as to also include inverse transpositions. In their
work, the authors presented a 1.75-approximation algorithm for the
sorting problem for sPn under MI;T;iT. Bader and Ohlebusch (2007)
presented a quadratic time 1.5-approximation algorithm in which (in-
verse) transpositions are weighted more than and less as twice as
much as inversions. For the case that (inverse) transpositions are
weighted twice as much as inversions, a (1+ ε)-approximation algo-
rithm for sorting problem for Pn has been presented (Lou and Zhu,
2010). Weighting those three types of rearrangements with respect to
the number of affected elements and its type have been explored for
signed linear permutations in Blanchette et al. (1996).

An integer linear programming formulation for the sorting prob-
lem for Pn under a definable model of weighted rearrangements (e. g.,
the model M4-type) has been presented in Lancia et al. (2015). The for-
mulation uses an exponential number of variables (which is handled
by column generation techniques) to solve the sorting problem for Pn
under arbitrary sets of rearrangements. The presented model uses an
upper bound on the length of the sought scenario which can be ob-
tained, e. g., by a heuristic approach. The authors claim that it is easy
to incorporate different costs for the different types of rearrangement
operations that are used. However, for that case an explicit method
to produce a good upper bound on the length of the sought scenario
would be necessary.

By detecting patterns in the strong interval tree two algorithms
have been described that heuristically compute preserving rearrange-
ment scenarios: one algorithm in Parida (2006) and algorithm CREx

in Bernt et al. (2007). While the former algorithm considers unsigned
permutations, the latter algorithm uses signed permutations, is more
general, and considers all preserving rearrangements of types inver-
sion, transposition, inverse transposition, and tandem duplication
random loss. In the last decade, the CREx heuristic has gotten a lot
of attention. In particular, it has been used for the study of mitochon-
drial gene orders in more than a hundred scientific works. There-
fore, the following section outlines the functional principle of the
CREx heuristic. Consider two signed linear permutations π and ι of
size n ∈ N and recall that every node of the strong interval tree
(SIT) Tπ({π, ι}) is either linear increasing, linear decreasing, or prime.
The CREx heuristic infers an approximated preserving rearrangement
scenario for two given signed linear permutations π and ι of size n
under Mp

4-type. In accordance with the sorting problem for sPn under
M
p
I , a minimum length rearrangement scenario S of rearrangements

from M
p
4-type is sought that applied to π transforms the SIT Tπ({π, ι})

into TS◦π({π, ι}) which contains only linear increasing nodes. The ba-
sic principle of CREx is to detect patterns in the strong interval tree of
the given permutations that reflect the four different rearrangement
operations. For example, a transposition is indicated by an inner lin-
ear node that is linear decreasing while both of its two child nodes
are linear increasing. While inversions and inverse transpositions also

[April 2019 at 13:18 – classicthesis 4.4]

52 background and related work

lead to identifiable patterns in the strong interval tree, the occurrence
of TDRLs is indirectly indicated by the presence of prime nodes. The
CREx heuristic uses a stepwise approach: First, the SIT Tπ({π, ι}) is
constructed; Second, CREx identifies (in that order) transpositions, in-
verse transpositions, and inversions based on rearrangement patterns
in the strong interval tree. In the third step, special care is taken
when prime nodes occur in the strong interval tree. The reason for
this is that an unconstrained sorting problem for a signed version of
the prime node’s quotient permutations and the identity permutation
under M

p
4-type has to be computed and – up to now – it is unknown

whether this problem can be solved efficiently. CREx gives an approxi-
mated solution for this problem by using only rearrangements of type
TDRL and inversion. The reason is that TDRLs cannot toggle the sign
of the involved elements, therefore inversions are used to equalize
the signs of the elements of the signed variant of a prime node’s quo-
tient permutation. This is achieved by two variants which differ from
each other in the order the TDRLs and inversions are applied, i. e.,
either TDRLs or inversions are applied first. However, the scenarios
obtained by CREx are not guaranteed to be optimal and the sequences
of rearrangements sorting the prime node’s quotient permutation are
often of limited biological reliability (Bernt, 2009).

Within this work several improvements for the CREx heuristic are
presented: (i) in Section 5.2 an approximation algorithm is presented
that significantly improves the prime node procedure of the CREx

heuristic in a way that a given scenario of rearrangements which
deviates from a parsimonious scenario in at most two rearrange-
ments, and (ii) Chapter 5 also proposes two exact algorithms, namely
GeRe-ILP and CREx2 that allow the incorporation or rearrangement
weights for all four types of rearrangements. Thereby, both algorithms
provide optimal solutions and have – in the worst case – an exponen-
tial runtime. However, CREx2 has a linear runtime for large classes of
problem instances. In addition, it is shown that the solutions obtained
by CREx2 are likely to improve the solutions of the CREx heuristic.

2.3.7 Multichromosomal Rearrangements and Content Modifications

Nuclear genomes of eukaryotic species usually contain multichromo-
somal gene orders. For the comparative analysis of multichromoso-
mal gene orders more types of rearrangements have to be considered.
Examples of those rearrangements are fusions merging two chromo-
somes, fissions splitting one chromosome into two chromosomes, and
translocations allowing the exchange of genes between two chromo-
somes. For all these three types of rearrangements and inversions
a polynomial time algorithm for the sorting problem has been pre-
sented (Hannenhalli and Pevzner, 1995).

Combined rearrangement models including transpositions are typi-
cally hard problems where known exact algorithms have an exponen-
tial runtime. Yancopoulos et al. (2005) and Bergeron et al. (2006) sug-
gested the double-cut and join genome rearrangement (DCJ) which

[April 2019 at 13:18 – classicthesis 4.4]

2.3 background on genome rearrangements 53

cuts a (potentially multichromosomal) gene order at two different po-
sitions and rejoins the resulting fragments. The DCJ model (and other
models that are based on cut and join operations such as single-cut
and join (Bergeron et al., 2010), single-cut or join (Feijao and Mei-
danis, 2011), and multi-cut and join (Alekseyev and Pevzner, 2008))
have the benefit that they indirectly include all four major types of
unichromosomal rearrangements (and also other rearrangements that
are common in multichromosomal gene orders) while simplifying the
computational complexity for both the sorting problem and the dis-
tance problem. For example, both problems for all mentioned cut and
join rearrangements models can be solved in polynomial time. How-
ever, a drawback of the cut and join models for unichromosomal gene
orders is that the intermediate gene orders (of a rearrangement sce-
nario) are not bound to be unichromosomal, hence intermediate gene
orders may consist of several chromosomes that can be both linear
and circular. For a broad overview on cut and join rearrangements
the reader is referred to Hartmann et al. (2018d). Interestingly, cut
and join distances resemble the Hannenhalli-Pevzner-Theory of sort-
ing permutations by inversions since they can be computed by count-
ing cycles in the breakpoint graph (or its line graph), see Bergeron
and Stoye, 2013.

Other aspects that arise in computationally comparisons of nuclear
gene arrangements and cancer research are content modifications,
i. e., large-scale mutations that change the quantity of genes on the
chromosomes. Computational models of evolution in this area of com-
parative genomic mainly focus on comparisons of gene orders with
unequal gene content and possibly multiple copies of genes. In ac-
cordance to models of genome rearrangements without duplicated
genes, different assumptions are made on the structure of given gene
orders and types of content modifications. Most problems with du-
plicated genes turn out to be computationally hard, e. g., the sort-
ing problem for gene orders containing duplicated genes under MI

(Bryant, 2000; Chen et al., 2005). However, some of them can be solved
in polynomial time, e. g., see Feijão et al. (2017). For a broad introduc-
tion to this branch of comparative genomics the reader is referred to
El-Mabrouk and Sankoff (2012), Fertin et al. (2009), and Zeira and
Shamir (2018).

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

3
TA N D E M D U P L I C AT I O N R A N D O M L O S S E S O N
C I R C U L A R P E R M U TAT I O N S

The tandem duplication random loss operation (TDRL) is a ma-
jor factor of gene order evolution for mitochondrial genomes
(Bernt et al., 2013b). For vertebrate mitogenomes it was even

called the “most important rearrangement operation” (San Mauro et
al., 2005). But TDRLs do not only occur in vertebrate mitogenome
evolution, they have also been detected in the mitogenome evolution
of species from other groups within the animal kingdom, e. g., in
Diplopoda (Lavrov et al., 2002) and Echinodermata (Arndt and Smith,
1998) (see also Bernt and Middendorf (2011) for an overview). For-
mal studies of the TDRL rearrangement treat gene orders as linear
unsigned permutations of the genes. However, the sorting problem
and the distance problem for unsigned circular permutations under
MTDRL have not been studied up to now. This is especially important
for mitochondrial gene orders, since mitochondrial genomes are com-
monly circular, see Section 2.1.3. Recall that the weight of a single
TDRL rearrangement is α`, where ` ∈N is the number of duplicated
genes and α > 1 is a parameter. As in most other studies on the TDRL
distance, the case α = 1 is considered in this chapter as well. There-
fore, it is sufficient to consider TDRLs which copy the whole genome
(Chaudhuri et al., 2006).

In this chapter the combinatorics of the TDRL rearrangement on
unsigned circular permutations is studied. In particular, the signifi-
cant contributions of this chapter are:

• The set of equivalent TDRLs, which are TDRLs that when ap-
plied to the same circular permutation yield the same resulting
circular permutation, is characterized (Theorem 3.1).

• The distance problem for two directed/undirected unsigned cir-
cular permutations of size n under the TDRL rearrangement
model can be solved in time O(n) and the corresponding dis-
tance formula is given (Theorem 3.2/Theorem 3.3).

• The sorting problem for two directed/undirected unsigned cir-
cular permutations of size n under the TDRL rearrangement
model can be solved in time O(n logn) (Corollary 3.8/Corol-
lary 3.10).

• The MTDRL distance between two circular permutations is gen-
erally less by one or equal to the MTDRL distance of the cor-
responding linear representatives. Hence, the MTDRL distance
might be overestimated if the circularity is neglected. The prac-
tical relevance of this result is further investigated (Section 3.2).

The chapter is organized as follows. In Section 3.1 the distance
problem (and the sorting problem) for unsigned circular permuta-

[April 2019 at 13:18 – classicthesis 4.4]

56 tandem duplication random losses on circular permutations

tions under the TDRL rearrangement model is solved. The practical
consequences of the theoretical results to mitochondrial gene order
data is investigated in Section 3.2. In particular, the effect of neglect-
ing the circularity of mitochondrial gene orders for the computation
of the MTDRL distance is investigated and the tandem duplication non-
random loss rearrangement model (Lavrov et al., 2002; Beckenbach,
2011) is evaluated. A conclusion is given in Section 3.3.

3.1 solving the distance problem and sorting problem

This section investigates the distance problem and the sorting prob-
lem for unsigned circular permutations under MTDRL. In Section 2.2.1
it has been outlined that circular permutations are either directed or
undirected, i. e., they can be read from either one or both directions.
Both possible definitions are covered in this chapter: Section 3.1.1
to Section 3.1.4 consider circular permutations to be directed. What
seems to be a restriction proves to be convenient for solving the con-
sidered problems for undirected circular permutations as it is done
in Section 3.1.5.

3.1.1 Basic Definitions and Preliminaries

This section recalls and defines the formal definitions relevant for
studying the TDRL rearrangement on unsigned circular permuta-
tions. For a detailed definition the reader is referred to Section 2.2.

Throughout the chapter the following notations are used. The set
of positive integers is denoted by N and N0 refers to the set of non-
negative integers, i. e., N := N0 \ {0}. The composition of two func-
tions f and g is denoted by f ◦g, i. e., (f ◦g)(x) := f(g(x)). The modulo
operation that gives the remainder of a Euclidean division is denoted
by mod n, i. e., x mod n = a if and only if bx/ncn + a = x, with
x ∈N0, n ∈N, and a ∈ [0 :n− 1].

Recall that an unsigned linear permutation (of size n ∈ N) is a bijec-
tion π : [1 :n] → [1 :n] and it is denoted by π = (π(1) π(2) . . . π(n)).
A permutation represents a gene order of a linear chromosome and
π(i) corresponds to the i-th gene. Pn denotes the set of all unsigned
linear permutations of size n. For every permutation π there exists a
unique inverse permutation π−1 defined by π−1(j) = i if and only if
π(i) = j. Hence, π−1(j) is the position of an element j in π. A TDRL
ρTDRL(L,R) for a permutation π ∈ Pn is defined by a bipartition (L,R)
with L ∪ R ∈ I(π), where I(π) is the set of all intervals of π, and L

and R contain the elements that are kept in the left and right copy, re-
spectively. Since α = 1 it is considered that L∪R = [1 :n], i. e., L and R
form a bipartition of all elements of π. The set of all TDRLs is denoted
by MTDRL. Equivalently, by its effects on a permutation π a TDRL
ρTDRL(L,R) (for π) can be defined as a permutation ρ such that for
σ = ρ ◦ π = ρ(π) it holds that 1) if e ∈ L, f ∈ R then σ−1(e) < σ−1(f)
and 2) if e, f ∈ L or e, f ∈ R then σ−1(e) < σ−1(f) if and only if
π−1(e) < π−1(f). This means that the elements of L are moved in

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 57

3 6 5 7 1 4 2

Figure 3.1: The chains (respectively circular chains) of π = (3 6 5 7 1 4 2)
are depicted as sequences of dots connected by continuous lines
(respectively continuous lines and dashed lines).

front of the elements of R, and that the relative order of elements of L
(respectively R) is not changed. To keep the notation simple, a TDRL
is henceforth denoted by either ρ(L,R) or ρ if the context is clear. For
convenience the two notations ρ ◦ π and ρ(π) for the application of
a TDRL ρ to a permutation π are used interchangeably. Recall that
the definition of a TDRL considers explicitly only whole genome du-
plications but implicitly also partial genome duplications. This is be-
cause a partial genome duplication TDRL ρ(L,R) can be mimicked
by a whole genome duplication TDRL where the elements before (re-
spectively after) the duplicated interval are added to the set L (re-
spectively R), see also Section 2.3.4. Recall that the MTDRL distance
is denoted by dMTDRL(π, ι) and it holds that dMTDRL(π, ι) := min {t ∈
N0 : ρt ◦ . . . ◦ρ1 ◦π = ι with ρ1, . . . , ρt ∈MTDRL} = dlog2 ϑ(π)e, where
ϑ(π) is the number of chains of π, see Section 2.3.4. For an example
see Figure 3.1 and Example 3.1.

Example 3.1. Consider the permutation π = (3 6 5 7 1 4 2). The ϑ(π) = 4
chains are shown in Figure 3.1. The MTDRL distance of π is dMTDRL(π, ι) =
dlog2 4e = 2. For TDRLs ρ1({1, 2, 5}, {3, 4, 6, 7}) and ρ2({1, 2, 3, 4}, {5, 6, 7})
it holds that ρ1 ◦ π = (5 1 2 3 6 7 4) and ρ2 ◦ ρ1 ◦ π = ι. This is the
only possibility to transform π to ι with two TDRLs since there is only
one parsimonious scenario for permutations where the number of chains is a
power of two (Bernt et al., 2011).

Two permutations π,σ ∈ Pn are shifts of each other, denoted by π ∼ σ,
if and only if there exists a k ∈ [1 :n] such that φk(π) = σ, where the
k-shift φk is recursively defined by φk := φk−1 ◦ φ, φ1 := φ, and
the shift operation φ : Pn → Pn is defined by π = (π(1) . . . π(n)) 7→
(π(2) . . . π(n) π(1)). An equivalence class π◦ := [π]∼ of ∼ on Pn is
called (unsigned directed) circular permutation. The set of all (unsigned di-
rected) circular permutations P◦n is the set of the equivalence classes of
∼ on Pn, i. e., P◦n := {[π]∼ : π ∈ Pn}. See Figure 3.2 for an illustration of
an unsigned directed circular permutation. Each permutation π ∈ π◦
is called representative of π◦. The representative π of π◦ which ends
with a certain element p ∈ [1 :n] is denoted by πp. Hence, πp ∈ π◦
and π−1p (p) = n. In the domain of application, element p typically
represents the replication origin and therefore it is called origin. Con-
sider a circular permutation π◦ ∈ P◦n and two representatives πp and
πq and let m = π−1p (q) be the position of q in πp. The two partition
strings of π◦ for p with respect to q are the substrings of πp (and also
of πq) defined as P = πp(1) . . . πp(m) and Q = πp(m+ 1) . . . πp(n)

with πp(m) = q and πp(n) = p if p 6= q, otherwise, Q = ∅. See

[April 2019 at 13:18 – classicthesis 4.4]

58 tandem duplication random losses on circular permutations

π◦ 2

13

5

6 4

(a)

P◦n P◦n

Pn Pn

ρ◦

πp

ρ

[·]∼

(b)

Figure 3.2: (a) Circular representation of π◦ = [(1 2 4 6 5 3)]∼ which gives the
representatives in clockwise direction; (b) Diagram of the TDRL◦

definition as the composition of three operations.

Example 3.2 for an illustration of the definitions related to partition
strings.

Example 3.2. The permutations π2 = (3 6 5 7 1 4 2) and π6 =

(5 7 1 4 2 3 6) are shifts of each other since φ2(π2) = π6. Let π◦ be
the circular permutation with π2,π6 ∈ π◦. The partition strings of π◦ for 2
with respect to 6 are P = 3 6 and Q = 5 7 1 4 2.

A tandem duplication random loss for a circular permutation of
size n, also called circular TDRL or TDRL◦ for short, is a mapping ρ◦ :
P◦n → P◦n defined by ρ◦(L,R,p), where (L,R) is a bipartition of [1 :n]
and p ∈ [1 :n] is the origin. The effect of a circular TDRL ρ◦(L,R,p) on
a circular permutation π◦ is defined as the result of the application
of the TDRL ρ(L,R) on the representative of π◦ that ends with p, i. e.,
ρ◦(π◦) := [ρ(πp)]∼. The diagram depicted in Figure 3.2 (b) illustrates
the definition. The definition is motivated by the process of imprecise
termination (see Figure 2.6): if the replication of a circular genome
misses the endpoint of replication (terminus) this results in a replicate
where the part after the terminus (which might comprise the com-
plete genome) is duplicated. Since in mitochondrial genomes the ori-
gin and terminus of each strand coincide, the term origin is used for
the definition. The set of all circular TDRLs is denoted by MTDRL◦ , i. e.,
MTDRL◦ := {ρ◦(L,R,p) :L,R ⊆ [1 :n],L∪ R = [1 :n],L∩ R = ∅,p ∈ [1 :n]}.
Regardless of the chosen origin p the results of the circular duplica-
tions, i. e., the intermediate duplicated permutations, are equivalent.
This can easily be understood by considering a permutation as a set
of adjacencies which is the set {(πp(i),πp((i mod n) + 1)) : i ∈ [1 :n]}

for the representative πp. Note that the last and the first element are
considered to be adjacent. By considering sets of adjacencies, it can
be seen that a duplicate of a circular permutation has two copies of
each element and two copies of each adjacency of the original permu-
tation. Since the set of adjacencies is the same for each origin p, the
corresponding circular duplicates are the same as well. However, the
choice of the origin p determines the semantics of left and right, which
is otherwise meaningless in a circular setting. Whereas all circular du-
plications are circularly equivalent, the corresponding TDRLs applied
to the representatives may give different results for each of them.

To see that the formal model of circular TDRLs also covers partial
duplication TDRL◦s (i.e., circular TDRLs where not all elements are

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 59

duplicated) consider a partial duplication TDRL◦ for π◦. Hence, a
TDRL◦ ρ◦ := ρ◦(L,R,p) with L∪ R ∈ I(πp) is considered, where πp is
a representative of π◦. By definition it holds that ρ◦ ◦ π◦ = [ρ(L,R) ◦
πp]∼. In Section 2.3.4, it is shown that TDRLs that duplicate the whole
permutation implicitly also cover TDRLs that only duplicate a subset
of the elements in the partition. Hence, the TDRL ρ(L,R) for πp can
be mimicked by a TDRL ρ ′(L ′,R ′) that duplicates all elements of πp.
Thus, the equation ρ◦ ◦π◦ = [ρ(L,R) ◦πp]∼ = [ρ ′(L ′,R ′) ◦πp]∼ = ρ ′◦ ◦
π◦, where ρ ′◦ := ρ ′◦(L ′,R ′,p) is a circular TDRL, implies that partial
duplication TDRL◦s are implicitly covered in the circular model as
well.

Analogously to the MTDRL distance, the distance between
π◦ ∈ P◦n and σ◦ ∈ P◦n under MTDRL◦ is dMTDRL◦ (π

◦,σ◦) :=

min {t ∈ N0 : ∃ ρ◦1, . . . , ρ◦t ∈ MTDRL◦ such that ρ◦t ◦ . . . ◦ ρ◦1 ◦ π◦ = σ◦}.
For the ease of the notation, the MTDRL◦ distance between π◦ and
ι◦ := [ι]∼ is denoted by d◦(π◦), i. e., d◦(π◦) := dMTDRL◦ (π

◦, ι◦).

Example 3.3. Consider the circular permutation π◦ that has the represen-
tatives from Example 3.2 and the TDRL◦ ρ◦({1, 2, 5}, {3, 4, 6, 7}, 6). The re-
sult of the application of ρ◦ to π◦ is the equivalence class of the result of
the application of ρ({1, 2, 5}, {3, 4, 6, 7}) to π6 = (5 7 1 4 2 3 6). Thus,
ρ◦(π◦) = [ρ(π6)]∼ = [(5 1 2 7 4 3 6)]∼.

Recall that a chain of a permutation π of size n is a list of maximal
cardinality (e1, . . . , ek) of elements of π such that either k = 1 or for
all i ∈ [1 : k− 1] it holds that ei+1 = ei + 1 and π−1(ei) < π−1(ei+1).
The following notion of circular chains is useful for studying the com-
binatorics of circular TDRLs. A circular chain of a linear permutation
π ∈ Pn is a list of maximal cardinality of elements (e1, . . . , ek) with
either k = 1, or ei+1 = (ei mod n) + 1 and π−1(ei) < π−1(ei+1) for
all i ∈ [1 :k− 1]. The elements of each chain and of each circular chain
form an interval in ι and they are in order from left to right in π. The
only difference to the linear case is that n and 1 are also considered
as adjacent in a circular context. The number of chains (respectively
circular chains) of a permutation π is denoted by ϑ(π) (respectively
ϑ◦(π)). Figure 3.1 shows an example of the (circular) chains of a per-
mutation.

3.1.2 Properties of Circular Chains

In this section, properties of circular chains are identified that are
central to analyze the MTDRL◦ distance of circular permutations.

Since a circular permutation is defined as an equivalence class of
linear permutations that are shifts of each other, it is of interest to
understand the influence of shifts on the number of chains.

Proposition 3.1. For π ∈ Pn with n > 1 it holds that.

ϑ(φ(π)) =

ϑ(π) + 1 if π(1) = 1,

ϑ(π) if π(1) /∈ {1,n},

ϑ(π) − 1 if π(1) = n.

[April 2019 at 13:18 – classicthesis 4.4]

60 tandem duplication random losses on circular permutations

Proof. Let π ∈ Pn and n > 1. If π(1) = 1 then there exists a chain c =
(1, 2, . . .). The shift moves 1 to the last position. Thereby it splits c into
the two chains (2, . . .) and (1). Hence, the number of chains increases
by one. For the case π(1) /∈ {1,n} there are chains c = (π(1),π(1) +
1, . . .) and d = (. . . ,π(1) − 1). Then φ moves π(1) from chain c to
chain d. Since c still exists after π(1) has left the chain, the number
of chains does not change. If π(1) = n there are chains c = (n) and
d = (. . . ,n− 1). Shifting n to the last position connects c and d into
the chain (. . . ,n− 1,n). Thus, the number of chains is decreased by
one.

Proposition 3.1 shows that only shifts which move element 1 (re-
spectively n) to the end of the linear permutation increase (respec-
tively decrease) the number of chains by one, whereas all other shifts
do not affect the number of chains. The reason for this is that the
elements n and 1 are not considered to be adjacent in chains. Since
they are adjacent in circular chains, the same property with circular
chains does not hold. The actual difference between the number of
chains and the number of circular chains is given by the following
proposition.

Proposition 3.2. For a permutation π ∈ Pn it holds that

ϑ◦(π) =

ϑ(π) if π−1(1) 6 π−1(n),

ϑ(π) − 1 if π−1(n) < π−1(1).

Proof. Let π ∈ Pn have chains c1, . . . , cϑ(π). From the definition of
circular chains it follows that the elements e and (e mod n) + 1 are
in the same circular chain if and only if either (i) 1 6 e < n and
they are contained in the same chain, or (ii) e = n and π−1(n) <

π−1(1). Thus, if π−1(1) 6 π−1(n) then ϑ(π) = ϑ◦(π). Otherwise, for
π−1(n) < π−1(1) the two different chains ci and cj, with 1 ∈ ci,
n ∈ cj, i, j ∈ [1 : ϑ(π)], and i 6= j, form a single circular chain and
therefore ϑ◦(π) = ϑ(π) − 1.

For a linear permutation π ∈ Pn Proposition 3.2 states that the
number of circular chains is smaller by one than the number of chains
if n is to the left of 1 in π. Together with Proposition 3.1 this leads to
the following result.

Proposition 3.3. For π ∈ Pn it holds that ϑ◦(π) = minγ∈π◦ ϑ(γ).

Proof. Two cases for π ∈ Pn are distinguished (as in Proposition 3.2).
i) For π−1(1) 6 π−1(n) Proposition 3.2 shows ρ◦(π) = ρ(π). By

Proposition 3.1 for the iterative application of shifts it holds that
ϑ(φk(π)) is equal to ϑ(π) for 0 6 k < π−1(1) and π−1(n) 6 k 6 n,
which means this holds as long as 1 is to the left of n. Otherwise, for
π−1(1) 6 k < π−1(n) the number of chains is increased by one, i. e.,
equation ϑ(φk(π)) = ϑ(π) + 1 holds. Hence ϑ◦(π) = minγ∈π◦ ϑ(γ).

ii) For π−1(n) < π−1(1) Proposition 3.2 shows ϑ◦(π) = ϑ(π) −

1. By Proposition 3.1 for the iterative application of shifts it holds

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 61

that ϑ(φk(π)) = ϑ(π) for 0 6 k < π−1(n) and π−1(1) 6 k 6 n,
which means this holds as long as n is to the left of 1. Otherwise, for
π−1(n) 6 k < π−1(1) equation ϑ(φk(π)) = ϑ(π) − 1 holds. Thus, for
this case it follows ϑ◦(π) = minγ∈π◦ ϑ(γ).

The following corollary of Proposition 3.3 shows that the number
of circular chains is the same for all permutations that are shifts of
each other.

Corollary 3.1. For permutations π,σ ∈ Pn that are shifts of each other,
i. e., π ∼ σ, it holds that ϑ◦(σ) = ϑ◦(π).

Proof. If π ∼ σ then [π]∼ = [σ]∼. By Proposition 3.3 it follows that
ϑ◦(π) = minγ∈[π]∼ ϑ(γ) = minγ ′∈[σ]∼ ϑ(γ

′) = ϑ◦(σ).

Remark 3.1. Corollary 3.1 implies that the number of circular chains of a
directed circular permutation can be defined by ϑ◦(π◦) := ϑ◦(π), where π is
any representative of π◦.

The following example illustrates the results of Proposition 3.2 and
Proposition 3.3.

Example 3.4. For the circular permutation π◦ = [(2 4 6 5 3 1)]∼ ∈
P◦6 the representative π5 = (3 1 2 4 6 5) has element 1 at position
π−15 (1) = 2. The representatives φ0(π5), φ1(π5), φ5(π5) have three
chains and the representatives φ2(π5), φ3(π5), φ4(π5) have four chains,
i. e., ϑ(φ0(π5)) = ϑ(φ1(π5)) = ϑ(φ5(π5)) = 3 and ϑ(φ2(π5)) =

ϑ(φ3(π5)) = ϑ(φ
4(π5)) = 4. Hence, ϑ◦(π◦) = 3.

The next corollary shows that, in order to compute the number
of circular chains of a permutation π, it is sufficient to compute the
number of chains for the representative which has element 1 at the
first position. Alternatively, it is possible to consider the permutation
that has element n at the last position.

Corollary 3.2. Let [π]∼ = π◦ ∈ P◦n. For σ = πn and γ = φn−1(π1)

which are the permutations ending with n and starting with 1, respectively,
it holds that: ϑ◦(π◦) = ϑ(σ) = ϑ(γ).

Proof. Since σ−1(1) 6 σ−1(n) and γ−1(1) 6 γ−1(n) the corollary
follows from Proposition 3.2.

3.1.3 Properties of TDRLs on Circular Permutations

In this section, properties of the TDRL◦ operation are presented that
are useful for the computation of the MTDRL◦ distance. The following
theorem characterizes equivalent TDRL◦s, which are TDRL◦s that re-
sult in the same circular permutation when applied to the same circu-
lar permutation. Example 3.5 illustrates two such equivalent circular
TDRLs.

Example 3.5. Consider the circular permutation π◦ = [(2 3 4 1 5)]∼ and the
TDRL◦s ρ◦1({3}, {1, 2, 4, 5}, 1) and ρ◦2({2, 4, 5}, {1, 3}, 4). The TDRL◦s ρ◦1 and
ρ◦2 are equivalent, since ρ◦1 ◦π◦ = [(3 5 2 4 1)]∼ = [(5 2 4 1 3)]∼ = ρ◦2 ◦π◦.
The remaining equivalent TDRLs of ρ◦1 (and ρ◦2) are listed in Table 3.1.

[April 2019 at 13:18 – classicthesis 4.4]

62 tandem duplication random losses on circular permutations

Let X be a set of elements and Y be a string. The restriction of Y
to X, denoted by YX, is the string Y ′ obtained from Y by removing
all elements which are not contained in X. The concatenation of two
strings Y1 and Y2 is denoted by Y1 Y2. A string Y1 is called prefix
(respectively suffix) of a string Y2 if there is a string Y such that Y1 Y =

Y2 (respectively Y Y1 = Y2). A prefix (respectively suffix) with Y 6= ∅
is called strict. The set of elements of a string Y is denoted by E(Y).

Theorem 3.1. Given π◦ ∈ P◦n with n ∈ N, TDRL◦ ρ◦1(L1,R1,p1), and
TDRL◦ ρ◦2(L2,R2,p2), let P and Q be the partition strings of π◦ for p1
with respect to p2. Then ρ◦1(π

◦) = ρ◦2(π
◦) if and only if

i) ρ◦1(π
◦) = ρ◦2(π

◦) = π◦ or

ii) a) PL1 = PL2 , QL1 = QR2 , PR1 = PR2 , and QR1 = QL2 or

b) PL1 = PR2 , QL1 = QL2 , PR1 = PL2 , and QR1 = QR2 .

Proof. Let σ1 = ρ1(πp1) = PL1 QL1 PR1 QR1 and σ2 = ρ2(πp2) =

QL2 PL2 QR2 PR2 , where ρ1 = ρ1(L1,R1), ρ2 = ρ2(L2,R2), and
πp1 ,πp2 ∈ π◦. See Figure 3.3 for an illustration of this notation.
⇐) If (i) holds true then ρ◦1(π

◦) = ρ◦2(π
◦) follows immediately. If

(ii.a) holds true then

ρ◦1(π
◦) = [σ1]∼ = [PL1 QL1 PR1 QR1]∼

(ii.a)
= [PL2 QR2 PR2 QL2]∼

= [QL2 PL2 QR2 PR2]∼ = [σ2]∼ = ρ◦2(π
◦).

Similarly, if (ii.b) holds true then

ρ◦1(π
◦) = [σ1]∼ = [PL1 QL1 PR1 QR1]∼

(ii.b)
= [PR2 QL2 PL2 QR2]∼

= [QL2 PL2 QR2 PR2]∼ = [σ2]∼ = ρ◦2(π
◦).

⇒) Assume [σ1]∼ = [PL1 QL1 PR1 QR1]∼ = [QL2 PL2 QR2 PR2]∼ =

[σ2]∼. In the following, (i), (ii.a), and (ii.b) are proven for the cases
in which exactly none, one, two, three, or four (denoted by case 1-5,
respectively) strings of {PL1 ,QL1 ,PR1 ,QR1} are empty.

1) In this Case (ii) follows directly since any two elements that are
adjacent in σ2 and belong to either QL2 or QR2 (respectively ei-
ther PL2 or PR2) necessarily both belong to either QL1 or QR1
(respectively either PL1 or PR1). Otherwise, there would be ele-
ments from P (respectively Q) between these two elements in
σ1. Thus, σ1 6= σ2, or one of the sets PL1 or PR1 (respectively
QL1 or QR1) needs to be empty.

2) First assume that QL1 = ∅. Then QR1 = Q and it holds that
σ1 = PL1 PR1 Q. Since [σ1]∼ = [σ2]∼ it is necessary that at least
one string of {QL2 ,PL2 ,QR2 ,PR2} is empty.

a) If PL2 = ∅ then σ2 = QL2 QR2 P. Hence, PL1 PR1 = P and
QL2 QR2 = Q since [σ1]∼ = [σ2]∼. So [σ2]∼ = [QP]∼ = π◦

and (i) holds.

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 63

b) If PR2 = ∅ then σ2 = QL2 PQR2 . Hence, PL1 PR1 = P and
QR2 QL2 = Q since [σ1]∼ = [σ2]∼. So [σ2]∼ = [QP]∼ = π◦

and (i) holds.

c) If QL2 = ∅ then σ2 is not equal to PR2 PL2 Q but is a shift
of it. Hence, PL1 PR1 = PR2 PL2 . This implies that either
PL1 = PR2 and PR1 = PL2 , or P = PL1 PR1 by the argumen-
tation that follows. Assume that PL1 is a strict prefix of PR2 ,
i. e., PL1 = PR2 and PR1 = PL2 does not hold. For the first el-
ement of PR1 it holds that it has to occur in P to the right of
all elements of PL1 . This implies that PL1 PR1 = P. The case
that PR2 is a strict prefix of PL1 is symmetric. In summary,
(i) holds for P = PL1 PR1 and (ii.b) holds for PL1 = PR2 and
PR1 = PL2 .

d) If QR2 = ∅ then σ2 = QPL2 PR2 . Hence, PL1 PR1 = PL2 PR2
which is analogous to Case 2.c). It also follows that in this
case either PL1 = PL2 and PR1 = PR2 , or P = PL1 PR1 . In the
first case (ii.a) holds and in the second case (i) holds.

The proof for the strings {PL1 ,PR1 ,QR1} can be done similarly.

3) First assume QL1 = ∅. In the following three cases are distin-
guished.

a) If QR1 = ∅ then σ1 = PL1 PR1 . Hence, [PL1 PR1]∼ =

[PL2 PR2]∼ since [σ1]∼ = [σ2]∼. This is a special case of Case
2.d).

b) If PR1 = ∅ then σ1 = PQ. Hence, (i) holds.

c) If PL1 = ∅ then σ1 = PQ. Hence, (i) holds.

The remaining combinations of two empty strings of
{PL1 ,QL1 ,PR1 ,QR1} follow in the same fashion.

4) Assume that exactly three strings of {PL1 ,QL1 ,PR1 ,QR1} are
empty. By definition it follows that σ1 is a shift of P. Hence,
(i) holds.

5) Since π◦ ∈ P◦n with n ∈N all four strings of {PL1 ,QL1 ,PR1 ,QR1}
cannot be empty.

In summary, each case implies (i), (ii.a), or (ii.b) concluding the proof.

See Figure 3.3 for an illustration of Theorem 3.1. The following
corollary follows immediately from Theorem 3.1. It shows the relation
between the two sets of elements that are kept in the left and the right
copy in each of the two TDRL◦s that have different origins but result
in the same circular permutation.

Corollary 3.3. If (ii) of Theorem 3.1 holds for two TDRL◦s ρ◦1, ρ◦2 ∈
MTDRL◦ then either

a) L2 = E(QR1)∪ E(PL1), R2 = E(QL1)∪ E(PR1) or

b) R2 = E(QR1)∪ E(PL1), L2 = E(QL1)∪ E(PR1).

[April 2019 at 13:18 – classicthesis 4.4]

64 tandem duplication random losses on circular permutations

(a)

(b)

Figure 3.3: Illustration of Theorem 3.1 cases (ii.a) (subfigure (a)) and (ii.b)
(subfigure (b)), where a TDRL◦ ρ◦(L,R,p) is illustrated by
TDRL ρ(L,R) leading from πp ∈ π◦ to ρ(πp) ∈ σ◦; (a)
TDRL◦ ρ◦(L1,R1,p1) with L1 = {1, 2, 7, 9, 10, 14, 15}, R1 =
{3, 4, 5, 6, 8, 11, 12, 13, 16, 17}, p1 = 17, and ρ◦(π◦) = σ◦ (up-
per part) and equivalent TDRL◦ ρ ′◦(L2,R2,p2) with L2 =
{1, 2, 7, 9, 11, 12, 13, 16, 17}, R2 = {3, 4, 5, 6, 8, 10, 14, 15}, and p2 = 9
(bottom part); (b) TDRL◦ ρ◦(L1,R1,p1) (upper part) and equiv-
alent TDRL◦ ρ ′′◦(R2,L2,p2) with Li, Ri, and pi, i ∈ [1 : 2], as
in (a) (bottom part). Symbols indicate to which substring the el-
ements belong: square PL1 , diamond QL1 , circle PR1 , and pen-
tagon QR1 . Dotted lines connect equal substrings, dashed lines
connect equal elements.

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 65

Table 3.1: TDRL◦ ρ ′◦(L ′,R ′,p ′) that are equivalent to ρ◦(L,R,p) applied to
π◦ = [(2 3 4 1 5)]∼, where L = {3, 5}, R = {1, 2, 4}, and p = 5.
Hence, ρ◦(π◦) = [(3 5 2 4 1)]∼. Shown are representatives πp ′ ∈ π◦,
partition strings P and Q of π◦ for p with respect to p ′, L ′ and
R ′, and the result of the application of the corresponding TDRL
ρ ′(L ′,R ′) to πp ′ for all alternative origins p ′ ∈ {1, . . . , 4}. For p ′ ∈
{1, 2} the construction is according to Corollary 3.3.(a) and for the
remaining origins p ′ ∈ {3, 4} it is according to Corollary 3.3.(b).

p ′ 1 2 3 4

πp ′ (5 2 3 4 1) (3 4 1 5 2) (4 1 5 2 3) (1 5 2 3 4)

P 2 3 4 1 2 2 3 2 3 4

Q 5 3 4 1 5 4 1 5 1 5

L ′ {3} {1, 4} {2, 5} {2, 4, 5}
R ′ {1, 2, 4, 5} {2, 3, 5} {1, 3, 4} {1, 3}
ρ ′(πp ′) (3 5 2 4 1) (4 1 3 5 2) (5 2 4 1 3) (5 2 4 1 3)

An example illustrating the statement of Corollary 3.3 is given in
Table 3.1. The following corollary shows a property of two TDRL◦s
that have the same origin and result in the same permutation.

Corollary 3.4. Let π◦ ∈ P◦n and let ρ◦1(L1,R1,p), ρ◦2(L2,R2,p) ∈MTDRL◦ .
It holds that ρ◦1(π

◦) = ρ◦2(π
◦) if and only if

i) ρ◦1(π
◦) = ρ◦2(π

◦) = π◦ or

ii) {L1,R1} = {L2,R2}.

Proof. Observe that the partition strings of π◦ for p with respect to p
are P = πp and Q = ∅. Then the results follow by Theorem 3.1.

Corollary 3.4 implies that two TDRL◦s having the same origin and
the same effect on a circular permutation either do not change the
permutation, or both TDRL◦s are equal in consideration of an ex-
change of the left and right copy, or both. Corollary 3.4 also implies
that an exchange of the sets L and R of a TDRL◦ does not change its
results, i. e., for π◦ ∈ P◦n and ρ◦1(L,R,p), ρ◦2(R,L,p) ∈ MTDRL◦ it holds
that ρ◦1(π

◦) = ρ◦2(π
◦). However, the application of the correspond-

ing TDRLs ρ1(L,R) and ρ2(R,L) to πp ∈ π◦ results in two permu-
tations ρ1(πp) and ρ2(πp) which differ by an |L|-shift or an |R|-shift,
respectively. From a biological perspective, the results means that the
knowledge of the origin of a TDRL◦ for gene order data alone does
not allow to predict which genes were deleted in which copy. There-
fore, the assumed TDRL◦ cannot be predicted uniquely.

The following corollary states that if a TDRL◦ changes the order
of a circular permutation then there are exactly 2n TDRL◦s – exactly
two for each possible origin – that achieve the same effect.

[April 2019 at 13:18 – classicthesis 4.4]

66 tandem duplication random losses on circular permutations

Corollary 3.5. Given π◦ ∈ P◦n and ρ◦(L,R,p), consider σ◦ = ρ◦(π◦). For
every p ′ ∈ [1 :n] one of the following two cases holds.

i) If π◦ = σ◦ there exist exactly 2n TDRL◦s ρ◦i (Li,Ri,p
′) ∈ MTDRL◦ ,

i ∈ [1 : 2n] with ρ◦i (π
◦) = σ◦.

ii) If π◦ 6= σ◦ there exist exactly two TDRL◦s ρ◦1(L1,R1,p ′) and
ρ◦2(L2,R2,p ′) with ρ◦1(π

◦) = ρ◦2(π
◦) = σ◦.

Proof. First it is shown that for a TDRL ρ(L,R) and π ∈ Pn it holds
that σ = ρ(π) = π if and only if L is a prefix and R is a suffix of π.
This is as otherwise there are e, f ∈ [1 :n] with π−1(e) < π−1(f) and
e ∈ R and f ∈ L. Then σ−1(e) > σ−1(f), and therefore σ 6= π.

Now assume a TDRL◦ ρ ′◦(L ′,R ′,p ′) exists with ρ ′◦(π◦) = π◦ = σ◦.
Since ρ ′◦(π◦) = π◦, it holds that ρ ′(πp ′) is a shift of πp ′ for ρ ′(L ′,R ′).
There are two possibilities: Either ρ ′(πp ′) = πp ′ , or ρ ′(πp ′) is a shift
of πp ′ that is different from πp ′ . First assume ρ ′(πp ′) = πp ′ . Due
to the first part of the proof, it holds that L is a prefix and R is a
suffix of πp ′ . Consequently, there exist n+ 1 choices for L and R. Now
assume ρ ′(πp ′) is a shift of πp ′ which is different from πp ′ . Then,
πp ′ can be written as AB, with both A and B non empty, such that
ρ ′(πp ′) = BA. This is only possible for L = B and R = A since
otherwise not all elements of B precede A and not all elements of A
follow B in ρ ′(πp ′). There are n− 1 other choices for L and R. Since
no proper subsequence of πp ′ is both a prefix and a suffix of πp ′ , it
holds that 2n choices for L and R are distinct. That these are the only
possible choices follows from the first part of the proof.

For (ii) Theorem 3.1 is implied with ρ◦1 = ρ◦ and ρ◦2(L2,R2,p ′),
such that ρ◦(π◦) = ρ◦2(π

◦). Because ρ◦(π◦) 6= π◦, this implies that
Theorem 3.1.(ii) holds. By πp = PQ, where P and Q are the partition
strings of π◦ for p with respect to p ′, there are two possibilities for L2
and R2, which are determined by Theorem 3.1.(ii), cases (a) and (b).
The possibility that is determined by Case (a) (respectively Case (b))
is denoted by ρ2(L2,R2) (respectively ρ3(L3,R3)). The TDRL◦s ρ◦1 and
ρ◦2 of the statement of Corollary 3.5.(ii) are defined by ρ◦1 = (L3,R3,p ′)
and ρ◦2 = (L2,R2,p ′). Proceeding by contradiction that ρ◦1 and ρ◦2 are
distinct. Assume they are equal. Then L2 = L3 and R2 = R3. Thus, it
follows by Theorem 3.1 that PL = PL2 = PL3 = PR. But PL = PR can
only hold when P is the empty string, which is not possible by the
definition of partition strings. Hence, it concludes that ρ◦1 and ρ◦2 are
indeed distinct.

Corollary 3.5 implies that the number of equivalent TDRL◦s can
be determined as follows. For π◦ ∈ P◦n and ρ◦(L,R,p) ∈ MTDRL◦ the
number of equivalent TDRL◦s is 2n2 if ρ◦(π◦) = π◦ and it is 2n
otherwise. Indeed, if ρ◦(π◦) = π◦ (respectively ρ◦(π◦) 6= π◦) for each
of the n possible origins, there are 2n (respectively 2) choices of the
bipartition (L,R). Note that the proof of Corollary 3.5 also implies a
method to generate all circular TDRLs which are equivalent to a given
TDRL◦. This method is used to generate all equivalent TDRL◦ in the
software program EqualTDRL, which has been presented in Hartmann
et al. (2018c). EqualTDRL computes for two circular permutations that

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 67

● ●● ●●

● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

●● ●● ●● ●

● ● ● ●

●

●

●

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8
Element

O
rig

in

● ●

●

● ● ●

●

●

●

●

●

●

Figure 3.4: All circular TDRLs that rearrange [(1 2 3 4 5 6 7 8)]∼ into
[(1 2 4 6 3 5 7 8)]∼. Each row illustrates the circular TDRLs
ρTDRL◦(L,R,p) and ρTDRL◦(R,L,p), where p is the origin (y-axis)
and an element (x-axis) is in the set L (respectively R) if the cor-
responding circle is filled with white color (respectively black
color). The figure was created using EqualTDRL, see Hartmann
et al. (2018c) for more information on this software.

differ by only one circular TDRL the set of all equivalent circular
TDRLs, see Figure 3.4 and Example 3.6 for an illustration.

Example 3.6. Consider the circular permutations ι◦ =

[(1 2 3 4 5 6 7 8)]∼ and π◦ = [(1 2 4 6 3 5 7 8)]∼ with
dMTDRL◦ (ι

◦,π◦) = 1. All equivalent circular TDRLs that trans-
form ι◦ into π◦ are: ({2, 4, 6}, {1, 3, 5, 7, 8}, 1), ({1, 2, 3, 5, 7, 8}, {4, 6}, 2),
({3, 4, 6}, {1, 2, 5, 7, 8}, 3), ({1, 2, 4, 5, 7, 8}, {3, 6}, 4), ({3, 5, 6}, {1, 2, 4, 7, 8}, 5),
({1, 2, 4, 6, 7, 8}, {3, 5}, 6), ({1, 2, 4, 6, 8}, {3, 5, 7}, 7), ({1, 2, 4, 6}, {3, 5, 7, 8}, 8),
and all circular TDRLs that can be obtained from the listed TDRLs by
interchanging the sets L and R. Figure 3.4 illustrates all those equivalent
TDRLs.

Recall that Corollary 3.5 demonstrates that it is not possible to
reconstruct a TDRL◦ rearrangement from only the knowledge of
the two circular permutations before and after the application of
the TDRL◦. This holds even if the origin is known as well. Conse-
quently, for comparative analyses of gene orders additional data is
necessary for evolutionary reconstructions of TDRL◦ rearrangements,
e. g., DNA sequence information indicating remnants of genes. Corol-
lary 3.5 implies the following corollary.

Corollary 3.6. Given π◦ ∈ P◦n and ρ◦(L,R,p) ∈ MTDRL◦ , consider σ◦ =
ρ◦(π◦). For every p ′ ∈ [1 :n] there exist at least two TDRL◦s ρ◦1(L1,R1,p ′)
and ρ◦2(L2,R2,p ′) with ρ◦1(π

◦) = ρ◦2(π
◦) = σ◦. Equivalently, for every

p ′ ∈ [1 :n], there exist at least two TDRLs ρi(Li,Ri) for i ∈ [1 : 2] such that
ρi(πp ′) ∈ σ◦.

Circular TDRL scenarios can be mimicked by TDRL scenarios. For-
mally, this is stated in the following proposition which is used to
determine the TDRL◦ distance in the following section.

[April 2019 at 13:18 – classicthesis 4.4]

68 tandem duplication random losses on circular permutations

Proposition 3.4. Let π◦ ∈ P◦n and ρ◦i (Li,Ri,pi) ∈MTDRL◦ , with i ∈ [1 : t]

and ρ◦t ◦ · · · ◦ ρ◦1 ◦ π◦ = σ◦. The following statements are true.

i) For each π ∈ π◦, there exist a σ ∈ σ◦ and TDRLs ρ ′i(L
′
i,R
′
i) ∈

MTDRL, for all i ∈ [1 : t], such that ρ ′t ◦ · · · ◦ ρ ′1 ◦ π = σ.

ii) For each σ ∈ σ◦, there exist a π ∈ π◦ and TDRLs ρ ′i(L
′
i,R
′
i) ∈

MTDRL, for all i ∈ [1 : t], such that ρ ′t ◦ · · · ◦ ρ ′1 ◦ π = σ.

Proof. Consider first t = 1. Then either π◦ = σ◦ or π◦ 6= σ◦. As-
sume first π◦ = σ◦. In this case, (i) and (ii) follow by π = σ and
ρ ′1 = ρ ′1([1 : n], ∅). Now assume π◦ 6= σ◦. By Corollary 3.6 for all
p ′1 ∈ [1 :n] there exists a TDRL ρ ′1(L

′
1,R ′1) ∈MTDRL with L ′1 and R ′1 as

in Corollary 3.3 such that ρ ′1(πp ′1) ∈ σ
◦. This proves (i) for t = 1. By

Corollary 3.4 also the TDRL ρ ′′1 (R
′
1,L ′1) satisfies ρ ′′1 (πp ′1) ∈ σ

◦. Note
that either p ′1 ∈ L ′1 or p ′1 ∈ R ′1. If p ′1 ∈ R ′1 then by construction
p ′1 is the last element in πp ′1 and by the definition of a TDRL it is
the last element in ρ ′1(πp ′1). Hence, since ρ ′1(πp ′1) ∈ σ◦, it follows
ρ ′1(πp ′1) = σp ′1 . Otherwise, p ′1 ∈ L ′1, and a similar argumentation
implies that ρ ′′1 (πp ′1) = σp ′1 ∈ σ

◦. Hence, for all p ′1 ∈ [1 : n] either
ρ ′1(πp ′1) = σp ′1 or ρ ′′1 (πp ′1) = σp ′1 holds which proves (ii) for t = 1

with σ = σp ′1 .
The result for t > 1 follows by iteration. Let π◦0 = π◦ and π◦i =

ρ◦i (π
◦
i−1), i ∈ [1 : t], so that π◦t = σ◦. Starting with π = π0 ∈ π◦0

(respectively πt = σ ∈ σ◦) the proof for t = 1 implies that there
exist TDRLs ρ ′i ∈ MTDRL, i ∈ [1 : t] with ρ ′i(π

i−1) = πi such that
πi ∈ π◦i (respectively πi−1 ∈ π◦i−1). In particular, πt ∈ σ◦ (respectively
π0 ∈ π◦).

3.1.4 Tandem Duplication Random Loss Distance on Directed Circular
Permutations

The following theorem states the formula for the MTDRL◦ distance for
unsigned directed circular permutations.

Theorem 3.2. For π◦ ∈ P◦n it holds that d◦(π◦) = dlog2 ϑ
◦(π◦)e.

Proof. The formal argument proceeds in several steps. In the first step
d◦(π◦) = minπ∈π◦ dMTDRL(π, ι) is proven. Let t = minπ∈π◦ dMTDRL(π, ι)
and ρt ◦ . . . ◦ ρ1 ◦ π = ι, with ρi(Li,Ri) ∈ MTDRL and i ∈ [1 : t],
be a corresponding parsimonious TDRL scenario. Let pi = πi(n)

be the last element of permutation πi which results from the ap-
plication of the first i ∈ [1 : t] TDRLs, i. e., πi = ρi ◦ . . . ◦ ρ1 ◦ π.
Thus, π0 = π and πt = ι. Then ρ◦t ◦ . . . ◦ ρ◦1 ◦ π◦ = ι◦, with
(ρ◦1(L1,R1,p0), . . . , ρ◦t(Lt,Rt,pt−1)) is a parsimonious scenario for
π◦ under MTDRL◦ . Hence, d◦(π◦) 6 minπ∈π◦ dMTDRL(π, ι). Now con-
sider a parsimonious scenario (ρ◦1, . . . , ρ◦t) with ρ◦1, . . . , ρ◦t ∈ MTDRL◦

for π◦. By Proposition 3.4 for ι ∈ ι◦ there exists a π ∈ π◦ and
TDRLs ρ ′i ∈ MTDRL, i ∈ [1 : t], such that ρ ′t ◦ · · · ◦ ρ ′1 ◦ π = ι. Hence,
minπ∈π◦ dMTDRL(π, ι) 6 d◦(π◦).

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 69

Altogether, d◦(π◦) = minπ∈π◦ dMTDRL(π, ι) follows. Since
dMTDRL(π, ι) = dlog2(ϑ(π))e (Chaudhuri et al., 2006) and Proposi-
tion 3.3 the statement follows by

min
π∈π◦

dMTDRL(π, ι) = min
π∈π◦

dlog2(ϑ(π))e = dlog2(min
π∈π◦

ϑ(π))e

= dlog2(ϑ
◦(π))e = dlog2(ϑ

◦(π◦))e.

Theorem 3.2 states that the distance problem for directed unsigned
circular permutations can be solved by counting the circular chains
of the considered permutation which can easily be done in linear
time with respect to the size of the permutation. The following three
corollaries follow directly from Theorem 3.2. Corollary 3.7 implies a
simple method to compute the TDRL◦ distance by using the TDRL
distance.

Corollary 3.7. Let [π]∼ = π◦ ∈ P◦n. For σ = πn and γ = φn−1(π1), i. e.,
the permutations in [π]∼ ending with n and starting with 1, respectively, it
holds that d◦(π◦) = dMTDRL(σ, ι) = dMTDRL(γ, ι).

Proof. By Theorem 3.2 and Corollary 3.2 follows that
d◦(π◦) = dlog2 ϑ

◦(π◦)e = dlog2 ϑ(σ)e = dMTDRL(σ, ι). The proof
for γ is analogous.

Corollary 3.8 shows that the sorting problem for unsigned directed
circular permutations under MTDRL◦ can be solved in quasilinear time
with respect to the size of the given permutation.

Corollary 3.8. Let [π]∼ = π◦ ∈ P◦n and let S = (ρ(L1,R1), . . . , ρ(Lt,Rt))
with t = dMTDRL(πn, ι) be the parsimonious scenario for the representative
πn ∈ π◦ and ι which is obtained by the algorithm presented by Bernt et
al. (2011). Consider the sequence S ′ = (ρ◦1, . . . , ρ◦t) for π◦, where for all
i ∈ [1 : t] it holds that ρ◦i = ρ◦(Li,Ri,pi) and pi is the last element of
permutation ρ(Li−1,Ri−1) ◦ . . . ◦ ρ(L1,R1) ◦ πn. It holds that S ′ is a par-
simonious scenario for π◦ and ι◦. Moreover, S ′ can be computed in time
O(n logn).

Proof. Consider [π]∼ = π◦ ∈ P◦n, S, and S ′ as defined in the state-
ment of the corollary. Since S can be obtained in time O(n logn)
(Bernt et al., 2011), it is not hard to verify that S ′ can also be
obtained in time O(n logn). By construction of S ′ it holds that
ρ(Li,Ri) ◦ . . . ◦ ρ(L1,R1) ◦ πn ∈ ρ◦i ◦ . . . ◦ ρ◦1 ◦ π◦ for all i ∈ [1 : t]. Ob-
serve that this implies S ◦ πn = ι ∈ S ′ ◦ π◦. Consequently, S ′ ◦ π◦ = ι◦
and S ′ is a scenario for π◦ and ι◦. It remains to show that S ′ has a mini-
mum length. By Corollary 3.7 it follows that d◦(π◦) = dMTDRL(πn, ι) =
t, hence S ′ is parsimonious.

The following corollary of Theorem 3.2 gives the maximum value
of the MTDRL◦ distance for all unsigned directed circular permuta-
tions, i. e., the diameter DMTDRL◦ (P

◦
n).

[April 2019 at 13:18 – classicthesis 4.4]

70 tandem duplication random losses on circular permutations

Corollary 3.9. The maximum value of the MTDRL◦ distance for all di-
rected unsigned circular permutations of size n is dlog2(n − 1)e, i. e.,
DMTDRL◦ (P

◦
n) = dlog2(n− 1)e.

Proof. The corollary follows by:

DMTDRL◦ (P
◦
n) = max

γ◦,σ◦∈P◦n
dMTDRL◦ (γ

◦,σ◦)

= max
π◦∈P◦n

d◦(π◦)
Thm.3.2

= max
π◦∈P◦n

dlog2 ϑ
◦(π◦)e

= dlog2 max
π◦∈P◦n

ϑ◦(π◦)e = dlog2(n− 1)e,

where the first and the second equation follow by the definition of the
diameter and the left-invariance of circular permutations, respectively.
The last equation follows from the fact, that every circular permuta-
tion of size n has at most n− 1 circular chains.

3.1.5 Tandem Duplication Random Loss Distance on Undirected Circular
Permutations

In the previous section it is shown that the MTDRL◦ distance between
two (directed circular) permutations is either less by one or equal
to the MTDRL distance of the corresponding linear representatives.
Hence, using an unfavorable choice of representatives may lead to an
overestimation of the rearrangement distance in the circular case. Ex-
ample 3.7 demonstrates that considering both reading directions of
circular permutations, i. e., permutations are considered to be undi-
rected, has a similar effect.

Example 3.7. Consider the linear permutation π = (3 2 1). Since ϑ(π) = 3
it follows that dMTDRL(π, ι) = dlog2 ϑ(π)e = dlog2 3e = 2. If π is consid-
ered to be circular, i. e., π◦ := [π]∼, then the number of circular chains of π◦

is 2. Theorem 3.2 implies that only one TDRL◦ is necessary to transform π◦

into the circular identity ι◦. If both reading directions of π◦ are considered,
then $◦ := {(3 2 1), (2 1 3), (1 3 2), (2 3 1), (3 1 2), (1 2 3)}. Observe that
the identity permutation ι is already a representative of$◦. This implies that
$◦ is already identical to the (undirected circular) identity permutation ζ◦.
Hence, no TDRL◦ is necessary to transform $◦ into ζ◦.

Example 3.7 illustrates that there is a difference of the MTDRL◦ dis-
tance for directed circular permutations and the corresponding undi-
rected circular permutations. Therefore, the MTDRL◦ distance for undi-
rected circular permutations is investigated in this section. In par-
ticular, it is shown that the distance problem and the sorting prob-
lem for undirected circular permutations of size n under MTDRL◦ can
be solved in time O(n) and O(n logn), respectively. Moreover, it is
shown that the MTDRL◦ distance for an undirected circular permuta-
tion $◦ is dlog2 ϑ

◦(π)e, where π is a representative of $◦ that has the
minimum number of circular chains among all representatives of $◦.

In the following, properties of circular chains are identified that
are crucial for analyzing the MTDRL◦ distance for undirected circular

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 71

permutations. Recall that for a linear permutation π = (π(1) . . . π(n))

the permutation in which the order of all elements of π is reversed
is denoted by π, i. e., π(i) = π(n+ 1− i) for all i ∈ [1 :n]. Consider
a directed circular permutation π◦. Then π◦ denotes the circular per-
mutation that has the opposite reading direction of π◦, i. e., π◦ := [π]∼
where π is a representative of π◦. Permutation π◦ is called the mir-
rored circular permutation of π◦. Example 3.8 illustrates the definition
of a mirrored circular permutation.

Example 3.8. Consider the circular permutation π◦ = [(3 4 2 1)]∼. Then,
π◦ = [(3 4 2 1)]∼ = [(1 2 4 3)]∼ = {(1 2 4 3), (2 4 3 1), (4 3 1 2), (3 1 2 4)}.

The following proposition shows the connection between the num-
ber of circular chains of a directed circular permutation π◦ and its
mirrored circular permutation π◦.

Proposition 3.5. Let π◦ ∈ P◦n with n > 1, then ϑ◦(π◦) + ϑ◦(π◦) = n.

Proof. Let π◦ be an unsigned directed circular permutation of size n
with n > 1. The proposition is proven in two steps: First, it is shown
by induction on n that ϑ◦(π) + ϑ◦(π) = n is true for all permutations
π ∈ Pn. Second, Remark 3.1 implies ϑ◦(π) = ϑ◦(π◦) (respectively
ϑ◦(π) = ϑ◦(π◦)) for all π ∈ π◦ (respectively π ∈ π◦).

Consider n = 2. It holds that either π = (1 2) and π = (2 1) or vice
versa. Since ϑ◦((1 2)) = ϑ◦((2 1)) = 1, the equation ϑ◦(π) + ϑ◦(π) = 2
is satisfied, which proves the base case. For the induction step, as-
sume that the equation ϑ◦(σ) + ϑ◦(σ) = t is satisfied for all σ ∈ Pt
with 2 6 t < n. Now consider σ ∈ Pn−1. Permutation σ can be trans-
formed into a permutation π of size n by assigning element n to some
position of σ. It follows from the definition of circular chains that
adding element n can only influence the circular chains (or the circu-
lar chain) of σ that contain element 1 or n− 1 and all other circular
chains of σ (respectively σ) are also circular chains of π (respectively
π). Without loss of generality, consider σ−1(1) < σ−1(n− 1). (Note
that the case σ−1(1) > σ−1(n− 1) follows by reversing the roles of σ
and σ.) Hence, it follows that σ−1(n− 1) < σ−1(1). Consequently, for
permutation σ there exist either the two circular chains (1, . . .) and
(. . . ,n− 1) or there exists one circular chain (1, . . . ,n− 1), and for σ
there exists the circular chain (. . . ,n− 1, 1, . . .). There are three cases
to add the element n to σ:

1) If n is assigned to the left of 1, then π−1(n) < π−1(1) < π−1(n−

1). By definition, either the circular chain (1, . . .) of σ becomes
the circular chain (n, 1, . . .) of π and circular chain (. . . ,n− 1) of
σ remains unchanged, i. e., (n, 1, . . .) and (. . . ,n− 1) are circular
chains of π, or the circular chain (1, . . . ,n− 1) of σ becomes the
circular chain (n, 1, . . . ,n− 1) of π. Thus, ϑ◦(σ) = ϑ◦(π). For π
it holds that π−1(n− 1) < π−1(1) < π−1(n). Hence, the circu-
lar chain (. . . ,n− 1, 1, . . .) of σ is split into the circular chains
(. . . ,n− 1,n) and (1, . . .) in π. Hence, ϑ◦(σ) = ϑ◦(π) − 1.

2) If n is assigned between 1 and n− 1, then it holds that π−1(1) <
π−1(n) < π−1(n − 1). Hence, the circular chains (1, . . .)

[April 2019 at 13:18 – classicthesis 4.4]

72 tandem duplication random losses on circular permutations

and (. . . ,n − 1) (or the circular chain (1, . . . ,n − 1)) remain
unchanged, i. e., they are circular chains of π, and a new cir-
cular chain c = (n) of π is formed. Hence, ϑ◦(σ) = ϑ◦(π) − 1.
For π it holds that π−1(n− 1) < π−1(n) < π−1(1), hence the
circular chain (. . . ,n− 1, 1, . . .) of σ becomes the circular chain
(. . . ,n− 1,n, 1, . . .) of π, which implies ϑ◦(σ) = ϑ◦(π).

3) If n is assigned to the right of n− 1, then π−1(1) < π−1(n− 1) <

π−1(n). By definition, either the circular chain (1, . . .) remains
unchanged, i. e., it is a circular chain of π, and the circular chain
(. . . ,n − 1) becomes (. . . ,n − 1,n) in π or the circular chain
(1, . . . ,n − 1) of σ becomes the circular chain (1, . . . ,n − 1,n)
of π. Thus, ϑ◦(σ) = ϑ◦(π). For π it holds that π−1(n − 1) <

π−1(1) < π−1(n), thus the circular chain (. . . ,n− 1, 1, . . .) of σ
is split into the circular chains (. . . ,n− 1,n) and (1, . . .) in π. It
follows that ϑ◦(σ) = ϑ◦(π) − 1.

From all three cases either ϑ◦(σ) = ϑ◦(π) and ϑ◦(σ) = ϑ◦(π) − 1

(Case 1 and Case 3) or ϑ◦(σ) = ϑ◦(π) − 1 and ϑ◦(σ) = ϑ◦(π) (Case 2)
is obtained. The equation ϑ◦(π)+ϑ◦(π) = n is deduced by combining
the respective equations with the induction hypothesis, i. e., the equa-
tion ϑ◦(σ) + ϑ◦(σ) = n− 1. By Remark 3.1 the statement follows.

In addition to the statement from Proposition 3.5, there is another
interesting connection between a directed circular permutation and
its mirrored permutation. That is, if a TDRL◦ transforms a directed
circular permutation π◦ into σ◦, then there always exists another
TDRL◦ that transforms π◦ into σ◦.

Lemma 3.1. Let ρ◦(L,R,p) be a TDRL◦ for the directed circular permuta-
tion π◦ ∈ P◦n. Then ρ◦(L,R,p) ◦ π◦ = σ◦ if and only if ρ◦(R,L,πp(1)) ◦
π◦ = σ◦.

Proof. Let ρ◦(L,R,p) be a TDRL◦ for π◦. Moreover, let L1, . . . ,L`
and R1, . . . ,Rr be the elements of L and R ordered with respect
to πp = (πp(1), . . . ,πp(n)), i. e., for all i, j ∈ [1 : `] it holds that
π−1p (Li) < π−1p (Lj) if and only if i < j, and for all e, f ∈ [1 : r] is
holds that π−1p (Re) < π−1p (Rf) and if and only if e < f. It holds
that ρ◦(L,R,p) ◦ π◦ = [ρ(L,R) ◦ πp]∼ = [(L1 . . . L` R1 . . . Rr)]∼ = σ◦.
Since the order of the elements in πp are reversed with respect to
πp it follows that ρ(R,L) ◦ πp = (Rr . . . R1 L` . . . L1). Observe that
πp(1) is the first element of πp. Hence, πp(1) is the last element
of πp. Since πp ∈ π◦ and each representative ending with a cer-
tain element is unique in π◦, it follows that πp = ππp(1). Conse-
quently, ρ◦(R,L,πp(1)) ◦ π◦ = [ρ(R,L) ◦ ππp(1)]∼ = [ρ(R,L) ◦ πp]∼ =

[(Rr . . . R1 L` . . . L1)]∼ = σ◦. Thus, the implication from left to right
is true. The other direction follows from this implication and the fact
that π◦ = π◦ for all π ∈ P◦n.

Undirected and directed circular permutations are both consid-
ered in the remainder of this section. Therefore, the definition of un-
signed undirected circular permutations are recalled in the following

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 73

paragraph. In addition, the difference in the formal definition of the
TDRL◦ operation between both types of permutations is pointed out.

Recall that the set of all undirected circular permutations of size n
is denoted by uP◦n, i. e., uP◦n := {π◦ ∪ π◦ :π◦ ∈ P◦n}. To avoid any mis-
understanding, undirected circular permutations are denoted by $◦,
ς◦, and the identity in uP◦n is denoted by ζ◦, i. e., ζ◦ := ι◦ ∪ ι◦. As the
focus in the previous sections of Chapter 3 is on directed permuta-
tions, the definition of the TDRL◦ rearrangements cannot directly be
applied to undirected circular permutation as defined in Section 3.1.1.
That is because for an undirected circular permutation $◦ = π◦ ∪ π◦
of size n there exist exactly two representatives with a certain ele-
ment p ∈ [1 :n] on the last position, namely πp ∈ π◦ and πp ∈ π◦.
In contrast, for a directed circular permutation π◦ of size n, such a
representative πp ∈ π◦ is unique. Therefore, some adjustments have
to be made on the TDRL◦ operation as explained in the following
(see also Example 3.9): A TDRL◦ for an undirected circular permuta-
tion $◦ ∈ uP◦n is defined as a mapping ρ◦ : uP◦n → uP◦n recorded
by ρ◦(L,R,π), where (L,R) is a bipartition of [1 : n], π ∈ $◦, and
ρ◦(L,R,π) ◦$◦ := [ρ(L,R) ◦ π]∼ ∪ [ρ(L,R) ◦ π]∼. It is not hard to see
that the TDRL◦ operation for undirected circular permutations is es-
sentially the same as for directed circular permutations. For that rea-
son and the sake of simplicity, the notations for the TDRL◦ rearrange-
ment on directed circular permutations are also used, in slight abuse
of notation, for undirected circular permutations in the remainder of
this section.

Example 3.9. Consider the undirected circular permutation $◦ =

[(1 2 3 5 4)]∼ ∪ [(4 5 3 2 1)]∼. The set of all representatives of $◦ is
{(1 2 3 5 4), (2 3 5 4 1), (3 5 4 1 2), (5 4 1 2 3), (4 1 2 3 5), (5 3 2 1 4),
(3 2 1 4 5), (2 1 4 5 3), (1 4 5 3 2), (4 5 3 2 1)}. The applica-
tion of the TDRL◦ ρ◦({1, 3, 4}, {2, 5}, (3 5 4 1 2)) to $◦ results in
ρ◦({1, 3, 4}, {2, 5}, (3 5 4 1 2)) ◦$◦ = [ρ({1, 3, 4}, {2, 5}) ◦ (3 5 4 1 2)]∼ ∪
[ρ({1, 3, 4}, {2, 5}) ◦ (3 5 4 1 2)]∼ = [(3 4 1 5 2)]∼ ∪ [(2 5 1 4 3)]∼.

In the remainder of this section, it is shown that the distance as
well as the sorting problem for undirected circular permutations
can be solved by using the same ideas as in the directed case. Let
S = (ρ◦1, . . . , ρ◦

|S|) be a sequence of TDRL◦s for an undirected circular
permutation $◦. Consider that S is applied to $◦ and let ς◦i denote
the intermediate undirected circular permutation obtained after the
application of ρi with i ∈ [1 : |S|− 1]. Note that it is possible that the
linear representative of ς◦i has to be mirrored (and possibly shifted)
before the next TDRL◦ ρ◦i+1 from S can be applied. Those mirroring
operations are no rearrangements. In fact, they are just used for tech-
nical reasons since a TDRL◦ is always applied on a linear directed
representative. Now, a sequence S might, or might not, require those
mirroring operations on intermediate permutations. Thus, a sequence
for a directed circular permutation can always be represented as a se-
quence for the corresponding undirected circular permutations (see
Lemma 3.2).

[April 2019 at 13:18 – classicthesis 4.4]

74 tandem duplication random losses on circular permutations

Moreover, if an undirected circular permutation $◦ ∈ uP◦n con-
tains a linear representative π ∈ π◦, then it also contains all linear
variants from the directed circular permutation π◦ as well as from
the mirrored directed circular permutation π◦. In the following, it is
shown that in order to solve the distance problem (respectively the
sorting problem) for undirected circular permutations under MTDRL◦ ,
it is sufficient to compute four parsimonious scenarios, one for each
of the following directed circular permutations. Either π◦ has to be
transformed into ι◦, π◦ has to be transformed into ι◦, π◦ has to be
transformed into ι◦, or π◦ has to be transformed into ι◦. Whichever of
these scenarios has the smallest length is a parsimonious scenario for
the undirected case. In particular, this means that for any undirected
circular permutation $◦ there is always a parsimonious scenario that
transforms π◦ into either ι◦ or ι◦, such that no mirroring operation is
required at any intermediate step (see Proposition 3.6). To show this,
two auxiliary lemmata are needed.

The following lemma shows that a scenario for two directed circu-
lar permutations can be translated almost one-to-one into a scenario
for undirected circular permutations.

Lemma 3.2. Let S be a scenario of TDRL◦s for the directed circular per-
mutations π◦ ∈ P◦n and σ◦ ∈ P◦n. Then, there always exists a scenario
S ′ of TDRL◦s for the undirected circular permutations $◦ = π◦ ∪ π◦ and
ς◦ = σ◦ ∪ σ◦ with |S| = |S ′|.

Proof. Let S = (ρ◦1, . . . , ρ◦
|S|) be a scenario for π◦ and σ◦ under

MTDRL◦ with ρ◦i := ρ◦i (Li,Ri,pi) for all i ∈ [1 : |S|]. For all i ∈ [1 : |S|]

the circular permutation π◦i denotes the intermediate directed cir-
cular permutation that is obtained in the i-th step of the applica-
tion of S, i. e., π◦i := ρi ◦ . . . ◦ ρ1 ◦ π◦ with π◦

|S| = σ◦ and π◦0 :=

π◦. Moreover, for all i ∈ [0 : |S| − 1] let πpi denote the represen-
tatives of π◦i that ends with element πi. Then, for the sequence
S ′ = (%◦1(L1,R1,πp0), . . . , %

◦
|S|(L|S|,R|S|,πp|S|−1

)) it holds that π◦i ⊆ %◦i ◦
. . . ◦ %◦1 ◦$◦ for all i ∈ [1 : |S|]. Note that π◦0 ⊆ $◦ and π◦

|S| = σ◦ ⊆ ς◦.
Therefore, S ′ is a scenario for the undirected circular permutations
$◦ and ς◦ under MTDRL◦ . By construction, for each TDRL◦ of S a
TDRL◦ of S ′ was constructed, and hence |S| = |S ′|.

The following proposition states that for every parsimonious sce-
nario of TDRL◦s for undirected permutations $◦ = π◦ ∪ π◦ and
ζ◦ = ι◦ ∪ ι◦, there exists a parsimonious scenario S of the same length
for the directed circular permutations π◦ and ι◦ (or π◦ and ι◦). An
example for such a scenario can be found in Figure 3.5.

Proposition 3.6. Let S be a parsimonious scenario of TDRL◦s for the undi-
rected circular permutations $◦ = π◦ ∪ π◦ and ζ◦ = ι◦ ∪ ι◦. Then there
exists a scenario S ′ of TDRL◦s for the directed circular permutations π◦

and ι◦ or π◦ and ι◦ with |S| = |S ′|. Moreover, S ′ is a parsimonious scenario.

Proof. The formal proof proceeds in two steps. First, it is shown that
such a scenario S ′ exists. Second, it is shown that S ′ is parsimonious.

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 75

Figure 3.5: Scenario S = (%◦1, %◦2) for the undirected circular permutations
$◦ = π◦ ∪ π◦ and ζ◦ = ι◦ ∪ ι◦, where π◦ = [(4 2 1 3 5 6)]∼,
π◦ = [(6 5 3 1 2 4)]∼, %◦1 = %◦TDRL◦({1, 4, 5, 6}, {2, 3}, (4 2 1 3 5 6)),
and %◦2 = %◦TDRL◦({3, 4, 5, 6}, {1, 2}, (2 6 5 1 4 3)). Illustrated are
undirected circular permutations (continuous black square); di-
rected circular permutations (gray square with dashed border);
TDRL◦s (black and gray arrows). The tail and the head of an
arrow points out which representatives of the undirected circu-
lar permutations are involved in the TDRL◦ that is applied. Sce-
nario S is illustrated by black arrows. By Theorem 3.3 it holds
that dMTDRL◦ ($

◦, ζ◦) = min {dlog2 ϑ
◦(π◦)e, dlog2 ϑ

◦(π◦)e} =
min {dlog2 3e, dlog2 3e} = 2. Hence, scenario S is parsimonious.
By Proposition 3.6 there exists a scenario S ′ of directed cir-
cular permutations π◦ and ι◦ (or π◦ and ι◦) that is parsimo-
nious and has the same length as S. An example for such a sce-
nario is S ′ = (ρ◦1, ρ◦2) with ρ◦1 = ρ◦TDRL◦({1, 4, 5, 6}, {2, 3}, 6) and
ρ◦1 = ρ◦TDRL◦({1, 2}, {3, 4, 5, 6}, 2). Scenario S ′ is illustrated by gray
arrows.

Let S = (%◦1, . . . , %◦
|S|) be a parsimonious scenario for$◦ and ζ◦ such

that %◦i := %◦i (Li,Ri,πi−1) is a TDRL◦ for ς◦i−1 := %◦i−1 ◦ . . . ◦ %◦1 ◦$◦
for all i ∈ [1 : |S|] with ς◦0 = $◦ and ς◦

|S| = ζ◦. Note that for the first
TDRL◦ %◦1(L1,R1,π0) it holds that π0 ∈ $◦ and either π0 ∈ π◦ or
π0 ∈ π◦.

In the following, a sequence S ′ = (ρ◦1, . . . , ρ◦
|S|) for the directed

circular permutation π◦ is constructed such that for all i ∈ [1 : |S|] it
holds that ρ◦i ◦ . . . ◦ ρ◦1 ◦ π◦ =: σ◦i ⊂ ς◦i .

The scenario S ′ is constructed iteratively for increasing i = 1, . . . , |S|.
Let i = 1 and assume first that π0 ∈ π◦. It follows that the TDRL◦

ρ◦1(L1,R1,π0(n)) is the directed variant of %◦1(L1,R1,π0). In particu-
lar, since π0(n) is the last element of π0, it holds by definition that
the TDRL ρ(L1,R1) is applied to π0, i. e., ρ◦1(L1,R1,π0(n)) ◦ π◦ =

[ρ(L1,R1) ◦ π0]∼. Note that the same TDRL is applied to π0 in the
undirected case. Thus, it follows that ρ◦1(L1,R1,π0(n)) ◦ π◦ ⊂ ς◦1 .

Now assume that π0 ∈ π◦. Let ρ◦(L1,R1,π0(n)) ◦ π◦ = σ◦1 be
the directed permutation that is created when applying the directed
variant of the first TDRL◦ from S (i. e., %◦1(L1,R1,π0)) to the per-
mutation π0 ∈ π◦. Then, σ◦1 ⊂ ς◦1 . By Lemma 3.1 it follows that
ρ◦1(R1,L1,π0(1)) ◦ π

◦
= ρ◦1(R1,L1,π0(1)) ◦ π◦ = σ◦1. Now, since σ◦1 ⊂

ς◦1 also σ◦1 ⊂ ς◦1 and thus, ρ◦1(R1,L1,π0(1)) ◦ π◦ ⊂ ς◦1 .
Consequently, for both cases a TDRL◦ can be found that transforms

π◦ into a directed permutation that is a subset of ς◦1 . Therefore, the
first TDRL◦ ρ◦1 from S ′ is either ρ◦(L1,R1,π0(n)) or ρ◦(R1,L1,π0(1))

[April 2019 at 13:18 – classicthesis 4.4]

76 tandem duplication random losses on circular permutations

depending on the respective case. In addition, the intermediate di-
rected permutation ρ◦1 ◦ π◦ is either σ◦1 or its mirror σ◦1.

The remaining TDRL◦s of sequence S ′ are constructed iteratively
for increasing i = 2, . . . , |S| by the following procedure which uses the
same idea as for i = 1. If πi−1 ∈ σ◦i−1, then ρ◦i := ρ◦i (Li,Ri,πi−1(n)).
Otherwise, if πi−1 ∈ σ◦i−1, then ρ◦i := ρ

◦
i (Ri,Li,πi−1(1)). In both cases

the next intermediate directed circular permutation is contained in ς◦i .
As a result of this procedure, the scenario S ′ is obtained which

satisfies that S ′ ◦π◦ = σ◦
|S| ⊂ ς◦

|S| = ζ
◦. Since, ζ◦ = ι◦ ∪ ι◦, it holds that

either S ′ ◦ π◦ = ι◦ or S ′ ◦ π◦ = ι◦. Recall that π◦ ∈ $◦, therefore S ′ is
a scenario for π◦ and ι◦ or for π◦ and ι◦. By construction, for every
TDRL◦ %◦i from S a TDRL◦ ρ◦i from S ′ was constructed. Therefore,
both scenarios have the same length, i. e., |S| = |S ′|.

It remains to show that S ′ is parsimonious. By contraposition as-
sume that S ′ is not parsimonious. Hence, there exists a scenario S ′′

for π◦ and ι◦ or π◦ and ι◦ such that |S ′′| < |S ′|. By Lemma 3.2 there
exists a scenario T of TDRL◦s for $◦ and ζ◦ with |T | = |S ′′|. However,
this implies |T | = |S ′′| < |S ′| = |S|, a contradiction to the assumption
that S is parsimonious. Consequently, such a scenario S ′′ cannot exist
and S ′ is parsimonious.

The following theorem gives a closed formula for the MTDRL◦ dis-
tance for undirected circular permutations.

Theorem 3.3. For an undirected circular permutation $◦ = π◦ ∪ π◦ ∈
uP◦n holds: dMTDRL◦ ($

◦, ζ◦) = min {dlog2 ϑ
◦(π◦)e, dlog2 ϑ

◦(π◦)e}.

Proof. Let $◦ ∈ uP◦n with $◦ = π◦ ∪ π◦. Consider a parsimonious
scenario S for $◦ and ζ◦. Since S is parsimonious, it has the min-
imum length, i. e., dMTDRL◦ ($

◦, ζ◦) = |S|. By Proposition 3.6 there
exists a parsimonious scenario S ′ for π◦ and ι◦ or π◦ and ι◦ with
|S| = |S ′|. If S ′ is a scenario for π◦ and ι◦, then by Theorem 3.2 it holds
that |S ′| = dlog2 ϑ

◦(π◦)e. Consequently, it follows dMTDRL◦ ($
◦, ζ◦) =

dlog2 ϑ
◦(π◦)e in this case.

Now, consider that |S ′| is a scenario for π◦ and ι◦. Recall that the
number of rearrangements transforming π◦ into ι◦ is not dependent
on the way the elements of both directed circular permutations are
numbered. Therefore, the elements of both permutations can be re-
named without changing the MTDRL◦ distance. Such a renaming is to
rename the elements of each representative of ι◦ such that ι◦ becomes
ι◦. Formally, this renaming is to apply the linear permutation ι to all
representatives of ι◦. Applying the same renaming to π◦ transforms
π◦ into π◦. Therefore, it holds that dMTDRL◦ (π

◦, ι◦) = dMTDRL◦ (π
◦, ι◦).

By Theorem 3.2, it follows that dMTDRL◦ (π
◦, ι◦) = dlog2 ϑ

◦(π◦)e. Conse-
quently, in the second case it follows dMTDRL◦ ($

◦, ζ◦) = dlog2 ϑ
◦(π◦)e.

The theorem follows by the fact that the MTDRL◦ distance is always
the minimum of both cases.

The following corollary immediately follows from Theorem 3.3. It
shows that a parsimonious scenario of TDRL◦s for a pair of undi-
rected circular permutations of size n can be computed in quasilinear
time with respect to n.

[April 2019 at 13:18 – classicthesis 4.4]

3.1 solving the distance problem and sorting problem 77

Corollary 3.10. A parsimonious scenario for an undirected circular per-
mutation $◦ ∈ uP◦n and ζ◦ under MTDRL◦ can be computed in time
O(n logn).

Proof. Let $◦ ∈ uP◦n with $◦ = π◦ ∪ π◦. By Theorem 3.3 the MTDRL◦

distance between $◦ and ζ◦ is either dlog2 ϑ
◦(π◦)e or dlog2 ϑ

◦(π◦)e.
Without loss of generality consider that the MTDRL◦ distance is ob-
tained for dlog2 ϑ

◦(π◦)e. Observe that the distance for the directed
permutations π◦ ⊂ $◦ and ι◦ ⊂ ζ◦ is also dlog2 ϑ

◦(π◦)e. Therefore,
let S be a parsimonious scenario for π◦ and ι◦ which can be obtained
in O(n logn) by the algorithm from Bernt et al. (2011). By Lemma 3.2
it holds that there exists a scenario S ′ for the undirected circular per-
mutations $◦ ∈ uP◦n and ζ◦ with |S ′| = |S| that can be constructed
in time O(|S|) from S as explained in the proof of Lemma 3.2. Since
|S ′| = |S| = dlog2 ϑ

◦(π◦)e = dMTDRL◦ ($
◦, ζ◦), it holds that S ′ is parsi-

monious.
Hence, scenario S ′ can be obtained in time O(|T |+ n logn). Since

|T | < n, it follows that S ′ can be obtained in O(n logn).

The following corollary of Theorem 3.3 determines the diameter
of the MTDRL◦ distance for the set of all undirected circular permuta-
tions.

Corollary 3.11. The maximum value of the MTDRL◦ distance for
all undirected circular permutations of size n is dlog2bn/2ce, i. e.,
DMTDRL◦ (uP

◦
n) = dlog2bn/2ce.

Proof. The sought diameter can be expressed as:

DMTDRL◦ (uP
◦
n) = max

$◦1,$◦2∈uP◦n
dMTDRL◦ ($

◦
1,$◦2)

= max
$◦∈uP◦n

dMTDRL◦ ($
◦, ζ◦)

Thm. 3.3
= max
π◦∪π◦∈uP◦n

min {dlog2 ϑ
◦(π◦)e, dlog2 ϑ

◦(π◦)e}

= dlog2(max
π◦∪π◦∈uP◦n

min {ϑ◦(π◦), ϑ◦(π◦)})e

= dlog2(max
π◦∪π◦∈uP◦n

ϑ◦(π◦) + ϑ◦(π◦) − |ϑ◦(π◦) − ϑ◦(π◦)|

2
)e,

where the first (second) equation follows from the definition of the
diameter (respectively the left-invariance of permutations). The appli-
cation of Proposition 3.5 yields:

DMTDRL◦ (uP
◦
n) = dlog2(max

π◦∪π◦∈uP◦n

n− | ϑ◦(π◦) − ϑ◦(π◦) |

2
)e.

It is easy to verify that the maximum of (n − | ϑ◦(π◦) − ϑ◦(π◦) |)/2

is obtained if the term | ϑ◦(π◦) − ϑ◦(π◦) | is minimized. Proposi-
tion 3.5 implies | ϑ◦(π◦) − ϑ◦(π◦) | ∈ [0 : n − 1] if n is even and

[April 2019 at 13:18 – classicthesis 4.4]

78 tandem duplication random losses on circular permutations

| ϑ◦(π◦) − ϑ◦(π◦) | ∈ [1 : n − 1] if n is odd. Hence, the corollary fol-
lows by:

DMTDRL◦ (uP
◦
n) =

{
dlog2((n− 1)/2)e if n is odd,

dlog2(n/2)e if n is even

= dlog2bn/2ce.

This section is concluded with Example 3.10 that illustrates how
the algorithm from Bernt et al. (2011) can be used to compute a parsi-
monious scenario for directed and undirected circular permutations.

Example 3.10. Consider the linear permutation π = (5 2 3 4 1). Per-
mutation π has the three chains c1 = (1), c2 = (2, 3, 4), and c3 = (5),
hence ϑ(π) = 3 and dMTDRL(π, ι) = 2 (Chaudhuri et al., 2006). The se-
quence S = (ρ1({1, 5}, {2, 3, 4}), ρ2({1, 2, 3, 4}, {5})) is a parsimonious sce-
nario for π and ι under MTDRL in which scenario S is obtained as de-
scribed in Section 2.3.4. Now consider π to be circular and directed, i. e.,
the circular permutation π◦ = [π]∼ is considered. By Proposition 3.3 fol-
lows that ϑ◦(π◦) = 2, hence only one TDRL◦ is needed to transform
π◦ into ι◦ as dMTDRL◦ (π

◦, ι◦) = 1 (Theorem 3.2). The scenario S ′ =

(ρ◦({1, 2, 3, 4}, {5}, 4)) is one of the parsimonious scenarios for π◦ and ι◦.
If both reading directions of π◦ are of interest, then the undirected circular
permutation $◦ = π◦ ∪ π◦ is considered. By Proposition 3.5 it holds that
ϑ◦(π◦) + ϑ◦(π◦) = 5. Since ϑ◦(π◦) = 2 it follows that ϑ◦(π◦) = 3. Theo-
rem 3.3 implies that dMTDRL◦ ($

◦, ζ◦) = min {1, 2} = 1. Therefore, a parsi-
monious scenario for the undirected circular permutations$◦ and ζ◦ can be
obtained from a parsimonious scenario for the directed circular permutations
π◦ and ι◦. A corresponding parsimonious scenario for $◦ and ζ◦ that is
obtained from S ′ is the scenario S ′′ = (ρ◦({1, 2, 3, 4}, {5}, (1 5 2 3 4))).

This section showed that considering undirected circular permuta-
tions, instead of directed circular permutations, can reduce the corre-
sponding MTDRL◦ distance. However, this result can be neglected for
practical applications in the case that only TDRL◦ rearrangements are
considered by the following reasoning: The gene orientation of mi-
tochondrial gene orders is commonly known, hence signed circular
permutations are used to represent those gene orders. Since circular
TDRLs cannot toggle the sign of an element of a permutation, the sign
of every element in both considered permutations has to be identical
in order to ensure the existence of a parsimonious scenario. However,
changing the reading direction of one given circular permutation re-
sults in a circular permutation in which the sign of every element
is toggled, hence the elements of the considered permutations have
different signs and cannot be transformed into each other by TDRL
rearrangements alone. For this reason, the following sections consider
only directed circular permutations.

[April 2019 at 13:18 – classicthesis 4.4]

3.2 consequences for biological applications 79

3.2 consequences for biological applications

The results that were obtained in the Section 3.1 imply several practi-
cal consequences for biological applications:

The MTDRL◦ distance between two circular permutations is either
less by one or equal to the MTDRL distance of the corresponding linear
representatives. Hence, using the MTDRL distance for an unfavorable
choice of representatives may lead to an overestimation of the rear-
rangement distance. However, Corollary 3.7 implies that the MTDRL

distance and the MTDRL◦ distance coincide if the MTDRL distance is
computed for a representative starting (or ending) with the same ele-
ment as the target permutation. In the data bases that provide mito-
chondrial annotations, e. g., NCBI RefSeq (Pruitt et al., 2007), MitoZoa
(Meo et al., 2012), and others, this property is not implemented and
therefore might lead to an overestimation of the MTDRL distance. It
is worth mentioning that the data base MitoFish (Iwasaki et al., 2013)
considers this property as all mitochondrial genomes in the data base
start with gene trnF. Furthermore, in previous works on TDRLs (e. g.,
Chaudhuri et al. (2006) and Bernt et al. (2011)) the circular mitochon-
drial genome was not explicitly treated as a circular permutation but
rather the representative which is contained in a data base was used.
Therefore, in Section 3.2.1 the effect of neglecting the circularity of the
mitochondrial genomes for the computation of the MTDRL distance is
investigated from both the theoretical as well as the empirical aspect:
First, a formula for the probability to overestimate the MTDRL distance
due to an unfavorable choice of representatives is given. Second, the
corresponding probability for this error is measured for the repre-
sentatives of metazoan mitochondrial gene orders given in the NCBI
RefSeq data base.

For every origin of a TDRL◦ there exist at least two different TDRL◦

rearrangements that result in the same circular gene order. Accord-
ingly, for studying the predictions on the molecular mechanisms of
TDRLs, e. g., the gene loss pattern and the gene intervals that are
duplicated, the whole set of equivalent TDRL◦s must be considered.
The reason is that the set of equivalent TDRLs exhibits a variety of
different loss patterns, allowing for different interpretations. Based
on these results an evaluation of the tandem duplication non-random
loss model (Lavrov et al., 2002) is performed in Section 3.2.2. The eval-
uation is based on a detailed analysis of two pairs of gene orders that
have been used in the literature to argue for the tandem duplication
non-random loss model.

3.2.1 Rearrangement Distance Differences

In this section, the probability of obtaining an overestimation of the
MTDRL distance due to an unfavorable choice of linear representatives
of circular permutations is determined. To deduce this probability in
Theorem 3.4, the Proposition 3.7 is needed. It is worth mentioning
that the proof of Proposition 3.7 is done analogously to the proof of

[April 2019 at 13:18 – classicthesis 4.4]

80 tandem duplication random losses on circular permutations

Theorem 1.11 in Bóna (2004), which shows that the number of per-
mutations of size n with r maximal increasing substrings is given
by the Eulerian number

〈
n
r

〉
= A(n, r) =

∑r
i=0(−1)

i
(
n+1
i

)
(r − i)n.

(Recall that a maximal increasing substring of a permutation π is a max-
imal sequence π(i1) . . . π(im) of consecutive elements in π such that
π(ij) < π(ij+1) for all j ∈ [1 :m− 1].)

Proposition 3.7. The number of permutations π ∈ Pn with n > 2 that
have r maximal increasing substrings, element ` at the first position, and
element k at the last position with k < ` is

r∑
i=0

(−1)i
(
n+ 1

i

) r−i−1∑
L=0

r−i∑
K=L+1

(K− L− 1)`−k−1(K− L)n−`+k−1.

Proof. Consider x compartments with x− 1 bars in between. Consider
the assignment of n elements to the x compartments where the ele-
ments in the compartments are sorted in increasing order such that i)
k is the largest element in the last non-empty compartment and ii) `
is the smallest element in the first non-empty compartment. Such an
arrangement is called valid. Let L,K ∈ [0 : x− 1] be the compartment
containing ` and k, respectively. The elements can only be assigned to
compartments in [L :K]. Furthermore, L < K must hold since k and `
cannot be in the same compartment because k < `. Elements smaller
than ` must not be assigned to compartment L and elements that are
larger than k must not be assigned to compartment K. Because other-
wise either ` is not the first element in L or k is not the last element
in K. Thus, the k− 1 elements that are smaller than k can be assigned
to any of the K− L compartments [L+ 1 :K], the n− ` elements that
are larger than ` can be assigned to any of the K− L compartments
[L :K− 1], and the remaining `− k− 1 elements that are smaller than
` and larger than k can be assigned to any of the K− L− 1 compart-
ments [L+ 1 :K− 1]. Hence, the number of valid arrangements with x
bars is given by

∑x
L=0

∑x+1
K=L+1(K− L− 1)`−k−1(K− L)n−`+k−1.

A bar is called extraneous if it is not immediately followed by an-
other bar and if its removal results in a valid arrangement, i. e., where
the elements of the remaining compartments are sorted. This is, bars
to the right of empty compartments and bars that separate an in-
creasing pair of elements are extraneous. Note that the number of
valid arrangements for r compartments where no bar is extraneous
is equal to N2(n, r,k, `). This number can be determined by count-
ing the number of valid arrangements and removing those that have
extraneous bars.

The n+1 positions of a permutation of size n are the spaces between
consecutive elements of a permutation as well as the space preceding
the first and following the last element.

For a set S ⊆ [0 : n] let AS be the set of valid arrangements in
r compartments where each position in S has an extraneous bar,
i. e., for each arrangement in AS it holds that the positions with
extraneous bars are a superset of S. For i = |S| 6 r − 1 it holds
that |AS| =

∑r−1−i
L=0

∑r−i
K=L+1(K−L− 1)`−k−1(K−L)n−`+k−1 because

[April 2019 at 13:18 – classicthesis 4.4]

3.2 consequences for biological applications 81

such an arrangement can be obtained by inserting i bars at the posi-
tions that are in S into any valid arrangement with r − 1 − i bars.
There are

(
n+1
i

)
choices for the elements of S.

Note that AS is equal to the set of valid arrangements where the
positions that have no extraneous bars is a subset of [n+ 1] \S. Hence,
A∅ is the set of arrangements for which the set of positions without
an extraneous bar is a subset of the n + 1 positions. This set con-
tains the sought set where none of the positions harbors an extrane-
ous bar, but also other configurations which do have extraneous bars.
Consequently, the size of the sought set can be determined using the
Inclusion-Exclusion Principle (similarly to what is done in Bóna, 2004

Chapter 1.1) completing the proof.

Given Proposition 3.7, a formula for the probability to overestimate
the TDRL distance is given in Theorem 3.4.

Theorem 3.4. Let π◦ be chosen uniformly at random from P◦n with n > 2

and let π ∈ π◦ be a uniformly at random chosen representative of π◦. The
probability that dMTDRL◦ (π

◦, ι◦) < dMTDRL(π, ι) is satisfied equals(dlog2ne∑
d=0

n∑
k,`=1
k<`

2d+1∑
i=0

(−1)i
(
n+ 1

i

)
2d−i+1∑
L,K=0
L<K

(K− L− 1)`−k−1(K− L)n−`+k−1

)
/n! .

Under the additional restriction that dMTDRL◦ (π
◦, ι◦) = d the probability for

dMTDRL◦ (π
◦, ι◦) < dMTDRL(π, ι) equals(

n∑
k,`=1
k<`

2d+1∑
i=0

(−1)i
(
n+ 1

i

)
2d−i+1∑
L,K=0
L<K

(K− L− 1)`−k−1(K− L)n−`+k−1

)
/

2d+1∑
c=2d+1

〈
n

c

〉
,

where 〈nk 〉 is the Eulerian number.

Proof. For the proof the number N1(n) of permutations π of size n
with the following properties needs to be determined: i) π−1(n) <
π−1(1) and ii) ϑ(π) = 2d + 1, with d ∈ [0 : dlog2 ne]. Property (i) guar-
anties that N1(n) enumerates only permutations where the number
of chains differs from the number of circular chains. Hence, the for-
mer number is larger by one (see Proposition 3.2). Property (ii) guar-
anties that N1(n) counts only permutations for which this leads to
a difference between the MTDRL distance and the MTDRL◦ distance.
Then

N1(n) =

dlog2ne∑
d=0

n−1∑
k=1

n∑
`=k+1

N2(n, 2d + 1,k, `),

[April 2019 at 13:18 – classicthesis 4.4]

82 tandem duplication random losses on circular permutations

where N2(n, r,k, `) gives the number of permutations π of size n that
have r chains, element 1 at position ` (i. e., π−1(1) = `), and element
n at position k (i. e., π−1(n) = k), with 1 6 k < ` 6 n.

It is known that there exists a bijection between the maximal in-
creasing substrings of a permutation π and the chains in π−1. More
precisely, the bijection is the functional inverse of π, i. e., π(i)π(i +
1) . . . π(m) is a maximal increasing substring of π if and only if
(i, i+ 1, . . . ,m) is a chain of π−1 (see Proposition 3.4 in Bernt et al.
(2011)).

Hence, N2(n, r,k, `) equals the number of permutations π−1 that
have r maximal increasing substrings, element ` at the first position,
and element k at the last position. Thus, by Proposition 3.7 follows:

N2(n, r,k, `) =
r∑
i=0

(−1)i
(
n+ 1

i

)
r−i−1∑
L=0

r−i∑
K=L+1

(K− L− 1)`−k−1(K− L)n−`+k−1.

Hence,

N1(n) =

dlog2ne∑
d=0

n−1∑
k=1

n∑
`=k+1

2d+1∑
i=0

(−1)i
(
n+ 1

i

)
2d−i∑
L=0

2d+1−i∑
K=L+1

(K− L− 1)`−k−1(K− L)n−`+k−1.

Dividing N1(n) by the number of all permutations of size n (i. e.,
n!) gives the first result. For the second result the number N1(n) with
preassigned distance d has to be divided by the number of permuta-
tions that have a distance of d, i. e., by

∑2d+1
c=2d+1

〈
n
c

〉
.

Theorem 3.4 presents a formula for the calculation of the proba-
bility to overestimate the MTDRL distance. Figure 3.6 illustrates these
probabilities (as stated in the first equation of Theorem 3.4) for all
unsigned permutations up to a size of 37. The computations were
done using the GMP software library (Granlund and the GMP de-
velopment team, 2012). Figure 3.6 shows that the probabilities have
maxima for permutation sizes n that are a power of two. Except for
small sizes, virtually only permutations with a MTDRL◦ distance of
d = dlog2 ne− 1 contribute to the probability mass at these maxima.
Towards the next larger permutation size that is a power of two, first
the probabilities decrease and then increase again until the next max-
imum. The height of the maxima decreases with increasing size.

In order to find out if there exists a discrepancy between the theo-
retically computed probabilities presented in Figure 3.6 and the cor-
responding probabilities on mitochondrial gene order data, an exper-
iment on metazoan mitochondrial gene orders is performed in the
following paragraphs. The aim of the experiment is to investigate and
evaluate this reality gap on the probability to derive an overestimated
MTDRL distance.

[April 2019 at 13:18 – classicthesis 4.4]

3.2 consequences for biological applications 83

0.0

0.1

0.2

0.3

0.4

0.5

2 4 8 10 16 20 30 32 37
Size

P
ro
b
a
b
ili
ty

0
1
2
3
4

d

Figure 3.6: Probability that a uniformly chosen unsigned permutation π
with size n and MTDRL◦ distance d has a MTDRL distance of d+ 1.
For clarity, values for d > 5 are omitted since the corresponding
probabilities are smaller than 10−18 and therefore not visible in
the figure.

Experiment

The NCBI RefSeq (Pruitt et al., 2007) contains mitochondrial genome
sequences and their annotation. The experiments are based on the
data of RefSeq release 89 which contains the data of more than 104

complete mitochondrial genomes. The NCBI RefSeq is the most up-
to-date source for mitochondrial genomes and their annotation. How-
ever, the annotations that are presented contain a large number of
errors such as genes which are annotated on the reverse complement
strand or named incorrectly, e. g., see Boore et al. (2005) and Perseke
et al. (2008). Since these errors may mislead the analyses performed
in this thesis, a two step procedure has been used in order to ob-
tain an improved data set. Firstly, all mitochondrial genomes of the
metazoan species contained in the NCBI RefSeq release 89 have been
re-annotated with an improved version1 of MITOS (Bernt et al., 2013c).
Note that MITOS is the standard tool for gene annotation of mitochon-
dria. Secondly, only the 4900 mitochondrial genomes that contain the
standard metazoan set of 37 genes were included in the data set. This
data set contains 611 unique linear representative gene orders. For an-
alyzing the MTDRL distance only pairs of genomes can be considered
where all genes have the same orientation. Altogether 14752 genome
pairs satisfy this condition.

For all 14752 pairs of mitochondrial gene orders (π,σ) from the
NCBI RefSeq it is checked if the MTDRL distance for the represen-
tatives that are given in the data base is different from the MTDRL◦

distance. For the experiment, only pairs of gene orders have been
considered where the MTDRL◦ distance is at most four. One reason
for this is that a distance of four is close to the maximum MTDRL

distance for mitochondrial gene orders which is dlog2 37e = 6 by
Chaudhuri et al. (2006). It is also close to the number of random
TDRLs which are necessary to obtain a random gene order from
a given gene order (Aldous and Diaconis, 1986). Thus, all pairs of

1 unpublished http://mitos2.bioinf.uni-leipzig.de

[April 2019 at 13:18 – classicthesis 4.4]

http://mitos2.bioinf.uni-leipzig.de

84 tandem duplication random losses on circular permutations

Table 3.2: Number of pairs of unique metazoan mitochondrial gene
orders in the NCBI RefSeq that satisfy dMTDRL(π,σ) >
dMTDRL◦ ([π]∼, [σ]∼) = k with k 6 4. Shown are the absolute and
the relative frequency of the number of pairs.

k 1 2 3 4 Σ

absolute 1285 1310 188 11 2794

relative 0.09 0.09 0.01 7 · 10−4 0.19

mitochondrial gene orders (π,σ) have been considered for which
dMTDRL◦ ([π]∼, [σ]∼) < dMTDRL(π,σ) and dMTDRL◦ ([π]∼, [σ]∼) 6 4 holds.

Results

The empirical probabilities for the pairs of mitochondrial gene orders
(π,σ) from the NCBI RefSeq for which it holds that the MTDRL dis-
tance for the representatives that are given in the data base is different
from the MTDRL◦ distance are specified in Table 3.2 for all MTDRL◦ dis-
tances k ∈ [1 : 4].

Discussion

Some of the obtained pairs are well-known in the biological litera-
ture. For instance the standard chordate gene order, e. g., Petromyzon
marinus (NC_001626), and the deep see gulper eel Saccopharynx laven-
bergi (NC_005298) have been reported to differ by one large-scale
TDRL genome rearrangement (Inoue et al., 2003). In this study the
authors reported the biologically meaningful minimum MTDRL◦ dis-
tance which is different from the MTDRL distance of the representa-
tives given in the RefSeq. Another interesting example are the gene
orders of unionoid bivalves Lampsilis ornata (NC_005335) and Solenaia
oleivora (NC_022701). The mitogenome of S. oleivora was presented
in Huang et al. (2013) without an analysis of its gene order. Since
the scope of this section is mere one the number of obtained genome
pairs rather than the genome pairs itself a specific listing of all ob-
tained pairs is not presented in this thesis.

The percentage of gene order pairs with a difference between the
MTDRL distance and the MTDRL◦ distance is less than 10% for all
MTDRL◦ distances k ∈ [1 : 4]. The fractions of gene order pairs with
a difference between the MTDRL distance and the MTDRL◦ distance
are much higher than the theoretically computed probabilities with
the exception of the distance for k = 4. The theoretically computed
probabilities that have been computed according to Theorem 3.4 are
1.75 · 10−31, 1.13 · 10−20, 4.91 · 10−10, and 0.047 for permutation size
37 and the MTDRL◦ distances 1, 2, 3, and 4, respectively. The respec-
tive percentages for the mitochondrial data are 0.09, 0.09, 0.01, and
7 · 10−4, see Table 3.2.

One of the reasons for the differences is that the 611 unique gene or-
ders in the RefSeq are not random, but from phylogenetically related
species. Another reason is that for most mitochondrial genomes in the

[April 2019 at 13:18 – classicthesis 4.4]

3.2 consequences for biological applications 85

trn
F trn

I
co

x1 trn
M

trn
L1 trn

Q
trn

Y
co

x3 rrn
S co

b
trn

K
trn

C
na

d5
na

d1 trn
H

na
d2

trn
S2

rrn
L
trn

L2
trn

S1
trn

G
co

x2
na

d6 trn
P

trn
W trn

E
trn

V
atp

6
na

d4 trn
A

trn
N

trn
R

trn
T

Gene in first position

N
um

be
r o

f g
en

om
es

Figure 3.7: Number of mitochondrial gene orders with a specific gene at the
first position in the annotation given by RefSeq release 89.

RefSeq the same gene is at the first position, see Figure 3.7. Therefore,
it holds that the MTDRL distance and the MTDRL◦ distance coincide
which is implied by Corollary 3.7. In the data set, the most frequent
first position is gene trnF. This gene is at the first position in 3079
of the considered 4900 mitochondrial genomes covering nearly all
Chordata mitogenomes in the data base. Genes trnI and trnM are fre-
quently chosen as the first position for the Arthropoda mitogenomes.
The fourth gene that appears in more than 100 cases in the first po-
sition is cox1 which is frequently the case in arthropod and mollusc
mitogenomes. In most of these cases the gene chosen for the first po-
sition is adjacent to the large non-coding region of the mitogenome.
This region is called the control region in chordates and the A+T rich
region in invertebrates. This choice of the starting gene might just be
a habit or may be selected because the control region contains many
repetitions and is therefore difficult to sequence. In any case, this
choice gives the RefSeq database implicitly some robustness against
inaccuracies in the computation of MTDRL◦ distances. However, the
fact that almost 20% of the compared gene order pairs have an over-
estimated MTDRL distance points out that the circularity of the mito-
chondrial gene orders should be considered.

3.2.2 Evaluation of the Tandem Duplication Non-Random Loss Model

Theorem 3.1 showed that it is not always possible to uniquely re-
construct a TDRL only from the knowledge of the two circular gene
orders before and after the application of the TDRL since there exist
several TDRLs that can explain the change from one circular genome
to another. More precisely, at least two different loss patterns exists
for each representative (Corollary 3.5). This implies that it is not suf-
ficient to consider the loss pattern of a single representative, even if
its TDRL distance is minimum. This is particularly important if pre-
dictions are based on the loss pattern of the single representative.

In the analyses of the TDRLs from Limulus polyphemus to Narceus
annularus (Lavrov et al., 2002) and Trichocera bimaculata (with the
same circular gene order as Drosophila melanogaster) to Paracladura tri-
choptera (Beckenbach, 2011) it has been suggested that the loss of the
genes is non-random, but specific for gene orientation or transcript
structure, i. e., genes with the same orientation or genes belonging to

[April 2019 at 13:18 – classicthesis 4.4]

86 tandem duplication random losses on circular permutations

the same transcript are lost jointly. For the TDRL that generated the
N. annularus gene order from the putative panarthropod gene order
(represented by L. polyphemus) the following scenario was suggested
in Lavrov et al. (2002), see also Figure 3.8 (a). The complete genome
was duplicated starting from the large non-coding region between
rrnS and trnI which supposedly contains the regulatory signals. The
subsequent loss of redundant genes follows the orientation of the
genes, i. e., genes on the so called major coding strand are lost in
one copy and those on the minor coding strand are lost in the other
copy. The only exception to this rule is trnC. Under the assumption
that two unidirectional transcript units exist that are controlled by
signals in the control region (as in the rat mitogenomes where its
three transcript promoters are located in the control region (Lavrov
et al., 2002; Bernt et al., 2013b)), it has been suggested that the non-
random loss is caused by the loss of the transcript promoters. For
the rearrangement of the T. bimaculata gene order to the one of P. tri-
choptera a whole genome duplication followed by non-random loss of
the genes of two out of five transcript units and the random loss of
the remaining genes has been suggested (Beckenbach, 2011), see also
Figure 3.8 (b). In contrast to the study of Beckenbach (2011) the finer
grained transcript structure of D. melanogaster (which might be more
relevant than the one of the rat used in Lavrov et al. (2002)), which
consists of five parts, has been assumed.

In both papers, Lavrov et al. (2002) and Beckenbach (2011), only
one possible TDRL was considered by the authors. In the following
paragraphs the differences of the gene orders are discussed in consid-
eration of all equivalent circular TDRLs. In both gene orders a single
tRNA position has been corrected for an additional transposition of a
tRNA that has been suggested in the literature. Therefore, for N. an-
nularus trnT has been assumed at its putative position after the TDRL,
i. e., before the transposition (as in Figure 2.B.2 of Lavrov et al. (2002)).
For P. trichoptera the trnI has been omitted since no suggestion on the
order of the TDRL and the transposition of trnI has been made in the
literature. Figure 3.8 shows the equivalent circular TDRLs for the two
comparisons.

The difference of the P. trichoptera mitochondrial genome with re-
spect to the T. bimaculata gene order can be explained by 24 circular
TDRLs (TDRLs with switched L and R are not counted separately
here and in the following) where the genes of both transcript units C
and D are lost in the same copy as in Beckenbach (2011), but also by
12 circular TDRLs where only the genes of one transcript unit are lost
jointly in the same copy. In agreement with the prediction of Becken-
bach (2011) for the linear gene orders, the loss of the genes is not
specific for the genes in the transcript units A, B, and E in any of the
equivalent TDRL◦. For none of the circular TDRLs the loss is specific
to gene orientation. However, if the two rRNAs are ignored there are
15 TDRLs with strand specific loss.

For the Narceus gene order in addition to the circular TDRL with
duplication origin trnI (as in Lavrov et al. (2002)) also for the duplica-
tion origin trnQ the gene loss is – with the exception of trnC – specific

[April 2019 at 13:18 – classicthesis 4.4]

3.2 consequences for biological applications 87

A B C D E A E A C

element

o
ri
g
in

c1
c2
K
D
a8
a6
c3
G
n3
A
R
N
S1
E
T
n6
cb
S2
-Q
-Y
-F
-n5
-H
-n4
-n4l
-P
-n1
-L2
-L1
-16S
-V

-12S
I
M
n2
W
-C

c
1
c
2 K D a
8
a
6
c
3 G n
3 A R N S
1 E T
n
6
c
b
S
2
-Q -Y -
F
-n
5 -H
-n
4

-n
4
l
-P -n
1

-L
2
-L
1

-1
6
S -V

-1
2
S I M n
2 W -C

(a) N. annularus

A B E A D B BD E C

o
ri
g
in

-16S
-12S

c1

c2
K

D

a8
a6

c3
G

n3

A

R
N

S1

E

T

n6

cb

S2

-Q

-Y

-F
-n5
-H
-n4
-n4l

-P

-n1

L2

-L1
-V

M
n2
W

-C

element

-1
6
S

-1
2
Sc
1

c
2 KD a
8
a
6

c
3 G n
3A R NS
1 E T

n
6

c
b

S
2

-Q -Y-F
-n
5 -H
-n
4

-n
4
l

-P -n
1

L
2

-L
1
-VM n
2 W -C

(b) P. trichoptera

Figure 3.8: The equivalent circular TDRLs for the putative panarthropod
gene order to N. annularus (a) and for the T. bimaculata gene or-
der to P. trichoptera (b) generated by EqualTDRL (Hartmann et
al., 2018c). The five primary transcripts A, B, C, D, E according
to Beckenbach (2011) are shown on the top. Boxes highlight tran-
script units that are deleted completely in one of the copies. Stars
mark the duplication origins assumed in Beckenbach (2011) and
Lavrov et al. (2002), respectively. Gene abbreviations are: one cap-
ital letter indicating the amino acid for the tRNAs, a: atp, n: nad,
cb: cob, c: cox, and 12S and 16S for the small and large ribosomal
subunit.

for the gene orientation. In all other TDRLs the loss is not specific to
the gene orientation. There is also some similarity between the set of
genes of the loss pattern and the set of genes of the mitochondrial
transcript units of the fruit fly: A single circular TDRL that gener-
ates the Narceus gene order has the property that the genes of the
transcript units A, B, D, E are lost jointly in one of the copies. Further-
more, the genes of three (two, and one, respectively) transcript units
are lost in conjunction in 21 (13, and 2, respectively) of the equivalent
circular TDRLs. Transcript unit C is lost differentially in all circular
TDRLs, but when trnC is ignored (as in Lavrov et al. (2002)) then all
but six of the circular TDRLs have a joint loss pattern. The special sta-
tus of trnC in both examples is a remarkable coincidence. The genes
belonging to the fruit fly transcript unit A are scattered throughout
the Narceus mitogenome. In particular, the trnL2 gene interrupts the
transcript unit E. Since trnL2 is known to be inverse transposed in
Insects and Crustacea with respect to the remaining Arthropoda (Boore
et al., 1998) this might indicate some differences between the tran-
scription units of Narceus and the fruit fly.

Altogether, the scenarios presented in Lavrov et al. (2002) and Beck-
enbach (2011) overlap with the results presented in this section but
due to the absence of any duplication remnants there is no evidence
indicating which of the equivalent circular TDRL events actually took
place. Hence, these results weaken the empirical evidence for the
otherwise perfectly reasonable tandem duplication non-random loss

[April 2019 at 13:18 – classicthesis 4.4]

88 tandem duplication random losses on circular permutations

model that has been suggested in Lavrov et al., 2002; Beckenbach,
2011.

3.3 conclusion

The tandem duplication random loss (TDRL) is an important re-
arrangement operation especially in mitochondrial gene orders. In
this chapter combinatorial properties of the TDRL rearrangement
model have been studied on circular permutations that represent cir-
cular gene orders. Thereby, previous works on the TDRL rearrange-
ment have been significantly extended. In particular, two fundamen-
tal genome rearrangement problems have been studied on both, di-
rected and undirected unsigned circular permutations. These are the
sorting problem and the distance problem. Therefore, the notion of
chains of a permutation that is crucial for studying TDRLs has been
extended to circular permutations. It has been shown that the num-
ber of circular chains of a circular permutation equals the minimum
number of chains of its representatives. This result connects the pre-
sented theory to the existing theory of TDRLs on linear permutations.
The set of equivalent circular TDRLs (TDRL◦s) and its construction
has been studied. It has been demonstrated that for every origin of
a TDRL◦ there exist at least two different TDRL◦s that result in the
same circular gene order. Based on these results it was shown that the
MTDRL◦ distance between two directed circular permutations is either
less by one or equal to the MTDRL distance of the corresponding linear
representatives. Hence, using the MTDRL distance for an unfavorable
choice of representatives may lead to an overestimation of the rear-
rangement distance. A formula for computing the probability of this
error has been given. In addition, a closed formula for the MTDRL◦

distance between two unsigned undirected circular permutations has
been deduced.

The empirical application of the results for metazoan mitochondrial
gene orders has shown that the circularity of the genomes should be
considered, since otherwise their distance is overestimated for a con-
siderable fraction of the pairwise comparisons. The relevance of the
theoretical findings was pointed out by a detailed analysis of two
pairs of gene orders that have been used in the literature to argue for
the tandem duplication non-random loss model. The analysis high-
lighted the importance to study the circular case explicitly. This is
because the set of equivalent TDRLs exhibits a variety of different
loss patterns, allowing for different interpretations as well.

In summary, the results presented in this chapter have the follow-
ing practical consequences for biological applications:

• For studying the MTDRL◦ distance for gene orders with given
gene orientation, it is sufficient to compute the MTDRL distance
for a pair of representatives of the gene orders that start with
the same element. If otherwise the transcription direction of
the genes is not given, then it is necessary to compute also the
MTDRL◦ distance for the representative that can be obtained by

[April 2019 at 13:18 – classicthesis 4.4]

3.3 conclusion 89

reversing the reading direction of the start gene order and shift-
ing its gene order such that it starts with the same gene as the
target gene order.

• For studying the potential loss pattern (e. g., random or non-
random) the whole set of equivalent TDRL◦s must be consid-
ered. This set can be obtained by the software tool EqualTDRL
(Hartmann et al., 2018c) which computes and illustrates all
equivalent TDRLs.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

4
I N V E R S E TA N D E M D U P L I C AT I O N R A N D O M
L O S S E S O N L I N E A R P E R M U TAT I O N S

Gene order evolution of unichromosomal genomes, for ex-
ample mitochondrial genomes, has been modeled mostly
by four major types of genome rearrangements: inversions,

transpositions, inverse transpositions, and tandem duplication ran-
dom losses. Combined gene order rearrangement models that con-
sider all those types of rearrangements while admitting computa-
tional tractability are rare, see Section 2.3. In particular, models
that include transpositions motivate typically hard problems where
known exact algorithms have an exponential worst case runtime.
Therefore, Yancopoulos et al. (2005) and Bergeron et al. (2006) sug-
gested the double cut and join genome rearrangement (DCJ) which
cuts a (potentially multichromosomal) gene order at two different
positions and rejoins the resulting fragments. The DCJ model has
the advantage that it considers all four major types of unichromo-
somal genome rearrangements (and also other rearrangements that
are common in multichromosomal gene orders) while simplifying the
computational complexity for both the sorting problem and the dis-
tance problem. Furthermore, the DCJ rearrangement model allows
the coexistence of multiple chromosomes, which may be linear or
circular in the genomes. While such genome structures may be ac-
ceptable for some nuclear genomes, e.g., in Bacteria (Badrinarayanan
et al., 2015), they are considered to be aberrant for metazoan mito-
chondrial genomes, since the usual metazoan mitochondrial genome
is organized in a single circular chromosome (Bernt et al., 2013b).
Consequently, there is a need for a tractable genome rearrangement
model that includes all major types of rearrangements of mitochon-
dria and excludes the coexistence of multiple chromosomes.

In this chapter such a rearrangement model, namely the inverse
tandem duplication random loss (iTDRL) model, is suggested and
initially studied on signed linear permutations. This rearrangement
duplicates and inverts a segment of continuous genes of a gene or-
der followed by the random loss of one of the redundant copies of
each gene. The iTDRL rearrangement provides the advantage that it
can mimic all major mitochondrial rearrangements: 1) an inversion
and an inverse transposition can each be represented by at most two
iTDRLs and 2) a transposition and a TDRL can each be represented by
two iTDRLs. The iTDRL rearrangement has currently been proposed
by several authors who suggest it to be a possible mechanism of mito-
chondrial gene order evolution. In particular, evidence for an iTDRL
as evolutionary mechanism has been found in mitochondrial gene
order comparisons on the walking stick Ramulus hainanense (Jühling
et al., 2011), the tongue sole Cynoglossus semilaevis (Kong et al., 2009),
and the flatfish Crossorhombus azureus (Shi et al., 2013). The iTDRL re-

[April 2019 at 13:18 – classicthesis 4.4]

92 inverse tandem duplication random losses on linear permutations

arrangement is also motivated by the fact that inverted duplications
often occur in the control region of Insecta mitochondrial genomes
(Xiaochen et al., 2017). In this chapter, the algorithmic study of this
model of genome rearrangement is initiated on linear signed permu-
tations. In particular, the significant contributions of this chapter are:

• The distance problem for two signed linear permutations under
the iTDRL model can be solved in linear time with respect to
the size of the considered permutations (Corollary 4.2).

• A parsimonious sorting scenario for two signed linear permu-
tations under the iTDRL model can be obtained in quasilinear
time with respect to the size of the considered permutations
(Algorithm 1).

• The MiTDRL distance provides bounds on the minimum number
of inversions, transpositions, inverse transpositions, and TDRLs
that are necessary to transform one given signed permutation
into another signed permutation (Corollary 4.2).

The chapter is organized as follows. Section 4.1 investigates the
sorting problem and the distance problem for signed linear permu-
tations under the iTDRL model. Section 4.2 shows that the distance
problem under the iTDRL model provides bounds on the distance
problem under all four major mitochondrial rearrangements. A con-
clusion is given in Section 4.3.

4.1 solving the distance and the sorting problem

In the following, the distance and the sorting problem for unsigned
linear permutations under the iTDRL model is investigated. There-
fore, this section is divided into three parts: Section 4.1.1 recalls ba-
sic definitions and notations that are used throughout this chapter.
The number of iTDRLs that are necessary and sufficient to obtain a
permutation having a specific number of maximum increasing sub-
strings from the identity permutation is investigated in Section 4.1.2.
Computational results for the distance problem and the sorting prob-
lem under MiTDRL are given in Section 4.1.3. This section also presents
a quasilinear time algorithm for solving the sorting problem for arbi-
trary signed linear permutations.

4.1.1 Basic Definitions and Preliminaries

For the convenience of the reader, the formal definitions relevant for
determining the MiTDRL distance are recalled (for references see Sec-
tion 2.2) in this section.

A signed linear permutation π of size n ∈ N is a bijection
π : [−n : n] \ {0} → [−n : n] \ {0} such that π(−i) = −π(i) for
all i ∈ [−n : n] \ {0}. Observe that a signed permutation π =

(π(−n) . . . π(−1) π(1) . . . π(n)) can always be represented by

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 93

π = (π(1) . . . π(n)), as the equation π(−i) = −π(i) holds by defi-
nition. In this section, signed linear permutations are used as a for-
mal model for gene orders in which each element represents a gene
and the sign represents its strandedness. When the context is clear a
signed permutation is called permutation and the + sign of an ele-
ment is omitted. The set of all signed permutations of size n is de-
noted by sPn. The identity permutation (1 2 . . . n) is denoted by ι.
For a permutation π = (π(1) . . . π(n)) the corresponding permutation
where the order and the sign of all elements is reversed is defined
as permutation π with π(i) = −π(n+ 1 − i) for all i ∈ [1 :n]. Note
that π is uniquely defined for every π ∈ sPn. Figure 4.1 illustrates an
example of π.

A subsequence of π = (π(1) . . . π(n)) is a sequence
π(i1)π(i2) . . . π(ik) with 1 6 i1 < i2 < . . . < ik 6 n. When all
elements in a subsequence S of π appear consecutively, then S is
called a substring of π. The set of all (unsigned) elements of a subse-
quence S is denoted by E(S). The first (last) element of S is denoted
by fS (respectively `S). A substring S = π(i) . . . π(k) (of π with
1 6 i 6 k 6 n) is called increasing if either i = k or π(j) < π(j+ 1)

for all j ∈ [i : k− 1]. An increasing substring is called maximal when
it cannot be extended into a longer increasing substring. The set of
all maximal increasing substrings of a permutation π is denoted by
S(π). With |S(π)| the number of maximal increasing substrings of
π is denoted. The maximal increasing substring decomposition of π is
the unique list of pairwise disjoint maximal increasing substrings
τ1τ2 . . . τ|S(π)| of π such that π(1) . . . π(n) = τ1τ2 . . . τ|S(π)| and for
all 1 6 j 6 |S(π)| it holds that |τj| > 1. Example 4.1 illustrates the
maximal increasing substring decomposition of a permutation.

Example 4.1. Consider the permutation π = (1 2 −3 4 −5 6 7 9 8). The
set of maximal increasing substrings of π is S(π) = {1 2,−3 4,−5 6 7 9, 8}
and the maximal increasing substring decomposition of π is τ1τ2τ3τ4 with
τ1 = 1 2, τ2 = −3 4, τ3 = −5 6 7 9, and τ4 = 8.

A convenient way to work with signed permutations of size n is
to represent them as strings over the alphabet [−n :n] \ 0 of integers.
A consequence of this is that a permutation can be represented as
a concatenation of (character) disjoint substrings. This also holds for
reversing the order and the sign of every element of a substring of
a permutation, i. e., if S = π(i1) . . . π(ik) is a substring of π, then
S is the sequence for which π(ij) = −π(ik + i1 − ij) holds for all
j ∈ [1 : k]. Let S1 and S2 be two substrings of a permutation π such
that E(S1) ∩ E(S2) = ∅. By S1 ⊕ S2 the sequence is denoted that is
created by sorting the elements of S1 and S2 increasingly. Figure 4.1
illustrates the given definitions that are related to permutations and
substrings.

An inverse tandem duplication random loss ρ : sPn → sPn is a map-
ping that processes an input π by taking two subsequences L and
R (of π) with E(L) ∩ E(R) = ∅ and E(L) ∪ E(R) = E(π) that are out-
putted as ρ ◦ π = LR or as ρ ◦ π = LR. In the first case ρ is called
right iTDRL (riTDRL) and in the second case it is called left iTDRL

[April 2019 at 13:18 – classicthesis 4.4]

94 inverse tandem duplication random losses on linear permutations

(a) (b)

Figure 4.1: Illustration of π = (−3 −1 4 7 −2 6 5) (a) and π =
(−5 −6 2 −7 −4 1 3) (b). Each dot represents an element of
the corresponding permutation. Maximal increasing substrings
are illustrated by continuous lines. The maximal increasing sub-
string decomposition of π is π = τ1τ2τ3 with τ1 = −3−1 4 7,
τ2 = −2 6, and τ3 = 5. Consequently, S(π) = {τ1, τ2, τ3} and
|S(π)| = 3. The substring −1 4 of π is increasing. While the se-
quence −5 2−4 3 is a subsequence of π, the sequences S1 = −6 2
and S2 = −7−4 1 3 are substrings of π. For S1 and S2 it holds that
S1 ⊕ S2 = −7−6−4 1 2 3. Intriguingly, π is point-symmetrically
to π.

(liTDRL). Such a mapping is denoted as ρriTDRL(r,E(L),E(R)) for an
riTDRL and ρliTDRL(`,E(L),E(R)) for an liTDRL. If the context is clear
an iTDRL ρriTDRL(r,E(L),E(R)) (respectively ρliTDRL(`,E(L),E(R))) is
written as ρ(r,E(L),E(R)) (respectively ρ(`,E(L),E(R))) or ρ for the
sake of brevity. The set of all iTDRLs is denoted by MiTDRL. From
a biological point of view an iTDRL can be seen as first applying a
reversed tandem duplication to π, i. e., π is placed adjacently to the
left (respectively right) of π resulting in a duplicated intermediate ππ
(respectively ππ), and to subsequently obtain a new permutation by
random loss of one copy of every duplicated element. For an illustra-
tion of the iTDRL rearrangement see Section 2.2.3. The composition
of two functions f and g is denoted by f ◦ g, i. e., (f ◦ g)(x) := f(g(x)).

Recall that the sorting problem of signed permutations under the
iTDRL model aims to find a minimum length sequence of iTDRLs
that transforms one given permutation into another given permu-
tation. The MiTDRL distance, denoted by dMiTDRL(π,σ), between two
permutations π and σ is the minimum number of iTDRLs that is nec-
essary to transform π into σ. Hence, it holds that dMiTDRL(π,σ) :=

min {t ∈ N0 : ρt ◦ . . . ◦ ρ1 ◦ π = σ with ρ1, . . . , ρt ∈ MiTDRL}. Observe
that since dMiTDRL(π,σ) = dMiTDRL(π

−1 ◦ π,π−1 ◦ σ) = dMiTDRL(ι,π
−1 ◦

σ), where π−1 is the inverse permutation of π, it is sufficient to com-
pute the MiTDRL distance for ι and an arbitrary permutation from sPn.
The following sections follow this notion.

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 95

4.1.2 Structural Characterization of Permutations Generated by Repeated
Application of iTDRLs

In this section, the structure of permutations is characterized that can
be generated by sequentially applying k ∈ N iTDRLs to the identity
permutation ι. The characterization utilizes the number of maximal in-
creasing substrings of a permutation. A lower bound on the (minimum)
number of iTDRLs that are necessary to produce a permutation with
a certain number of maximal increasing substrings is given in Propo-
sition 4.1. A corresponding upper bound is given in Proposition 4.2.
From the lower and upper bound the main theorem is derived in
Theorem 4.1. The insights gained in this section are an important
component in solving the sorting problem (and the distance prob-
lem) for signed linear permutations under the iTDRL model in the
Section 4.1.3.

The Lower Bound

This subsection provides a lower bound on the number of required
iTDRLs to generate a permutation from ι that has a certain number
of maximal increasing substrings. For the proof of the lower bound
in Proposition 4.1 the following four lemmata are needed.

Lemma 4.1. Let π be a signed permutation of size n. Then S ∈ S(π) if and
only if S ∈ S(π).

Proof. Let π ∈ sPn and let S = π(i) . . . π(j) ∈ S(π) with 1 6 i 6
j 6 n. The fact that S ∈ S(π) implies that S is a maximal increasing
substring of π, i. e., it holds that π(k) < π(k + 1) for all i 6 k < j.
Since S is maximal it cannot be extended to the left or the right, i. e.,
either i = 1 (respectively j = n) or i > 1 (respectively j < n) and
π(i − 1) > π(i) (respectively π(j) > π(j + 1)). By the definition of
π it holds that S = −π(j) −π(j− 1) . . . −π(i) is a substring of π.
From π(k) < π(k+ 1) for all i 6 k < j it follows that −π(k+ 1) <

−π(k), hence S is an increasing substring of π. If i = 1 and j = n it
directly follows that S cannot be extended in the respective direction.
Hence, consider that i > 1 or j < n. Consequently, π(i− 1) > π(i)

or π(j) > π(j+ 1) holds which implies −π(i− 1) < −π(i) or −π(j) <

−π(j+ 1), respectively. Thus, S is a maximal increasing substring of
π. Consequently, S ∈ S(π) implies S ∈ S(π). The other direction, i. e.,
if S ∈ S(π) then S ∈ S(π), follows from this implication and the fact
that π = π and S = S.

Lemma 4.1 shows that a substring S of a permutation π is maxi-
mal increasing if and only if its reversed substring S is maximal in-
creasing in π. The following corollary is an immediate consequence
of Lemma 4.1. It shows that the number of maximal increasing sub-
strings of π and π coincide.

Corollary 4.1. For a signed permutation π of size n and its reversed per-
mutation π it holds that |S(π)|=|S(π)|.

[April 2019 at 13:18 – classicthesis 4.4]

96 inverse tandem duplication random losses on linear permutations

Proof. By Lemma 4.1 it holds that S ∈ S(π) if and only if S ∈ S(π).
Hence, the equation S(π) = {S1, . . . ,S|S(π)|} holds if and only if
S(π) = {S1, . . . ,S|S(π)|}. Consequently, |S(π)| = |S(π)|.

Consider a string of integers S and a subsequence S ′ of S. The
following lemma states that the number of maximal increasing sub-
strings of S is always at least the number of maximal increasing sub-
strings of S ′.

Lemma 4.2. Let S be a string of integers with the maximal increasing sub-
string decomposition S = S1 . . . S|S(S)| and let S ′ be a subsequence of S. The
following inequality holds:

|S(S ′)| 6 |{i ∈ [1 : |S(S)|] :E(S ′)∩ E(Si) 6= ∅}| 6 |S(S)|.

Proof. Let S ′ = S ′1 . . . S
′
|S(S ′)| be the maximal increasing substring de-

composition of S ′. The fact that every maximal increasing substring
of S ′ contains at least one element, and the fact that S ′ is a subse-
quence of S (i. e., E(S ′) ⊆ E(S)) ensure that for every maximal increas-
ing substring S ′i of S ′ with i ∈ [1 : |S(S ′)|] holds 1 = |S(S ′i)| 6 |{j ∈
[1 : |S(S)|] :E(S ′i)∩ E(Sj) 6= ∅}|. Consequently,

|S(S ′)| =
∑

S ′i∈S(S ′)

|S(S ′i)|

6
∑

S ′i∈S(S ′)

|{j ∈ [1 : |S(S)|] :E(S ′i)∩ E(Sj) 6= ∅}|

= |{i ∈ [1 : |S(S)|] :E(S ′)∩ E(Si) 6= ∅}|

gives the left inequality. Since |S(S)| is the maximum of the set
|{i ∈ [1 : |S(S)|] :E(S ′)∩ E(Si) 6= ∅}| the right inequality follows.

The following lemma shows that the sum of the number of maxi-
mal increasing substrings over a set of signed permutations is always
at least the number of maximal increasing substrings of a concatena-
tion of subsequences of the given set of permutations.

Lemma 4.3. Let π1, . . . ,πk ∈ sPn and let Si be a non-empty subsequence
of πi for all i ∈ [1 : k] such that E(Si) ∩ E(Sj) = ∅ for all 1 6 i < j 6 k.
The following equation holds:

|S(S1S2 . . . Sk)| =

k∑
i=1

|S(Si)|−K 6
k∑
i=1

|S(Si)| 6
k∑
i=1

|S(πi)|,

where K = |{j ∈ [1 : k− 1] : `Sj < fSj+1}|.

Proof. By Lemma 4.2 |S(Si)| 6 |S(πi)| is obtained for all i ∈ [1 :k], thus
the last two inequalities hold. With τi1 . . . τ

i
|S(Si)|

the maximal increas-
ing substring decomposition of Si is denoted for all i ∈ [1 : k] and it
holds that S(Si) = {τi1, . . . , τi

|S(Si)|
}. Now observe that all internal max-

imum increasing substrings of a Si are present in S1S2 . . . Sk as well,
i. e., for all Si it holds that τik ∈ S(S1S2 . . . Sk) for all k ∈ [2 : |S(Si)|− 1].
Furthermore, τ11 ∈ S(S1S2 . . . Sk) and τk

|S(Sk)|
∈ S(S1S2 . . . Sk) since

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 97

the first and the last maximum increasing substring cannot be ex-
tended to the left and the right, respectively. Since two subsequences
are pairwise disjoint it holds either `Si > fSi+1 or `Si < fSi+1 for each
i ∈ [1 :k− 1]. If `Si > fSi+1 then τi

|S(Si)|
cannot be extended to the right

and τi+11 cannot be extended to the left. Hence, τi
|S(Si)|

and τi+11 are

counted separately in |S(S1S2 . . . Sk)| as they are in
∑k
i=1 |S(Si)|− K.

If `Si < fSi+1 then τi
|S(Si)|

τi+11 forms an increasing substring in
S1S2 . . . Sk. Consequently, while τi

|S(Si)|
and τi+11 are both counted

separately in
∑k
i=1 |S(Si)| only one string, i. e., τi

|S(Si)|
τi+11 , is counted

in |S(S1S2 . . . Sk)|. Observe that this case is counted in K, which (in
this case) reduces

∑k
i=1 |S(Si)| by one. Altogether, the first equation

of the lemma follows.

The next and final lemma states that the application of an iTDRL
to a permutation π always results in a permutation that has less than
twice the number of maximal increasing substrings of π.

Lemma 4.4. Let π ∈ sPn with `π < 0 < fπ. Then, for every iTDRL ρ ∈
MiTDRL it holds that |S(ρ ◦ π)| 6 2|S(π)|− 1. Furthermore, if |S(ρ ◦ π)| =
2|S(π)|− 1 then `ρ◦π < 0 < fρ◦π.

Proof. Let π ∈ sPn with `π < 0 < fπ and let ρ ∈ MiTDRL. Then ρ ◦ π
can be written as ρ ◦ π = ττ ′ (respectively ρ ◦ π = τ ′τ), where τ is
a subsequence of π and τ ′ is a subsequence of π, if ρ is an riTDRL
(respectively liTDRL). Corollary 4.1 implies that |S(π)| = |S(π)| and
by Lemma 4.2 holds that |S(τ)| 6 |S(π)| and |S(τ ′)| 6 |S(π)|. Then,
Lemma 4.3 implies |S(ττ ′)| = |S(τ)|+ |S(τ ′)|− K1 6 |S(τ)|+ |S(τ ′)| 6
2|S(π)| and |S(τ ′τ)| = |S(τ)|+ |S(τ ′)|− K2 6 |S(τ)|+ |S(τ ′)| 6 2|S(π)|,
where K1 = 1 (respectively K2 = 1) if `τ < 0 < fτ ′ (respectively
`τ ′ < 0 < fτ) and K1 = 0 (respectively K2 = 0) otherwise. Hence, if
|S(τ)| 6 |S(π)|− 1 and |S(τ ′)| 6 |S(π)|− 1, then |S(ττ ′)| 6 2|S(π)|− 2 <
2|S(π)| − 1 and |S(τ ′τ)| 6 2|S(π)| − 2 < 2|S(π)| − 1. Consequently, it
remains to consider the cases where |S(τ)|, |S(τ ′)| > |S(π)| − 1 and
at least one of |S(τ)| or |S(τ ′)| is |S(π)|. More precisely, the follow-
ing cases remain to be considered: i) |S(τ)| = |S(τ ′)| = |S(π)|, ii)
|S(τ)| = |S(π)| − 1 and |S(τ ′)| = |S(π)|, and iii) |S(τ)| = |S(π)| and
|S(τ ′)| = |S(π)|− 1. Let π = π1 . . . π|S(π)| be the maximal increasing
substring decomposition of π. Then 0 < fπ (respectively `π < 0) im-
plies that π1 (respectively π|S(π)|) contains only positive (respectively
negative) elements. Hence, Lemma 4.1 implies that π1 (respectively
π|S(π)|) contains only positive (respectively negative) elements, where
π = π1 . . . π|S(π)| is the maximal increasing substring decomposition
of π. In the following, the statement is proven in the cases (i) and (ii).
The proof for Case (iii) is similar to Case (ii).

(i): By Lemma 4.2 it holds that E(τ)∩E(πi) 6= ∅ and E(τ ′)∩E(πi) 6=
∅ for all i ∈ [1 : |S(π)|]. Hence, since E(τ) ∩ E(π1) 6= ∅ (re-
spectively E(τ) ∩ E(π|S(π)|) 6= ∅) it holds that fτ > 0 (respec-
tively `τ < 0). Analogously, E(τ ′) ∩ E(π1) 6= ∅ (respectively
E(τ ′)∩ E(π|S(π)|) 6= ∅) implies that fτ ′ > 0 (respectively `τ ′ < 0).
Hence, `τ < 0 < fτ ′ (respectively `τ ′ < 0 < fτ) if ρ is an riTDRL

[April 2019 at 13:18 – classicthesis 4.4]

98 inverse tandem duplication random losses on linear permutations

(respectively liTDRL). Consequently, by Lemma 4.3 it holds that
|S(ττ ′)| = |S(τ)|+ |S(τ ′)|− K1 = |S(π)|+ |S(π)|− 1 = 2|S(π)|− 1

and |S(τ ′τ)| = |S(τ)|+ |S(τ ′)|−K2 = |S(π)|+ |S(π)|−1 = 2|S(π)|−

1. Hence, |S(ρ ◦ π)| = 2|S(π)|− 1 and `ρ◦π < 0 < fρ◦π.

(ii): By Lemma 4.2 it holds that E(τ ′)∩E(πi) 6= ∅ for all i ∈ [1 : |S(π)|].
Hence, since E(τ ′)∩ E(π1) 6= ∅ (respectively E(τ ′)∩ E(π|S(π)|) 6=
∅) it holds that fτ ′ > 0 (respectively `τ ′ < 0). By Lemma 4.2
there exists an i ∈ [1 : |S(π)|] with E(τ) ∩ E(πi) = ∅ and for all
j ∈ [1 : |S(π)|] \ {i} it holds that E(τ)∩ E(πi) 6= ∅.

– Consider first that i = 1, then E(π|S(π)|) ∩ E(τ) 6= ∅, hence
`τ < 0. Consequently, `τ < 0 < fτ ′ and by Lemma 4.3 it
holds |S(ττ ′)| = |S(τ)|+ |S(τ ′)|− K1 = |S(π)|− 1+ |S(π)|−

1 = 2|S(π)| − 2 < 2|S(π)| − 1. Analogously, Lemma 4.3
yields |S(τ ′τ)| = |S(τ ′)|+ |S(τ)|− K2 6 |S(π)|− 1+ |S(π)| =

2|S(π)|− 1 with `ρ◦π = `τ ′τ = `τ < 0 < fτ ′ = fτ ′τ = fρ◦π.

– Consider now that i = |S(π)|. Then, by Lemma 4.2 E(π1)∩
E(τ) 6= ∅, hence fτ > 0. Consequently, `τ ′ < 0 < fτ and
by applying Lemma 4.3 again |S(τ ′τ)| = |S(τ ′)| + |S(τ)| −

K2 = |S(π)| + |S(π)| − 1 − 1 = 2|S(π)| − 2 < 2|S(π)| − 1 is
obtained. Analogously, Lemma 4.3 also provides |S(ττ ′)| =

|S(τ)|+ |S(τ ′)|− K1 6 |S(π)|− 1+ |S(π)| = 2|S(π)|− 1 with
`ρ◦π = `ττ ′ = `τ ′ < 0 < fτ = fττ ′ = fρ◦π.

– Finally, consider i ∈ [2 : |S(π)| − 1]. Then, by Lemma 4.2
E(π1) ∩ E(τ) 6= ∅ and E(π|S(π)|) ∩ E(τ) 6= ∅, hence fτ > 0

and `τ < 0 holds. Thus, `τ < 0 < fτ ′ and `τ ′ < 0 < fτ
is implied. As before, using Lemma 4.3 yields |S(ττ ′)| =

|S(τ)|+ |S(τ ′)|− K1 = |S(π)|− 1+ |S(π)|− 1 = 2|S(π)|− 2 <

2|S(π)| − 1 and |S(τ ′τ)| = |S(τ ′)| + |S(τ)| − K2 = |S(π)| +

|S(π)|− 1− 1 = 2|S(π)|− 2 < 2|S(π)|− 1.

Altogether, either |S(ρ ◦ π)| < 2|S(π)|− 1 or |S(ρ ◦ π)| = 2|S(π)|− 1 and
`ρ◦π < 0 < fρ◦π holds, which proves the statement.

Given Lemma 4.1 to Lemma 4.4, the sought lower bound (on the
number of required iTDRLs to generate a permutation from ι that has
a certain number of maximal increasing substrings) can be proven as
formulated in the following proposition.

Proposition 4.1. For a permutation π ∈ sPn that has been obtained
from ι ∈ sPn by the application of k ∈ N iTDRLs it holds that either
|S(π)| 6 2k−1 or |S(π)| = 2k−1 + 1 and `π < 0 < fπ.

Proof. The proposition is proven by induction on k. First consider the
case k = 1. The application of a single iTDRL to ι yields a permutation
with at most 21−1+ 1 = 2 maximal increasing substrings. This can be
seen by the following argumentation that considers π ′ to be obtained
by applying a single iTDRL ρ ∈ MiTDRL (i. e., ρ is a riTDRL or a
liTDRL) to ι. By the definition of an iTDRL π ′ can be written as π ′ =
ττ ′ (respectively π ′ = τ ′τ), where τ is a subsequence of ι and τ ′

is a subsequence of ι, in the case that ρ is an riTDRL (respectively

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 99

liTDRL). Corollary 4.1 implies |S(ι)| = |S(ι)| and by Lemma 4.2 it
holds that |S(τ)| 6 |S(ι)| and |S(τ ′)| 6 |S(ι)|. Certainly, |S(ι)| = 1. Thus,
by Lemma 4.3 |S(π ′)| = |S(ττ ′)| 6 |S(τ)| + |S(τ ′)| 6 2 (respectively
|S(π ′)| = |S(τ ′τ)| 6 |S(τ ′)|+ |S(τ)| 6 2) if ρ is an riTDRL (respectively
liTDRL). Consequently, if one of τ or τ ′ is empty, then |S(π ′)| 6 1. If
τ and τ ′ are not empty, then |S(τ)| = 1 and |S(τ ′)| = 1, and since ι
contains only positive elements, all elements of τ (respectively τ ′) are
positive (respectively negative). Thus, `τ ′ , fτ ′ < 0 and `τ, fτ > 0. Since
`τ ′ < fτ it follows by Lemma 4.3 that |S(π ′)| = |S(τ ′τ)| = |S(τ ′)| +

|S(τ)|− 1 6 2− 1 = 1. Additionally, `π ′ < 0 < fπ ′ holds for the case
that ρ is an riTDRL. Altogether, the statement holds for k = 1.

For the induction step, assume that σ is a permutation that has
been obtained from ι by the application of k− 1 iTDRLs and let π be
a permutation obtained from σ by the application of a single iTDRL ρ.
Then π can be written as π = ττ ′ (respectively π = τ ′τ), where τ is a
subsequence of σ and τ ′ is a subsequence of σ, when ρ is an riTDRL
(respectively liTDRL). Corollary 4.1 implies that |S(σ)| = |S(σ)| and
by Lemma 4.2 holds that |S(τ)| 6 |S(σ)| and |S(τ ′)| 6 |S(σ)|. Then,
Lemma 4.3 implies |S(ττ ′)| = |S(τ)|+ |S(τ ′)|− K1 6 |S(τ)|+ |S(τ ′)| 6
2|S(σ)| and |S(τ ′τ)| = |S(τ)|+ |S(τ ′)|− K2 6 |S(τ)|+ |S(τ ′)| 6 2|S(σ)|,
where K1 = 1 (respectively K2 = 1) if `τ < 0 < fτ ′ (respectively `τ ′ <
0 < fτ) and K1 = 0 (respectively K2 = 0) otherwise. By the induction
hypothesis |S(σ)| 6 2k−2+ 1 and if |S(σ)| = 2k−2+ 1 then `σ < 0 < fσ.
Therefore, |S(τ)| 6 2k−2 + 1 and |S(τ ′)| 6 2k−2 + 1. Hence, if |S(τ)| 6
2k−2 and |S(τ ′)| 6 2k−2, then |S(ττ ′)| 6 2k−1 and |S(τ ′τ)| 6 2k−1.
Consequently, it remains to consider the cases where |S(τ)|, |S(τ ′)| >
2k−2 and at least one of |S(τ)| or |S(τ ′)| is 2k−2 + 1. Note that this
implies that |S(σ)| = 2k−2 + 1 and (by the induction hypothesis) it
holds that `σ < 0 < fσ. Lemma 4.4 now implies that |S(π)| 6 2|S(σ)|−
1 = 2(2k−2 + 1) − 1 = 2k−1 + 1. Moreover, by Lemma 4.4 it holds that
|S(π)| = 2k−1 + 1 which implies `π < 0 < fπ.

Altogether, it holds either |S(π)| < 2k−1 + 1 or |S(π)| = 2k−1 + 1

and `π < 0 < fπ, which proves the statement.

The Upper Bound

In this subsection an upper bound is proven on the minimum number
of iTDRLs that have to be applied to ι in order to produce a permuta-
tion with a certain number of maximal increasing substrings.

Consider a permutation π from sPn. The main idea to obtain the
upper bound is to iteratively apply the inverse operation of an iTDRL
to π that divides the number of maximal increasing substrings of π by
two. The inverse operation of an iTDRL can be understood easily in
the context of card shuffling as explained in the following. Consider
a stack of cards that represents a given signed linear permutation π
such that: 1) each element of π is represented by a single card; 2) a
card in the stack is tidy (upside down) if the corresponding element
of π has a positive (respectively negative) sign; and 3) the relative or-
der of the cards is the same as the corresponding elements in π such
that the topmost (bottommost) card in the stack corresponds to π(1)

[April 2019 at 13:18 – classicthesis 4.4]

100 inverse tandem duplication random losses on linear permutations

(respectively π(n)). The inverted operation of an iTDRL can now be
expressed as a variant of the riffle shuffle operation (see Section 2.3.4)
proceeding in three steps: First, the stack of cards is split into two
stacks. Second, one of both resulting stacks is flipped. Third, a riffle
merges both parts to a single stack again. However, in order to half
the number of the maximal increasing substrings of permutation π
all three steps of the riffle shuffle variant are not performed randomly.
Instead, all steps are performed with respect to the maximal increas-
ing substrings of π. If S(π) is even (odd), then the stack is split after
the card that corresponds to the last element of the S(π)/2-th max-
imal increasing substring (respectively the last negative element of
the bS(π)/2c-th maximal increasing substring). Furthermore, if the
operation inverts an liTDRL (riTDRL), then the previously upper (re-
spectively bottom) stack is inverted. Finally, a riffle halves the num-
ber of maximal increasing substrings of π by always merging cards
that correspond to two maximal increasing substrings (each belong-
ing to a different stack). Thereby, two maximal increasing substrings
are merged into a new one such that the resulting substring is increas-
ing. By iteratively applying this riffle shuffle variant the stack of cards
is sorted or – in the context of permutations – permutation π is trans-
formed into ι. In addition, a sequence of iTDRLs is indirectly created
that transforms ι into π. The following paragraph formally defines an
inverse operation of an riTDRL and an liTDRL as transformation T1
and T2, respectively.

Two transformations Ti : sPn → sPn, i ∈ [1 : 2], are defined to con-
struct a permutation Ti(π) from π which has the property that there
always exists an iTDRL ρ such that ρ ◦ Ti(π) = π. In other words,
these transformations are the inverted iTDRL operations (which is
proven in Lemma 4.5). Depending on whether the transformation is
the inverse of an riTDRL or an liTDRL, a different transformation
T1 or T2 is defined (and for each case it is also distinguished if the
number of maximal increasing substrings of π is even or odd). For
both constructions consider a signed linear permutation π of size n
with the maximal substring decomposition π = π1 . . . π|S(π)|. See also
Figure 4.2 for examples of both transformations.

1) If |S(π)| is even, then T1(π) := τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2,
where

τ1 := π1 ⊕ π|S(π)|,
τ2 := π2 ⊕ π|S(π)|−1,

...

τ|S(π)|/2−1 := π|S(π)|/2−1 ⊕ π|S(π)|/2+2, and

τ|S(π)|/2 := π|S(π)|/2 ⊕ π|S(π)|/2+1.

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 101

If |S(π)| is odd, then T1(π) := τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e,
where

τ1 := π1 ⊕ π|S(π)|,
τ2 := π2 ⊕ π|S(π)|−1,

...

τb|S(π)|/2c := πb|S(π)|/2c ⊕ πd|S(π)|/2e+1, and

τd|S(π)|/2e := υd|S(π)|/2e ⊕ κd|S(π)|/2e

with υd|S(π)|/2e (respectively κd|S(π)|/2e) being the smallest sub-
string of πd|S(π)|/2e that contains all its negative (respectively
positive) elements.

2) If |S(π)| is even, then T2(π) := τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2,
where

τ1 := π|S(π)|/2+1 ⊕ π|S(π)|/2,

τ2 := π|S(π)|/2+2 ⊕ π|S(π)|/2−1,
...

τ|S(π)|/2−1 := π|S(π)|−1 ⊕ π2, and

τ|S(π)|/2 := π|S(π)| ⊕ π1.

If |S(π)| is odd, then T2(π) := τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e,
where

τ1 := κd|S(π)|/2e ⊕ υd|S(π)|/2e,
τ2 := πd|S(π)|/2e+1 ⊕ πb|S(π)|/2c,

...

τb|S(π)|/2c := π|S(π)|−1 ⊕ π2, and

τd|S(π)|/2e := π|S(π)| ⊕ π1

with κd|S(π)|/2e (respectively υd|S(π)|/2e) being the smallest sub-
string of πd|S(π)|/2e that contains all its positive (respectively
negative) elements.

Four auxiliary lemmata are proven in the following. These lemmata
are used in the proof of the main result of this subsection which is
formulated in Proposition 4.2. The first lemma states the claim that
the transformation T1 (respectively T2) is the inverse operation of an
riTDRL (respectively liTDRL).

Lemma 4.5. Let π ∈ sPn. The following statements are true:

1) There exists an riTDRL ρ ∈MiTDRL such that ρ ◦ T1(π) = π.

2) There exists an liTDRL ρ ∈MiTDRL such that ρ ◦ T2(π) = π.

Proof. Let π be a signed linear permutation of size n and let
π = π1π2 . . . π|S(π)| be the maximal increasing substring decompo-
sition of π. Then T1(π) = τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2 (respectively

[April 2019 at 13:18 – classicthesis 4.4]

102 inverse tandem duplication random losses on linear permutations

(a) Case T1(π)

(b) Case T2(π)

Figure 4.2: Examples of the transformation T1 (a) and T2 (b) that is ap-
plied to π = (−1 −2 −3 −6 9 8 −10 −4 5 7) (a) and π =
(8 −9 −7 10 −5 6 −1 2 −4 3) (b). The transformation Ti(π),
i ∈ [1 : 2], is shown on the right in the respective subfigure. The
notation is as in Figure 4.1. In addition, κ3 (respectively υ3) is
the smallest substring of π3 that contains all its positive (respec-
tively negative) elements, i. e., κ3 = 6 and υ3 = −5. For each
permutation that is illustrated its maximal increasing substring
decomposition is shown on the bottom of its illustration.

T1(π) = τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e) in the case that |S(π)| is even
(respectively odd). It follows that

S1 = π1π2 . . . π|S(π)|/2−1π|S(π)|/2 and

S ′1 = π|S(π)| π|S(π)|−1 . . . π|S(π)|/2+2 π|S(π)|/2+1,

are disjoint subsequences of T1(π) in the case that |S(π)| is even. If
otherwise |S(π)| is odd, then it follows that

S1 = π1π2 . . . πb|S(π)|/2cυd|S(π)|/2e and

S ′1 = π|S(π)| π|S(π)|−1 . . . πd|S(π)|/2e+1 κd|S(π)|/2e

are disjoint subsequences of T1(π).
Furthermore, T2(π) = τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2 (respectively

T2(π) = τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e) in the case that |S(π)| is even
(respectively odd). The sequences

S2 = π|S(π)|/2 π|S(π)|/2−1 . . . π2 π1 and

S ′2 = π|S(π)|/2+1π|S(π)|/2+2 . . . π|S(π)|−1π|S(π)|

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 103

are disjoint subsequences of T2(π) in the case that |S(π)| is even. If
otherwise |S(π)| is odd, then it follows that the sequences

S2 = υd|S(π)|/2e πb|S(π)|/2c . . . π2 π1 and

S ′2 = κd|S(π)|/2eπd|S(π)|/2e+1 . . . π|S(π)|−1π|S(π)|

are disjoint subsequences of T2(π).
Note that π = SiS

′
i holds (in the respective case i ∈ [1 : 2])

and Si, S ′i are disjoint subsequences of Ti(π) that together include
all elements of Ti(π). Hence, for the riTDRL (respectively liTDRL)
ρriTDRL(r,E(S1),E(S ′1)) (respectively ρliTDRL(`,E(S1),E(S ′1))) it holds
that ρriTDRL ◦ T1(π) = π (respectively ρliTDRL ◦ T2(π) = π).

The transformations T1(π) and T2(π) have been designed such that
the following lemma holds.

Lemma 4.6. Let π be a signed permutation of size n. The decomposition of
the permutation Ti(π), i ∈ [1 : 2], into strings τ1τ2 . . . τt (where t is as in
the respective case) is a maximal increasing substring decomposition.

Proof. Let π ∈ sPn and let π = π1 . . . π|S(π)| be the maximal increasing
substring decomposition of π. For the proof it is sufficient to show
that for each j ∈ [1 : t− 1] it holds that the last element of τj is larger
than the first element of τj+1, i. e., `τj > fτj+1 . In the following the
proof is described for the case that i = 1 (in the case that i = 2 the
proof can be done analogously).

In this case the lemma has to be shown for T1(π) := τ1τ2 . . . τt−1τt,
where t = |S(π)|/2 (respectively t = d|S(π)|/2e) in the case that |S(π)|
is even (respectively odd). Since all elements of two sequences X and
Y are sorted increasingly in X⊕Y it follows that every τj with j ∈ [1 : t]

is an increasing substring. By the construction of T1(π) it holds that
τj = πj⊕πt+1−j for j ∈ [1 : t]. Hence, a τj always contains all elements
of πj. Consequently, `τj > `πj and fτj 6 fπj holds for all j ∈ [1 : t].
The fact that πj and πj+1 are two maximal increasing substrings, i. e.,
`πj > fπj+1 for j ∈ [1 : |S(π)| − 1], implies `τj > `πj > fπj+1 > fτj+1
for all j ∈ [1 : t − 1]. Therefore, τ1, . . . , τt are maximal proving the
lemma.

The following lemma shows that the application of the transforma-
tion T1 and T2 to a permutation π results in a permutation that has
half as many maximal increasing substrings as π.

Lemma 4.7. Let π ∈ sPn with |S(π)| > 1. Then |S(Ti(π))| = d|S(π)|/2e
holds for all i ∈ [1 : 2].

Proof. Let π ∈ sPn with |S(π)| > 1. Consider the case that |S(π)| is
even. By the construction of Ti(π) = τ1 . . . τ|S(Ti(π))| with i = 1, 2
it holds that two maximal increasing substrings of π always form
a new increasing substring in Ti(π), hence |S(Ti(π))| 6 |S(π)|/2. By
Lemma 4.6 it holds that every τi of Ti(π) is also maximal, and hence
|S(Ti(π))| > |S(π)|/2. Altogether, |S(Ti(π))| = |S(π)|/2 if |S(π)| is even.

[April 2019 at 13:18 – classicthesis 4.4]

104 inverse tandem duplication random losses on linear permutations

Now consider that |S(π)| is odd. By the construction of Ti(π) =

τ1 . . . τ|S(Ti(π))| with i = 1, 2 it holds that τ1, . . . , τ|S(Ti(π))|−1 (respec-
tively τ2, . . . , τ|S(Ti(π))|) of Ti(π) are always formed by two maximal
increasing substrings of π and τ|S(Ti(π))| (respectively τ1) is formed
by one maximal increasing substring of π if i = 1 (respectively i = 2).
Hence, |S(Ti(π))| 6 d|S(π)|/2e. By Lemma 4.6 it holds that every τi
of Ti(π) is also maximal, hence |S(Ti(π))| > d|S(π)|/2e. Altogether,
|S(Ti(π))| = d|S(π)|/2e if |S(π)| is odd.

Consider a signed permutation π with at least two maximal in-
creasing substrings such that the first (last) element of π is positive
(respectively negative). The following lemma states that the applica-
tion of the transformation Ti, i ∈ [1 : 2], to π preserve this structure,
i. e., the first (last) element of Ti(π) is positive (respectively negative).

Lemma 4.8. Let π be a signed permutation of size n with |S(π)| > 1, |S(π)|
odd, and `π < 0 < fπ. For all i ∈ {1, 2} it holds that `Ti(π) < 0 < fTi(π).

Proof. Let π ∈ sPn and let π = π1 . . . π|S(π)| be the maximal in-
creasing substring decomposition of π with |S(π)| > 1 and |S(π)| is
odd. The fact that fπ > 0 (respectively `π < 0) implies that π1 (re-
spectively π|S(π)|) contains only positive (respectively negative) ele-
ments. Consequently, π1 (respectively π|S(π)|) contains only negative
(respectively positive) elements. Therefore, π1⊕π|S(π)| (that is the left-
most maximal increasing substring in T1(π)) contains only positive
elements. Analogously, π|S(π)| ⊕ π1 (the rightmost maximal increas-
ing substring in T2(π)) contains only negative elements and, thus,
fT1(π) > 0 and `T2(π) < 0. By definition it holds that the rightmost
(respectively leftmost) maximal increasing substring of T1(π) (respec-
tively T2(π)) is υd|S(π)|e ⊕ κd|S(π)|e (respectively κd|S(π)|e ⊕ υd|S(π)|e).
Since κd|S(π)|e (respectively υd|S(π)|e) contains only positive (respec-
tively negative) elements, it holds that κd|S(π)|e (respectively υd|S(π)|e)
contains only negative (respectively positive) elements. Therefore,
υd|S(π)|e ⊕ κd|S(π)|e (respectively κd|S(π)|e ⊕ υd|S(π)|e) contains only
negative (respectively positive) elements, which implies `T1(π) < 0

and fT2(π) > 0.

Given Lemma 4.5 to Lemma 4.8, the sought upper bound (on the
minimum number of iTDRLs that have to be applied to ι in order to
produce a permutation with a certain number of maximal increasing
substrings) can be proven as formulated in the following proposition.

Proposition 4.2. Let π ∈ sPn \ {ι} such that |S(π)| = 2k−1 + 1 and `π <
0 < fπ or |S(π)| 6 2k−1 for a k ∈ N. It holds that permutation π can be
obtained by applying k iTDRLs to ι.

Proof. Let π ∈ sPn \ {ι}. The proposition is proven by induction on k.
For the base case assume k = 1. There exist the two cases: i) |S(π)| 6
21−1 = 20 = 1 or ii) |S(π)| = 21−1 + 1 = 20 + 1 = 2 and `π < 0 < fπ.
Consider Case (i). Since every permutation has at least one maximal
increasing substring the equation |S(π)| = 1 holds. Since π is unequal
to ι it follows that can be written as π = (π(1) . . . π(j) π(j+ 1) . . . π(n)),

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 105

where π(1) < . . . < π(j) < 0 < π(j+ 1) < . . . < π(n) and j ∈ [1 :n− 1].
Hence, for the liTDRL ρliTDRL(`, {|π(1)|, . . . , |π(j)|}, {π(j+ 1), . . . ,π(n)})
it holds that ρliTDRL ◦ ι = π. Now consider Case (ii). Since 0 < fπ (re-
spectively `π < 0) it holds that the left (respectively right) maximal
increasing substring of π contains only positive (respectively nega-
tive) elements. Hence, π can be written as π = (π(1) . . . π(j) π(j +

1) . . . π(n)), where π(j + 1) < . . . < π(n) < 0 < π(1) < . . . < π(j)

and j ∈ [1 :n− 1]. Then the equation ρriTDRL ◦ ι = π is satisfied for the
riTDRL ρriTDRL(r, {π(1), . . . ,π(j)}, {|π(j+ 1)|, . . . , |π(n)|}).

For the induction step let k > 1. It is sufficient to consider the
following two cases: i) |S(π)| 6 2k−1 or ii) |S(π)| = 2k−1 + 1 and
`π < 0 < fπ. Lemma 4.7 implies |S(Ti(π))| 6 2k−2 if Case (i) holds
and |S(Ti(π))| 6 d(2k−1 + 1)/2e = 2k−2 + 1 if Case (ii) holds. Further-
more, Lemma 4.8 ensures that `Ti(π) < 0 < fTi(π) if Case (ii) holds. By
Lemma 4.5, π can be obtained by applying a single riTDRL (respec-
tively an liTDRL) to T1(π) (respectively T2(π)) and by the induction
hypothesis Ti(π) with i ∈ [1 : 2] can be obtained by applying k − 1
iTDRLs to ι. Hence, π can be obtained by applying k iTDRLs to ι.

Remark 4.1. Observe, that the proof of Proposition 4.2 shows that the per-
mutation π in Proposition 4.2 can always be obtained from ι by a single
iTDRL (i. e., riTDRL or liTDRL) followed by k− 1 riTDRLs.

The Main Theorem

The following theorem characterizes permutations π that have a cer-
tain number of maximal increasing substrings with respect to the
number of iTDRLs that are necessary and sufficient to obtain π from
the identity permutation ι.

Theorem 4.1. Let π ∈ sPn \ {ι} be such that either |S(π)| = 2k−2 + 1

and `π > 0 or fπ < 0, 2k−2 + 1 < |S(π)| 6 2k−1, or |S(π)| = 2k−1 + 1

and `π < 0 < fπ for a k ∈ N. It holds that k iTDRLs are necessary and
sufficient in order to obtain π from ι.

Proof. Let π ∈ sPn \ {ι} be such that either 2k−2 + 1 = |S(π)| and
`π > 0 or fπ < 0, 2k−2 + 1 < |S(π)| 6 2k−1, or |S(π)| = 2k−1 + 1 and
`π < 0 < fπ for a k ∈N. Proposition 4.1 shows that at least k iTDRLs
are necessary to obtain π from ι. Proposition 4.2 shows that k iTDRLs
are sufficient to obtain π from ι. Altogether, the theorem follows.

Given a permutation π ∈ sPn, Theorem 4.1 determines the mini-
mum number of iTDRLs that are necessary to obtain π from ι, i. e., it
immediately implies the MiTDRL distance as proven in the following
section.

4.1.3 Inverse Tandem Duplication Random Loss Distance on Signed Lin-
ear Permutations

This section considers the distance problem and the sorting prob-
lem for signed linear permutations under the iTDRL rearrangement

[April 2019 at 13:18 – classicthesis 4.4]

106 inverse tandem duplication random losses on linear permutations

model. The following corollary of Theorem 4.1 states a closed formula
for the MiTDRL distance for signed linear permutations.

Corollary 4.2. The MiTDRL distance for ι and any signed linear permutation
π ∈ sPn\ {ι} is given by

dMiTDRL(ι,π) =

{
log2(|S(π)|− 1) + 1

if ∃k ∈N with |S(π)| = 2k−1+ 1
and `π < 0 < fπ,

dlog2 |S(π)|e+ 1 else.

Proof. Let π ∈ sPn\ {ι}. Then either |S(π)| = 2k−2 + 1 and `π > 0 or
fπ < 0, 2k−2+ 1 < |S(π)| 6 2k−1, or |S(π)| = 2k−1+ 1 and `π < 0 < fπ
holds for a k ∈ N. Hence, it holds either 2k−2 < |S(π)| 6 2k−1 or
|S(π)| = 2k−1+ 1 and `π < 0 < fπ. Theorem 4.1 implies that k iTDRLs
are necessary and sufficient to obtain π from ι, i. e., dMiTDRL(ι,π) = k.
Consider first 2k−2 < |S(π)| 6 2k−1. This implies k− 2 < log2 |S(π)| 6
k− 1 and hence k− 1 6 dlog2 |S(π)|e 6 k− 1. Consequently, it holds
that dMiTDRL(ι,π) = k = dlog2 |S(π)|e + 1. Now consider |S(π)| =

2k−1 + 1. Then |S(π)| − 1 = 2k−1 implies log2(|S(π)| − 1) = k − 1.
Consequently, dMiTDRL(ι,π) = k = log2(|S(π)|− 1) + 1.

Note that Corollary 4.2 implies that the MiTDRL distance of a signed
permutation π of size n can be computed by calculating the number
of its maximal increasing substrings. Certainly, this can be done in
time O(n). The following example illustrates both cases of the MiTDRL

distance that are distinguished in Corollary 4.2.

Example 4.2. Consider the permutation π = (−3 −1 5 −2 4). Permutation
π has the two maximal increasing substrings π1 = −3−1 5 and π2 =

−2 4, hence |S(π)| = 2. The maximal increasing substring decomposition
of π is π1π2. Since fπ = −3 < 0 the second case that is distinguished in
Corollary 4.2 is satisfied, which implies that dMiTDRL(ι,π) = dlog2 |S(π)|e+
1 = 2. Thus exactly two iTDRLs are necessary to obtain π from ι. For a
parsimonious scenario that transforms ι to π see Example 4.3 and Figure 4.3.
For an example of a permutation that satisfies the first case of Corollary 4.2,
consider the permutation σ = (4 2 −3 −5 −6 −1). Permutation σ has the
five maximal increasing substrings σ1 = 4, σ2 = 2, σ3 = −3, σ4 = −5,
and σ5 = −6−1. Consequently, |S(σ)| = 5. In addition, the first (last)
element of σ is positive (respectively negative), i. e., `σ = −1 < 0 < 4 = fσ,
and the equation |S(σ)| = 2k−1 + 1 is ensured for k = 3. By Corollary 4.2
it holds that the MiTDRL distance is given by dMiTDRL(ι,σ) = log2(|S(σ)|−
1) + 1 = 3.

The following corollary determines the diameter of the MiTDRL dis-
tance for the set of all signed linear permutations.

Corollary 4.3. The diameter for the set of all directed signed linear permu-
tations sPn under MiTDRL is given by: DMiTDRL(sPn) = dlog2 ne+ 1

Proof. By definition of the diameter and the left-invariance of signed
linear permutations it holds that:

DMiTDRL(sPn) = max
γ,σ∈sPn

dMiTDRL(γ,σ) = max
π∈sPn

dMiTDRL(ι,π).

[April 2019 at 13:18 – classicthesis 4.4]

4.1 solving the distance and the sorting problem 107

It follows from Corollary 4.2 that dMiTDRL(ι,π) is log2(|S(π)|− 1) + 1
if there exists a k ∈ N with |S(π)| = 2k−1 + 1 and `π < 0 < fπ,
and dlog2 |S(π)|e + 1 otherwise. The fact that dlog2 |S(π)|e + 1 >
log2(|S(π)|− 1) + 1 implies:

DMiTDRL(sPn) = max
π∈sPn

dMiTDRL(ι,π) = max
π∈sPn

dlog2 |S(π)|e+ 1

= dlog2 max
π∈sPn

|S(π)|e+ 1 = dlog2 ne+ 1.

The last equation follows by the fact that π is a permutation of size n
which implies that |S(π)| ∈ [1 :n].

Corollary 4.3 states that the MiTDRL diameter for a signed linear
permutation of size n ∈ N is obtained if its number of maximal in-
creasing substrings is n which is the case for, e. g., (n . . . 2 1) and
(−1 −2 . . . −n).

Motivated by the tractability of the MiTDRL distance, the following
paragraphs study the sorting problem of signed linear permutations
under the iTDRL model. Recall that the sorting problem for a permuta-
tion π under MiTDRL is to find a scenario S ∈ SMiTDRL(ι,π) such that
S ∈ argminS ′∈SMiTDRL(ι,π)

|S ′|. Observe that this definition of the sort-
ing problem indirectly covers the problem to find a shortest scenario
ρ1(d1,L1,R1), . . . , ρt(dt,Lt,Rt) ∈ MiTDRL of iTDRLs between two ar-
bitrary permutations π,σ ∈ sPn (i. e., ρt ◦ . . . ◦ ρ1 ◦ π = σ), since such
a sequence can be obtained by firstly finding ρ ′t ◦ . . . ◦ ρ ′1 ◦ ι = π−1 ◦σ
with ρ ′i(d

′
i,L
′
i,R
′
i) ∈ MiTDRL and subsequently computing the sought

iTDRLs ρ1, . . . , ρt by d1 = d ′1, Li = {π(j) : j ∈ L ′i}, and Ri = {π(j) : j ∈
R ′i} for all i ∈ [1 : t].

In the following, an algorithm is presented that solves the sorting
problem for signed linear permutations under the iTDRL rearrange-
ment model. Recall that according to Remark 4.1 there is always a
solution of the considered sorting problem that contains at most one
liTDRL. Therefore, the following algorithm computes for a given per-
mutation π ∈ sPn a sequence ρ1, . . . , ρt ∈ MiTDRL of iTDRLs such
that t := dMiTDRL(ι,π), ρt ◦ . . . ◦ ρ1 ◦ ι = π, and either ρ1, . . . , ρt are
riTDRLs or ρ1 is an liTDRL and ρ2, . . . , ρt are riTDRLs. The pseudo
code of the algorithm can be found in Algorithm 1. See Example 4.3
for an illustration of the algorithm. The main idea of Algorithm 1 is
to iteratively apply the inverse operation of an iTDRL. In particular,
transformation T1 or (once in the last step) T2 is iteratively applied
to the given permutation π to obtain a permutation Ti(π) that has at
most half as many maximal increasing substrings as π. By that pro-
cess a minimum length sequence S of transformations (of T1 or T2) is
obtained in reversed order, i. e., S transforms π into ι. Subsequently,
the sought minimum length sequence of iTDRLs transforming ι into
π is obtained by computing the inverting iTDRL for every transfor-
mation in S and reversing the relative order of all computed iTDRLs.
Since Algorithm 1 uses exactly dMiTDRL(ι,π) iTDRLs to construct the
sought sequence of iTDRLs, it solves the sorting problem for a given
permutation π under MiTDRL exactly.

[April 2019 at 13:18 – classicthesis 4.4]

108 inverse tandem duplication random losses on linear permutations

Algorithm 1 : Pseudo code of sorting by iTDRLs
Data : π ∈ sPn
Result : (ρ1, . . . , ρt) ∈ SMiTDRL(ι,π) such that t = dMiTDRL(ι,π)

1 if π == ι then
2 return ∅;
3 if ∃ h ∈N0 : |S(π)| = 2

h + 1 and `π < 0 < fπ then
4 t = log2(|S(π)|− 1) + 1;
5 else
6 t = dlog2 |S(π)|e+ 1;
7 for j← t, . . . , 1 do
8 π = π1 . . . π|S(π)|;
9 if j == 1 and fπ < 0 then // Application T2

10 π← υ1 ⊕ κ1 = T2(π);
11 ρj ← ρj(`,E(υ1),E(κ1));
12 continue;
13 if |S(π)| is even then // Application T1
14 π← π1 ⊕ π|S(π)| . . . π|S(π)|/2 ⊕ π|S(π)|/2+1 = T1(π);
15 ρj ← ρj(r,E(π1 . . . π|S(π)|/2),E(π|S(π)| . . . π|S(π)|/2+1));
16 else
17 π← π1 ⊕ π|S(π)| . . . υd|S(π)|/2e ⊕ κd|S(π)|/2e = T1(π);
18 ρj ← ρj(r,E(π1 . . . υd|S(π)|/2e),E(π|S(π)| . . . κd|S(π)|/2e));

19 continue;
20 return (ρ1, . . . , ρt);

Let π ∈ sPn. The case π = ι (i. e., the sorting sequence of iTDRLs is
empty) is handled in lines 1 to 2. If otherwise π 6= ι then ρt, . . . , ρ1 ∈
MiTDRL with t = dMiTDRL(ι,π) are iteratively computed in the
lines 3 to 19. By Corollary 4.2 either dMiTDRL(ι,π) = dlog2 |S(π)|e+ 1 or
dMiTDRL(ι,π) = log2(|S(π)| − 1) + 1 and both cases are handled in
lines 3 to 6. For every j ∈ [t : 1] the maximal increasing substring
composition of π is computed in Line 8 and – depending on j and
whether |S(π)| is even or odd – either T1 or T2 is applied to π in
lines 13 to 19 or lines 9 to 12. More precisely, if j = 1 and fπ < 0 (i. e.,
π is exactly one maximal increasing substring that contains negative
and possibly positive elements) then T2 is applied to π in Line 10 and
in Line 11 the corresponding liTDRL (which exists since Lemma 4.5)
is computed. Otherwise, i. e., either j > 1 or j = 1 and fπ > 0, the
permutation π is substituted by T1(π) and the corresponding riTDRL
ρj ∈MiTDRL is constructed as defined in the proof of Lemma 4.5. This
iterative procedure gives the scenario (ρ1, . . . , ρt) for ι and π which
is returned in Line 20.

Example 4.3. Consider the permutation π = (−3 −1 5 −2 4) that is in-
vestigated in Example 4.2. Recall that the maximal increasing substring
decomposition of π is π1π2, where π1 = −3−1 5 and π2 = −2 4, and
that dMiTDRL(ι,π) = 2. Thus, exactly two iTDRLs are necessary to obtain
π from ι. To obtain these iTDRLs, Algorithm 1 computes two transforma-
tions of T1 or T2 that are necessary (and sufficient) to transform π into
ι. By Algorithm 1 the first transformation that has to be applied to π is

[April 2019 at 13:18 – classicthesis 4.4]

4.2 impact on a general model for mitochondrial evolution 109

Figure 4.3: Parsimonious sorting scenario for ι and (−3 −1 5 −2 4) under
MiTDRL that is computed by Algorithm 1. The first iTDRL that
is applied to ι is the liTDRL ρliTDRL(`, {1, 3, 4}, {2, 5}). The second
iTDRL that is applied to the immediate permutation (4 3 1 2 5)
is the riTDRL ρriTDRL(r, {3, 1, 5}, {2, 4}). Example 4.3 illustrates the
computation of both iTDRLs.

T1, which gives T1(π) = π1 ⊕ π2 = (−4 −3 −1 2 5). The correspond-
ing iTDRL that reverses the application of T1 is ρriTDRL(r, {3, 1, 5}, {2, 4}).
The permutation T1(π) has one maximal increasing substring and it holds
that fT1(π) = −4 < 0. By Algorithm 1 the next transformation that
has to be applied to T1(π) is T2. The application of T2 to T1(π) gives
T2(T1(π)) = υ1 ⊕ κ1 = −4−3−1⊕ 2 5 = 1 3 4⊕ 2 5 = (1 2 . . . n). The
iTDRL that reverses this transformation is ρliTDRL(`, {1, 3, 4}, {2, 5}). Con-
sequently, the sequence (ρliTDRL(`, {1, 3, 4}, {2, 5}), ρriTDRL(r, {3, 1, 5}, {2, 4}))
transforms ι into π, see Figure 4.3 for an illustration.

For a runtime analysis of Algorithm 1 consider π ∈ sPn. Cer-
tainly, the verification whether π = ι (Line 1), the computation of
dMiTDRL(ι,π) (lines 3 – 6), the computation of the maximal increasing
substring decomposition (Line 8), the construction of T1(π) and T2(π)
(lines 14, 17, and Line 10), and the construction of ρj (lines 11, 15, 18)
can be done in time O(n). Therefore, lines 8 to 19 are executed in
time O(n) and they are executed at most dlog2 |S(π)|e+ 1 times. Since
|S(π)| 6 n it follows that Algorithm 1 has a runtime in O(n logn).

Algorithm 1 is implemented in C++ and it is freely available on
http://pacosy.informatik.uni-leipzig.de/spitdrl.

4.2 impact on a general model for mitochondrial evo-
lution

The assumption that only one type of rearrangement, e. g., only
iTDRLs, has been occurring during the evolution of mitochondrial
gene orders is certainly unrealistic. Instead, mitochondrial genome
comparisons provide strong evidence (see Section 2.1) that at least
four major types of rearrangements are relevant for the evolution
of mitochondrial genomes: inversions, transpositions, inverse trans-
positions, and tandem duplication random losses (Bernt et al., 2013b;
Boore, 1999). The rearrangement model M4-type that contains all these

[April 2019 at 13:18 – classicthesis 4.4]

http://pacosy.informatik.uni-leipzig.de/spitdrl

110 inverse tandem duplication random losses on linear permutations

Figure 4.4: Inversion mimicked by either a sequence of two iTDRLs or a
single iTDRL. The application of a single rearrangement is il-
lustrated by a black arrow. A permutation (π(1) . . . π(n)) with
π(1)π(2) . . . π(n) = X Y Z, i. e., X, Y, and Z are substrings of
π, is denoted by (X Y Z). The inversion ρI(E(Y)) applied to
(X Y Z) gives the permutation (X Y Z). The inversion can be mim-
icked by ρ(`,E(X Y),E(Z) followed by ρ(`,E(X), E(Y)∪ E(Z)) and
ρ(r,E(X),E(Y Z)) followed by ρ(r,E(X) ∪ E(Y),E(Z)). Observe
that if X (or Z) is empty, then the second iTDRL in both sequences
is an identity mapping. Hence, the first iTDRL in the respective
sequence and the inversion have the same effect.

four types of rearrangements is called the 4-type rearrangement
model. Although the results in Section 5.2 show that the distance
problem and the sorting problem (for unsigned linear permutations)
under M4-type are tractable for large classes of permutations, a defi-
nite proof for all unsigned linear permutations has not been proposed.
However, the scenarios that are obtained by solving the respective
problem for the same permutations under MiTDRL can be used to ob-
tain approximate solutions. This section demonstrates a method to
obtain such approximate solutions. In particular, Section 4.2.1 shows
that the MiTDRL distance for signed permutations provides bounds
on the M4-type distance. Furthermore, this section imparts how an ap-
proximated sequence of 4-type rearrangements can be obtained from
a parsimonious scenario of iTDRL rearrangements.

4.2.1 Bounding the Distance Problem under Major Mitochondrial Rear-
rangements

Recall the formal definitions of the four major rearrangement oper-
ations relevant for mitochondrial gene orders given in Section 2.2.3.
Nevertheless, these definitions shall be briefly recalled here.

Let π be a signed linear permutation, and let L and R be two char-
acter disjoint subsequences of π such that E(L) ∪ E(R) = E(π). Recall
that an interval X ∈ I(π) is defined as a set of (unsigned) elements that
occur consecutively in π. Moreover, let X and Y be two intervals of π,
i. e., X, Y ∈ I(π) and X ∪ Y or Y ∪ X is an interval of π. The inversion
ρI(X) applied to π reverses the order and it toggles the sign of every
element of X. The inverse transposition ρiT(X, Y) applied to π exchanges
the order of X and Y and, in addition, it reverses the order and toggles
the sign of every element in X. The TDRL ρTDRL(E(L),E(R)) applied
to π duplicates π in tandem, followed by the loss of all elements of L
(respectively R) in the left (respectively right) copy of the duplicated
intermediate. A transposition ρT(X, Y) applied to π swaps the order of
X and Y. It is not hard to see that a transposition is a special case of
the TDRL rearrangement.

[April 2019 at 13:18 – classicthesis 4.4]

4.2 impact on a general model for mitochondrial evolution 111

Figure 4.5: Inverse transposition mimicked by either a sequence of two
iTDRLs or a single iTDRL. Notation is as in Figure 4.4. The
application of ρiT(E(Y),E(X)) (respectively ρiT(E(X),E(Y))) to a
permutation (W X Y Z), where W, X, Y, and Z denote consec-
utive substrings, generates the permutation (W Y X Z) (respec-
tively (W Y X Z)). The same output permutation can be obtained
by the application of ρ(`,E(W) ∪ E(Y),E(X) ∪ E(Z)) followed by
ρ(`,E(W),E(Y) ∪ E(X Z)) (respectively ρ(r,E(W) ∪ E(Y),E(X) ∪
E(Z)) followed by ρ(r,E(W Y) ∪ E(X),E(Z))). Observe that if W
(respectively Z) is empty, then the second iTDRL in the respective
sequence is the identity mapping and, thus, the inverse transpo-
sition has the same effect as the first iTDRL of the corresponding
sequence.

Consider a minimum length scenario S of iTDRLs that is computed
by Algorithm 1. Scenario S can be used to obtain an approximate so-
lution of the sorting problem under M4-type. To see this, the funda-
mental idea is to realize the connection between iTDRLs and 4-type
rearrangements:

1) every iTDRL can be mimicked by one or two 4-type rearrange-
ments, and

2) every 4-type rearrangement can be mimicked by one or two
iTDRLs.

On one hand, every iTDRL has either the same effect as an inversion
(illustrated in Figure 4.4) or an inverse transposition (illustrated in
Figure 4.5), or it can be mimicked by both, a TDRL followed by an
inversion, as well as a TDRL followed by an inverse transposition (il-
lustrated Figure 4.6). On the other hand, an inversion and an inverse
transposition have either the same effect as an iTDRL, or they can be
mimicked by two iTDRLs, see Figure 4.4 and Figure 4.5, respectively.
A TDRL (and therefore also transposition) can always be mimicked
by two iTDRLs (illustrated Figure 4.7).

The fact that every iTDRL can be mimicked with at most two 4-
type rearrangements implies that the M4-type distance is less than
twice the MiTDRL distance, i. e., dM4-type(π,σ) 6 2dMiTDRL(π,σ), where
π,σ ∈ sPn, and dM4-type(π,σ) denotes the M4-type rearrangement
distance for π and σ. In addition, the fact that every 4-type re-
arrangement can be mimicked by at most two iTDRLs implies
dMiTDRL(π,σ) 6 2dM4-type(π,σ). Dividing the latter inequality by two
gives dMiTDRL(π,σ)/2 6 dM4-type(π,σ). Combining this inequality with
dM4-type(π,σ) 6 2dMiTDRL(π,σ) gives the following proposition.

Proposition 4.3. For each pair of signed linear permutations of size n ∈N

π and σ it holds that:

dMiTDRL(π,σ)
2

6 dM4-type(π,σ) 6 2dMiTDRL(π,σ).

[April 2019 at 13:18 – classicthesis 4.4]

112 inverse tandem duplication random losses on linear permutations

Figure 4.6: Inverse tandem duplication random loss mimicked by TDRL
and inversion or inverse transposition. The notation is as in
Figure 4.4, where in addition L = L(1) . . .L(m) and R =
R(1) . . .R(n), n,m ∈ N, are disjoint subsequences of a per-
mutation of size n + m. The iTDRL ρ(d,E(L),E(R)) (respec-
tively ρ(d,E(R),E(L))) can be replaced by applying (to the
same permutation) the TDRL ρTDRL(E(L),E(R)) (respectively
ρTDRL(E(R),E(L))), followed by the inversion ρI(E(R)) if d =
r, or ρI(E(L)) if d = ` (respectively ρI(E(R)) if d = ` or
ρI(E(L)) if d = r). Alternatively, the iTDRL ρ(d,E(L),E(R))
(respectively ρ(d,E(R),E(L))) can be mimicked by applying
the TDRL ρTDRL(E(R),E(L)) (respectively ρTDRL(E(L),E(R))), fol-
lowed by the inverse transposition ρiT(E(L),E(R)) if d = `, or
ρiT(E(R),E(L)) if d = r (respectively ρiT(E(R),E(L)) if d = `, or
ρiT(E(L),E(R)) if d = r).

Figure 4.7: TDRL mimicked by two iTDRLs. Notation is as in Figure 4.6.
The TDRL ρTDRL(E(L),E(R)) (respectively ρTDRL(E(R),E(L))) can
be mimicked by iteratively applying two times ρ(d,E(L),E(R))
(respectively ρ(d,E(R),E(L))), where d ∈ {`, r}.

[April 2019 at 13:18 – classicthesis 4.4]

4.3 conclusion 113

Proposition 4.3 states that the MiTDRL distance is a
2-approximation for the M4-type distance. In addition, an ap-
proximated sequence of 4-type rearrangements sorting π to σ can
also be obtained by replacing every iTDRL by either an inversion, an
inverse transposition, a TDRL and an inversion, or a TDRL and an
inverse transposition as explained in figures 4.4 to 4.7. The following
example illustrates such a replacement.

Example 4.4. Consider the scenario for ι and π = (−3 −1 5 −2 4) that
is illustrated in Figure 4.3. Both iTDRLs can be replaced by a TDRL
and an inversion or an inverse transposition. For example, the iTDRL
ρliTDRL(`, {1, 3, 4}, {2, 5}) can be mimicked by ρTDRL({1, 3, 4}, {2, 5})
followed by ρI({1, 3, 4}). An example for a sequence of 4-type rear-
rangements that mimics the second iTDRL ρriTDRL(r, {3, 1, 5}, {2, 4}) is
ρTDRL({4, 2}, {3, 1, 5}) followed by ρiT({4, 2}, {3, 1, 5}). Combining
both replacements yields the scenario S = (ρTDRL({1, 3, 4}, {2, 5}),
ρI({1, 3, 4}), ρTDRL({4, 2}, {3, 1, 5}), ρiT({4, 2}, {3, 1, 5})) for ι and π under
M4-type. However, scenario S is not parsimonious. This can be seen since
the sequence S ′ = (ρI({1, 2, 3}), ρTDRL({3, 1, 5}, {2, 4})) is also a scenario
for ι and π under M4-type, and the fact that there does not exist a single
4-type rearrangement that can transform ι into π. For more information on
algorithms that compute such parsimonious scenarios see Chapter 5.

4.3 conclusion

In this chapter, the problem has been studied of computing a mini-
mum length scenario (and its length) of inverse tandem duplication
random loss rearrangements (iTDRLs) that are necessary to transform
one given signed linear permutation into another given signed per-
mutation. This problem is interesting since such a scenario allows
to draw conclusions on the evolution of gene orders of unichromo-
somal genomes, e. g., mitochondrial gene orders. The reason is that
signed linear permutations are commonly used as a formal model
for such gene orders. In addition, the iTDRL rearrangement has cur-
rently been suggested to be a potential evolutionary mechanism in
mitochondrial genomes. It was shown that the MiTDRL distance –
the minimum number of iTDRLs needed to transform one permu-
tation into another – can be computed in linear time. Moreover, it
was shown that a corresponding scenario can be obtained in quasilin-
ear time. In addition, a closed formula has been determined for the
maximum MiTDRL distance for two permutations of a certain size. It
was proven that every type of major mitochondrial rearrangement (re-
spectively every iTDRL) can be mimicked by at most two iTDRLs (re-
spectively major mitochondrial rearrangements). Taking advantage of
this characteristic and the fact that the distance problem with respect
to iTDRLs is computationally tractable, it has been shown that the
MiTDRL distance is a 2-approximation for the M4-type distance, which
is the minimum number of inversions, transpositions, inverse trans-
positions, and TDRLs necessary to transform one given permutation
into another given permutation.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

5
A L G O R I T H M S F O R S O RT I N G B Y M I T O C H O N D R I A L
R E A R R A N G E M E N T S

The assumption that only one type of rearrangement has been
occurring during the evolution of certain gene orders is
most likely unrealistic. This holds especially for mitochondrial

genomes where the major forces that shape gene arrangements are
inversions, transpositions, inverse transpositions, and tandem dupli-
cation random losses (TDRLs) (Boore, 1999). In order to compute re-
alistic scenarios of gene order evolution, it is crucial to base recon-
structions on a suitable rearrangement model that reflects the preva-
lent biological conditions. Such conditions may be the frequency of
different types of evolutionary mechanisms, the preservation of cer-
tain groups of genes, and the evolutionary mechanisms itself. The
use of a suitable rearrangement model becomes even more important
when parsimonious scenarios of mitochondrial gene order evolution
are used to provide evidence for phylogenetic hypothesis as it is of-
ten done in the biological literature, e. g., see Bleidorn et al. (2007)
and Tan et al. (2018) and many other references listed in Section 2.1.3.

However, despite the fact that a better understanding of the re-
arrangement model that considers all predominant mitochondrial
genome rearrangements (i. e., the model M4-type) is indispensable for
the study of mitochondrial gene orders, only little is known about it.
In particular, the fundamental genome rearrangement problems (see
Section 2.2.4) under M4-type have not be investigated up to now and
only two algorithms provide parsimonious rearrangement scenarios
for pairs of gene orders under M4-type. Those algorithms are the CREx

heuristic (Bernt et al., 2007) and the integer linear program proposed
in Lancia et al. (2015). While the scenarios obtained by CREx are not
guaranteed to be optimal, it preserves certain gene clusters of the
given gene orders. However, the heuristic assumes that all rearrange-
ment types are equally likely which may limit the biological practi-
cality especially since analyses from Bernt and Middendorf (2011) in-
dicate that the different types of rearrangements in Protostomia (and
also Metazoa) occur with significant differences: 20% inversions, 80%
transpositions, 10% inverse transpositions, and 10% TDRLs. The inte-
ger linear program that has been proposed in Lancia et al. (2015) con-
siders neither gene orientation, i. e., it considers pairs of unsigned per-
mutations, nor the preservation of gene clusters. In addition, it uses
an exponential number of variables which limits the approach to be
used for problem instances of small size. (See Section 2.3.6 for more
details on both algorithms.) Consequently, the existing techniques to
compute rearrangement scenarios under M4-type either reflect biolog-
ical conditions of mitochondrial genomes only to a limited degree or
are computationally demanding.

[April 2019 at 13:18 – classicthesis 4.4]

116 algorithms for sorting by mitochondrial rearrangements

This chapter addresses several of the latter limitations by investi-
gating the fundamental genome rearrangement problems for pairs
of signed permutations under the M4-type rearrangement model. Sec-
tion 5.2 investigates the sorting problem (and the distance problem)
for signed linear permutations under M4-type. It is shown that the
M4-type model is only insufficiently suitable to obtain biological rel-
evant rearrangement scenarios. This is because parsimonious rear-
rangement scenarios contain almost entirely rearrangements of type
TDRL. As a consequence, two biological motivated variants of the
sorting problem under M4-type are studied in Section 5.3 and Sec-
tion 5.4. The first variant considers individual weights for each type of
rearrangement to reflect different relative likelihoods for inversions,
transpositions, inverse transpositions, and TDRLs. Recall that for a
weighted rearrangement model, the sorting problem becomes the
weighted sorting problem where a minimum weight scenario is sought
instead of a scenario having the minimum length. Likewise, the dis-
tance problem becomes the weighted distance problem, see Section 2.2.4
for a formal definition. In Section 5.3 the weighted sorting problem
(i. e., the first variant of the sorting problem) is solved exactly by us-
ing integer linear programming. The second variant of the sorting
problem extends the first one by explicitly enforcing genome rear-
rangement scenarios to preserve certain groups of genes that occur
in both considered gene orders in close proximity. Those groups of
genes are represented formally by the notion of common intervals
of permutations, see Section 2.2.2. The exact dynamic programming
algorithm CREx2 that solves this problem efficiently for large classes
of problem instances is proposed in Section 5.4. To show that CREx2
is able to reliably reconstruct gene order rearrangement scenarios, it
is evaluated on artificial and biological gene order data sets in Sec-
tion 5.5. In particular, the fundamental contributions of this chapter
are:

• A sharp lower bound and several close additive upper bounds
on the M4-type distance are proposed for the first time (Theo-
rem 5.1).

• An approximation algorithm solving the sorting problem for
signed linear permutations under M4-type is described. The al-
gorithm guarantees to compute a rearrangement scenario that
deviates from a parsimonious scenario in at most two rearrange-
ments (Algorithm 2).

• The polynomial-size integer linear program GeRe-ILP is de-
scribed (Section 5.3). GeRe-ILP solves the weighted sorting prob-
lem for signed linear permutations under M4-type in which ev-
ery type of rearrangement can be weighted arbitrarily.

• The tool CREx2 is described (Algorithm 3). CREx2 solves the
weighted sorting problem for signed linear permutations un-
der M

p
4-type, where a weight can be assigned to each type of

rearrangement and the common intervals of the considered per-
mutations are preserved.

[April 2019 at 13:18 – classicthesis 4.4]

5.1 basic definitions and preliminaries 117

The chapter is organized as follows. Section 5.1 recalls the most
important definitions that are used throughout the chapter. The sort-
ing problem and the distance problem for signed linear permutations
under M4-type is investigated in Section 5.2. Section 5.3 proposes the
integer linear program GeRe-ILP. The algorithm CREx2 is presented
in Section 5.4 and evaluated on simulated and biological gene order
data in Section 5.5. Conclusions are drawn in Section 5.6.

5.1 basic definitions and preliminaries

In this section, the formal definitions relevant for investigating the
characteristics of the M4-type model under several biological condi-
tions are briefly recalled (for an extensive formal introduction with
references and examples see Section 2.2).

In the following, signed linear permutations are used as a formal
model for gene orders in which each element represents a unique
gene and the sign represents its orientation. Recall that the set of
all signed permutations of size n is denoted by sPn. An interval of
a permutation π is a non-empty set of (unsigned) elements that are
consecutive in π. I(π) is the set of all intervals of π.

Evolutionary events that change the order of genes of some con-
sidered unichromosomal genomes are modeled by rearrangement
operations. In particular, this chapter considers the major rearrange-
ment operations that occur in metazoan mitochondrial genomes: in-
versions, transpositions, inverse transpositions, and tandem duplica-
tion random losses (TDRLs). Let π be a signed linear permutation.
Furthermore, let X and Y denote disjoint and consecutive intervals of
π, i. e., X, Y ∈ I(π), X∪ Y ∈ I(π), and X∩ Y = ∅. An inversion ρI(X) for
π reverses the order and it switches the sign of every element within
an interval X. A transposition ρT(X, Y) for π switches the order of the
intervals X and Y of π. An inverse transposition ρiT(X, Y) for π switches
the order of the intervals X and Y of π and, in addition, it reverses
the order and switches the sign of every element in X. Let L and R
be a bipartition of [1 :n], i. e., L ∪ R = [1 :n] and L ∩ R = ∅. Finally, a
tandem duplication random loss ρTDRL(L, R) for π duplicates π such that
the duplicate is placed adjacently to π, followed by the loss of every
element contained in L (respectively R) in the left (respectively right)
copy of π. Observe that this TDRLs definition reflects the fact that
every TDRL that duplicates a permutation only partially can easily
be represented by a TDRL that duplicates the complete permutation
as explained in Section 2.3.4.

Gene clusters of a set of gene orders are modeled by common inter-
vals of a set of (signed) permutations. Consider a set of permutations
Π ⊆ sPn. A common interval of Π is a subset of (unsigned) elements
of the permutations within Π that is an interval in each permutation
of Π. With C(Π) the set of all common intervals of Π is denoted. Re-
call that the preservation of common intervals in the construction of
parsimonious rearrangement scenarios (for two given permutations)
is realized by restricting the considered model to contain only those

[April 2019 at 13:18 – classicthesis 4.4]

118 algorithms for sorting by mitochondrial rearrangements

rearrangements that do not break any common interval of the con-
sidered permutations. Such rearrangements are called preserving and
the genome rearrangement problems that are defined for the preser-
vation of common intervals are called preserving genome rearrangement
problems. This chapter considers the preserving sorting problem un-
der the model Mp

4-type which includes all preserving inversions, trans-
positions, inverse transpositions, and TDRLs in Section 5.4.

The weight of a rearrangement in M ∈ {M4-type,Mp
4-type} is given

by a weight function ω : M → R>0. In this chapter, the weight of
a rearrangement is determined by its type Z ∈ {I, T, iT, TDRL} and
the corresponding weight is denoted by ωZ. The weight of a sequence
(scenario) S for two permutations π and σ is given by the sum of the
weights of its rearrangements. A scenario for π and σ with minimum
weight is called parsimonious.

5.2 exploring the 4-type rearrangement model

This section considers the distance problem (and also the sorting
problem) for two signed permutations under M4-type. Despite the fact
that this rearrangement model represents the major rearrangement
events that occur during the evolution of metazoan mitochondrial
gene orders (see Section 2.1.3), both problems have – up to now – not
been investigated formally. However, as the introduction outlines, a
better understanding of the M4-type rearrangement model is indis-
pensable for the study of mitochondrial gene orders. Therefore, Sec-
tion 5.2.1 presents a sharp lower and several close upper bounds on
the distance problem for signed linear permutations under M4-type.
An approximation algorithm that satisfies those upper bounds is pro-
posed in Section 5.2.2. The insights gained in this section are impor-
tant for biological applications as they show that a parsimonious rear-
rangement scenario under M4-type predominantly contains rearrange-
ments of type TDRL. The practical consequences of the theoretical re-
sults for mitochondrial gene order data are discussed in Section 5.2.3.

5.2.1 Bounding the 4-type Rearrangement Distance

In this section, the M4-type distance for signed linear permutations is
investigated. For this task the identity permutation ι and an arbitrary
permutation π are considered instead of two arbitrary permutations.
Recall that this is sufficient due to the left-invariance of linear permu-
tations (see Section 2.2.1). As the main result of this section, bounds
on the M4-type distance are determined by a characterization of per-
mutations that can be generated by sequentially applying k ∈ N

4-type rearrangements to the identity permutation ι. This characteri-
zation utilizes the number of maximal increasing substrings of a permu-
tation, which is an interval of the considered permutation that cannot
be extended to the left or the right without violating the condition
that – from left to right – all elements increase.

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 119

The chain of evidence presented in this section is performed by
using similar techniques as in Section 4.2: A lower bound on the
(minimum) number of k ∈ N 4-type rearrangements that are nec-
essary to produce a permutation with a certain number of maximal
increasing substrings is determined in Proposition 5.1. A correspond-
ing upper bound is proposed in Proposition 5.2. Finally, the bounds
on the M4-type distance are derived by combining the lower and the
upper bound in Theorem 5.1.

The Lower Bound

This subsection provides a lower bound on the number of required
4-type rearrangements that transform the identity permutation ι into
a permutation with a certain number of maximal increasing sub-
strings. To determine this bound, it is helpful to investigate to which
extent the different types of 4-type rearrangements can influence the
maximal increasing substrings of permutation. The following lemma
gains such insights for inversions and inverse transpositions. It states
that the number of descents, i. e., the number of positions i ∈ [1 :n− 1]

of a permutations π ∈ sPn for which π(i) > π(i+ 1), can be increased
by at most one, using an inversion, or by at most two, using an inverse
transposition. It is worth mentioning that the proof of the following
lemma is similar to the proof of Proposition 9.3 from Bóna (2004).

Lemma 5.1. The following statements are true:

i) No inversion can increase the number of descents of a signed linear
permutation by more than one.

ii) No inverse transposition can increase the number of descents of a
signed linear permutation by more than two.

Proof. Let π = (π(1) π(2) . . . π(n)) be a signed linear permutation of
size n ∈N.

(i): Let X = π(i+ 1) . . . π(j), 1 6 i+ 1 6 j 6 n denote the substring
of π that is affected by an inversion ρI, i. e.,

ρI ◦ π = (π(1) . . . π(i) −π(j) . . . −π(i+ 1) π(j+ 1) . . . π(n)).

It is easy to see that the only positions in which an ascent (i. e., a po-
sition 1, . . . ,n− 1 that is not a descent) can be turned into a descent
may be positions i and j. Note that all ascents within X remain un-
changed. In order to increase the number of descents by two, such a
change has to occur in both positions i and j. This can only be the
case if the following inequalities hold:

π(i) < π(i+ 1),

π(j) < π(j+ 1),

π(i) > −π(j),

−π(i+ 1) > π(j+ 1).

Observe that the left (right) inequalities satisfy that positions i and j
are ascents (respectively descents) in π (respectively ρI ◦ π). However,
this is not possible since it would imply:

π(i) < π(i+ 1) < −π(j+ 1) < −π(j) < π(i).

[April 2019 at 13:18 – classicthesis 4.4]

120 algorithms for sorting by mitochondrial rearrangements

Thus, an inversion can increase the number of descents by at most
one.

(ii): Let X = π(i+ 1) . . . π(j) and Y = π(j+ 1) . . . π(k) with 1 6
i+ 1 6 j < j+ 1 6 k 6 n denote the consecutive substrings of π that
are affected by an inverse transposition ρiT, i. e., permutation ρiT ◦ π
is either:

(π(1) . . . π(i) −π(k) . . . −π(j+ 1) π(i+ 1) . . . π(j) π(k+ 1) . . . π(n)) or

(π(1) . . . π(i) π(j+ 1) . . . π(k) −π(j) . . . −π(i+ 1) π(k+ 1) . . . π(n)).

For the sake of a clear argument, only the first equation is considered.
(The proof for the second equation is fully analogous.) The only po-
sitions in which an ascent can be turned into a descent by an inverse
transposition are positions i, j, and k. In order to increase the number
of descents by three, such a change would have to occur in each of the
three positions. This can only be the case if the following inequalities
hold:

π(i) < π(i+ 1),

π(j) < π(j+ 1),

π(k) < π(k+ 1),

π(i) > −π(k),

−π(j+ 1) > π(i+ 1),

π(j) > π(k+ 1).

However, this is not possible since it would imply:

π(i) < π(i+ 1) < −π(j+ 1) < −π(j) < −π(k+ 1) < −π(k) < π(i).

Thus, an inverse transposition can increase the number of descents
by at most two and the lemma follows.

Since every descent of a permutation π ∈ sPn is the position of
the last element of a maximal increasing substring of π, it is easy to
verify that the number of descents of π is one less than the number
of maximal increasing substrings of π. Hence, the following corollary
is an immediate consequence of Lemma 5.1.

Corollary 5.1. The following statements are true:

i) No inversion can increase the number of maximal increasing sub-
strings of a signed linear permutation by more than one.

ii) No inverse transposition can increase the number of maximal increas-
ing substrings of a signed linear permutation by more than two.

Using Corollary 5.1, the sought lower bound on the number of re-
quired 4-type rearrangements is determined in the following propo-
sition. To understand Proposition 5.1, recall that the number of maxi-
mal increasing substrings of a permutation π is denoted by |S(π)|.

Proposition 5.1. For a permutation π ∈ sPn that has been obtained from
ι ∈ sPn by the application of k ∈ N0 4-type rearrangements it holds that
|S(π)| 6 2k.

Proof. The proposition is proven by induction on k. First consider the
case k 6 1. If k = 0 then the statement follows trivially from |S(π)| =

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 121

|S(ι)| = 1 = 20. Now consider k = 1. If π is obtained by the applica-
tion of an inversion or an inverse transposition then there exist two
indices i and j with 1 6 i 6 j 6 n such that 0 < π(1) < . . . < π(i− 1),
and π(i) < . . . < π(j) < 0 < π(j+ 1) < . . . < π(n). Hence, if i = 1 then
it holds that |S(π)| = 1 and, otherwise, it follows |S(π)| = 2. Conse-
quently, |S(π)| 6 2. Now consider that π is obtained by a TDRL. Then
π can be expressed as ττ ′, where τ and τ ′ are disjoint subsequences
of ι. Then, |S(π)| = |S(ττ ′)| 6 2|S(ι)| = 2 is obtained from Lemma 4.3.
The base case follows by the fact that the transposition is a special
case of the TDRL rearrangement.

For the induction step assume that k > 2. Now consider a per-
mutation σ that has been obtained from ι by the application of
k− 1 rearrangements from M4-type. The permutation obtained from
σ by the application of a single 4-type rearrangement ρ is denoted
by π. There are four cases that have to be considered depending
on the type of ρ. If ρ is an inversion (respectively inverse trans-
position) then Corollary 5.1.(i) (respectively Corollary 5.1.(ii)) im-
plies |S(π)| = |S(ρ ◦ σ)| 6 |S(σ)| + 1 6 2k−1 + 1 < 2k (respectively
|S(π)| = |S(ρ ◦ σ)| 6 |S(σ)|+ 2 6 2k−1 + 2 6 2k). If ρ is a TDRL, then
there are two disjoint substrings τ and τ ′ of σ such that π can be
expressed as ττ ′. By Lemma 4.3 it holds that |S(π)| = |S(ρ ◦ σ)| =
|S(ττ ′)| 6 |S(τ)|+ |S(τ ′)| 6 |S(σ)|+ |S(σ)| = 2k. The statement follows
by the fact that a transposition is a special case of a TDRL.

The Upper Bound

In this subsection, several upper additive bounds are given on the
minimum number of 4-type rearrangements that have to be applied
to ι in order to produce a permutation with a certain number of max-
imal increasing substrings.

The main idea is to obtain these upper bounds by iteratively ap-
plying certain transformations to a given permutation π in order to
reduce the number of its maximal increasing substrings. The result of
this procedure is to obtain a sequence S of transformations that trans-
form π into ι. These transformations are not chosen arbitrarily. In-
stead, transformations that invert 4-type rearrangements are applied.
The idea is that a sequence of 4-type rearrangements that transforms
ι into π can then be obtained from S by reversing its order and re-
placing every transformation by its corresponding inverted 4-type re-
arrangement.

The required transformations can be determined easily for inver-
sions, transpositions, and inverse transpositions since these opera-
tions are reversible, i. e., ρ ◦ ρ ◦ π = π if ρ is an inversion, transpo-
sition, or inverse transposition for π. A transformation that can invert
a TDRL rearrangement is a riffle shuffle (Bayer and Diaconis, 1992).
In the following, the focus lies on a certain riffle shuffle that is able
to bisect the number of maximal increasing substrings of a permu-
tation. More precisely, the transformation T : sPn → sPn is defined
to construct a permutation T(π) from π which has two properties:

[April 2019 at 13:18 – classicthesis 4.4]

122 algorithms for sorting by mitochondrial rearrangements

1) there always exists a TDRL ρTDRL such that ρTDRL ◦ T(π) = π (see
Lemma 5.2), and 2) |S(T(π))| = d|S(π)|/2e (see Lemma 5.4).

The following notations are needed. The maximal increasing sub-
string decomposition of a permutation π is the unique list of pairwise
disjoint maximal increasing substrings τ1τ2 . . . τ|S(π)| of π such that
π(1) . . . π(n) = τ1τ2 . . . τ|S(π)| and for all 1 6 j 6 |S(π)| it holds that
|τj| > 1. Let X be a subsequence of a permutation. The notation E(X)

is used to refer to the set of absolute values of all elements of X. Con-
sider two disjoint subsequences X and Y of a permutation π. By X⊕ Y
the sequence is denoted that is created by sorting the elements X and
Y increasingly. For examples of the aforementioned definitions see
Example 5.1, Figure 5.1, and Section 2.3.4.

Consider a signed linear permutation π of size n with the maximal
substring decomposition π = π1 . . . π|S(π)|. The transformation T is
defined depending on whether the number of maximal increasing
substrings of π is even or odd (see also Figure 5.1). If |S(π)| is even,
then T(π) := τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2, where

τ1 := π1 ⊕ π|S(π)|/2+1,

τ2 := π2 ⊕ π|S(π)|/2+2,
...

τ|S(π)|/2−1 := π|S(π)|/2−1 ⊕ π|S(π)|−1, and

τ|S(π)|/2 := π|S(π)|/2 ⊕ π|S(π)|.

If |S(π)| is odd, then T(π) := τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e, where

τ1 := π1 ⊕ πd|S(π)|/2e+1,

τ2 := π2 ⊕ πd|S(π)|/2e+2,
...

τb|S(π)|/2c := πb|S(π)|/2c ⊕ π|S(π)|, and

τd|S(π)|/2e := πd|S(π)|/2e.

Example 5.1. Consider the permutation π = (−1 2−3 4−5 6−10−9 7 8).
The maximal increasing substring decomposition of π is π1π2π3π4, where
π1 = −1 2, π2 = −3 4, π3 = −5 6, and π4 = −10−9 7 8. Since |S(π)| = 4
is even, it follows that T(π) = τ1τ2 with τ1 = π1 ⊕ π3 = −5−1 2 6 and
τ2 = π2 ⊕ π4 = −10−9−3 4 7 8. Now consider the permutation π ′ =
(3 5 −10 2 7 −1 −6 −8 4 9) which has the maximal increasing substring
decomposition π ′1π

′
2π
′
3π
′
4π
′
5, where π ′1 = 3 5, π ′2 = −10 2 7, π ′3 = −1,

π ′4 = −6, and π ′5 = −8 4 9. Since |S(π ′)| = 5 is odd, it follows that T(π ′) =
τ ′1τ
′
2τ
′
3, where τ ′1 = π ′1 ⊕ π ′4 = −6 3 5, τ ′2 = π ′2 ⊕ π ′5 = −10−8 2 4 7 9,

and τ ′3 = π
′
3 = −1. For an illustration see Figure 5.1.

The following three auxiliary lemmata are needed to show the up-
per bound in Proposition 5.2. The first lemma states that the intro-
duced transformation T (the riffle shuffle) is an inverse operation of
a TDRL rearrangement.

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 123

(a) |S(π)| even

(b) |S(π ′)| odd

Figure 5.1: Illustration of Example 5.1: (a) π (left) and T(π) (right); (b) π ′

(left) and T(π ′) (right). Each dot represents an element (y-axis)
of a permutation and its position (x-axis). Maximal increasing
substrings are illustrated by continuous lines. For every permu-
tation that is illustrated its maximal increasing substring decom-
position is shown on the bottom of the respective subfigure.

Lemma 5.2. For every signed linear permutation π of size n ∈ N, the
following statement is true. There exists a TDRL ρTDRL ∈M4-type such that
ρTDRL ◦ T(π) = π.

Proof. Let π ∈ sPn and let π = π1π2 . . . π|S(π)| be the maximal in-
creasing substring decomposition of π. Then, by definition of T(π)
it holds that T(π) = τ1τ2 . . . τ|S(π)|/2−1τ|S(π)|/2 (respectively T(π) =

τ1τ2 . . . τb|S(π)|/2cτd|S(π)|/2e) in the case of |S(π)| being even (respec-
tively odd). It follows that

L = π1π2 . . . π|S(π)|/2−1π|S(π)|/2 and

R = π|S(π)|/2+1 π|S(π)|/2+1 . . . π|S(π)|−1 π|S(π)|

are disjoint subsequences of T(π) in the case that |S(π)| is even. If
otherwise |S(π)| is odd, then it follows that

L = π1π2 . . . πb|S(π)|/2cπd|S(π)|/2e and

R = πd|S(π)|/2e+1 πd|S(π)|/2e+2 . . . π|S(π)|−1π|S(π)|

are disjoint subsequences of T(π). Note that in both cases π = LR

holds true and L, R are disjoint subsequences of T(π) with L ∪ R con-
taining all elements of T(π). Hence, for the TDRL ρTDRL(E(L),E(R)) it
holds that ρTDRL ◦ T(π) = π.

Observe that the proof of Lemma 5.2 also defines the TDRL that,
when applied to T(π), reverses the effect of the transformation T on π:

[April 2019 at 13:18 – classicthesis 4.4]

124 algorithms for sorting by mitochondrial rearrangements

For a signed permutation πwith the maximal increasing substring de-
composition π = π1 . . . π|S(π)| it holds that ρTDRL(E(L),E(R))◦T(π) =
π, where L = π1 . . . πd|S(π)|/2e and R = πd|S(π)|/2e+1 . . . π|S(π)|. The
following example illustrates this observation.

Example 5.2. Consider the permutation π ′ = (3 5 −10 2 7 −1 −6 −8 4 9)

that is illustrated in Figure 5.1 (b). The example shows that the maximum
increasing substring decomposition of π ′ is π ′1π

′
2π
′
3π
′
4π
′
5 with π ′1 = 3 5,

π ′2 = −10 2 7, π ′3 = −1, π ′4 = −6, and π ′5 = −8 4 9. In addition, it shows
that T(π ′) = (−6 3 5 −10 −8 2 4 7 9 −1). By Lemma 5.2 it follows that for
the TDRL ρTDRL(E(L),E(R)) in which L = π ′1π

′
2π
′
3 = 3 5−10 2 7−1 and

R = π ′4π
′
5 = −6−8 4 9 it holds that ρTDRL(E(L),E(R)) ◦ T(π) = π.

Transformation T is designed such that the following lemma holds.

Lemma 5.3. Let π be a signed permutation of size n. For the permutation
T(π) the respective decomposition into strings τ1τ2 . . . τt (where t is as in
the respective case) is a maximal increasing substring decomposition.

Proof. Let π ∈ sPn and let π = π1 . . . π|S(π)| be the maximal increasing
substring decomposition of π. For the proof it is sufficient to show
that for each j ∈ [1 : t−1] it holds that the last element `τj of τj is larger
than the first element fτj+1 of τj+1, i. e., `τj > fτj+1 . By construction
T(π) := τ1τ2 . . . τt−1τt with t = |S(π)|/2 (respectively t = d|S(π)|/2e)
in the case that |S(π)| is even (respectively odd). Since all elements of
two sequences X and Y are sorted increasingly in X⊕ Y it follows that
every τj with j ∈ [1 : t] is an increasing substring. By the construction
of T(π) it holds that τj = πj ⊕ π|S(π)|/2+j for j ∈ [1 : b|S(π)|/2c] and
πd|S(π)|/2e = τd|S(π)|/2e if |S(π)| is odd. Hence, a τj always contains all
elements of πj for all j ∈ [1 : t]. Consequently, `τj > `πj and fτj 6 fπj
holds true for all j ∈ [1 : t]. The fact that πj and πj+1 are two maximal
increasing substrings, i. e., `πj > fπj+1 for j ∈ [1 : |S(π)|− 1], implies
`τj > `πj > fπj+1 > fτj+1 for all j ∈ [1 : t− 1]. Therefore, τ1, . . . , τt are
maximal, which proves the statement.

Finally, the following lemma shows that the application of the trans-
formation T to a permutation π results in a permutation T(π) that has
half as many maximal increasing substrings as π.

Lemma 5.4. Let π ∈ sPn with |S(π)| > 1. It holds that |S(T(π))| =

d|S(π)|/2e.

Proof. Let π ∈ sPn with |S(π)| > 1. Consider the case that |S(π)| is
even. By the construction of T(π) = τ1 . . . τ|S(T(π))| it holds that two
maximal increasing substrings of π always form a new increasing
substring in T(π), hence |S(T(π))| 6 |S(π)|/2. By Lemma 5.3 it holds
that every τi of T(π) is also maximal, and hence |S(T(π))| > |S(π)|/2.
Altogether, |S(T(π))| = |S(π)|/2 if |S(π)| is even.

Now consider that |S(π)| is odd. By the construction of T(π) =

τ1 . . . τ|S(T(π))| it holds that τ1, . . . , τb|S(T(π))|/2c of T(π) are always
formed by two maximal increasing substrings of π and τd|S(T(π))|/2e
is formed by one maximal increasing substring of π. Hence,
|S(T(π))| 6 d|S(π)|/2e. By Lemma 5.3 it holds that every maximal

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 125

increasing substring of T(π) is also maximal, hence |S(T(π))| >
d|S(π)|/2e. Altogether, |S(T(π))| = d|S(π)|/2e if |S(π)| is odd.

For a clear presentation in the following paragraphs, the notation
Υ(π) denotes the set of all elements of a permutation π of size n that
have a negative sign, i. e., Υ(π) := {|π(i)| :π(i) < 0, i ∈ [1 :n]}. Observe
that Υ(π) contains the absolute value of every negative element of
π. The following proposition states the upper bounds on the mini-
mum number of 4-type rearrangements that have to be applied to ι
in order to produce a permutation with a certain number of maximal
increasing substrings.

Proposition 5.2. Let π ∈ sPn with 2k−1 < |S(π)| 6 2k for a k ∈N0. The
following statements are true:

i) Permutation π can be obtained by applying k+2 rearrangements from
M4-type to ι.

ii) If there exist `,m ∈ N such that Υ(π) = [` :m], then permutation π
can be obtained by applying k+ 1 rearrangements from M4-type to ι.

iii) If Υ(π) = ∅, then π can be obtained by applying k rearrangements
from M4-type to ι

Proof. Let π be a signed permutation of size n as specified in the state-
ment. Note that all three statements of the proposition are proven si-
multaneously by induction on k. For the base case consider k = 0.
It follows that 2−1 < |S(π)| 6 20. Therefore, |S(π)| is equal to 1.
Consider first that π = ι, hence Υ(π) = ∅. In this case no rearrange-
ment is needed to transform ι into π which proves the base case for
Statement (iii). Now consider that π 6= ι. Hence, for π it holds that
π(1) < . . . < π(i) < 0 < π(i+ 1) < . . . < π(n) with 1 6 i 6 n. If there
exist `,m ∈ N such that Υ(π) = {|π(1)|, . . . , |π(i)|} = [` :m], then it
holds that ρiT (Υ(π), [1 : `− 1]) ◦ ι = π if ` 6= 1 and ρI(Υ(π)) ◦ ι = π

otherwise. Consequently, π can be obtained by the application of
one 4-type rearrangement (inversion or inverse transposition) which
proves the base case for Statement (ii). Finally, if such indices ` and m
do not exist, then Corollary 4.2 implies dMiTDRL(ι,π) = 1. Since every
iTDRL can replaced by a TDRL and an inversion or an inverse trans-
position (see Figure 4.6), π can be obtained by applying two 4-type
rearrangements to ι which proves the base case for Statement (i).

For the induction step let k > 1. Consider a permutation π such
that 2k−1 < |S(π)| 6 2k. Consider first that Υ(π) = ∅. By Chaudhuri
et al. (2006) it holds that dMTDRL(ι,π) = dlog2 |S(π)|e = k. Hence, π
can be obtained from ι by the application of k TDRL rearrangements.
Statement (iii) follows by the fact that MTDRL ⊂ M4-type. Now con-
sider that Υ(π) 6= ∅. Lemma 5.4 implies that |S(T(π))| = d|S(π)|/2e
and thus, it holds that 2k−2 < |S(T(π))| 6 2k−1. Note that, if there ex-
ist `,m ∈ N with Υ(π) = [` :m], then T(π) also satisfies this property,
since transformation T does not influence the sign of an element of π.
By the induction hypothesis it holds that T(π) can be obtained by ap-
plying k+ 1 (respectively k) rearrangements from M4-type to ι (in the

[April 2019 at 13:18 – classicthesis 4.4]

126 algorithms for sorting by mitochondrial rearrangements

case that such ` and m exist). Lemma 5.2 states that there always ex-
ists a TDRL ρTDRL ∈M4-type such that ρTDRL ◦ T(π) = π. Consequently,
π can be obtained by the application of k+ 2 (respectively k+ 1) re-
arrangements from M4-type which proves Statement (i) (respectively
Statement (ii)).

Observe that the proof of Proposition 5.2 shows that the permu-
tation π in Proposition 5.2 can always be obtained from ι by: 1) a
TDRL followed by an inversion (or inverse transposition) followed
by k TDRLs, 2) an inversion or inverse transposition followed by k
TDRLs if for π exist `,m ∈ N such that Υ(π) = [` :m], or 3) by k
TDRLs if Υ(π) = ∅.

Bounding the M4-type Distance

In the following, the lower and upper bounds on the M4-type distance
are provided as formulated in the following theorem.

Theorem 5.1. Let π be a signed permutation of size n ∈N. For the M4-type

distance it holds that:

dlog2 |S(π)|e 6 dM4-type(ι,π) 6

dlog2 |S(π)|e if π ∈ Pn,

dlog2 |S(π)|e+ 1
if ∃ `,m ∈N :
Υ(π) = [` :m]

dlog2 |S(π)|e+ 2 else.

Proof. Let π ∈ sPn. There exists a unique k ∈ N0 with 2k−1 <

|S(π)| 6 2k. Therefore, Proposition 5.1 implies that dM4-type(ι,π) > k.
By |S(π)| 6 2k it follows that dlog2 |S(π)|e 6 k 6 dM4-type(ι,π).

By 2k−1 < |S(π)| it holds that k− 1 < log2 |S(π)| which implies k 6
dlog2 |S(π)|e. Proposition 5.2 implies that dM4-type(ι,π) 6 k ′, where
k ′ = k if Υ(π) = ∅; k ′ = k + 1 if for π exist `,m ∈ N such that
Υ(π) = [` :m]; and k ′ = k+ 2 otherwise. Combining the inequalities
k 6 dlog2 |S(π)|e and dM4-type(ι,π) 6 k

′ (in the respective case) proves
the theorem.

Several mentionable facts are implied by Theorem 5.1. First of all,
the bounds on the M4-type distance of a permutation π that are deter-
mined in Theorem 5.1 can be computed by calculating the number
of maximal increasing substrings of π. Certainly, this can be done in
linear time with respect to the number of elements of π. The M4-type

distance of a permutation π is identical to the MTDRL distance if π
does not contain any elements with a negative sign (i. e., Υ(π) = ∅).
Otherwise, i. e., Υ(π) 6= ∅, the bounds that are proposed in Theo-
rem 5.1 are very close in the sense that the deviation from the actual
M4-type distance is at most two. Finally, Theorem 5.1 implies that a
parsimonious sorting scenario for signed linear permutations under
M4-type almost entirely contains rearrangements of type TDRL. The
practical consequences of this insight for biological applications are
further discussed in Section 5.2.3.

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 127

5.2.2 Approximation Algorithm for Sorting By Mitochondrial Rearrange-
ments

In the following, a quasilinear time approximation algorithm for the
sorting problem for two given permutations under M4-type is pro-
posed which guarantees the bounds that are formulated in Theo-
rem 5.1.

Recall that the proof of Proposition 5.2 implies that for a given
signed linear permutation π there always exists a sequence of 4-type
rearrangements which contains at most one inversion (or inverse
transposition) and a certain number of TDRLs (from which two might
be transpositions). The following algorithm computes for a given
signed linear permutation π a scenario (ρ1, . . . , ρt) that is of one of
the following types:

1) t = dlog2 |S(π)|e and ρ2, . . . , ρt are TDRLs and ρ1 is either an
inversion or an inverse transposition,

2) t = dlog2 |S(π)|e and ρ1, . . . , ρt are TDRLs,

3) t = dlog2 |S(π)|e+ 1 and ρ2, . . . , ρt are TDRLs and ρ1 is either
an inversion or an inverse transposition, and

4) t = dlog2 |S(π)|e+ 2 and ρ1, ρ3, . . . , ρt are TDRLs and ρ2 is an
inversion.

The pseudo code of the algorithm can be found in Algorithm 2 and
an example illustrating the algorithm is given by Example 5.3.

The main idea of Algorithm 2 is to generate a sequence S of trans-
formations that transforms π into ι by the following procedure: First,
transformation T is iteratively applied to π in order to produce a per-
mutation π ′ that has two maximal increasing substrings. If π ′ can be
transformed into ι by the application of one inversion or inverse trans-
position, then S is obtained by applying the respective rearrangement.
Otherwise, the transformation T is applied once more to π ′ which re-
sults into a permutation π ′′ that has exactly one maximal increasing
substring. It follows that (with respect to the set Υ(π ′′)) either no
additional transformation, one inverse transposition, or an inversion
followed by transformation T is applied to π ′′ in order to obtain S.
In all those cases, the sought scenario for ι and π under M4-type is
obtained from S by computing the inverting 4-type rearrangements
for every transformation in S and reversing the relative order of all
computed rearrangements. In the following, Algorithm 2 is described
in more detail.

Let π be a signed permutation of size n ∈ N. It is easy to see that
for π exactly one of the following cases applies: (i) Υ(π) = ∅, (ii) for
Υ(π) exist `,m ∈ N such that Υ(π) = [` :m], or (iii) neither Case (i)
nor Case (ii) holds. Since applying the transformation T to π does
not influence the signs of the elements of π, the respective case that
applies for π also applies for permutation T(π). (This observation is
silently used in the following description of Algorithm 2.)

[April 2019 at 13:18 – classicthesis 4.4]

128 algorithms for sorting by mitochondrial rearrangements

Algorithm 2 : Pseudo code of sorting by 4-type rearrange-
ments

Data : π ∈ sPn
Result : (ρ1, . . . , ρt) ∈ SM4-type(ι,π) : (t− dM4-type(ι,π)) ∈ [0 : 2]

1 if π == ι then
2 return ∅;
3 j← 0;
4 while π 6= ι do
5 j← j+ 1;
6 π = π1 . . . π|S(π)|;
7 Υ(π)← {|π(i)| :π(i) < 0, i ∈ [1 :n]};
8 if |S(π)| = 1 then
9 if ∃ `,m ∈ [2 :n] :Υ(π) = [` :m] then

10 π← ρiT(Υ(π), [1 : `− 1]) ◦ π;
11 ρj ← ρiT(Υ(π), [1 : `− 1]);
12 else
13 π← ρI(Υ(π)) ◦ π;
14 ρj ← ρI(Υ(π));
15 continue;
16 if |S(π)| > 1 then
17 if |S(π)| = 2, π(1) > 0, ∃ `,m ∈ [1 :n] :Υ(π) = [` :m]

then
18 if ∃ `,m with 2 6 ` 6 m 6 n :
19 π = (1 . . . `− 1 −m . . .−` m+ 1 . . .n) then
20 π← ρI(Υ(π)) ◦ π;
21 ρj ← ρI(Υ(π));
22 continue;
23 if ∃o,p,q with 1 6 o < p < q 6 n :
24 π = (1 . . .o− 1 p . . .q −(p− 1) . . .−o q+ 1 . . .n)

then
25 π← ρiT(Υ(π), {p, . . .,q}) ◦ π;
26 ρj ← ρiT(Υ(π), {p, . . .,q});
27 continue;
28 if ∃o,p,q with 1 6 o < p < q 6 n :
29 π = (1 . . .o− 1 −q . . .−p o . . .p− 1 q+ 1 . . .n) then
30 π← ρiT(Υ(π), {o, . . .,p− 1}) ◦ π;
31 ρj ← ρiT(Υ(π), {o, . . .,p− 1});
32 continue;
33 π← π1 ⊕ πd|S(π)|/2e+1. . .πd|S(π)|/2e = T(π);
34 ρj←ρTDRL(E(π1. . .πd|S(π)|/2e),E(πd|S(π)|/2e+1. . .π|S(π)|);
35 continue;
36 return (ρj, . . . , ρ1);

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 129

If π = ι, i. e., the sorting sequence of 4-type rearrangements that
transforms ι into π is empty, then an empty scenario is returned in
lines 1 to 2. If otherwise π 6= ι, then a counter j is initialized with 0
in Line 3. The sorting scenario for ι and π is iteratively computed
in the while loop (lines 4 to 35) as long as π 6= ι. In each iteration
of the while loop the counter j is incremented (Line 5), the maximal
increasing substring decomposition of π is computed (Line 6), and
the set Υ(π) is generated (Line 7). If π has more than two maximal
increasing substring, i. e., |S(π)| > 1, then π is always substituted by
T(π) (Line 33) and the corresponding inverting TDRL (which exists
by Lemma 5.2) is computed (Line 34). This process is repeated until
|S(π)| = 2 which requires dlog2 |S(π)|e− 1 iterations (see Lemma 5.4).

If π has two maximal increasing substrings in which the left max-
imal increasing substring contains only positive elements (which is
implied by π(1) > 0), and there exist two indices ` and m with
1 6 ` 6 m 6 n such that Υ(π) = [` :m], then it is checked whether
π can be transformed into ι by using one inversion (lines 18 to 22) or
one inverse transposition (lines 23 to 32). If one of these conditions
(lines 18, 23, or 28) is satisfied for π, then the respective rearrange-
ment is applied to π transforming it into ι (lines 20, 25, 30) and the
corresponding inverting rearrangement is computed (lines 21, 26, 31).
Hence, the condition of the while loop becomes false and the algo-
rithm returns in Line 36 a scenario of Type 1. If π cannot be trans-
formed into ι by an inversion or inverse transposition, i. e., none of
the conditions in lines 18, 23 or 28 are satisfied, then π is substituted
by T(π) once more (lines 33, 34) resulting into a permutation that has
exactly one maximal increasing substring.

If now Case (i) applies to π, then π = ι. Hence, the condition of
the while loop becomes false and the algorithm returns in Line 36 a
scenario of Type 2.

Now consider that Case (i) does not apply to π. Since |S(π)| = 1 it
follows that π(1) < . . . < π(i) < 0 < π(i+ 1) < . . . < π(n) for an
i ∈ [1 :n− 1].

If Case (ii) applies to the initial π, then either 1 ∈
{|π(1)|, . . . , |π(i)|} = Υ(π) or 1 6∈ Υ(π). Note that the former (latter)
condition implies that π can be expressed as (−i . . . −1 i+ 1 . . . n)

(respectively (−i . . . −` 1 . . . `− 1 i+ 1 . . . n) with ` ∈ [2 : i − 1]).
Hence, if the former is true, then π is substituted by ρI(Υ(π)) ◦ π
(Line 13), the corresponding inversion (i. e., ρI(Υ(π))) is computed
(Line 14), and it holds that ρI(Υ(π)) ◦ π = ι. If, otherwise, the latter
is true, then π is substituted by ρiT(Υ(π), [1 : `− 1]) ◦ π (Line 10), the
corresponding inverse transposition (i. e., ρiT(Υ(π), [1 :h− 1])) is com-
puted (Line 11), and it holds that ρiT(Υ(π), [1 : `− 1]) ◦ π = ι. Hence,
if Case (ii) holds true, then the condition of the while loop becomes
false and the algorithm returns in Line 36 a scenario of Type 3.

It remains to consider Case (iii). Hence, neither Case (i) nor Case (ii)
is satisfied. Since |S(π)| = 1 and the expression in Line 9 is false,
lines 13 to 14 are executed. Hence, π is substituted by ρI(Υ(π)) ◦ π
(Line 13), the corresponding inversion (i. e., ρI(Υ(π))) is computed
(Line 14), and it holds that ρI(Υ(π)) ◦ π is a permutation that has

[April 2019 at 13:18 – classicthesis 4.4]

130 algorithms for sorting by mitochondrial rearrangements

exactly two maximal increasing substrings and Υ(ρI(Υ(π)) ◦ π) = ∅.
Consequently, in the next iteration the lines 33 to 34 are executed
which transform π into ι (Line 33) and the corresponding inverting
TDRL (Line 34) is computed. Subsequently, the algorithm returns in
Line 36 a scenario of Type 4.

The following example illustrates the application of Algorithm 2.

Example 5.3. Consider the permutation π = (1 −4 −3 −2 5) which has
the maximum increasing substrings 1 and −4−3−2 5. Since π(1) = 1 > 0
and Υ(π) = {2, 3, 4} = [2 : 4] the condition in Line 17 of Algorithm 2 is
satisfied. Likewise the condition in Line 18 is satisfied and thus, the inversion
ρI({2, 3, 4}) is applied to π resulting into ι and the rearrangement ρI({2, 3, 4})
is stored in Line 21. Subsequently, the scenario (ρI({2, 3, 4})) of Type 1 is
returned.

Now consider π = (1 3 5 2 4). Permutation π contains the maximal in-
creasing substrings 1 3 5 and 2 4. Since Υ(π) = ∅ it follows that π ∈ Pn and
thus, Theorem 5.1 implies that dM4-type(ι,π) = 1. Hence, only one 4-type re-
arrangement is necessary to obtain π from ι. To obtain this rearrangement,
Algorithm 2 applies transformation T to π. The corresponding 4-type rear-
rangement that reverses the application of T is ρTDRL(E(1 3 5),E(2 4)) =

ρTDRL({1, 3, 5}, {2, 4}). Since T(π) = (1 2 3 4 5) = ι the scenario
(ρTDRL({1, 3, 5}, {2, 4})) of Type 2 is returned.

Consider π = (−3 4 5 −2 1). Permutation π contains the maximal in-
creasing substrings −3 4 5 and −2 1. Furthermore, it holds that Υ(π) =

{2, 3} and thus, Υ(π) = [2 : 3]. By Theorem 5.1 it follows that π can be ob-
tained from ι by two 4-type rearrangements. To obtain a sequence of 4-type
rearrangements of this length, Algorithm 2 computes a sequence of transfor-
mations that transform π into ι. The first transformation that is applied to
π is T which gives T(π) = (−3 −2 1 4 5). The corresponding 4-type rear-
rangement that reverses the application of T is ρTDRL({3, 4, 5}, {1, 2}). Since
Υ(π) = Υ(T(π)) = [2 : 3] the inverse transposition ρiT({2, 3}, {1}) is ap-
plied to T(π). Note that ρiT({2, 3}, {1}) can invert its effect if it is applied to
ρiT({2, 3}, {1}) ◦ T(π). Since ρiT({2, 3}, {1}) ◦ T(π) = ι Algorithm 2 returns
the scenario (ρiT({2, 3}, {1}), ρTDRL({3, 4, 5}, {1, 2})) of Type 3.

Finally, consider π = (−4 5 −1 2 3) which contains the maximal increas-
ing substrings −4 5 and −1 2 3. In addition, it holds that Υ(π) = {1, 4}.
By Theorem 5.1 it follows that π can be obtained from ι by three 4-type rear-
rangements. In order to obtain a sequence of transformations that transform
π into ι, Algorithm 2 first applies T to π which gives (−4 −1 2 3 5). Then
ρI({1, 4})) is applied to (−4−1 2 3 5) resulting into (1 4 2 3 5). Observe that
(1 4 2 3 5) has two maximal increasing substrings and that Υ((1 4 2 3 5)) =
∅. Therefore, the transformation T is applied to (1 4 2 3 5) which results
in (1 2 3 4 5). Reversing all transformations and its relative order gives
the scenario (ρTDRL({1, 4}, {2, 3, 5})), ρI({1, 4})), ρTDRL({4, 5}, {1, 2, 3}))) of
Type 4.

For a runtime analysis of Algorithm 2 consider π ∈ sPn. It is not
hard to see that the evaluations in lines 1, 4, 8 – 9, 16 – 19, 23 – 24, and
28 – 29, the computation of the maximal increasing substring decom-
position (Line 6), the computation of Υ(π) (Line 7), the replacement of
π (lines 10, 13, 20, 25, 30, and 33), and the construction of ρj (lines 11,

[April 2019 at 13:18 – classicthesis 4.4]

5.2 exploring the 4-type rearrangement model 131

14, 21, 26, 31, 34) can be done in time O(n). Therefore, the lines 4 to 35
are executed in time O(n). By Theorem 5.1 these lines are executed
at most dlog2 |S(π)|e+ 2 times. Since |S(π)| 6 n it follows that Algo-
rithm 2 has a runtime in O(n logn).

Algorithm 2 is implemented in C++ and is freely available
from http://pacosy.informatik.uni-leipzig.de/sp4type. It is also
worth mentioning that if a TDRL has the same effect as a transpo-
sition (partial duplication TDRL), then the implementation of Algo-
rithm 2 always returns a transposition (respectively an equivalent par-
tial duplication TDRL).

5.2.3 Consequences for Biological Applications

The results from Section 5.2.1 imply several consequences for biolog-
ical applications:

A parsimonious scenario for two gene orders under M4-type is
strongly dominated by rearrangements of type TDRL. This is due
to the fact, that the different types of rearrangement operations have
a major difference in their rearrangement power: while inversions (in-
verse transpositions and even transpositions) can change the number
of maximal increasing substrings of a permutation that represents a
given gene order at most by one (respectively two), TDRLs are capa-
ble of modifying this number by a factor of two. Hence, TDRLs are
able to rearrange a gene order in a much greater extent than inver-
sions or (inverse) transpositions.

But unfortunately, long sequences of TDRL rearrangements are of-
ten of limited biological reliability for a variety of reasons. On the one
hand, this is because almost all TDRLs (of the constructed scenarios
that are obtained by Algorithm 2) affect the whole gene order, while
in real world biological scenarios rearrangements tend to occur more
frequently close to the replication origin and affect only a small num-
ber of genes (Fonseca and Harris, 2008). On the other hand, the fre-
quencies of the different types of mitochondrial rearrangements that
have been proposed in the literature (e. g., see Bernt et al. (2013b)) are
not reflected by the scenarios that are computed with Algorithm 2.

Another insight gained from the preceding section is that the
M4-type distance for two gene orders with n genes grows asymp-
totically not faster than logn. Therefore, the M4-type distance is a
rough evolutionary similarity measure compared to other rearrange-
ment distances that grow asymptotically not faster than n (e. g., the
MI distance). Consequently, the usefulness of the M4-type distance for
phylogeny reconstruction might be limited by the small maximum
distance which grows very slowly for an increasing gene order size.

Both insights indicate that the 4-type rearrangement model (with
equally weighted rearrangements) is less valuable for inferring reli-
able evolutionary rearrangements scenarios. Therefore, in the remain-
der of this chapter two variations of the model M4-type are proposed
in order to improve the reliability of the inferred rearrangement sce-
narios. The main idea of both variants is to restrict the effect of TDRL

[April 2019 at 13:18 – classicthesis 4.4]

http://pacosy.informatik.uni-leipzig.de/sp4type

132 algorithms for sorting by mitochondrial rearrangements

rearrangements in the constructed scenarios. This can be done by re-
ducing the number of TDRL rearrangements or/and the number of
genes that are affected by a TDRL.

The first approach, which is covered in Section 5.3, allows to restrict
the number of the TDRL rearrangements by employing a weight-
ing scheme on M4-type. The idea is to weight a rearrangement from
M4-type by its type such that the weights reflect the likelihood of a
rearrangement to occur during evolution.

The second approach extends the first one by using biological con-
straints to additionally restrict the amount of genes that can be in-
fluenced by a rearrangement. The idea is to use the common inter-
val framework enforcing the rearrangements to act locally on smaller
subsets of the genes. This results in (preserving) scenarios that grow
asymptotically not faster than the number of genes of the considered
gene orders. This second approach leads to the algorithm CREx2 that
is well suited for studying mitochondrial gene order evolution, see
Section 5.4 and Section 5.5.

5.3 integer linear programming for sorting by

weighted rearrangements

The different types of genome rearrangements which shape the gene
arrangement of unichromosomal genomes do not occur with simi-
lar frequencies during evolution (Bernt and Middendorf, 2011). For
example, the predominant rearrangement event that is relevant for
chloroplast genomes of plants is the inversion (Cosner et al., 1997)
while for the case of mitochondrial genomes transpositions are the
predominant (Bernt et al., 2013b). Consequently, for analyzing the
phylogeny of such genomes, it is crucial to consider a suited model
that reflects the different relative likelihoods for rearrangements to oc-
cur during the evolution of different taxa. The relative likelihood of a
rearrangement in the computation of genome rearrangement scenar-
ios is commonly influenced by employing a weighting scheme on the
considered rearrangement model. The idea is that if a rearrangement
is unlikely to occur then it is assigned with a high weight relative to
a rearrangement which is assumed to occur more often during evo-
lution. Given a weighted rearrangement model, the weighted sorting
problem is then to find a rearrangement scenario for some given gene
orders in which the total weight of all rearrangements that are used
is minimum, see Section 2.2.4 for a formal definition.

Different weighting schemes have been proposed for various com-
binations of genome rearrangements. Examples are weighting inver-
sions and transpositions with respect the number of affected genes
(e. g., Bender et al. (2008) and Oliveira et al. (2018b)) or weighting in-
versions, transpositions, and inverted transpositions with respect to
their type (e. g., Blanchette et al. (1996) and Oliveira et al. (2018a)),
see also Section 2.3 for an overview. However, with a few exceptions
(e. g., Bader and Ohlebusch (2007) and Lancia et al. (2015)) algorithms
for solving the sorting problem usually assume fixed weights for the

[April 2019 at 13:18 – classicthesis 4.4]

5.3 ilp for sorting by weighted rearrangements 133

different types of rearrangements and – up to now – no algorithm
has been presented that includes all predominant mitochondrial rear-
rangements while allowing rearrangements to be weighted differen-
tially. This lack of literature is addressed in this section by proposing
an integer linear program that solves the weighted sorting problem
for signed linear permutation under M4-type.

Unfortunately, in contrast to the sorting problem under M4-type

which appears to be tractable, the weighted sorting problem under
M4-type is NP-hard. This can be seen by the fact that one of its sub-
problems is the sorting problem of unsigned linear permutations un-
der MT which has been proven to be NP-hard (Bulteau et al., 2012).
Therefore, one cannot realistically hope for an efficient exact algo-
rithm. However, one method which is sufficient for obtaining exact
solutions for such problems is an integer linear program (ILP). Using
ILP, an optimization problem is described by means of 1) a set of bi-
nary variables V1, . . . ,Vm; 2) a set of linear constraints of the form∑m
i=1 aijVi > bj with aij,bj ∈ R that constrain the variables; and 3)

a linear objective function
∑m
i=1 ciVi with ci ∈ R that transforms the

model to an optimization problem. An exact solution for the optimiza-
tion problem represented by an ILP is then given by an assignment of
the binary variables V1 to Vn that minimize (or sometimes maximize)
the objective function while satisfying the given constraints. An as-
signment is usually obtained by an optimizer such as the IBM ILOG™

Optimizer or Gurobi (Gurobi Optimization, 2018). For an in-depth in-
troduction to theoretical and practical aspects of ILPs see for example
Bertsimas and Tsitsiklis (1997) and Schrijver (1998).

In the following Section, the polynomial size integer linear pro-
gram GeRe-ILP (Hartmann et al., 2017) is proposed for solving
the weighted sorting problem for signed linear permutation under
M4-type. GeRe-ILP uses O(n3) variables and O(n3) constraints for a
permutation of size n ∈ N. It provides an exact minimum weight
rearrangement scenario for a signed permutations π and the identity
permutation ι with arbitrary weights for the four different types of
rearrangement operations.

In favor of a clear notation, the constraints of the following inte-
ger linear program are often specified as Boolean operations. Those
operation can be modeled easily by linear constraints (which are not
further mentioned in this thesis) as stated in the following proposi-
tion.

Proposition 5.3. Let X1, X2, A1, . . . ,An, and B1, . . . ,Bm be binary vari-
ables with n+m > 0 and n,m ∈ N0 of a given integer linear program.
Furthermore, let N ∈ R be such that N > |X1 −X2| > 0. The implication

A1 ∧ . . .∧An ∧¬B1 ∧ . . .∧¬Bm ⇒ X1 = X2

is satisfied by using the following inequalities as linear constraints:

N(1−A1) + . . .+N(1−An) +NB1 + . . .+NBm +X1 > X2,

N(1−A1) + . . .+N(1−An) +NB1 + . . .+NBm +X2 > X1.

[April 2019 at 13:18 – classicthesis 4.4]

134 algorithms for sorting by mitochondrial rearrangements

Proof. Consider Ai = 1 and Bj = 0 for all i ∈ [1 :n], j ∈ [1 :m]. The
first constraint implies X1 > X2 and the second implies X2 > X1 and,
thus, X1 = X2. Observe that both constraints are always satisfied if
there exists at least one Ai with Ai = 0 or one Bj with Bj = 1. This is
because N > |X1 −X2| > 0.

For the following section it is essential to introduce the notation of
a bounding position of a rearrangement (see also Example 5.4). Let
π be a permutation and X, Y be two disjoint consecutive intervals of
π, i. e., X, Y,X ∪ Y ∈ I(π) and X ∩ Y. Consider that a rearrangement
ρZ ∈ M4-type with Z ∈ {I, T, iT} is applied to π. The position of the
leftmost element of π that is affected by ρZ is called the left bounding
position. If the position of the rightmost element of π that is affected
by ρZ is r ∈ [1 :n], then r+ 1 is called right bounding position. For a in-
version it is assumed that the middle bounding position coincides with
the right bounding position. If a transposition ρT(X, Y) (or a inverse
transposition ρiT(X, Y)) is applied to π, then the position of the left-
most element of the rightmost interval of {X, Y} is called the middle
bounding position.

Example 5.4. Consider the permutation (4 −6 2 3 −1 5) and the intervals
X = {2, 3, 6} and {1, 5} of π. The inversion ρI(X) for π transforms π into
(4 −3 −2 6 −1 5). The leftmost (rightmost) element of π that is affected by
ρI(X) is −6 (respectively 3). Therefore, the left (right) bounding position of
ρI(X) is 2 (respectively 5). Since ρI(X) is an inversion, the middle bound-
ing position of ρI(X) is 5 as well. The inverse transposition ρiT(Y,X) for
π transforms π into (4 −5 1 −6 2 3). The leftmost (rightmost) element of
π that is affected by ρiT(Y,X) is −6 (respectively 5). Consequently, the left
(right) bounding position of ρiT(Y,X) is 2 (respectively 7). Interval Y is the
rightmost interval of {X, Y} and the leftmost element of Y is −1. Hence, the
middle bounding position of ρiT(Y,X) is 5.

5.3.1 Integer Linear Programming GeRe-ILP

For a permutation π ∈ sPn GeRe-ILP determines a rearrangement
scenario and maintains variables that represent the intermediate per-
mutations πk with k ∈ [1 : t]. In the following, k ∈ [1 : t] is the index
of intermediate permutations and i, j ∈ [1 : n + 1] denote elements.
Note that to each permutation of size n an auxiliary element n+ 1 is
added at the right end of the permutation in order to model the right
bounding position in some cases.

The permutations are encoded by binary variables Pijk which hold
the information if element i is to the left of element j in permutation
πk. Binary variables Oik encode the sign of element πk(i). Formally,

Pijk =

1 if π−1k (i) < π−1k (j),

0 otherwise,
(ILP 1)

[April 2019 at 13:18 – classicthesis 4.4]

5.3 ilp for sorting by weighted rearrangements 135

Oik =

1 if πk(π−1k (i)) > 0,

0 otherwise.
(ILP 2)

Note that the variables Pijk and Oik are fixed for k = 0 and k = t

such that π0 = π and πt = ι. Furthermore, it is worth mentioning that
the position and the sign of the auxiliary element n+ 1 is fixed for all
intermediate permutations by adding the constraints On+1k = 0 and
Pin+1k = 1 for all k ∈ [0 : t] and i ∈ [1 :n]. The variables Pijk for k =

[2 : t− 1] are deduced from the variables for k− 1 by constraints. For
each k ∈ [1 : t], there are four binary variables Ik, Tk, iTk, and TDRLk
that determine if an inversion, transposition, inverse transposition or
a tandem duplication random loss takes place, i. e., Zk = 1 if and
only if ρZ ◦ πk−1 = πk for a ρZ ∈ M4-type with Z ∈ {I, T, iT, TDRL}.
The following constraint guarantees that for all k ∈ [1 : t] it holds that
exactly one of the variables Ik, Tk, iTk, and TDRLk is one:

Ik + Tk + iTk + TDRLk = 1. (ILP 3)

In the following, TDRL rearrangements are encoded differently
from the remaining considered types of rearrangements. The vari-
ables and constraints that encode TDRL rearrangements are intro-
duced first. Assume a TDRL ρTDRL(X, Y) ∈ MTDRL transforms πk
into πk+1. Then, ρTDRL is encoded by binary variables FSik such that
FSik = 0 if and only if element i of πk is included in set X. This is
ensured by the following constraints that are set for all i, j ∈ [1 :n],
k ∈ [1 : t− 1]:

TDRLk ∧ FSik = FSjk ⇒ Pijk = Pijk+1 ∧ Pjik = Pjik+1, (ILP 4)

TDRLk ∧ FSik 6= FSjl ⇒ Pijk 6= Pijk+1 ∧ Pjik 6= Pjik+1. (ILP 5)

A TDRL cannot toggle the sign of an element i. Hence, for all i ∈
[1 :n], k ∈ [1 : t− 1] the following constraint is set:

TDRLk ⇒ Oik = Oik+1. (ILP 6)

Observe that the constraints (ILP 4) to (ILP 6) are sufficient to model
TDRL rearrangements. Therefore, the constraints in the remainder of
this section consider the case that no TDRL rearrangement transforms
πk into πk+1, i. e., either Ik = 1, Tk = 1, or iTk = 1 for a k ∈ [1 : t− 1].
This is satisfied by the term “¬TDRLk” which occurs in several of the
following constraints.

Inversions, transpositions, and inverse transpositions are encoded
by three binary variables B`ik, Bmik, and Brik that encode the left, mid-
dle, and right bounding position of the rearrangement such that a
variable is one if position i is the respective bounding position in πk.
For every of those rearrangements, there exist exactly one left, one

[April 2019 at 13:18 – classicthesis 4.4]

136 algorithms for sorting by mitochondrial rearrangements

middle, and one right bounding position. This is guaranteed by the
following equation that is set for all k ∈ [1 : t]:

n+1∑
i=1

B`ik =

n+1∑
i=1

Bril =

n+1∑
i=1

Bmik = 1. (ILP 7)

Constraint (ILP 8) guarantees that for each rearrangement opera-
tion the left bounding position is smaller than the middle bound-
ing position. For transpositions and inverse transpositions the middle
bounding position has to be to the left of the right bounding position,
as it is guaranteed by Constraint (ILP 9) and Constraint (ILP 10), re-
spectively. Constraint (ILP 11) guarantees that for inversions the mid-
dle and the right bounding position are identical. In order to sat-
isfy those implications, the following constraints are added for all
i, j ∈ [1 :n+ 1], k ∈ [1 : t]:

¬TDRLk ∧B`ik ∧B
m
jk ⇒ Pijk, (ILP 8)

Tk ∧Bmik ∧B
r
jk ⇒ Pijk, (ILP 9)

iTk ∧Bmik ∧B
r
jk ⇒ Pijk, (ILP 10)

Ik ∧Bmik ∧B
r
jk ⇒ i = j. (ILP 11)

The bounding positions define two intervals which contain the re-
arranged elements, see Figure 5.2. In particular, the elements from B`

to Bm (but excluding Bm) form the left interval and the elements from
Bm to Br form the right interval. For inverse transpositions one of the
intervals is inverted. This is controlled with the binary variables C`k
and Crk:

Cxk =

0, interval x ∈ {`, r} is not inverted,

1, interval x ∈ {`, r} is inverted.
(ILP 12)

Inversions are defined such that the right interval is empty (since
Bm = Br) and therefore only the left interval has to be inverted which
is guaranteed by Constraint (ILP 13). Constraint (ILP 14) guarantees
that transpositions do not invert any interval. In the case of an inverse
transposition exactly one of the two intervals is inverted. This is guar-
anteed by Constraint (ILP 15). Altogether the following constraints
are added for all k ∈ [1 : t]:

Ik ⇒ C`k ∧¬Crk, (ILP 13)

Tk ⇒ C`k +C
r
k = 0, (ILP 14)

iTk ⇒ C`k +C
r
k = 1. (ILP 15)

To test if an element i ∈ [1 : n] is either within the left interval,
within the right interval, or outside of both intervals, four auxiliary
variables are defined as follows. Two binary variables Lmik and Lrik are
introduced to test if element i is to the left of Bm and if i is to the left
of Br, respectively. This is guaranteed by adding Constraint (ILP 16)

[April 2019 at 13:18 – classicthesis 4.4]

5.3 ilp for sorting by weighted rearrangements 137

Figure 5.2: The ranges where Lm, Lr, R`, and Rm are 1 (arrows), and the
resulting left interval W` and right interval Wr that are affected
by the rearrangement (boxes).

for all i ∈ [1 :n+ 1], k ∈ [1 : t] and constraints (ILP 17) to (ILP 18) for
all i, j ∈ [1 :n+ 1], k ∈ [1 : t]:

¬TDRLk ∧Bxik ⇒ ¬Lxik (x ∈ {m, r}) (ILP 16)

¬TDRLk ∧ Pijk ∧Bxjk ⇒ Lxik (x ∈ {m, r}) (ILP 17)

¬TDRLk ∧ Pjik ∧Bxjk ⇒ ¬Lxik (x ∈ {m, r}) (ILP 18)

Auxiliary binary variables R`ik and Rmik are introduced to test if an
element i ∈ [1 : n + 1] is to the right of or equal to B` and if i
is to the right of or equal to Bm, respectively. This is ensured by
adding Constraint (ILP 19) for all i ∈ [1 : n + 1], k ∈ [1 : t] and con-
straints (ILP 20) to (ILP 21) for all i, j ∈ [1 :n+ 1], k ∈ [1 : t]:

¬TDRLk ∧Bxik ⇒ Rxik, (x ∈ {`,m}) (ILP 19)

¬TDRLk ∧ Pjik ∧Bxjk ⇒ Rxik, (x ∈ {`,m}) (ILP 20)

¬TDRLk ∧ Pijk ∧Bxjk ⇒ ¬Rxik. (x ∈ {`,m}) (ILP 21)

Observe the difference between R` and Rm (which include B`, Bm

and Bm, respectively), and Lm and Lr (which exclude Bm and Br,
Bm, respectively).

Binary variables W`
ik and Wr

ik are one if and only if an element
i ∈ [1 :n+ 1] is within the left interval or the right interval, respec-
tively (see Figure 5.2). This is guaranteed by setting the following
constraints for all i ∈ [1 :n+ 1], k ∈ [1 : t]:

¬TDRLk ∧ R`ik ∧ L
m
ik ⇒W`

ik, (ILP 22)

¬TDRLk ∧ R`ik ∧¬Lmik ⇒ ¬W`
ik, (ILP 23)

¬TDRLk ∧ Lmik ∧¬R`ik ⇒ ¬W`
ik, (ILP 24)

¬TDRLk ∧ Rmik ∧ L
r
ik ⇒Wr

ik, (ILP 25)

¬TDRLk ∧ Rmik ∧¬Lrik ⇒ ¬Wr
ik, (ILP 26)

¬TDRLk ∧ Lrik ∧¬Rmik ⇒ ¬Wr
ik. (ILP 27)

The following constraints ensure that the order of two elements
i, j is reversed if either both elements are in the inverted interval
(guaranteed by Constraint (ILP 28)) or one element is in the left in-
terval and the other element in the right interval (guaranteed by

[April 2019 at 13:18 – classicthesis 4.4]

138 algorithms for sorting by mitochondrial rearrangements

Constraint (ILP 29)). Both constraints are added for all i ∈ [1 :n+ 1],
k ∈ [1 : t− 1].

¬TDRLk ∧Cxk ∧W
x
ik ∧W

x
jk ⇒ Pijk+1 = 1− Pijk(x ∈ {`, r}) (ILP 28)

¬TDRLk ∧W`
ik ∧W

r
jk ⇒ Pijk+1 = 1− Pijk (ILP 29)

The order of two elements i and j of a permutation πk is not affected
by a rearrangement that is applied to πk if 1) at least one of both
elements is not between bounding position or 2) both elements are in
the interval that is not inverted. Implication 1 is ensured by adding
constraints (ILP 30) to (ILP 31) and Implication 2 is guaranteed by
setting Constraint (ILP 32), both for all i, j ∈ [1 :n+ 1], k ∈ [1 : t− 1].

¬TDRLk ∧¬W`
ik ∧¬Wr

ik ⇒ Pijk+1 = Pijk (ILP 30)

¬TDRLk ∧¬W`
jk ∧¬Wr

jk ⇒ Pijk+1 = Pijk (ILP 31)

¬TDRLk ∧¬Cxk ∧W
x
ik ∧W

x
jk ⇒ Pijk+1 = Pijk (x ∈ {`, r}) (ILP 32)

It remains to incorporate the effects of inversions, transposi-
tions, and inverse transpositions on the signs of the elements.
Constraint (ILP 33) guarantees the change of the sign of every el-
ement within the inverted interval. Elements which are neither in
the inverted interval nor in the left interval or right interval do not
change the sign. This is guaranteed by Constraint (ILP 34) and Con-
straint (ILP 35), respectively. The constrains (ILP 33) to (ILP 35) are
added for all i, j ∈ [1 :n+ 1], k ∈ [1 : t− 1].

¬TDRLk ∧Cxk ∧W
x
ik ⇒ Oik+1 = 1−Oik (x ∈ {`, r}) (ILP 33)

¬TDRLk ∧¬Cxk ∧W
x
ik ⇒ Oik+1 = Oik (x ∈ {`, r}) (ILP 34)

¬TDRLk ∧¬W`
ik ∧¬Wr

ik ⇒ Oik+1 = Oik (ILP 35)

The objective is to minimize the weight of the resulting rearrange-
ment scenario, i. e.,

min
t∑
k=1

(IkωI + TkωT + iTkωiT + TDRLkωTDRL), (ILP 36)

where ωI, ωT, ωiT, and ωTDRL denote the respective weight of a rear-
rangement of type inversion (I), transposition (T), inverse transposi-
tion (iT), and tandem duplication random loss (TDRL).

For n elements and distance t, the ILP model has O(tn2) variables
and constraints. The number of variables is due to the variables Pijk
that maintain the order information of elements i and j in the (inter-
mediate) permutation πk. Since the number of elements i and j is n
and 1 6 k 6 t 6 n, the model uses O(n3) many variables in the worst
case. The number of constraints is O(n3) since some constraints are
set for all i, j, and k, e. g., see Constraint (ILP 8).

[April 2019 at 13:18 – classicthesis 4.4]

5.3 ilp for sorting by weighted rearrangements 139

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(5.5)

(5.3)

(5.6)

(5.1)

(5.2)

(5.7)

(5.4)

ωIωT

ωiT

Figure 5.3: Weighting schemes for inversions, transpositions, and inverse
transpositions in which a single rearrangement cannot be re-
placed with a sequence of other rearrangements without violat-
ing the parsimony criterion (gray area). Black lines correspond
to weighting schemes in which equality holds for one of the in-
equalities (5.1) - (5.7).

5.3.2 Implementation

Given a permutation π and a maximum number of rearrangements t,
GeRe-ILP gives either a minimum-weight scenario for π and ι using
t rearrangements from M4-type or it returns the information that the
model is unfeasible, i. e., such a scenario does not exist.

As proposed for the iTDRL rearrangement in Section 4.2, single re-
arrangements can in certain cases be mimicked by a sequence of other
rearrangements. For the case that only weighted inversion, transposi-
tions, and inverse transpositions are considered, Bernt et al. (2013d)
have analyzed all possible alternatives to replace a single rearrange-
ment. The authors proved that all three types of rearrangements may
be part of a parsimonious scenario if the following inequalities are
satisfied (see also Figure 5.3):

ωT < ωI +ωiT, (5.1)

ωT < 3ωI, (5.2)

ωT < 2ωiT, (5.3)

ωiT < ωI +ωT, (5.4)

ωiT < 2ωI, (5.5)

ωI < ωT +ωiT, (5.6)

ωI < 3ωiT. (5.7)

It is easy to see that if transpositions, inversions, and inverse trans-
positions are weighted equally, than a single rearrangement cannot
be replaced by single rearrangement of another type. Combining this
with the facts that a single inversion (also inverse transposition) can-

[April 2019 at 13:18 – classicthesis 4.4]

140 algorithms for sorting by mitochondrial rearrangements

not replace a TDRL and that a transposition can be seen as a special
TDRL, it follows that if GeRe-ILP is iteratively executed for increasing
values of t, then the first found solution is an optimal solution. In the
case that at least one rearrangement can be replaced by a sequence of
other rearrangements, e. g., at least one of inequalities (5.1) to (5.7) is
violated, an upper bound on the maximum length of the scenario t is
obtained by t = obj/min{ωI,ωT,ωiT,ωTDRL}, where obj denotes the
objective value of the first solution that is found. In contrast to the
case where no rearrangement can be mimicked, the ILP is solved for
all k ∈ [0 : t], which gives an optimal solution. In this case, the objec-
tive value of the best feasible solution is always added as an upper
bound on the objective value in the succeeding executions of the ILP.

Although GeRe-ILP can exactly solve the weighted sorting problem
for two signed permutations under M4-type, it is unrealistic that it
can be applied to complete mitochondrial gene orders that are sepa-
rated by several rearrangements. The reason for this is its exponential
runtime behavior. However, it can be used for moderate-sized gene
orders, e. g., the order of mitochondrial protein-coding genes, as ex-
plored in Hartmann et al. (2017). In this work another approach is
investigated: GeRe-ILP is used as a subroutine of the CREx2 algorithm
to solve computational hard (but in many cases sufficiently smaller)
subproblems in a common interval framework as proposed in the
following section.

5.4 sorting by weighted preserving rearrangements

Often times in nature one can observe sets of genes that are sim-
ilar in close proximity in several genomes (Lathe 3rd et al., 2000).
Such sets of genes are called gene clusters. Gene clusters might have
been formed by functional constraints, evolutionary inertia, or by
chance. Considering that maintaining functional genomes might have
inhibited the destruction of certain gene clusters, it is most likely
that those gene clusters are also present in the ancestral genomes.
Based on that idea, algorithms should enforce scenarios of rearrange-
ments which do not break those gene clusters in all (intermediate)
gene orders. Such scenarios and the corresponding rearrangements
are called preserving. A simple and formal concept to model clusters
of genes in genomes is to consider common combinatorial structures
between gene orders. In this chapter, gene clusters of unichromoso-
mal genomes are modeled by common intervals. Common intervals
are intervals of consecutive genes that appear in the considered gene
orders. For a broad overview on computational approaches regarding
common intervals see Section 2.2.2.

Rearrangement problems that account for common intervals have
already been studied. The idea to make use of common intervals for
the comparison of gene orders has been presented in Heber and Stoye
(2001b) and Heber and Stoye (2001a). In particular, the distance prob-
lem and the sorting problem for preserving inversions was studied in-
tensively (Bérard et al., 2004; Bergeron et al., 2002a; Figeac and Varré,

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 141

2004; Swenson et al., 2009; Swenson and Moret, 2009). The main idea
of the presented algorithms, e. g., Bergeron et al. (2008) and Heber
et al. (2011), is to use a generating subset of the common intervals
as outlined in Section 2.2.2. In Figeac and Varré (2004) the distance
problem for preserving inversions was shown to be NP-hard. Nev-
ertheless, by using the strong interval tree data structure (Bergeron
et al., 2008) which encodes all common intervals efficiently, a fixed-
parameter tractable algorithm with linear runtime has been proposed
for all instances for which the common intervals are organized in a
certain linear structure (Bérard et al., 2007; Bérard et al., 2008). By de-
tecting patterns in the strong interval tree, two algorithms have been
described that heuristically compute rearrangement scenarios: one al-
gorithm in Parida (2006) and algorithm CREx in Bernt et al. (2007).
The latter algorithm is more general and considers the M

p
4-type model

that contains all preserving rearrangements that are predominant in
metazoan mitochondrial genomes.

The preservation of common intervals also provides significant ad-
vantages for reconstructing evolutionary scenarios of mitochondrial
gene orders:

Recall that the M4-type model is insufficiently suited for reconstruct-
ing pairwise mitochondrial gene order scenarios as parsimonious sce-
narios contain almost entirely tandem duplication random losses that
affect the whole gene order (see Section 5.2.3). In a common interval
framework, TDRLs (and also the other types of rearrangements) are
enforced to act locally on smaller subsets of genes in order to ensure
the preservation of the common intervals. Note that this also reflects
the fact that short rearrangements are found more often than long
ones (Lefebvre et al., 2003).

The insights gained in Section 5.2.3 also show that the M4-type dis-
tance proves to be only a rough genomic measure. This especially
holds if the M4-type distance (which grows asymptotically not faster
than log2 n for gene orders having n genes) is compared to other
genomic (dis)similarity measures that grow asymptotically not faster
than n, e. g., the MI distance. However, by using the common interval
framework the corresponding M

p
4-type distance grows asymptotically

not faster than n as well. This is because a rearrangement can poten-
tially be applied for every non-overlapping common interval which
are of number O(n).

For all these reasons, this section investigates the weighted sort-
ing problem for two given signed linear permutations under the
M
p
4-type rearrangement model. This model considers the types of rear-

rangements inversion (I), transposition (T), inverse transposition (iT),
and tandem duplication random loss (TDRL) that preserve the com-
mon intervals of the two given permutations. In addition, each re-
arrangement is considered to be weighted with respect to its type
Z ∈ {I, T , iT , TDRL}. This section proposes an algorithm, called CREx2,
that improves the CREx heuristic in the following aspects:

i) CREx2 allows the incorporation of rearrangement weights, and

[April 2019 at 13:18 – classicthesis 4.4]

142 algorithms for sorting by mitochondrial rearrangements

ii) CREx2 is able to provide an exact solution even in the case that
the common intervals are organized in a non-linear structure.

CREx2 has a linear runtime if the common intervals are organized in
a linear structure. Otherwise, if the common intervals are organized
in a non-linear structure then CREx2 either produces an approximated
solution in time O(n2 logn), where n is the size of the input permuta-
tions, or an exact solution within exponential runtime. In addition it
is shown empirically for simulated and biological data sets that CREx2
computes results of high accuracy.

The chapter is organized as follows. Definitions that are necessary
for the following formal analysis are given in Section 5.4.1. Theoreti-
cal results are shown in Section 5.4.2 and Section 5.4.3. CREx2 is pre-
sented in Section 5.4.4. An evaluation of the accuracy of the CREx2

results is performed on simulated and real biological gene order data
sets in Section 5.5. A conclusion is given in Section 5.6.

5.4.1 Common Intervals and Strong Interval Trees

Recall the formal definitions of common intervals of a set of (signed)
permutations and the strong interval tree that efficiently represents
the complete set of common intervals. Nevertheless, these defini-
tions should be recalled here (for references and examples see Sec-
tion 2.2.2).

An interval of a permutation π is a set of unsigned elements that
occur consecutively in π. A common interval of a set of permutations
Π ⊆ sPn is an interval that occurs in each permutation of Π. The
set of all common intervals of Π is denoted by C(Π). A permutation
π is consistent to Π if C(Π) = C(Π ∪ π). The common intervals of Π
can be represented elegantly by using a generating subset of the com-
mon intervals called the strong common intervals. A common interval
I ∈ C(Π) is strong if every other common interval J ∈ C(Π) is either
disjoint, included in I, or includes I, i. e., I ∩ J = ∅, J ⊆ I, or I ⊆ J. It
is not hard to see that every two strong intervals do not overlap, i. e.,
they are either disjoint or one includes the other. Therefore, the strong
intervals of Π form a hierarchy which allows to represent them effi-
ciently. The representation used for this purpose is the strong interval
tree (SIT). The SIT is the central data structure for efficient preserv-
ing rearrangement analysis. The main reason is that the SIT can be
computed in linear time and represents the common intervals (which
can be quadratic in number) in linear space (Bérard et al., 2007). More
formally, consider a permutation λ ∈ sPn that is consistent to Π. The
strong interval tree Tλ(Π) of Π and λ is an ordered and rooted tree
in which the nodes correspond to the strong common intervals of
Π. Two nodes N1 and N2 of Tλ(Π) are connected by an edge if one
includes the other (without loss of generality N1 ⊂ N2) and there
is no strong common interval N ∈ C(Π) with N1 ⊂ N ⊂ N2. The
child nodes of a node of Tλ(Π) are ordered as the corresponding in-
tervals in λ. Let π ∈ sPn be consistent with Π and N be an inner node
of Tλ(Π) with child nodes N1, . . . ,Ndeg(N), where deg(N) denotes

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 143

the number of child nodes N. The quotient permutation of N (with re-
spect to π) is the permutation π|N which satisfies that π|N(i) precedes
π|N(j) if and only if the interval Ni is to left of the interval Nj in π for
i 6= j. A quotient permutation π|N is linear increasing (linear decreasing)
if π|N = (1 . . .deg(N)) (respectively π|N = (deg(N) . . . 1)). A quotient
permutation π|N is called prime if it is neither linear increasing nor
linear decreasing. Node N is linear (prime) with respect to π if π|N
is linear increasing or linear decreasing (respectively prime). Conse-
quently, for a permutation π, there are three types of nodes in the SIT
Tλ(Π), namely linear nodes, leaf nodes, and prime nodes. If all inner
nodes of a SIT are linear (with respect to π), then the SIT is called
linear. Otherwise, the SIT is called prime. Both types of SITs are con-
sidered in this chapter because both occur in biological applications.
For example, pairwise comparisons of metazoan mitochondrial gene
orders often correspond to instances with linear SITs (Bernt and Mid-
dendorf, 2011), this is different for fungal mitochondrial gene orders
where the investigation performed in Hartmann et al. (2018a) shows
that instances with linear SIT occur in less than 5% of the cases.

Recall the definition of the different types of rearrangements that
are assumed to be predominant in the evolution of mitochondrial
gene orders, namely inversion (I), transposition (T), inverse transposi-
tion (iT), and tandem duplication random loss (TDRL), given in Sec-
tion 2.2.3. In this section, two special cases of inverse transpositions
ρiT(X, Y) for a permutation π = (π(1) . . . π(n)) with two consecutive
disjoint intervals X and Y are considered: prefix inverse transpositions
(ρpiT(X, Y)), where X = {|π(1)|, . . . , |π(n − 1)|}, Y = {|π(n)|} and suf-
fix inverse transpositions (ρsiT(X, Y)), where X = {|π(2)|, . . . , |π(n)|} and
Y = {|π(1)|}. Similarly to inverse transpositions, also a special case
of TDRL rearrangement is necessary for technical reasons. A TDRL
ρTDRL(L,R) for π is called minimal if for all proper subsets L ′ ⊂ L,
R ′ ⊂ R it holds that ρTDRL(L

′,R) ◦π 6= ρTDRL(L,R) ◦π 6= (L,R ′) ◦π. It is
not hard to see that for each TDRL ρTDRL(L,R) there exists a uniquely
defined minimal TDRL ρTDRL(L

′,R ′) with L ′ ⊆ L and R ′ ⊆ R, see
Example 5.5.

Example 5.5. Consider the set Π = {(1 −2 4 3 −6 5), ι} and the per-
mutation λ = (1 2 3 4 −6 5) consistent to Π that are considered in
Example 2.4 in Section 2.2.2. For equally weighted rearrangements, i. e.,
ωI = ωiT = ωT = ωTDRL, a parsimonious scenario for (1 −2 4 3 −6 5) and
ι that is consistent for Π is (ρT({3}, {4}), ρI({2}), ρiT({6}, {5})) and ω(S) = 3.
A TDRL for λ is ρTDRL({1, 2, 4, 5}, {3, 6}) and the corresponding minimal
TDRL is ρTDRL({4, 5}, {3, 6}).

For the following section, it is necessary to extend the definition of
a strong interval tree as done in the following. The idea is to assign
a sign to each node of a given SIT which represents the orientation
of the corresponding strong common interval with respect to a target
permutation. Let Π ⊆ sPn and λ,π ∈ sPn be consistent with Π. The
signed strong interval tree (sSIT) of Π, λ, and π, denoted by Tλ(π,Π), is
the strong interval tree of Π and λ, where nodes that are linear with
respect to π and leaves have an additional sign that is determined

[April 2019 at 13:18 – classicthesis 4.4]

144 algorithms for sorting by mitochondrial rearrangements

-

+

+

-

+- ---

(a)

+- - -+

+

(b)

Figure 5.4: (a): Linear sSIT Tλ(ι, {λ, ι}) with λ = (−2 1 −5 −3 −4) and
ι = (1 2 3 4 5). Linear (prime) nodes are represented by rect-
angles (respectively ellipses). The sign of a node is shown at the
top of the rectangles. The common intervals of {λ, ι} are {1, 2},
{3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}, {1}, {2}, {3}, {4}, and {5} and each of
these intervals is strong as well. The node {5, 3, 4} is linear de-
creasing since ι|{5,3,4} = (2 1) and the node {3, 4} is linear in-
creasing since ι|{3,4} = (1 2). The signed quotient permutation
of node {5, 3, 4} is π̂|{5,3,4} = (−2 1). (b): Prime sSIT Tλ

′
(ι, {λ ′, ι})

with λ ′ = (−2 4 −1 3 −5). The interval {1, 3, 4} is a prime-sibling.

as follows: 1) a linear inner node N gets the sign + (respectively −)
if π|N is linear increasing (respectively decreasing) with respect to π,
2) a leaf node gets the sign + if the corresponding element has the
same sign in π and λ and the sign − otherwise. Note that no sign is
assigned to a prime node. The sign of a linear node or leaf node N
is denoted by sign(N). With −sign(N) is the opposite sign of N is de-
noted, i. e., −sign(N) = + (respectively −sign(N) = −) if sign(N) = −

(respectively sign(N) = +). The signed quotient permutation π̂|N of N
with respect to π is the quotient permutation π|N in which each el-
ement is assigned the sign of its corresponding child node, i. e., the
i-th element of π̂|N is assigned to the sign of the child node Ni. Ob-
serve that if the sign of a child node is unknown, then the signed
quotient permutation is partially signed. An interval X of λ is called a
prime-sibling with respect to π and Π if X is a union of child nodes of a
prime node in Tλ(π,Π). Figure 5.4 gives examples for the definitions
related to signed strong interval trees.

The preservation of common intervals of a set of permutations Π
in a sequence of rearrangements is formally defined as follows. A re-
arrangement ρ ∈M4-type for a permutation π that is consistent to Π is
preserving for Π if ρ ◦π is consistent with Π, i. e., C(Π) = C({ρ ◦π}∪Π).
Analogously, a sequence (scenario) (ρ1, . . . , ρt) of 4-type rearrange-
ments for π and σ is preserving for Π if for all i ∈ [1 : t] the permuta-
tions ρi ◦ . . . ◦ ρ1 ◦ π is consistent with Π.

For the convenience of the reader, the variation of the sorting prob-
lem that is considered in this section is recalled in the following. The
weighted preserving sorting problem under M

p
4-type is to find for the set

of rearrangements M
p
4-type, a weight function ω : Mp

4-type → R>0, and
signed permutations λ,π ∈ sPn parsimonious preserving scenario for
λ and π. The weighted preserving sorting problem can also be formu-
lated in terms of the sSIT: Find a parsimonious preserving scenario S
for λ and π of 4-type rearrangements such that the sSIT Tλ(π, {π, λ})

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 145

- -+

+

--

-

- -+

+

-- +

+

+

+ + + +

Figure 5.5: Parsimonious scenario S = (ρTDRL({4, 5}, {2, 3}), ρI({2, 3, 4, 5}) for
λ = (1 −3 −5 −2 −4) and ι that is preserving for {λ, ι}. Sce-
nario S is a solution of the weighted preserving sorting prob-
lem defined by λ, π, M

p
4-type, and the rearrangement weights

ωI = ωT = ωiT = ωTDRL = 1. Illustrated are from the left
to the right Tλ(ι, {λ, ι}), TρTDRL◦λ(ι, {λ, ι}), and TρI◦ρTDRL◦λ(ι, {λ, ι}).
Observe that ρTDRL transforms the prime node {2, 3, 4, 5} in
Tλ(ι, {λ, ι}) into a linear node in TρTDRL◦λ(ι, {λ, ι}) that has a nega-
tive sign.

is transformed into TS◦λ(π, {π, λ}) in which all prime nodes become
linear and each node has sign +. See Figure 5.5 for an example of a
parsimonious preserving scenario.

5.4.2 Generalized Preserving Rearrangements

In this section some theoretical results for preserving scenarios are
shown. The insights gained in this section are crucial for solving
the weighted preserving sorting problem. In particular, the rearrange-
ments that preserve the common intervals of a given set of permuta-
tions are determined. Throughout the section the following notations
are used. A given set of signed linear permutations of size n is de-
noted by Π. Moreover, λ ∈ sPn and π ∈ sPn are consistent with Π.

The following proposition is adapted from Bérard et al. (2007). It is
one reason for the success of the sSIT data structure for computing
preserving rearrangements.

Proposition 5.4 (Bérard et al., 2007). Let I be an interval of a permutation
π ′ ∈ Π. Then, I ∈ C(Π) if and only if I is a node of Tλ(π,Π) or the union
of consecutive child nodes of a linear node of Tλ(π,Π).

Proposition 5.4 is the foundation for specifying rearrangements
that preserve common intervals in terms of the sSIT. Such a speci-
fication has been presented for inversions in Bérard et al., 2007. The
following theorem generalizes this specification.

Theorem 5.2. Let S = (ρ1, . . . , ρt) be a sequence for λ, λi := ρi ◦ . . . ◦
ρ1 ◦ λ with i ∈ [1 : t], and λ0 := λ. Then, S is preserving for Π if and
only if for all j ∈ [0 : t− 1] each linear node in Tλj(π,Π) is a linear node in
Tλj+1(π,Π).

Proof. Assume that S is preserving for Π, i. e., for all j ∈ [1 : t] the
permutation λj is consistent with Π. Let I ∈ C(Π) be a node in
Tλj(π,Π) with j ∈ [0 : t− 1]. By the definition of the sSIT, the strong
interval I is also a node in Tλj+1(π,Π), since the nodes in Tλj(π,Π)
and Tλj+1(π,Π) are the strong intervals of Π. Now, let I ∈ C(Π)

be a linear node in Tλj(π,Π) with child nodes I1, . . . , Ideg(I) in that

[April 2019 at 13:18 – classicthesis 4.4]

146 algorithms for sorting by mitochondrial rearrangements

order. The order of the child nodes of I in Tλj+1(π,Π) is either
I1, . . . , Ideg(I) or its reverse, i. e., Ideg(I), . . . , I1. This can be seen by
the following argumentation. By contradiction assume that the or-
der of the child nodes of I in Tλj+1(π,Π) is neither I1, . . . , Ideg(I)
nor Ideg(I), . . . , I1. Hence, there exist two child nodes Ii and Ii+1 of
I that are not consecutive in Tλj+1(π,Π) whereas they are consecu-
tive in Tλj(π,Π). By Proposition 5.4 the set Ii ∪ Ii+1 is a common
interval of Π ∪ λj, since it is a union of consecutive child nodes of
a linear node, i. e., Ii ∪ Ii+1 ∈ C(Π ∪ λj). In addition, by Proposi-
tion 5.4 it holds that Ii ∪ Ii+1 /∈ C(Π ∪ λj+1), since Ii and Ii+1 are
neither consecutive child nodes of a linear node in Tλj+1(π,Π) nor
is Ii ∪ Ii+1 a node in Tλj+1(π,Π). The first fact holds since Ii and
Ii+1 are not consecutive in Tλj+1(π,Π). The latter fact holds since
Ii ∪ Ii+1 is not a node in Tλj(π,Π) and since Tλj(π,Π) and Tλj+1(π,Π)
have the same nodes, i. e., the strong common intervals of Π. There-
fore, it holds that Ii ∪ Ii+1 ∈ C(Π ∪ λj) and Ii ∪ Ii+1 /∈ C(Π ∪ λj+1)
which contradicts the assumption that S is preserving for Π since
C(Π) = C(Π ∪ λj) 6= C(Π ∪ λj+1) = C(Π), i. e., λj+1 is not consistent
with Π. Consequently, the order of the child nodes of I in Tλj+1(π,Π)
is either unchanged, i. e., I1, . . . , Ideg(I), or reversed, i. e., Ideg(I), . . . , I1.
In both cases, I is linear in Tλj+1(π,Π) proving the implication from
left to right.

Assume that for all j ∈ [0 : t− 1] it holds that each linear node N
in Tλj(π,Π) is a linear node in Tλj+1(π,Π). Consider a common inter-
val I ∈ C(Π ∪ λj) with j ∈ [0 : t − 1]. By Proposition 5.4 I is a node
in Tλj(π,Π) (i. e., I is a strong interval) or I is a union of consecutive
child nodes of a linear node of Tλj(π,Π). If I is a node in Tλj(π,Π),
then I is also a node in Tλj+1(π,Π), since (by the definition of a sSIT)
the nodes of a sSIT Tσ1(σ2,Σ), with Σ ⊆ sPn and σ1,σ2 ∈ sPn con-
sistent with Σ, are the strong common intervals of Σ which are not
influenced by σ1 or σ2. If I is a union of consecutive child nodes
of a linear node N in Tλj(π,Π), then I ∈ C(Π ∪ λj+1) since consecu-
tive child nodes of a linear node in Tλj(π,Π) are also consecutive in
Tλj+1(π,Π). This can be seen by the following argumentation. Since
N is linear in Tλj(π,Π) and Tλj+1(π,Π) the order of the child nodes
of N is either unchanged, i. e., N is linear increasing (respectively de-
creasing) in Tλj(π,Π) and Tλj+1(π,Π), or reversed, i. e., N is linear in-
creasing (decreasing) in Tλj(π,Π) and linear decreasing (respectively
increasing) in Tλj+1(π,Π). Note that no other case satisfies that N is
linear in Tλj(π,Π) and Tλj+1(π,Π). If the order of child nodes of N is
unchanged, then obviously consecutive child nodes of N in Tλj(π,Π)
are also consecutive in Tλj+1(π,Π). If the order of child nodes of N
is reversed, then each two child nodes N1, N2 of N that are con-
secutive in Tλj(π,Π) (in that order) are consecutive in Tλj+1(π,Π) in
the reversed order. In both cases it holds that I ∈ C(Π∪ λj+1). Conse-
quently, for all j ∈ [0 : t− 1] λj is consistent with Π, i. e., S is preserving
for Π.

The following corollary of Theorem 5.2 shows that a preserving
sequence S for λ retains the consecutiveness of the child nodes of

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 147

linear nodes of Tλ(π,Π). With other words, consecutive child nodes
of a linear node in Tλ(π,Π) stay consecutive in TS◦λ(π,Π).

Corollary 5.2. Let S = (ρ1, . . . , ρt) be a sequence for λ that is preserving
for Π, λi := ρi ◦ . . . ◦ ρ1 ◦ λ with i ∈ [1 : t], and λ0 := λ. For each linear
node N in Tλj(π,Π) with j ∈ [0 : t− 1], it holds that consecutive child nodes
of N are consecutive in Tλj+1(π,Π).

Proof. Let N be a linear node in Tλj(π,Π), j ∈ [1 : t − 1], with child
nodes N1, . . . ,Ndeg(N) in that order. By Theorem 1 it holds that
N is a linear node in Tλj+1(π,Π). Hence, the order of the child
nodes of N in Tλj+1(π,Π) is either N1, . . . ,Ndeg(N) or its reverse, i. e.,
Ndeg(N), . . . ,N1. Consequently, for all i ∈ [1 : deg(N) − 1] it holds that
the consecutive child nodes Ni, Ni+1 (of N in Tλj(π,Π)) are also con-
secutive in Tλj+1(π,Π) (either in the same order, i. e., Ni, Ni+1, or in
the reversed order, i. e., Ni+1, Ni).

By Corollary 5.2 a preserving rearrangement can change the sSIT
only as follows:

1) the order of the child nodes of a linear node N is reversed and
the sign of N is toggled,

2) the sign of a leaf node is toggled, and

3) the order of the child nodes of a prime node is permuted.

In Case 3 the consequences for a prime node N are that either N
becomes linear and gets a corresponding sign or N remains prime
(and has no sign).

The following corollary of Theorem 5.2 specifies the preserving re-
arrangements for several types of rearrangements in terms of the sSIT.

Corollary 5.3. Let ρ be a rearrangement for λ that is an inversion, trans-
position, inverse transposition, or a minimal TDRL. Rearrangement ρ is
preserving for Π if and only if one of the following cases holds:

i) ρ = ρI(X), where X is a prime-sibling with respect to π and Π or
ρ = ρZ(X, Y) with Z ∈ {T, iT, (minimal) TDRL}, where X and Y are
prime-siblings with respect to π and Π;

ii) ρ = ρI(X), where X is a linear node in Tλ(π,Π);

iii) ρ = ρT(X, Y), where X and Y are the only child nodes of a linear node
X∪ Y in Tλ(π,Π);

iv) ρ = ρiT(X, Y), where Y is the first or last child of a linear node X∪ Y
in Tλ(π,Π).

Proof. The formal argument proceeds in two steps. The implication
from left to right is proven first, subsequently the opposite direction
is proven.

Assume that ρ is a rearrangement for λ that is preserving for Π
and ρ is an inversion, a transposition, an inverse transposition, or a
minimal TDRL. Since ρ is preserving Tλ(π,Π) and Tρ◦λ(π,Π) have

[April 2019 at 13:18 – classicthesis 4.4]

148 algorithms for sorting by mitochondrial rearrangements

the same nodes. Therefore, ρ can change only the order of the child
nodes of some nodes, change the sign of nodes, or add a sign to a
node that was prime in Tλ(π,Π) and becomes linear in Tρ◦λ(π,Π).

If ρ is an inversion ρI(X) and X contains a single element, then X
is a leaf in Tλ(π,Π) and the Case (ii) holds. Otherwise, ρ changes
the order of (at least) two elements and therefore changes the order
of at least two child nodes of some node. Let N be a highest node
in Tλ(π,Π) for which the order of its child nodes is changed, i. e.,
the order of the child nodes of all predecessors of N is not changed.
Let N1, . . . ,Ndeg(N) be the child nodes of N in Tλ(π,Π) in that order.
From the possible types of rearrangements it can be seen that for all
nodes N ′ which are not within the subtree with root N of Tλ(π,Π),
the order of the child nodes is not changed. Moreover, if ρ is a trans-
position, an inverse transposition, or a minimal TDRL, then for each
child node Ni, i ∈ [1 : deg(N)] one of the following cases holds: 1)
Ni ⊂ X, 2) Ni ⊂ Y, 3) Ni ∩ X = ∅ and Ni ∩ Y = ∅. Similarly, if ρ is an
inversion for each child node Ni, i ∈ [1 : deg(N)] one of the following
cases holds: Ni ⊂ X or Ni ∩ X = ∅. For the inversion ρI(X), the trans-
position ρT(X, Y), and the inverse transposition ρiT(X, Y) it holds that
X is an interval and therefore it is of the form X = Ni ∪ . . . ∪Nj for
1 6 i 6 j 6 deg(N). Similarly, for ρT(X, Y), and ρiT(X, Y) it holds that
Y is an interval and therefore it is of the form Y = Nk ∪ . . . ∪N` for
1 6 k 6 ` 6 deg(N) where either j < k or ` < i holds. For the minimal
TDRL ρTDRL(X, Y) it holds that X∪ Y is an interval and therefore it is
of the form X∪ Y = Ni ∪ . . .∪Nj for 1 6 i 6 j 6 deg(N).

Assume that N is a prime node. If ρ is an inversion ρI(X) it follows
that X is a prime sibling. Similarly, if ρ is a transposition ρT(X, Y), or
an inverse transposition ρiT(X, Y) it follows that X and Y are prime
siblings and if ρ is a minimal TDRL ρTDRL(X, Y) then X∪ Y is a prime
sibling.

Now assume that N is a linear node. By Corollary 5.2 it follows
that consecutive child nodes of N in Tλ(π,Π) are also consecutive in
Tρ◦λ(π,Π).

If ρ is an inversion ρI(X), then for X = Ni ∪ . . . ∪Nj it follows that
i = 1 and j = deg(N). The reason is that for i > 1 (j < deg(N)) the
consecutiveness on child nodes Ni−1 and Ni (respectively Nj and
Nj+1) would be violated.

If ρ = ρT(X, Y), then N must have exactly two child nodes. There-
fore, either X = N1 and Y = N2 or X = N2 and Y = N1 holds.
To see this assume deg(N) > 3. Consider X = Ni ∪ . . . ∪ Nj and
Y = Nk ∪ . . . ∪N` for the case j < k (the case ` < i is fully anal-
ogous). Since ρ is a transposition Nj and Nk are consecutive, i. e.,
j = k − 1 must hold. Thus, one of the following cases holds true
j > 2 or k < deg(N). In the former case either Nj−1 6∈ X (which
implies that ρ would violate the consecutiveness of Nj−1 and Nj) or
Nj−1 ∈ X (which implies that ρ would destroy the consecutiveness of
Nj and Nk). The latter case can be shown analogously.

If ρ = ρiT(X, Y), then for X = Ni ∪ . . . ∪Nj and Y = Nk ∪ . . . ∪N`
either k = ` = deg(N) or 1 = k = ` must hold, i. e., Y contains the
elements of either only N1 or node Ndeg(N). To see this, consider the

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 149

case j < k first. Since ρ is an inverse transposition j = k− 1 must hold
true. Then k < ` is not possible because the consecutiveness of Nj
and Nk would be violated by ρ. Now, k = ` < deg(N) is not possible
because ρ would violate the consecutiveness of N` and N`+1. Now
1 < i is not possible because ρ would violate the consecutiveness of
Ni−1 and Ni. Hence, i = 1, j = deg(N) − 1 and k = ` = deg(N) must
hold. Similarly, it can be shown for case ` < i that 1 = k = `, i = 2

and j = deg(N) must be true.
The case that ρ is a minimal TDRL ρTDRL(X, Y) with X ∪ Y =

Ni ∪ . . . ∪Nj for 1 6 i 6 j 6 deg(N) remains. Assume that there
exist i ′ < i ′′ < i ′′′ with Ni ′ ⊂ X, Ni ′′′ ⊂ X, and Ni ′′ ⊂ Y. Then ρ
would destroy the consecutiveness of Ni ′ and Ni ′′ . Similarly, there
cannot exist i ′ < i ′′ < i ′′′ with Ni ′ ⊂ Y, Ni ′′′ ⊂ Y, and Ni ′′ ⊂ X. Thus,
there must exist an i ′ with i 6 i ′ < j and X = Ni ∪ . . . ∪Ni ′ and
Y = Ni ′+1 ∪ . . . ∪Nj. Hence, ρ is a transposition ρT(X, Y). As in the
proof of Case (ii), it follows that X and Y are the only child nodes of
a node X ∪ Y in Tλ(π,Π). Consequently, the implication from left to
right is true.

Theorem 5.2 shows that ρ is preserving if the following property
(∗) holds: linear nodes in Tλ(π,Π) are linear in Tρ◦λ(π,Π). Let ρ be a
rearrangement for which one of the cases (i) – (iv) holds. It remains
to shows that property (∗) holds for ρ. If (i) holds, then ρ changes
only the order of the child nodes of a prime node of Tλ(π,Π). Hence
property (∗) holds. It is not hard to show that in all the cases (ii) – (iv)
property (∗) holds as well.

To describe the consequences of Corollary 5.3 for finding parsi-
monious preserving scenarios, the following definition is needed.
Consider a rearrangement ρ ∈ M

p
4-type that is preserving for

Π. Therefore, rearrangement ρ can be expressed as ρI(X) or
ρZ(X, Y) with Z ∈ {I, T, iT, (minimal) TDRL}. Rearrangement ρ

acts on a node N of Tλ(π,Π) if X (respectively X ∪ Y) is a
node in Tλ(π,Π) or is a union of child nodes of a node N in
Tλ(π,Π). Corollary 5.3 shows that each of the considered rearrange-
ments acts on a node of Tλ(π,Π). Another consequence of Corol-
lary 5.3 is that a preserving rearrangement of type Z ∈ {I, T, iT,
(minimal) TDRL} that acts on a linear nodeN is uniquely determined,
i. e., if there exist two rearrangements ρ and ρ ′ of type Z that act on
N, then ρ = ρ ′. More precisely, if ρ is a preserving rearrangement that
acts on a linear node N of Tλ(π,Π), then the following observations
are implied by Corollary 5.3:

1) If ρ is an inversion ρI(X), then N = X. Hence, the effect of ap-
plying ρ to λ in the sSIT Tλ(π,Π) is that it reverses the order
of subtree rooted at node N. In addition, the sign of N and all
signed nodes below N is toggled.

2) If ρ is a transposition ρT(X, Y), then X = N1 and Y = N2, where
N1 and N2 are the only child nodes of N. Hence, the effect of
applying ρ to λ in the sSIT Tλ(π,Π) is that it swaps the subtrees
rooted at N1 and N2. In addition, the sign of N is toggled.

[April 2019 at 13:18 – classicthesis 4.4]

150 algorithms for sorting by mitochondrial rearrangements

(a) preserving inversion (b) preserving prefix inverse transposition

(c) preserving transposition (d) preserving suffix inverse transposition

(e) preserving tandem duplication random loss

Figure 5.6: Preserving rearrangements (a) ρI; (b) ρpiT; (c) ρT; and (d) ρsiT that
act on a linear node N. An example of a preserving rearrange-
ment ρTDRL (e) that acts on a prime node N ′ which is illustrated
by an ellipse. Node N, its child nodes N1, . . . ,Nm, and the child
nodesN ′1, . . . ,N ′5 ofN ′ are represented by their signs. Illustrated
is the case in which all child nodes of N and N ′ are linear. If a
child node is prime, then it has no sign. A pentagon illustrates
that the node N ′ can either remain prime or it becomes linear
(and gets a corresponding sign) by the application of the TDRL.
Observe that the rearrangement ρTDRL does not change the signs
of the child nodes of N ′.

3) If ρ is an inverse transposition ρiT(X, Y), then it is either a prefix
inverse transposition or a suffix inverse transposition. The effect
in the sSIT Tλ(π,Π) of applying ρ to λ is that the rightmost
(leftmost) child node of N is moved to the leftmost (respectively
rightmost) position and the relative order of remaining child
nodes of N is reversed in the case that ρ is a prefix (respectively
suffix) inverse transposition. In addition, the sign of N and the
signed nodes below N (except the last (first) child node of N
and all nodes in the subtree it is the root of) are toggled if ρ is a
prefix (respectively suffix) inverse transposition.

4) If ρ is a minimal TDRL ρTDRL(X, Y), then it has the same effect
as a transposition.

In addition, if N is a prime node, then the order of its child nodes and
their signs can be changed arbitrarily. Consequently, the uniqueness
described above does not necessarily hold for preserving rearrange-
ments that act on a prime node of a sSIT. Figure 5.6 illustrates the
effects of preserving rearrangements from M

p
4-type that act on a node

of a sSIT. The figure illustrates also the effect on the signs of the nodes.

For the following proposition, it is necessary to introduce the no-
tation of a strict subsequence of a sequence or rearrangements. Con-

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 151

sider a sequence of rearrangements S = (ρ1, . . . , ρt), t ∈ N, for a
permutation π, then a sequence S ′ = (ρi, . . . , ρj) with 1 6 i 6 j 6 t

is called a strict subsequence of S. The following proposition shows
that there exist parsimonious preserving scenarios that have a spe-
cific structure.

Proposition 5.5. Consider scenarios for λ and π that consist only of rear-
rangements of types I, T, iT, and minimal TDRL that are preserving for Π.
There exists such a scenario S = (ρ1, . . . , ρt) that is parsimonious and in
which each rearrangement ρi, i ∈ [1 : t], acts on a node of Tλ(π,Π) and for
each node N of Tλ(π,Π) the rearrangements that act on N are a strict sub-
sequence of S. Moreover, for each order of the nodes of Tλ(π,Π) there exists
such a parsimonious scenario in which the subsequences of rearrangements
that act on the different nodes have the same relative order as their nodes.

Proof. Observe, there exists always a scenario for λ and π that is pre-
serving for Π and consists only of inversions. Hence, there also exists
a parsimonious scenario for λ and π that is preserving for Π. Let
S ′ = (ρ1, . . . , ρt) be such a parsimonious scenario. By Corollary 5.3 it
holds that each rearrangement acts on a node in Tλ(π,Π). Consider
two rearrangements ρi and ρi+1, i ∈ [1 : t− 1], of S ′ that act on differ-
ent nodes Ni and Ni+1 of Tλ(π,Π). It holds that a parsimonious pre-
serving scenario S ′′ := (ρ1, . . . , ρi−1, ρ ′i+1, ρ ′i, ρi+2, . . . , ρt) for π and
λ exists such that i) either ρ ′i = ρi or ρ ′i and ρi are of the same type,
ρ ′i(Y,X), and ρi(X, Y) and ii) either ρ ′i+1 = ρi+1 or ρ ′i+1 and ρi+1 are
of the same type, ρ ′i+1(Y,X), and ρ ′i(X, Y). This can be seen by the
following argumentation. Since the nodes Ni and Ni+1 are different
it holds that either Ni ∩Ni+1 = ∅, Ni ⊂ Ni+1, or Ni+1 ⊂ Ni.

Consider first the case Ni ∩ Ni+1 = ∅. Due to the hierarchical
structure of the nodes of Tλ(π,Π), it is easy to see that ρi (respec-
tively ρi+1) changes only the order of nodes in a subtree rooted
at Ni (respectively Ni+1). Since Ni ∩ Ni+1 = ∅ both subtrees are
disjoint. Therefore, the order of the child nodes of Ni (respectively
Ni+1) is unchanged by the application of ρi+1 (respectively ρi). Con-
sequently, ρi+1 is a rearrangement for λi−1 and ρi is a rearrangement
for ρi+1 ◦ λi−1 and ρi+1 ◦ ρi ◦ λi−1 = ρi ◦ ρi+1 ◦ λi−1. Therefore, it
holds that S ′′ is a scenario for λ and π in this case.

Now consider the case Ni ⊂ Ni+1. Assume that Ni is a child node
of Ni+1. Since ρi+1 acts on Ni+1 it can only change the relative order
of its child nodes or it can inverse some of its child nodes. If ρi+1
does not inverse Ni then clearly both sequences of rearrangements
(ρi, ρi+1) and (ρi+1, ρi) have the same effect. Now consider the case
that ρi+1 inverses node Ni. If ρi is an inversion, transposition or
inverse transposition, then it is clear that both sequences (ρi, ρi+1)
and (ρi+1, ρi) have the same effect. If ρi(X, Y) is a minimal TDRL,
then the sequences (ρi, ρi+1) and (ρ ′i+1, ρi) have the same effect were
ρ ′i+1 = (Y,X), i. e., the elements that are kept in the left copy and
in right copy are exchanged. If Ni is a successor of Ni+1 but not a
child node the proof is similar. The remaining case Ni+1 ⊂ Ni can be
carried out analogously to the case Ni ⊂ Ni+1.

[April 2019 at 13:18 – classicthesis 4.4]

152 algorithms for sorting by mitochondrial rearrangements

It is not hard to see that the proposition follows by an iterative
application of the described interchange of to pairs of neighbored
rearrangements that act on different nodes.

Proposition 5.5 shows that there exist parsimonious preserving sce-
narios that consist of consecutive strict subsequences which act on
different nodes of a given sSIT. Algorithm CREx2 computes for given
permutations λ and π such a parsimonious scenario S for which holds
that: 1) S is preserving for {π, λ} and 2) the strict subsequences of S
that act on different nodes of Tλ(π, {π, λ}) have the same relative order
as the bottom-up order of the nodes of Tλ(π, {π, λ}). Algorithm CREx2

is presented in Section 5.4.4.

5.4.3 Weighted Preserving Rearrangements

The various types of rearrangements occur during the evolution of
mitochondrial gene orders of diverse taxa with different likelihoods.
In order to compute rearrangement scenarios which reflect these like-
lihoods, it may be useful to consider a weighting scheme for the dif-
ferent types of rearrangements. In this section, the problem is inves-
tigated to compute the weights of preserving parsimonious scenarios
of rearrangements that are weighted by their type.

Throughout the section the following notations are used. A set of
signed linear permutations of size n is denoted by Π. Permutations
π ∈ sPn and λ ∈ sPn are consistent with Π. With N a node of the
sSIT Tλ(π,Π) is denoted. Moreover, Mp

4-type |N denotes the set of all
preserving rearrangements of type inversion (I), transposition (T), in-
verse transposition (iT), or (minimal) TDRL that act on N. For N and
a sign s ∈ {+,−} let Ω(N, s) denote the minimum weight of a preserving
scenario S for λ and S ◦ λ such that all nodes in the subtree rooted at N
in TS◦λ(π,Π) have sign s. Observe that when N is the root of the sSIT,
the value Ω(N,+) is the minimal weight of a preserving scenario for
λ and π. In the following, it is proven that the values Ω(N, s) can eas-
ily be computed if N is a leaf node or a linear node and otherwise,
i. e., N is a prime node, the computation of Ω(N, s) is NP-hard.

Weighted Preserving Rearrangements Acting on a Leaf Node

Consider the case that N is a leaf node. By Corollary 5.3 the sign of
a leaf node can only be modified by an inversion. Therefore, in this
case Ω(N, s) = ωI if s 6= sign(N) and, otherwise, Ω(N, s) = 0.

Weighted Preserving Rearrangements Acting on a Linear Node

Consider thatN is a linear node. In the following, it is shown that ifN
is a linear node, then only a small constant number of different weight
values for parsimonious preserving scenarios have to be considered.
This is due to the facts, that every type of preserving rearrangement
which acts on a linear node N is uniquely determined (Corollary 5.3)
and that (under the set of considered rearrangements) a preserving

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 153

scenario with more than 3 rearrangements cannot be parsimonious
(Proposition 5.6).

Let Ωi(N, s), for i ∈ [0 : 3], be auxiliary weight functions which give
the minimum weight of a scenario S that contains i rearrangements
that all act on node N such that all nodes in the subtree rooted at N
in TS◦λ(π,Π) have the sign s. In the following, some specific Ωi(N, s),
i ∈ [0 : 3], are described and the corresponding sequences of length
one, two, and three are illustrated in Figure 5.6.(a) – (d), Figure 5.7.(a),
and Figure 5.7.(b), respectively. Subsequently, Proposition 5.6 shows
that Ω(N, s) is the minimum of these four weight functions. There-
fore, the Figure 5.6.(a) – (d) and Figure 5.7 illustrate the sequences
that act on a linear node N and can be parsimonious.

Recall that Ω(Ni,±), i ∈ [1 : deg(N)], denotes the minimum weight
of a preserving scenario for the child node Ni of N and that sign(N)

is the sign of node N. Furthermore, let s ∈ {−,+} be the desired sign.
Note that any rearrangement ρ from M

p
4-type |N toggles the sign of

the linear node N, since ρ acts on N. Therefore, for the application
of an even (respectively odd) number of rearrangements it cannot
hold that the sign of N in TS◦λ(π,Π) is s if sign(N) 6= s (respectively
sign(N) = s). Hence, if i ∈ {1, 3} and sign(N) = s, then Ωi(N, s) =∞,
and if i ∈ {0, 2} and sign(N) 6= s, then Ωi(N,−s) =∞.
No rearrangement: If sign(N) = s, then one option is to apply
no rearrangement that acts on N and apply rearrangements only
to its deg(N) child nodes N1, . . . ,Ndeg(N) in order to adjust their
signs to s. The weight of such a scenario is given by Ω0(N, s) =∑deg(N)
i=1 Ω(Ni, s). If sign(N) 6= s then Ω0(N, s) =∞.

One rearrangement: If sign(N) 6= s, then one possibility is to apply
one rearrangement that acts on N satisfying that N and all its child
nodes have the sign s. By Corollary 5.3 the weights have to be consid-
ered for all rearrangements that are illustrated in Figure 5.6. More pre-
cisely, the weight Ω1(N, s) has to consider the weight of every type of
preserving rearrangement plus the weight to realize the correspond-
ing signs of the child nodes. Thus, Ω1(N, s) = min{K1,1,K1,2,K1,3},
where

K1,1 := ωI +

deg(N)∑
i=1

Ω(Ni,−s),

K1,2 := ωT +Ω(N1, s) +Ω(N2, s),

K1,3 := ωiT + min
{

Ω(N1,s)+
∑deg(N)
i=2 Ω(Ni,−s),

Ω(Ndeg(N),s)+
∑deg(N)−1
i=1 Ω(Ni,−s)

}
.

Note that K1,1, K1,2, and K1,3 is the weight of applying an inversion,
transposition, and inverse transposition, respectively. If sign(N) = s

then Ω1(N, s) =∞.
Two rearrangement: If sign(N) = s, then instead of applying rear-
rangements only to the child nodes of N (no rearrangement case),
there is also the possibility to apply two rearrangements that act
on N in order to change the signs of its child nodes simultaneously.

[April 2019 at 13:18 – classicthesis 4.4]

154 algorithms for sorting by mitochondrial rearrangements

(a)

(b)

Figure 5.7: Examples of possibly parsimonious sequences of two (a) and
three (b) rearrangements ρI, ρT, ρpiT, ρsiT ∈M

p
4-type|N that act on a

node N and transform N and its child nodes N1, . . . ,Nm into an
order where all nodes have sign +. It is assumed that N is linear
and its child nodes are linear or leaves (each node is represented
by a square with the sign of the node).

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 155

Therefore, Ω2(N, s) = min{K2,1,K2,2,K2,3}, where the weight of ap-
plying an inversion and a transposition is given by

K2,1 :=

{
ωI +ωT +Ω(N1,−s) +Ω(N2,−s) if deg(N) = 2,∞ otherwise,

the weight of applying two successive inverse transpositions of the
same type (i. e., either piT or siT) is given by

K2,2 := 2ωiT +Ω(N1,−s) +
deg(N)−1∑
i=2

Ω(Ni, s) +Ω(Ndeg(N),−s),

and the weight of applying a transposition and an inverse transposi-
tion is given by

K2,3 :=

ωT +ωiT + min
{
Ω(N1,−s)+Ω(N2,s),
Ω(N1,s)+Ω(N2,−s)

}
if deg(N) = 2,

∞ otherwise.

If sign(N) 6= s then Ω2(N, s) =∞.
Three rearrangement: If sign(N) 6= s, only an application of one trans-
position and two inverse transpositions can be parsimonious. There-
fore,

Ω3(N, s) =

ωT + 2ωiT +Ω(N1,−s) +Ω(N2,−s)
if deg(N) = 2,

deg(N1), deg(N2)>2,
ωI >ωT + 2ωiT,∞ otherwise.

If sign(N) = s then Ω3(N, s) =∞.
The following proposition states that it is sufficient to consider only

Ω0(N, s), . . . ,Ω3(N, s) for different weight values for preserving par-
simonious scenarios.

Proposition 5.6. Let Π ⊆ sPn, π, λ ∈ sPn consistent with Π, and N be
a linear node of Tλ(π,Π). The set of possible rearrangements are all rear-
rangements of type I, T, iT that are preserving for Π with given positive
weights ωI, ωT, and ωiT, respectively. Let s ∈ {+,−} be a given sign. The
total weight for a parsimonious (preserving) scenario S that transforms λ
into a permutation S ◦ λ such that all nodes within the subtree with root N
in TS◦λ(π,Π) are linear nodes with sign s is given by:

∑
ρ∈S

ω(ρ) =

{
min{Ω0(N, s),Ω2(N, s)} if s = sign(N),

min{Ω1(N, s),Ω3(N, s)} otherwise.

Proof. Let N1, . . . ,Ndeg(N) be the child nodes of N. It follows from
Corollary 5.3.(ii) – (iv) that only a few specific cases for rearrange-
ments are possible since N is a linear node, e. g., an inverse trans-
position can only be a suffix inverse transposition or a prefix inverse
transposition. For a clear representation, the following notations are
used in the proof: The uniquely defined rearrangement ρZ of type
Z ∈ {I, T, siT, piT} that acts on N is denoted by its type Z. Con-
sequently, a scenario (ρZ1 , . . . , ρZt) is written as (Z1, . . . , Zt), where

[April 2019 at 13:18 – classicthesis 4.4]

156 algorithms for sorting by mitochondrial rearrangements

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5.8: Examples of sequences of rearrangements ρI, ρT, ρsiT, ρpiT ∈
M
p
4-type|N that are not parsimonious: (a) (ρI, ρI); (b) (ρT, ρT); (c)

(ρpiT, ρsiT); (d) (ρsiT, ρI); (e) (ρI, ρsiT); (f) (ρpiT, ρpiT, ρpiT); and (g)
(ρsiT, ρsiT, ρsiT). (The notation is as in Figure 5.7.)

Z1, . . . , Zt ∈ {I, T, siT, piT}. Two sequences of rearrangements S and
S ′ for a permutation π are called type-equivalent if S and S ′ consists of
exactly the same number of types of rearrangements (suffix and pre-
fix inverse transpositions are both classified as inverse transpositions)
and it holds that S ◦ π = S ′ ◦ π.

Proposition 5.5 shows that it can be assumed that all rearrange-
ments that act on N form a strict subsequence in S. Two types of re-
arrangements occur in S: i) rearrangements that act on nodes within
one of the subtrees where a child node of N is the root, and ii) rear-
rangements that act on N. Since the relative order of rearrangements
that act on different nodes does not matter, it is assumed that all rear-
rangements of (i) are applied first. Hence, S can be expressed as S1 S2,
where S1 is a sequence of rearrangements in (i) and S2 is a sequence
of rearrangements in (ii). Also, it can be assumed that after the appli-
cation of S1 to λ each child node ofN is linear and therefore has a sign.
Observe that – without loss of generality – the following proof con-
siders only the case that s = +. (The proof for s = − can be obtained
by exchanging + and − in the proof shown below.) In the following
paragraphs, it is determined which sequences of rearrangements can
possibly form S2 by proving the five cases where exactly either none,
one, two, three, or at least four (denoted by Case 1 to 5, respectively)
rearrangements are contained in S2. Before performing the case anal-

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 157

ysis, the following two observations are made: A) Sequence S2 cannot
contain one of the following subsequences (I, I), (T, T), (piT, siT), and
(siT, piT) since in each case the application of the second rearrange-
ment removes the effect of the first one, see figures 5.8.(a) – (c). B) If
a sequence S of rearrangements contains a strict subsequence that is
not parsimonious then S is not parsimonious.

1) Consider S2 is empty, i. e., |S2| = 0. This case is only possible
when N has sign s and each child node of N has sign s after
the application of S1 = S, i. e., in TS◦λ(π,Π). The total weight
Ω0(N,+) for a parsimonious sequence that transforms all nodes
within the subtree with root N to s were no rearrangement acts
on N is

∑deg(N)
i=1 Ω(Ni,+).

2) Consider |S2| = 1. As a direct consequence of Corollary 5.3, it
can be seen that figures 5.6.(a) – (d) illustrate the only possible
cases. Let S denote a parsimonious sequence that transforms all
nodes within the subtree rooted at N into nodes with sign +

and that contains exactly one rearrangement acts on N. It fol-
lows that the total weight Ω1(N,+) for such a parsimonious
sequence S is given by min {K1,1,K1,2,K1,3}.

3) Consider |S2| = 2. Sequences of applying one inversion and one
inverse transposition (i. e., (siT, I), (I, piT), (I, siT), and (piT, I))
cannot be parsimonious by the following argumentation. As-
sume that S2 is such a sequence and it is a strict subsequence of
a parsimonious sequence S, then the weight of S2 must be less
than the weight of an inversion that acts on the one child node
with the sign − and changes its sign to + (see Figure 5.8.(d) and
Figure 5.8.(e)). This would imply ωI +ωiT 6 ωI, which is not
possible since ωiT > 0. Considering this and Observation (A)
it follows that S2 ∈ {(I, T), (T, I), (piT, piT), (siT, siT), (T, piT),
(siT, T), (T, siT), (piT, T)}. Hence, the total weight Ω2(N,+) for a
parsimonious sequence S which changes the signs of all nodes
within the subtree with root N to + and contains exactly two
rearrangements act on N is min {K2,1,K2,2,K2,3}.

4) Consider |S2| = 3. Consider first that sequence S2 contains a
transposition. Corollary 5.3 implies that N has only two child
nodes. It is not hard to see that each combination of signs and
order of the two child nodes of N can be sorted with one in-
version and one transposition. Therefore, S2 cannot contain an
inversion and a transposition (in addition to a third rearrange-
ment).

It is also not hard to see that each combination of signs and or-
der of the two child nodes can be sorted with one suffix inverse
transposition and one transposition or with one prefix transpo-
sition and one transposition if deg(N1) = 2 or deg(N2) = 2. A
sequence with one transposition and two inverse transpositions
can be replaced by a sequence that contains only one inversion

[April 2019 at 13:18 – classicthesis 4.4]

158 algorithms for sorting by mitochondrial rearrangements

if ωI < ωT + 2ωiT. For this reason, a sequence with one trans-
position and two inverse transpositions might be parsimonious
if ωI > ωT + 2ωiT, deg(N1) > 2, and deg(N2) > 2.

The remaining possible sequences that contain at least one trans-
position are (T, siT, T) and (T, piT, T). Note that (T, siT, T) (re-
spectively (T, piT, T)) is type-equivalent to (T, T, piT) (respec-
tively (T, T, siT)). By Observation (B) it holds that (T, siT, T)
and (T, piT, T) cannot be parsimonious, since they contain the
non-parsimonious strict subsequence (T, T). By Observation (B),
S2 cannot end with one of the following subsequences (siT, I),
(I, piT), (I, siT), and (piT, I).

The sequences (piT, piT, piT) and (siT, siT, siT) (illustrated in
Figure 5.8.(f) and Figure 5.8.(g), respectively) cannot be parsi-
monious, since they can be replaced by the sequences (siT) and
(piT) that have a smaller weight as ωpiT = ωsiT = ωiT .

It remains to consider the sequences (I, piT, piT), (I, siT, siT),
(piT, piT, I), and (siT, siT, I). It is not hard to see that these se-
quences have the same effect as (siT , siT) and (piT ,piT).

Consequently, the weight Ω3(N,+) for a parsimonious se-
quence S which transforms the signs of all nodes within
the subtree with root N to + and contains exactly
three rearrangements acts on N is either ωT + 2ωiT +

Ω(N1,−) + Ω(N2,−) if deg(N) = 2, deg(N1) > 2,
deg(N2) > 2, and ωI > ωT + 2ωiT or∞, otherwise.

5) Consider |S2| > 4. By Observation (B) S2 must end with a
parsimonious sequence. By cases 1 – 4, it holds that S2 can
only end with (piT, piT, T), (siT, siT, T), (T, piT, piT), (T, siT, siT),
(siT, T, piT), or (piT, T, siT). Note that (piT, piT, T) (respectively
(siT, siT, T) and (siT, T, piT)) is type-equivalent to (T, piT, piT)
(respectively (T, siT, siT) and (piT, T, siT)).

Now consider all the scenarios of four rearrangements
that end with (piT, piT, T), (siT, siT, T), or (siT, T, piT), i. e.,
(Z, piT, piT, T), (Z, siT, siT, T), and (Z, siT, T, piT) with Z ∈
{T, I, piT, siT}.

All sequences that contain three inverse transpositions can-
not be parsimonious since either two inverse transpositions of
the same type occur subsequently or suffix inverse transposi-
tion and a prefix inverse transposition occur subsequently af-
ter replacing (siT, siT) (respectively (piT,piT)) with its type-
equivalent sequence (piT , piT) (respectively (siT, siT)).

It is not hard to see that (T, piT, piT, T) (respectively
(T, siT, siT, T) and (T, siT, T, piT)) is type-equivalent to
(siT, siT, T, T) (respectively (piT, piT, T, T) and (piT, T, T, piT)).
Therefore, sequences of S2 with four rearrangements that start
with a transposition cannot be parsimonious.

Furthermore, it is easy to verify that (I, piT, piT, T) (respectively
(I, siT, siT, T) and (I, siT, T, piT)) is type-equivalent to

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 159

(piT, piT, I, T) (respectively (siT, siT, I, T)). Since the subse-
quences (piT, I, T) and (siT, I, T) are non-parsimonious.

Hence, no scenario with four rearrangements is parsimonious.
Observation (B) implies that no scenario with more than four
rearrangements can be parsimonious.

Hence,
∑
ρ∈Sω(ρ) = min{Ω0(N, s),Ω1(N, s),Ω2(N, s),Ω3(N, s)}.

The proposition follows by the fact that any preserving rearrange-
ment that acts on N toggles the sign of N (which is implied by Corol-
lary 5.2).

Weighted Preserving Rearrangements acting on a Prime Node

Consider that N is a prime node. If N is a prime node, then a preserv-
ing rearrangement that acts on N can arbitrarily change the order
of the child nodes of N. Therefore, the set of possibly parsimonious
scenarios cannot be reduced as it is done in the linear case.

Recall that π|N denotes the quotient permutation of N with respect
to π and that Ω(Ni, s) is the minimum weight of a sequence Ssi of pre-
serving rearrangements that transforms the considered sSIT Tλ(π,Π)
into the sSIT TS

s
i◦λ(π,Π) in which all nodes of the subtree rooted at

the child node Ni ∈ {N1, ..,Ndeg(N)} of N are linear and have the
sign s ∈ {+,−}. Hence, the weight to rearrange the subtree rooted at
a child node Ni to a certain sign s has the weight Ω(Ni, s). Recall
that the signed quotient permutation π̂|N has sign s assigned to its
i-th element if the node Ni has sign s. Apparently, making a decision
for the sign for every child node Ni determines a signed quotient
permutation π̂|N and the corresponding weight for such a decision
is determined by

∑deg(N)
i=1 Ω(Ni, sign(π̂|N(i))). Let Π̂|N denote the set

of all signed quotient permutations that can be obtained by every
possible sign combination. In order to compute the value Ω(N,+)

(respectively Ω(N,−)) a signed quotient permutation π̂|N ∈ Π̂|N has
to be found such that a weight minimum scenario S for π̂|N and ι

(respectively ι := (−deg(N) . . . −1)) minimizes the sum of its weight
ω(S) plus the weight to determine the considered signed quotient
permutation. Formally, the desired weights are given by:

Ω(N,+) = min
π̂|N∈Π̂|N

min
S∈SM4-type(π̂|N,ι)

ω(S) +

deg(N)∑
i=1

Ω(Ni, sign(π̂|N(i))),

Ω(N,−) = min
π̂|N∈Π̂|N

min
S∈SM4-type(π̂|N,ι)

ω(S) +

deg(N)∑
i=1

Ω(Ni, sign(π̂|N(i))).

Hence, to determine Ω(N, s), s ∈ {+,−}, every sign combination has
to be considered. Since the unconstrained problem to find a weight
minimum scenario for a given signed quotient permutation and ι (or
ι) under M4-type is already a NP-hard optimization problem (Bulteau
et al., 2012), it is not hard to see that the computation of Ω(N, s),
s ∈ {+,−} is NP-hard as well.

Algorithm CREx2, which is presented in the following section, han-
dles the computation of Ω(N, s) by Algorithm 2 (see Section 5.2) or

[April 2019 at 13:18 – classicthesis 4.4]

160 algorithms for sorting by mitochondrial rearrangements

GeRe-ILP (see Section 5.3). While latter algorithm is able to provide
exact solution within an exponential runtime, the former algorithm
provides approximated solutions efficiently.

5.4.4 Dynamic Programming Algorithm CREx2

In this section, the algorithm CREx2 is presented. CREx2 solves the
weighted preserving sorting problem for a given signed linear per-
mutation π ∈ sPn under M

p
4-type. Thereby, it considers weights for

each type of rearrangement.
CREx2 is a dynamic programming algorithm that computes the

weights Ω(N, s) with three different routines depending on whether
a node N is a leaf, linear, or prime. For leaf nodes and linear nodes
N the weights Ω(N, s) are computed directly as stated in Proposi-
tion 5.6. The weights for prime nodes are computed by two algo-
rithms that make a different trade-off between exactness and runtime:
Algorithm 2 runs efficiently but gives only approximate results. An
adjusted version of algorithm GeRe-ILP (see Section 5.3) makes the
opposite trade-off by finding the optimum weights Ω(N, s) but pay-
ing a penalty in runtime and memory requirements.

Algorithm 3 shows the pseudocode of CREx2. In the following, it is
described how CREx2 determines Ω(N, s) and implicitly also a corre-
sponding scenario.

Algorithm 3 : Pseudocode of CREx2 algorithm.

Data : Node N of Tλ(π, {π, λ})
Result : Ω(N,+),Ω(N,−)

1 Ω(N,+)←∞; Ω(N,−)←∞;
2 for Ni ∈ {N1, . . . ,Ndeg(N)} do // compute child weights

3 Ω(Ni,+),Ω(Ni,−)← CREx2(Ni);
4 if N is a leaf node then // case leaf node

5 Ω(N, sign(N))← 0;
6 Ω(N, -sign(N))← ωI;
7 return (Ω(N,+),Ω(N,−));
8 if N is linear then // case linear node

9 Ω(N, sign(N))← min {Ω0(N, sign(N)),Ω2(N, sign(N))};
10 Ω(N, -sign(N))←min {Ω1(N, -sign(N)),Ω3(N, -sign(N))};
11 else // case prime node

12 Ω(N,+−)← PrimeNodeAlgorithm(π|N,+−);
13 return (Ω(N,+),Ω(N,−))

CREx2 is called for the root node of the sSIT Tλ(π, {π, λ}). Recursive
function calls (Line 3) for each child node Ni, i ∈ [1 : deg(N)], of a
node N pre-compute the necessary weights Ω(Ni,±). The base case
of the recursion are the leaf nodes (lines 4 – 7). Note that in the consid-
ered rearrangement model the sign of a leaf node N can only be mod-
ified by an inversion (Corollary 5.3). Hence, for a leaf N Ω(N, s) = ωI
if s 6= sign(N) and Ω(N, s) = 0 otherwise (lines 5 – 7).

For an inner node N (lines 8 – 12) the value of Ω(N, s) can be com-
puted from a parsimonious preserving scenario S that transforms N

[April 2019 at 13:18 – classicthesis 4.4]

5.4 sorting by weighted preserving rearrangements 161

to a linear node with sign s. In addition, the weight of S plus the
weight to change the signs of the child nodes of N to s (using pre-
serving scenarios) must be minimum. The cases of a linear node N
(lines 8 – 10) and a prime nodeN (lines 11 – 12) are handled differently
by CREx2. This is described in more detail in the following.

Consider first the case that N is a linear node. By Proposition 5.6
the minimum weight Ω(N, s) for a linear node N can be computed
as: Ω(N, s) = min {Ω0(N, s),Ω2(N, s)} if s = sign(N) and Ω(N, s) =

min {Ω1(N, s),Ω3(N, s)} otherwise (lines 9 – 10).
Now, consider the case that N is a prime node. CREx2 is able to

handle this case in lines 11 to 12 by two different algorithms which
are henceforth called prime node algorithms: The first prime node algo-
rithm that can be used to compute an approximated value ofΩ(N,±)
(and the corresponding rearrangement scenario) is Algorithm 2. In
this case, the signed quotient permutation is chosen such that the
sum of the weights to sort the corresponding child nodes of the prime
node is minimum. Note that this choice is locally the optimal decision.
However, in some cases this decision might be unfavorable.

The second prime node algorithm is an adjusted version of the
integer linear program GeRe-ILP (see Section 5.3) which can compute
Ω(N,±) optimally. In order to be used by CREx2, the ILP formulation
of GeRe-ILP has been adjusted as follows:

1) GeRe-ILP computes Ω(N, s) and finds a sufficient signed quo-
tient permutation π̂|N simultaneously to a weight minimum sce-
nario for π̂|N and ι if s = + (or π̂|N and ι if s = −). Therefore,
GeRe-ILP uses as an additional input the Ω(Ni, s) of the child
nodes N1, . . . ,Ndeg(N) of N which have been pre-computed by
recursive function calls. This is done by removing the Con-
straint (ILP 2) in Section 5.3.1 for all Oi0 with i ∈ [1 : n]. The
minimum weight, which includes the weight of the scenario
acting on N plus the weight to realize the corresponding signs
of the child nodes, is then computed by the following objective
function that replaces Constraint (ILP 36).

min {

t∑
k=1

(IkωI + TkωT + iTkωiT + TDRLkωTDRL)

+

deg(N)∑
i=1

((1−Oi0)Ω(Ni,+)+Oi0Ω(Ni,−))}

(ILP 37)

2) In order to handle the exponential runtime behavior of
GeRe-ILP, a time limit L can be set by the user of CREx2. If
the runtime of GeRe-ILP reaches L either best solution that has
been found so far is returned or, if no solution has been found,
Algorithm 2 is applied to give an approximate fallback solution.
Clearly, in both cases the solution might not be exact. Note, if
parameter L is used the total runtime of CREx2 can exceed L

since L is a runtime bound only for handling a single prime
node N.

[April 2019 at 13:18 – classicthesis 4.4]

162 algorithms for sorting by mitochondrial rearrangements

For a runtime analysis of CREx2 let λ,π ∈ sPn and Tλ(π, {π, λ}) be
a sSIT of {π, λ}, λ, and π. By recursion, Algorithm 3 is called once for
each of the at most O(n) nodes of Tλ(π, {π, λ}). For a leaf node the
weights Ω(N,±) can be computed in constant time. For linear nodes
at most a small constant number of weight values are evaluated us-
ing only the given weights and the weights of the subtrees rooted at
the child nodes. Therefore, in the case that the sSIT is linear, only a
constant amount of time is necessary per node of the sSIT. Hence, the
CREx2 algorithm has a runtime of O(n) for solving the weighted pre-
serving sorting problem if the given sSIT is linear. If the sSIT is prime,
the runtime of CREx2 is dependent on the prime node algorithm that
is used in Line 12. If Algorithm 2 is used to obtain an approximated
solution of the weights Ω(N,±), then a scenario for a prime node is
computed in time O(n logn). Therefore, the total runtime of CREx2 is
in O(n2 logn) in this case. If otherwise GeRe-ILP is used to compute
the weights Ω(N,±) exactly, then the runtime of CREx2 is dominated
by the introduced variant of GeRe-ILP which is exponential in the
worst case.

Experimental results for CREx2 when applied to artificial and mito-
chondrial gene order data sets are presented in Section 5.5. The re-
sults prove that CREx2 is suitable to reconstruct scenarios of genome
rearrangements between gene orders with a high accuracy.

Algorithm CREx2 is implemented in C++ using Gurobi Opti-
mizer 8.1 (Gurobi Optimization, 2018) and is freely available on
http://pacosy.informatik.uni-leipzig.de/crex2.

5.5 evaluation

Naturally, the question arises how exact the constructed scenarios
of CREx2 are. Addressing this question, this section analyses the per-
formance of CREx2 empirically on simulated as well as on real mi-
tochondrial gene order data sets. Recall that two variants of CREx2

have been proposed in Section 5.4.4. The first variant (henceforth
called CREx2-ILP) computes exact solutions but has an exponential
runtime in the worst case. The second variant (henceforth called
CREx2-APP) computes approximated solutions efficiently. In this sec-
tion, the accuracy of the rearrangement scenarios that are computed
with CREx2-APP are analyzed empirically in a simulation for many
different models of genome rearrangements. Thereby, it is shown that
the reconstruction accuracy of the rearrangement scenarios computed
with CREx2-APP is dependent on properties of the strong interval tree
of the considered problem instance. If the strong interval tree is linear,
then CREx2-APP computes scenarios of high reconstruction accuracy.
This accuracy is reduced as the number of prime nodes in the strong
interval tree increases. In addition, biologically useful simulation pa-
rameters are identified for which CREx2-APP gives scenarios of high
accuracy. Experiments on simulated gene orders are performed in
order to determine rearrangement weights that maximize the recon-
struction accuracy of the CREx2-APP results with respect to metazoan

[April 2019 at 13:18 – classicthesis 4.4]

http://pacosy.informatik.uni-leipzig.de/crex2

5.5 evaluation 163

mitochondrial gene orders. A large-scale comparison of the results
of CREx (Bernt et al., 2007) and CREx2-APP on the complete set of all
metazoan mitochondrial gene orders from the NCBI RefSeq release 89
is performed. In addition, the scenarios obtained by CREx2-APP and
CREx2-ILP are compared with each other on the set of all currently
available Chordata, Ecdysozoa, and Lophotrochozoa mitochondrial gene
orders.

5.5.1 CREx2 on Simulated Gene Order Data Sets

In this section, the accuracy of the rearrangement scenarios returned
by CREx2 is analyzed in a large study on simulated gene order data.
Therefore, each data set is obtained by applying t ∈ [1 : 10] randomly
chosen rearrangements from M4-type to the identity permutation of
size n ∈ {37, 100}. In order to simulate various models of genome re-
arrangements, the type of a chosen rearrangement is determined with
respect to a given probability vector (pI,pT,piT,pTDRL), where pX de-
notes the probability of a rearrangement of type X ∈ {I, T, iT, TDRL}.
For example, the probability vector (0, 0, 0, 1) always results into
TDRLs and for the vector (0.3, 0.3, 0.3, 0.1) an inversion, transposition,
and inverse transposition is chosen with probability 0.3 while 0.1 is
the probability to choose a TDRL. Subsequently, inversions (transpo-
sitions and inverse transpositions) are chosen uniformly at random
from the set of all inversions (respectively transpositions and inverse
transpositions), i. e., from MI (respectively MT and MiT). To obtain a
random TDRL ρTDRL(L,R) a two step procedure is used: First, a con-
secutive substring (of the permutation the TDRL is supposed to be
applied to) is chosen at random. This substring represents the dupli-
cated interval of a TDRL rearrangement. Second, for every element
of the interval it is chosen uniformly at random if it is kept in the left
copy L or the right copy R. Clearly, elements that are outside of the
interval are not affected by the TDRL. By this procedure a scenario of
rearrangements S for a considered probability vector is obtained as
well as a permutation π := S ◦ ι. Permutations π and ι are then used as
input for CREx2 with the aim to reconstruct scenario S. Let T denote
the scenario obtained with CREx2. In order to compare S and T the
measures recall and precision are used which are defined as |S∩ T |/|T |
and |S∩ T |/|S|, respectively. Note that |S1| denotes the length of a sce-
nario S1 and the intersection S1 ∩ S2 of two scenarios S1 and S2 is the
set of rearrangements that occur in S1 and S2. It is not hard to see
that recall and precision are well defined if |S|, |T | > 0 which is always
satisfied if π is unequal to the identity permutation. For that reason,
a permutation π (and the corresponding simulated scenario) is only
included to a data set if π 6= ι. Less formally, recall measures the com-
pleteness of the reconstructed rearrangement scenario and precision
measures its exactness.

For the first experiment a large data set has been generated for
permutations of size n = 100. For each t ∈ [1 : 10], 1000 permu-
tations have been generated with respect to each of the probability

[April 2019 at 13:18 – classicthesis 4.4]

164 algorithms for sorting by mitochondrial rearrangements

●● ●

●

●●●●●●●

●●●

●●●●●●

●●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●●

●●●

●

●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●

●●●
●
●●●
●●
●

●●

●●

●

●
●
●●●

●

●●

●

●●●●●●

●

●●●

●

●
●
●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●

●

●●●●
●
●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●
●
●●●●●●●

●

●●
●

●

●●●●

●●

●●●●

●

●

●●

●●●●

●

●

●

●
●
●

●

●●●●●●●●●●●●
●
●●

●●

●●
●
●●●●●●●●
●
●

●

●●●●●●●●●●●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●●●
●●●●●●

●

●●

●

●●

●

●●●●●●

●

●

●

●●●●
●
●
●

●

●●●

●

●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●●●●●●●
●
●●

●

●
●
●●●●●

●

●

●●●

●●
●
●●●

●

●

●

●●

●

●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●

●●●●

●

●●●●

●

●●

●

●

●

●●●●●

●●

●●●●
●
●●●●
●
●●●●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●●●●●●●●●
●
●
●

●

●

●●●

●

●●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●

●●

●

●

●●

●●●●●●

●

●●●●
●
●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●●●●

●

●●●●●●●

●●

●

●

●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●●●

●

●●

●

●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●●●●●●●

●

●

●●●●●●

●

●●

●

●●●●●

●

●●●●●

●

●

●

●
●
●

●

●

●

●●●●●

●●●

●●

●

●●●

●●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●●●

●

●

●

●●●

●

●●
●●●●●●●

●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●●●

●●

●●●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●●

●●●●●●●

●●●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●●

●●●

●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●●●●●●●

●

●●●●●●●●

●

●

●●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●●

●●●●

●

●

●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●

●●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●

●●

●●

●●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●●

●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●●

●●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●●●●

●●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●●

●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●●

●

●

●●●

●

●●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●●●

●

●●●

●●●

●

●●●

●

●

●●●●●

●

●

●

●

●●

●

●

●●●●

●●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●●●

●

●●●

●

●
●
●

●

●

●●
●
●●●●●

●

●

●

●
●
●
●●●●●
●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●
●
●●●
●
●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●
●●●

●

●
●

●

●●●●

●

●

●●

●●
●●
●

●

●●●
●
●●

●

●●●●

●

●●●●●

●

●●
●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●
●
●

●

●

●

●

●●●
●

●

●
●●●

●

●
●●
●●
●
●●

●

●
●
●
●
●

●●●●●
●
●

●●●
●
●

●

●●●●●

●

●
●
●
●●

●
●
●●

●

●●●●●●
●●
●
●
●●
●
●
●
●
●●
●●●

●

●●●

●

●

●

●

●

●

●

●

●
●●
●●

●
●
●●

●●●●

●

●

●

●●●●
●
●●●●●●●●
●

●

●
●

●

●
●
●

●

●

●

●

●
●●

●●●

●
●

●

●

●

●●●
●●

●

●

●

●●
●
●
●

●

●●●●
●
●
●
●
●

●

●
●●●●
●

●

●●●

●

●
●
●
●●●

●

●●

●

●●
●
●●

●

●●●

●

●
●●●●●●
●
●●●●

●

●

●

●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●
●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●

●

●●●●●

●

●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●●

●

●

●●●●

●

●

●

●●●●●●

●

●●●

●

●●●

●

●

●

●●●●●●●● ●

●

●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●
●
●●●●
●
●●●●●

●
●

●●
●●●●
●
●●●●●●●●

●

●●

●

●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

(a)

●●● ●

●

●●●●●●●

●●●

●●●●●●

●●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●
●●
●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●
●

●

●
●●

●

●
●
●●●

●

●

●

●
●●
●●
●●

●

●

●●
●
●

●

●
●●

●

●
●●
●

●

●

●
●

●

●
●●
●●
●

●

●

●

●

●

●

●

●

●
●●

●●●●
●●
●
●●
●
●●●
●●●
●●
●

●

●●

●

●

●●
●●

●
●

●
●
●

●

●

●

●●

●
●
●
●

●

●

●

●●
●

●

●
●
●
●

●
●

●●
●
●
●

●

●●●

●●

●
●
●

●

●
●

●●

●

●●

●●

●

●●●

●

●
●
●
●●●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●●●●
●●●●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●●●
●

●

●●

●

●

●●●

●

●

●

●

●

●●

●
●
●
●●
●

●

●
●●
●

●

●●

●

●
●

●

●●

●

●

●

●
●

●
●
●
●●
●
●
●

●

●●
●
●
●●
●

●

●

●
●

●

●

●
●●●
●

●

●

●

●
●

●

●●●

●

●
●
●●

●
●●
●●

●

●
●

●

●
●
●
●
●
●
●

●

●
●

●

●
●
●●

●

●●●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●●
●●●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●●
●

●●

●
●
●

●

●

●
●
●

●

●
●
●
●●●

●

●

●

●●
●

●

●
●
●
●●
●
●●●
●

●●●●

●

●

●
●
●●●

●

●
●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●●
●●●
●

●

●

●

●

●●
●
●●

●

●
●●

●

●

●

●●
●

●

●

●
●
●
●●
●
●

●

●
●
●●
●

●

●

●

●●
●●
●
●
●
●●
●●●●

●

●

●

●
●
●
●
●●

●

●●
●
●●
●

●

●
●
●●●

●

●
●
●
●
●
●
●●●
●
●●

●●

●

●
●
●
●
●●
●
●
●
●

●

●
●

●

●

●●

●●
●●

●
●

●

●●

●

●●●

●

●
●●●

●
●●●

●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●
●●●

●

●

●

●
●

●

●●●●
●●●●●●●●

●

●

●

●

●

●

●●

●

●
●
●●

●

●
●

●●

●

●

●
●
●

●
●
●
●
●
●
●●

●

●

●

●●

●

●
●
●●●●
●

●●
●
●●
●●
●
●●●
●
●

●

●
●

●

●
●
●

●

●

●●●●●

●

●●●●●
●●●
●
●●●
●●
●

●
●●

●

●
●

●

●
●●
●
●●●
●

●

●●●
●
●●

●

●

●

●●●●
●

●
●●●●●
●●
●
●

●

●
●
●
●
●

●

●●
●
●
●
●
●
●
●

●

●

●●

●

●●●

●

●
●●●
●

●

●●●●●●●●●

●

●●
●
●●

●

●
●●●●●
●●
●●●
●

●

●
●
●

●

●

●
●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●●
●

●

●●

●

●

●
●●●●●●
●
●
●●
●
●●
●

●

●
●●●
●●●●●●

●

●
●
●

●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●
●

●●

●●●●

●

●●●●●●

●

●●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●●

●
●●

●●●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●●

●

●●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●

●●●

●●

●

●

●●

●●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●●●

●●

●

●

●

●

●●
●

●

●●
●
●

●●

●
●
●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●●●●●

●

●

●●●

●

●●
●

●

●

●

●●●

●

●
●●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●●
●

●

●

●●

●

●

●

●

●
●
●●

●

●

●

●
●●
●
●●●●

●

●

●

●

●●
●●●
●
●
●

●

●

●
●
●

●●

●●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●●●

●

●
●

●●
●
●●●

●

●

●
●●
●
●●
●

●

●●
●

●

●

●

●●
●
●
●●●

●

●

●

●

●
●●●
●●
●●●

●

●
●
●●
●

●

●●

●

●

●●
●
●
●
●
●

●
●
●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●
●●

●

●
●
●

●

●●

●

●

●

●

●
●
●
●

●●
●●●●
●●
● ●

●●

●

●

●●

●

●●

●

●
●
●

●
●

●●●●
●
●
●●
●
●●

●

●
●●●●

●

●
●

●

●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●
●
●●

●

●

●

●●●●
●
●●

●

●●
●
●●

●

●

●●
●●
●●●

●

●

●●

●●●
●

●●
●●
●
●
●

●

●

●
●●

●●
●●
●
●
●

●

●

●

●

●
●

●

●●
●

●

●
●
●●

●●

●●
●●
●●

●●

●

●
●

●

●
●
●●
●
●●●
●
●●
●

●

●

●
●

●

●●

●●
●
●
●
●●
●
●●●
●●●

●

●
●
●●
●
●
●
●
●●

●●
●
●●
●

●

●

●
●
●
●●
●●
●
●
●
●
●●

●

●
●
●
●
●
●

●

●
●
●
●
●
●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●●●

●●●
●●●
●

●
●●
●●●
●
●
●●

●

●●
●

●
●●●●

●

●
●
●●
●

●
●
●

●

●
●

●

●●

●
●

●

●
●●

●

●●●
●
●●
●

●

●
●

●

●
●●
●

●

●

●

●
●

●
●
●

●
●
●
●
●
●●●
●
●●
●●●

●

●

●
●

●
●●●
●
●

●

●
●●
●
●
●●
●
●●
●

●

●●
●●
●●●
●●●
●

●

●
●
●
●
●

●●
●
●●●
●●
● ●

●

●
●
●●

●

●●

●
●●

●
●
●
●●●
●●●
●
●●●●●●●
●
●
●

●

●●
●
●●
●
●

●

●
●●●●●
●
●
●
●

●

●

●●

●

●

●
●●

●

●●
●
●
●
●●●
●●

●●●
●●●●●●
●

●●
●

●

●●●●
●

●

●●●●●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●●

●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●●●●●●

●

●●●●●●

●

●

●●●●●

●●

●

●

●●

●

●●

●

●

●

●●●●●

●

●●●●●●●●●●●

●●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●

●

●●●●●●

●

●

●●●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●●●

●

●

●

●

●●●●

●

●

●

●●

●●●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●●●

●●●●

●

●●

●●

●

●

●

●●●●●

●

●

●●●●●●

●

●

●●●

●

●

●●●●●

●
●

●

●●

●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●●●

●

● ●

●

●●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●

●

●●

●●

●●●●

●●

●

●

●●

●

●●

●

●●

●●●

●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●
●●

●●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●●
●
●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●●

●

●●●

●
●

●●●●

●
●
●
●
●

●

●

●

●

●●

●●
●
●

●●

●

●●●●

●

●

●●● ●
●
●●

●

●

●●

●●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●●●●

●

●

●

●●●●

●●

●●

●

●
●
●●●●● ●●●●●

●●
●
●

●

●

●

●
●

●

●●●●●

●

●●●●
●
●

●

●
●●
●●●●●
●

●

●●●
●
●●

●

●●
●
●●

●

●

●
●●
● ●

●
●●
●

●

●
●●
●●
●

●

●
●
●●●
●●●
●

●

●●
●
●●

●
●

●

●

●

●●●
●
●●●●●
●●
●●●●●●●

●

●●●
●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●●●●

●●

●

●

●●

●●

●

●●●

●

●●●●

●

●●

●

●●●●
●

●

●

●

●●●●
●
●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●●
●●

●

●●

●

●●●

●●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●

●

●
●
●
●

●

●●
●●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●
●
●●●●●

●

●

●

●

●

●

● ●●●
●●
●●
●
●●

●

●

●

●●
●
●

●

●

●●●
●●●

●

●●

●

●●●●
●●●●●

●

●●●
●●
●

●

●
●●●●
●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●
●●
●●

●

●

●

●

●●●
●●●●
●●●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●
●
●●

●

●

●●
●

●

●●●●●

●

●●
●

●

●

●

●

●●●

●

●●
●
●
●●

●

●
●

●

●
●
●●
●

●

●

●●

●

●●
●
●
●
●

●
●●●
●

●

●

●● ●●
●
●
●●
●

●

●

●

●●

●
●●●●
●●●

●

●

●
●●

●

●
●
●●●●●

●

●
●
●
●

●

●●

●

●
●
●

●

●●
●
●

●

●

●
●
●●
●
●

●

●●

●

●
●
●
●

●

●

●
●

●

●●●●●●

●

●●
●

●
●

●
●
●●●
●●
●●●●●●

●●

●

●
●
●

●●

●●
●●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●●
●
●
●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●●
●
●
●
●

●

●

●

●

●●
●●●●●
●
●
●

●

●●●●●
●
●
●

●

●●
●
●
●

●

●
●
●
●●
●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●●
●
●

●
●●●●
●

●

●
●●
●

●

●

●

●
●●●●
●

●●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●

●

●
●●
●

●

●

●

●●
●●
●
●●●
●
●●
●

●
●●
●
●●
●●
●
●●
●
●
●
●

●

●

●

●
●●
●
●
●
●

(b)

Figure 5.9: Recall (a) and precision (b) of the results of CREx2-APP applied
to the data sets generated by the application of t ∈ [1 : 10] rear-
rangements to ι of size n = 100. Gray scales of the box plots in-
dicate the rearrangement models that have been considered for
simulation: all 4-type rearrangements with the probability vec-
tor (0.25, 0.25, 0.25, 0.25) (M4-type); inversions only (MI); inverse
transpositions only (MiT); transpositions only (MT); and TDRLs
only (MTDRL). Each box plot has been generated based on the
results of 1000 problem instances.

vectors (1, 0, 0, 0) (i. e., the model MI), (0, 1, 0, 0) (i. e., the model MT),
(0, 0, 1, 0) (i. e., the model MiT), (0, 0, 0, 1) (i. e., the model MTDRL) and
(0.25, 0.25, 0.25, 0.25) (i. e., the model M4-type). Hence, 50 data sets each
containing 1000 problem instances were generated.

Recall that CREx2-ILP has an exponential runtime in the worst
case. In order to perform the following experiments in a reasonable
amount of time, this section considers CREx2-APP only. In addition,
all types of rearrangements that are considered by CREx2-APP are
weighted equally in the first experiment.

Figure 5.9 shows box plots of recall and precision for all data sets.
In addition, the respective average values of recall and precision are
illustrated in Figure 5.10. For t = 1 the figures show that the sim-
ulated scenario is always reconstructed by CREx2-APP. This is not a
surprising result as the application of a single inversion (transposi-
tion, inverse transposition) always results in a linear strong interval
tree (SIT), i. e., a SIT without prime nodes, and CREx2-APP is able so
solve such SITs exactly. Moreover, the application of a TDRL may re-
sult into a prime SIT which can be resolved by a single TDRL that

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 165

●

●

●

●
●

● ● ● ● ●

●

(a)

●

●

●

●
● ● ● ● ● ●

●

(b)

Figure 5.10: Average values of recall (a) and precision (b) of the box plots
illustrated in Figure 5.9 for t ∈ [1 : 10] and the rearrangement
models M4-type, MI, MiT, MT, and MTDRL. Notation is as in Fig-
ure 5.9.

can be reconstructed exactly with CREx2-APP. In addition, the results
for t = 1 show that the different rearrangement cases of CREx2-APP

are implemented correctly. For increasing t the values of recall and
precision drop significantly. Scenarios simulated under the model MI

are reconstructed with higher accuracy. For t = 2 the majority of sce-
narios is reconstructed correctly (i. e., recall and precision are both 1)
for the data sets that has been simulated with respect to MI or MTDRL.
More precisely, 629 and 670 scenarios have been reconstructed cor-
rectly in the former and latter case, respectively. For the data set gen-
erated using all four types of genome rearrangements with equally
probability, 489 scenarios were obtained correctly. One third (390) of
the simulated scenarios were obtained correctly for the data sets that
have been simulated under the model MT. Less than one third (285)
scenarios were obtained correctly for the data sets that have been gen-
erated with respect to MiT. At least one rearrangement scenario has
been reconstructed correctly for all t < 6 (respectively t 6 6 and t < 8)
for the data sets that have been constructed with respect to each rear-
rangement model (respectively the models that consider TDRLs and
MI). It is worth mentioning that for t = 10 at least one rearrange-
ment has correctly been reconstructed in all data sets. More precisely,
in 598 (respectively 56, 41, 146, and 204) scenarios for data sets with
t = 10 at least one rearrangement has correctly been reconstructed
for the data set constructed with respect to MI (respectively MT, MiT,
MTDRL, and M4-type).

The main reason for the low accuracy of the reconstructed
CREx2-APP scenarios for larger t is the presence of prime nodes in the
strong interval trees of the considered permutations. One reason is
that the number of SITs containing at least one prime node increases
significantly for increasing t. Table 5.1 illustrates the amount of SITs
that contain at least one prime node for each data set. It can be seen
that with the exception of MI more than 99% of the problem instances
result into a prime SIT for all considered rearrangement models with
t > 4. Even for t = 2, more than half of the problem instances have a
prime SIT. For t = 1 prime SITs are observed only for data sets that

[April 2019 at 13:18 – classicthesis 4.4]

166 algorithms for sorting by mitochondrial rearrangements

Table 5.1: Number of simulated problem instances that have at least one
prime node in the corresponding strong interval tree for all com-
binations of t ∈ [1 : 10] and the rearrangement models M4-type, MI,
MiT, MT, and MTDRL.

t M4-type MI MiT MT MTDRL

1 225 0 0 0 921

2 633 0 453 601 988

3 873 282 873 919 998

4 970 559 983 988 999

5 995 769 994 998 1000

6 999 886 1000 1000 1000

7 1000 951 1000 1000 1000

8 1000 993 1000 1000 1000

9 1000 997 1000 1000 1000

10 1000 998 1000 1000 1000

are generated with respect to models that consider TDRL rearrange-
ments. In particular, 225 (respectively 921) SITs that contain at least
one prime node were obtained. Note that the former value reflects
the fact that a TDRL is chosen with probability 0.25 and that all prime
nodes for t = 1 are caused by TDRLs. For the 79 problem instances
were no prime node occurs in the data set generated with respect to
MTDRL it applies that the randomly chosen TDRL is actually a trans-
position rearrangement. Another reason for the assumption that the
presence of prime nodes indicates low values of recall and precision
is the observation that the values of recall and precision are very large
for linear SITs as illustrated in Figure 5.11. The figure presents recall
and precision for all data sets (and models) in relation to the number
of prime nodes that occur in the corresponding SITs. It shows that if
a SIT does not contain any prime node, then the rearrangement sce-
narios that are computed with CREx2-APP exhibit very large values of
recall and precision. More precisely, 5898 (75%) of all 8155 problem in-
stances that have a linear SIT were reconstructed correctly, i. e., recall
and precision are both 1. Computed scenarios in which more than
the half of its rearrangements are reconstructed correctly (i. e., recall
and precision are both larger than 0.5) are obtained for 6332 (78%)
problem instances. Moreover, at least one rearrangement of a recon-
structed scenario is computed correctly (i. e., recall and precision are
both larger than 0) for 7170 (88%) problem instances. Observe that the
values of recall and precision in the data sets generated with respect
to MTDRL for prime node free instances correspond to the cases were
a TDRL has the same effect as a transposition rearrangement. Fig-
ure 5.11 also shows that the values of recall and precision are much
worse for problem instances which have a prime SIT. In this case, only
2401 (5, 7%) scenarios of the 41845 problem instances with a prime SIT
were reconstructed correctly. Moreover, for problem instances with a

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 167

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●

●

●

●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●

●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●●●

●●●●

●

●●

●

●

●

●●●●●●●●●

●

●●●●●●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●●●●

●

●

●●

●

●

●

●●●●

●

●●

●

●●●

●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●●

●●

●●

●

●

●●

●

●●●●●

●

●●

●

●●●●●

●●●

●●●●

●●●

●●●●

●●

●●●●

●●

●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●●

●●●

●

●●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●●●●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●

●●●●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●●

●

●

●●●●●●●●●●●

●●

●

●

●

●

●●●●●●

●●●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●

●

●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●

●●●●

●
●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●●●●●●●

●●

●●●●

●●

●●●●●●●●●●

●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●

●●●

●●●

●●

●●●●●●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●

●●
●

●●●

●●

●●

●●

●

●

●●

●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●●●●

●●

●

●●

●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●●

●●

●

●●

●

●●

●

●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●

●●

●●

●●

●●●

●
●

●

●

●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●

●●●

●●●

●

●●●●

●

●●●

●

●●●●●●

●●●

●●●●●●●●●●

●

●●●●●●●

●

●

●●

●●●●●●●●●●●●

●

●●●

●

●●●

●●

●●●●

●●

●●

●

●

●

●

●●●●

●●●

●●

●

●

●

(a)

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●●

●●●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●

●●

●●●●

●

●●●

●

●●●●●

●●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●●

●●●●●●●

●

●

●●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●●●●

●

●●

●

●●●●●●●●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●●●●●

●

●

●

●●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

●●●

●

●

●●●●

●

●

●

●●
●●●●●●●●●●●

●

●●●

●
●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●●

●●

●

●

●

●

●

●●●

●●

●●●

●●●●●

●●

●

●

●

●

●
●

●

●
●●

●

●
●
●●●●

●●

●●
●

●●●●

●●

●

●●●
●

●

●●
●
●

●

●
●●●●

●●●●

●
●●●

●

●

●●●

●

●●
●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●●●

●●
●

●●

●

●

●

●
●
●●

●

●

●
●●
●
●●●●
●

●

●

●
●●●
●
●
●

●

●

●
●
●

●●

●

●
●
●
●

●

●
●

●

●●●

●

●

●

●

●

●●●

●

●
●

●●
●
●●●

●

●

●
●●
●
●●
●
●●
●

●

●

●

●●
●
●
●●●

●

●

●

●

●
●●●
●●
●●●
●
●
●●
●

●

●●

●

●●
●
●
●
●
●
●
●

●

●
●
●

●

●
●

●
●●
●
●
●
●●

●

●
●
●

●

●●

●

●

●

●

●
●
●
●

●●
●●●●
●●
●●

●

●

●

●●●●

●

●
●
●

●
●

●●●●
●●●●●

●

●
●●●●

●

●
●

●
●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●●

●

●●●●●
●
●●

●

●●
●
●●

●

●

●●
●●
●●●●

●●

●●●
●

●●
●●
●
●
●
●

●
●●

●●
●●
●
●
●

●

●

●
●
●

●

●●
●

●

●
●
●●

●●

●●
●●
●●

●●

●

●

●

●
●
●●
●
●●●
●
●●
●

●

●

●
●
●●

●●
●
●
●
●●
●
●●●
●●●

●

●
●
●●
●
●
●
●
●●

●●
●
●●
●

●

●

●
●
●
●●
●●
●
●
●
●
●●

●

●
●
●
●
●
●
●

●
●
●
●
●
●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●●●

●●●
●●●
●

●
●●
●●●
●
●
●●●●
●

●
●●●●

●

●
●
●●
●

●
●
●

●

●
●

●

●●

●
●

●

●
●

●

●●●
●
●●
●

●

●
●

●

●
●●
●

●

●

●

●
●

●
●
●

●
●
●
●
●
●●●
●
●●
●●●

●

●

●
●

●
●●●
●
●

●

●
●●
●
●
●●
●
●●
●

●

●●
●●
●●●
●●●
●

●

●
●
●
●
●

●●
●
●●●
●●
●●

●

●
●
●●

●

●●

●
●●

●
●
●
●●●
●●●
●
●●●●●●●
●
●
●
●●
●
●●
●
●

●

●
●●●●●
●
●
●
●

●

●

●●

●

●

●
●●

●

●●
●
●
●
●●●
●●

●●●
●●●●●●
●

●●
●

●

●●●●
●

●

●●●●●
●

●●●●●●
●●

●

●●
●

●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●●●

●●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●●

●●●●●

●●

●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●

●

●●●●

●

●

●

●●

●●●

●

●●●●●●●

●

●

●

●●●●

●

●

●

●●●

●

●●

●●

●●●

●

●●●●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●●●

●●●●

●

●●

●●

●

●

●

●●●●●

●

●

●●●●●●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●

●

●●

●●

●●●●

●●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●
●●

●●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●●
●
●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●●

●

●●●

●
●

●●●●

●
●
●
●
●

●

●

●

●

●●

●●
●
●

●●

●

●●●●

●

●

●●●●
●
●●

●

●

●●

●●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●●●●

●

●

●●●●

●●

●●

●

●
●
●●●●●●●●●●
●●
●
●

●

●

●

●
●
●●●●●

●

●●●●
●
●

●

●
●●
●●●●●
●

●

●●●
●
●●●●
●
●●

●

●

●
●●
●●
●
●●
●

●

●
●●
●●
●

●

●
●
●●●
●●●
●

●

●●
●
●●

●
●

●

●

●

●●●
●
●●●●●
●●
●●●●●●●

●

●●●
●

●

●●

●●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●

●●●

●●●●●●●●

●

●●●

●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●●

●●

●

●●

●●●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●●

●

●

●●●

●

(b)

Figure 5.11: Recall (a) and precision (b) of the results of CREx2-APP in rela-
tion to the number of prime nodes in the corresponding strong
interval tree for the data sets generated with respect to the rear-
rangement models M4-type, MI, MiT, MT, and MTDRL. Notation
is as in Figure 5.9.

prime SIT, half of the rearrangements were reconstructed correctly in
2855 (6, 8%) scenarios and at least one rearrangement of a computed
scenario was reconstructed correctly for 34841 (83, 3%) problem in-
stances. It seems counter-intuitive that the values for recall and preci-
sion increase for an increasing number of prime nodes for data sets
that have been generated with respect to MTDRL. CREx2-APP handles
prime nodes with Algorithm 2 which mostly uses rearrangements of
type TDRL. However, the results of recall and precision for SITs with
an increasing number of prime nodes should be interpreted with cau-
tion as the number of problem instances with a larger number of
prime nodes decreases significantly. For example, only 6 of the 41845
problem instances have a SIT with 4 prime nodes and only one of
these 6 scenarios was reconstructed correctly. Hence, the rightmost
box plot in both subfigures of Figure 5.11 may be deceptive.

The first results of CREx2-APP on simulated gene order data do
clearly not shape up well. However, it should be noted that CREx2-APP
is able to reconstruct at least parts of the simulated rearrangement
scenarios for many data set across the different models that have
been considered for the simulations. It is also worth mentioning
that CREx2-APP computes rearrangement scenarios of high accuracy
if problem instances have strong interval trees without prime nodes.

[April 2019 at 13:18 – classicthesis 4.4]

168 algorithms for sorting by mitochondrial rearrangements

(a) (b)

Figure 5.12: Average recall (a) and average precision (b) of CREx2-APP ap-
plied to the data sets generated by the application of t ∈ [1 : 10]
rearrangements that affect at most α ∈ {10, 20, . . . , 100} elements
to ι of size n = 100. For each combination of t and α 1000 prob-
lem instances were simulated with respect to each rearrange-
ment model of M4-type, MI, MiT, MT, and MTDRL. The averages
for each combination of t and α are computed including the
results for all five rearrangement models.

Hence, the absence of prime nodes is a good indicator for the accu-
racy of the scenarios that are computed with CREx2-APP.

The following experiment shows that the values of recall and pre-
cision of the scenarios computed with CREx2-APP are much better if a
certain additional biologically motivated constraint is imposed on the
considered rearrangement models. More precisely, this constraint is
the number of elements that can be affected by a rearrangement. Con-
sidering that rearrangements can only influence a limited number
of elements is reasonable, as rearrangements tend to occur in meta-
zoan mitochondrial genomes more frequently close to the replication
origin, e. g., see Fonseca and Harris (2008). Another indicator for re-
arrangements of limited size is given by the analysis performed in
Bernt and Middendorf (2011) on Metazoa mitochondrial gene orders.
In their work the authors show that around 75% of rearrangements
influence only tRNAs and a vast majority of those rearrangements
influence only a single gene. For all these reasons, the simulation
method was modified in the following experiment: Each of the t re-
arrangements that are randomly chosen affect at most α elements.
The remaining aspects of the simulation such as the considered prob-
ability vectors, randomly selecting t ∈ [1 : 10] rearrangements with
respect to a probability vector as well as applying these rearrange-
ments iteratively to the identity permutation of size n = 100 are
kept unchanged. For the following experiment, the parameter α is
explored for all values in {10, 20, . . . , 100}. It is worth mentioning that
the unrestricted case that has been analyzed in the first experiment is
obtained for α = 100. As in the previous experiment, a data set always
contains 1000 problem instances and the experiment was performed
for each combination of α ∈ {10, 20, . . . , 100}, t ∈ [1 : 10], and all five

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 169

probability vectors representing the rearrangement models MX with
X ∈ {I, T, iT, TDRL, 4-type}.

Figure 5.12 illustrates the average values of recall and precision for
all combinations of α and t. The illustrated averages are computed
including the results of CREx2-APP for all five different rearrangement
models. The figure shows that the values of recall and precision are
much better for smaller values of α. For example, the recall for t = 10
and α = 100, i. e., the worst unrestricted case, increases from 0.09 up
to 0.43 for α = 10. A similar increase can be seen for the correspond-
ing precision values. Another example that is worth mentioning is
the case were every rearrangement affects at most the half of a per-
mutation’s elements, i. e., α = 50. In this case an average recall of 0.36
implies that more than a third of the simulated rearrangements for
α = 50 were reconstructed correctly.

One reason for the significantly improved reconstruction accuracy
of CREx2-APP for smaller values of α can be found in the number of
prime nodes: Shorter rearrangements act more often on different in-
tervals of a permutation resulting in SITs that have a smaller number
of prime nodes. As rearrangement scenarios with prime SITs are com-
putationally hard to reconstruct, the accuracy of the results obtained
by CREx2-APP improve with a decreasing number of prime nodes.
However, the experiment shows that for these biologically more rel-
evant restricted rearrangement models, CREx2-APP provides results
with a much higher accuracy compared to the unconstrained rear-
rangement models.

The first two experiments on simulated gene order data sets that
are performed in this thesis have been performed in a similar fash-
ion for the CREx heuristic (Bernt et al., 2007) in Bernt (2009). While
the major experimental settings are the same two important differ-
ences can be observed: 1) The analysis performed in this thesis ex-
cludes the identity permutation in each data set. The reason is that
including these permutations biases the values of recall (and preci-
sion) towards 1, since an empty scenario can always be reconstructed
exactly. In Bernt (2009) the identity permutations are included in
the data sets. 2) In Bernt et al. (2007) a different probability vec-
tor has been used for simulating rearrangement scenarios that con-
sider all 4-type rearrangements. While in Bernt (2009) the probabil-
ity vector (0.3, 0.3, 0.3, 0.1) is used, this thesis considers the vector
(0.25, 0.25, 0.25, 0.25). Hence, more TDRLs are applied during the sim-
ulations in this thesis. Since TDRL rearrangements often results in
problem instances with a prime SIT, a direct consequence is that the
data sets that have been generated with respect to all 4-type rear-
rangements contain 395 (4, 5%) more problem instances with a prime
SIT compared to Bernt (2009). Clearly, as the two differences outlined
above penalize the value of recall and precision in the experiments
presented in this thesis, a direct comparison of CREx and CREx2-APP

on the first two experiments put the results that are presented here at
a slight disadvantage. Hence, the values of recall and precision pre-
sented in Figure 4.9 of Bernt (2009) are slightly better across the whole
experimental data set. In addition, it is worth mentioning that the gen-

[April 2019 at 13:18 – classicthesis 4.4]

170 algorithms for sorting by mitochondrial rearrangements

eral tendency of recall and precision are similar and the values for the
data sets that have been generated with respect to M4-type are almost
equal. Thus, when considering equally weighted types of rearrange-
ments, CREx2-APP is competitive with CREx. Moreover, CREx2-APP also
provides a great advantage in respect of the parsimony assumption:
The scenarios computed by CREx2-APP contain in general less rear-
rangements than the scenarios of CREx. This aspect is explored in
more detail in Section 5.5.2 on the complete set of metazoan mito-
chondrial gene orders.

Compared to the CREx heuristic another benefit of CREx2-APP is its
ability to include rearrangement weights for every type of rearrange-
ment. However, the choice of such weights is a difficult task which
is crucial for finding reliable scenarios of gene order evolution. More-
over, up to now no preferred weighting scheme has been proposed
for mitochondrial gene orders. The following experiment aims to ex-
plore the set of different weighting schemes and their influence on
the reconstruction accuracy of CREx2-APP with respect to metazoan
mitochondrial genomes.

In the following experiment, two data sets were simulated by itera-
tively applying t ∈ [1 : 6] rearrangements to the identity permutation
of size n = 37. For the first (second) data set the rearrangements were
chosen randomly as explained above with respect to the probability
vector (0.2, 0.6, 0.1, 0.1) (respectively (2/9, 2/3, 1/9, 0)). For each t it
was ensured that the identity permutation is not included in a data
set and exactly 1000 problem instances were generated for each of
the two data sets. The permutation size 37 has been chosen as it is
the typical number of genes of metazoan mitochondrial genomes, see
Section 2.1.3. The probability vector (0.2, 0.6, 0.1, 0.1) was chosen ac-
cording to the analysis on metazoan mitochondrial gene orders pre-
sented in Bernt and Middendorf (2011). Realizing the special role of
linear SITs for the reconstruction accuracy of CREx2-APP, the second
data set contains only problem instances having a linear strong in-
terval tree. Therefore, the second probability vector was chosen in
order to keep the relation between inversions, transpositions, and in-
verse transpositions as in the first probability vector while excluding
TDRL rearrangements. Indeed, even for this probability vector the
simulated rearrangement scenarios may result in a problem instance
with a prime SITs, especially for increasing values of t. In such a case
the simulation of the problem instance is repeated until a problem
instance with linear SIT is generated. As the simulation almost al-
ways resulted in a problem instance with prime SIT for t > 7, t has
been chosen to be less than 7. The maximum number of elements that
can be affected by a rearrangement is set to α = 37, i. e., the uncon-
strained case is considered. In sum, two data sets each containing 6
sets of 1000 problem instances were generated such that the first data
set (henceforth denoted by A) contains problem instances with linear
and prime SITs and the second data set (henceforth denoted by B)
contains problem instances that have a linear SIT only.

Both simulated data sets were analyzed with CREx2-APP using a
large number of different weighting schemes. In the following, a

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 171

weighting scheme is denoted by (ωI,ωT,ωiT), where ωI (respectively
ωT, ωiT) denotes the weight of an inversion (respectively transpo-
sition, inverse transposition). Note that a weighting scheme does
not provide a weight for TDRL rearrangements as TDRLs can only
appear in reconstructions of problem instances with a prime SIT
and CREx2-APP solves these prime nodes by Algorithm 2 which
does not consider rearrangement weights. For the experiment the
weighting scheme that weights all types of rearrangements equally,
i. e., (1/3, 1/3, 1/3), and all weighting schemes (x/10,y/10, z/10) with
x,y, z ∈ [1 : 8] and x+ y+ z = 10 were selected. The chosen weighting
schemes were selected with the objective to provide a comprehensive
view on the large set of all possible weighting schemes.

Figure 5.13 illustrates the values of recall and precision for all
weighting schemes as well as for both data sets. It can be seen that
recall and precision are much better for data set B. This is not surpris-
ing as the previous experiments already showed that scenarios with a
prime SIT are more unlikely to be reconstructed correctly. It can also
be seen that the recall and precision for both data sets is significantly
smaller for 9 weighting schemes (bright gray columns). It is not hard
to see that all these weighting schemes violate at least one of the equa-
tions (5.1) – (5.3) presented on Page 139. For these 9weighing schemes
a transposition can always be replaced by a sequence of inversions
and/or inverse transpositions. As CREx2-APP considers the weighting
scheme in linear nodes of the corresponding SIT, transpositions can
only occur for problem instances with prime SIT. Since the simulated
scenarios consists by approximately 60% of transpositions, the values
of recall and precision for these 9 weighting schemes are less than for
the remaining ones. Figure 5.13 also shows that the difference in recall
and precision for the remaining weighting schemes is relatively small.
This can be seen in the average of recall and precision for a weight-
ing scheme including the values for all t. For example, the largest of
these averages is 0.313 for the weighting scheme (0.3, 0.3, 0.4) and the
average for the fifth largest-valued weighing scheme (1/3, 1/3, 1/3) is
0.309 for the results of data set A. Note that these averages of recall
and precision imply that CREx2-APP is able to correctly reconstruct
approximately a third of all simulated rearrangements. This fraction
can even increase if rearrangements are bounded in size and the cor-
responding strong interval trees are free of prime nodes. An example
for the latter is given by the average values of recall and precision
that include the results of data set B for all t and a certain weigh-
ing scheme: the largest two averages values are 0.553 and 0.547 for
the weighting scheme (0.3, 0.3, 0.4) and (1/3, 1/3, 1/3), respectively.
Hence, in this case more than half of the simulated rearrangements
were reconstructed correctly. Intriguingly, the six weighting schemes
that show the largest values of recall and precision in both data sets
A and B are all weighting schemes within the area where a single re-
arrangement cannot be replaced with a sequence of rearrangements
of another type without violating the parsimony criterion. Figure 5.3
provides an illustration of this area.

[April 2019 at 13:18 – classicthesis 4.4]

172 algorithms for sorting by mitochondrial rearrangements

(a)

(b)

(c)

(d)

Figure 5.13: Average recall and average precision of the results of CREx2-APP
on data sets A and B. The values of recall and precision be-
longing to data set A are illustrated in (a) and (b), respectively.
For data set B the corresponding values of recall and precision
are given in (c) and (d), respectively. For each combination of
t ∈ [1 : 6] and all weighting schemes an average was computed
including the results of all 1000 problem instances. A red circle
indicates the averages that are maximum for t.

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 173

Consequently, the results clearly show that if the data set is
simulated with respect to the probability vector (0.2, 0.6, 0.1, 0.1)
or (2/9, 2/3, 1/9, 0), then the best reconstructions are obtained by
CREx2-APP for weighting schemes within the area illustrated in Fig-
ure 5.3, e. g., for (0.3, 0.3, 0.4) and (1/3, 1/3, 1/3).

While the difference in the accuracy of the reconstructions is rela-
tively small across most weighting schemes, the fractions of the differ-
ent types of rearrangements that have been used for the reconstruc-
tion show more variation. Figure 5.14 shows those variations by de-
picting the average fraction of the different types of rearrangements
in the reconstructions for both data sets A and B. Figure 5.14 (a)
shows that the fraction of TDRLs in the reconstructions is almost
constant with 0.38 for all weighting schemes. Clearly, the amount of
TDRLs correlates with the number of prime nodes of the correspond-
ing SITs that are handled by Algorithm 2 in CREx2-APP. As the num-
ber of prime nodes in the data set is independent of the considered
weighting scheme, the number of TDRLs used for the reconstructions
stays constant. Since Algorithm 2 also uses inverse transpositions and
transpositions, the fraction of these types of rearrangements is al-
ways larger than 0 for all weighting schemes. Another observation
is that also inversions are used for all weighting schemes. The rea-
soning is that the sign of a single leaf node in the SIT can only be
changed by an inversion rearrangement. Interestingly, Figure 5.14 (a)
also shows that the fraction of a considered rearrangement event is
increased as soon as its weight is decreased. For example, the frac-
tion of inversions in the reconstructed scenarios of data set A in-
creases from 0.14 for the weighting scheme (0.8, 0.1, 0.1) to 0.49 for
(0.1, 0.3, 0.6). This effect can also be observed slightly weakened for
transpositions and inverse transpositions. For transpositions (inverse
transpositions) the fraction increases from 0.09 for (0.1, 0.8, 0.1) (re-
spectively 0.03 for (0.1, 0.1, 0.8)) to 0.35 for (0.4, 0.1, 0.5) (respectively
0.28 for (0.3, 0.6, 0.1)). Figure 5.14 (b) illustrates the corresponding
fractions for data set B. It can be seen that no TDRL rearrangement
has been used for the reconstructions. This is due to the fact that data
set B consists of problem instances with no prime nodes in the corre-
sponding SITs. Moreover, the effect that the fraction of a considered
rearrangement event is increased for decreasing values of the respec-
tive weight can also be observed in a greater extent. For example, the
fraction of inverse transpositions increases from 0 for the weighting
scheme (0.1, 0.1, 0.8) to 0.63 for (0.3, 0.6, 0.1). In accordance to the dis-
cussion on Figure 5.13, all weighting schemes with small values of
recall and precision do not contain transpositions, e. g., the scheme
(0.1, 0.6, 0.3).

The results of this experiment show that different weighting
schemes have a significant influence on the reconstruction accuracy of
CREx2 as well as on the fractions of rearrangements that are used for
the reconstruction. This influence is reduced for an increasing num-
ber of prime nodes.

The computation of all 766000 problem instances that were ana-
lyzed in this section has been performed within 56 minutes and 8 sec-

[April 2019 at 13:18 – classicthesis 4.4]

174 algorithms for sorting by mitochondrial rearrangements

(a)

(b)

Figure 5.14: Average fractions of inversions (I), inverse transpositions (iT),
transpositions (T), and tandem duplication random losses
(TDRL) in the reconstructed scenarios of CREx2-APP for data
sets A (a) and B (b). Each pie chart represents the average frac-
tions of the different rearrangement types for a certain weight-
ing scheme. The averages were computed including the results
of CREx2-APP for all t ∈ [1 : 6]. The center of a pie chart in the
ternary plot represents the corresponding weighting scheme.
For a clear representation the results for the weighting scheme
(1/3, 1/3, 1/3) are omitted.

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 175

onds on a laptop with a 2.10 GHz processor. That is 0.0044 seconds
for the reconstruction of a single rearrangement scenario on average.

5.5.2 CREx2 on Mitochondrial Gene Order Data Sets

In this section, gene orders of metazoan mitochondrial genomes are
utilized to evaluate the performance of CREx2 on biological data sets.

For the first experiment, algorithms CREx2-APP and CREx (Bernt et
al., 2007) have been applied to the set of all unique metazoan mito-
chondrial gene orders that were obtained as described in Section 3.2.1.
The obtained set of 4900 metazoan gene orders that contain the stan-
dard set of 37 genes contains 532 unique gene orders that are used
for the experiment.

Comparing all 532 gene orders pairwisely yields 282492 problem
instances from which 36324 (14.76%) have a linear strong interval
tree. As the experiments in Section 5.5.1 reveal, the phylogenetic reli-
ability of the CREx2-APP results (and also the CREx results, see Bernt
(2009)) is likely to be low on this data set. The reason for this lies in
the small number of problem instances with a corresponding linear
strong interval tree. Therefore, the aim of the following experiment is
merely to demonstrate the difference of the results of CREx2-APP and
CREx on biological data sets. All computations were performed on a
laptop with a 2.1 GHz processor and the results of both algorithms
on the data set were obtained in less than 12 minutes. That is a run-
time of 0.0013 seconds (CREx) and in 0.0025 seconds (CREx2-APP) for a
problem instance on average.

Figure 5.15 summarizes the results of the application of both al-
gorithms to the data set. Box plots for the length of all reconstructed
rearrangement scenarios are shown in Figure 5.15 (a). Roughly speak-
ing, it can be seen that the scenarios of CREx2-APP are on average
shorter than the scenarios constructed by CREx. More precisely, the
length of 215468 (76%) (respectively 63580 (23%) and 3444 (1%)) sce-
narios that are constructed by CREx2-APP is less than (respectively
equal to and greater than) the length of the corresponding scenario
computed by CREx. If a scenario that is computed by CREx2-APP

is shorter (larger) than the corresponding scenario of CREx, then it
is shorter (respectively larger) by 3.71 (respectively 1.06) rearrange-
ments on average. Altogether, the average distance of the results that
are computed by CREx2-APP (respectively CREx) is 7.61 (respectively
10.44). Hence, on the data set CREx2-APP uses almost three rearrange-
ments less than CREx on average.

Figure 5.15 (b) illustrates the absolute frequency of all four types of
rearrangements for the scenarios computed with CREx and CREx2-APP.
On one hand, the figure shows that CREx2-APP uses 1.28 times more
TDRLs than CREx. On the other hand, the scenarios computed with
CREx contain 2.77 times more inversions and 1.37 times more in-
verse transpositions than the corresponding scenarios computed with
CREx2-APP. It can also be seen that the absolute frequency of transpo-
sitions are almost equal for both algorithms. The large differences for

[April 2019 at 13:18 – classicthesis 4.4]

176 algorithms for sorting by mitochondrial rearrangements

●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●●

●●

●

●

●●●●

●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●●●●●

●

●●●

●

●●

●●●●●●●●

●

●●

●

●

●●

●●●●●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●●●●●●●●

●

●●

●●●●

●●

●

●

●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●●●●

●●

●●

●●

●●

●●●●●●

●

●●

●

●

●

●●

●●

●

●●●

●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●●

●●

●●●●●●

●●

●●

●

●●

●●●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●●●●●●●

●

●

●

●●

●●

●●

●

●●

●

●●●●

●

●●●●●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●●●

●

●

●●●●

●

●

●

●●

●

●

●●

●●

●●●●

●

●

●●

●

●●●●●

●●

●

●

●

●

●●●●

●

●

●●

●

●●●●●●

●

●●

●

●

●●●●●●●

●●●

●●

●

●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●●●●

●

●

●

●●●

●

●●●●

●

●

●●●

●●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●●

●

●●●●

●

●●

●●●

●●●

●●

●●●

●

●●●●

●●

●●●

●●●●

●

●

●

●●●●●●●●

●

●

●●

●●

●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●●●

●●

●

●

●●

●

●●●●●

●

●●●●●

●●

●●●

●

●●●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●

●

●

●

●●●●

●

●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●●●

●

●

●●●●

●●

●

●●●●

●

●

●●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●

●

●●●●

●●

●●●●●●

●

●●●●

●

●●●

●●●

●

●●●●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●●●●●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●

●●●

●●

●

●●●

●●

●●●●

●

●

●●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●

●

●

●

●●●●

●

●

●

●●

●●●

●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●●

●●

●

●●●

●

●

●●●●●●

●●

●●

●

●

●

●●●

●●●●●

●●●●●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●

●●

●●●

●

●●

●

●

●●

●

●●

●●

●

●

●●●●●●●

●

●

●

●

●

●●●

●●

●

●

●●

●●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●●●●

●

●●●

●●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●

●●●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●●●

●

●●

●

●●●●

●●

●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●●●●●

●●●

●●

●●

●

●

●

●

●

●

●

●●●

●●●●

●●●

●

●●●

●

●

●●●

●

●●●●●●

●●

●●●●

●

●

●●●

●

●

●●

●●●●●●●

●●

●

●●●

●●

●●●

●

●●

●

●●●●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●●

●●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●●●●

●

●●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●●

●●●

●

●●●●●●●●

●

●

●

●●●●●

●

●

●●●●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●●

●●●●●●●●

●

●●

●●●

●

●●●●

●●

●

●●

●●

●

●●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●●●

●●●●●●●●

●

●

●

●●

●

●●●●●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●●

●

●

●●●

●●●

●●

●

●●

●●

●●

●

●

●

●●

●●

●

●

●

●

●●●●●●

●●

●●

●●●●●

●

●●

●●●●

●●

●

●

●●

●

●

●●●●●

●

●●●●●

●

●

●

●●●

●●

●

●●

●●

●●●

●●

●●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●●●

●

●

●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●

●●●

●●

●

●●

●

●●

●

●●●●●

●

●●●●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●

●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●

●●●●●●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●

●●●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●●

●●

●

●

●●

●●●

●

●

●●●

●

●●●

●●

●●●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●●

●

●

●●

●

●

●●●●●

●

●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●●

●●

●●●●

●●●

●●

●

●

●

●●●

●●

●

●

●

●

●●

●●

●

●●●●●●

●●

●●●●●

●●●

●

●

●●●

●

●●

●

●●

●

●●●

●●●

●

●●●●

●

●●●

●●●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●●●●●

●

●

●

●●●●●●

●●

●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●

●

●●●

●

●●●

●●●

●●

●

●●●●●●●●●●

●

●●●●

●

●

●

●

●●

●●●●●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●●

●●●

●●

●

●●●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●●●

●

●

●●●●

●

●●

●

●●●●●

●

●●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●●●●●●●●●

●

●

●

●●●

●

●●●

●●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●●●

●●

●

●●

●●●●●

●

●●

●

●●

●●

●●

●

●●

●●●●

●●

●●●

●●●●●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●

●●●●●

●

●●●●●●●●●

●●

●●

●●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●●●

●

●●●

●●●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●

●●●●●

●●

●●●●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●●

●●●●●●

●

●●

●

●●●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●●●●●

●

●

●

●●●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●●

●

●

●●

●

●●●●●●●

●●

●●●●

●

●●●●

●

●

●●●

●●●●●●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●●

●●●

●

●●

●

●

●●●●

●

●●●●●

●

●

●

●●●●

●

●●

●

●

●

●●●●

●●

●●●

●

●

●●

●●

●●●●●

●●

●●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●●

●●

●●

●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●

●

●

●●●●●

●●

●●

●

●

●●●●

●

●

●●●●

●

●

●

●●

●●

●●●●●

●

●

●●●

●●●●●

●

●

●

●

●

●●

●

●●

●●

●●●

●●

●●

●

●●●

●●

●●●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●●●●●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●●

●●

●

●●

●●

●●●

●●

●●

●

●

●●●●

●

●●●

●●●●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●●

●●

●

●●●●

●

●

●●●●●●●

●

●

●●●●●●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●●

●

●

●●

●

●●●●●●●●●

●

●

●

●●●

●

●

●

●●●

●●●●

●

●●●

●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●●●●●●

●

●●

●

●

●●

●

●●●●●●

●●

●

●

●●●●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●●●

●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●●

●

●●●●●

●

●

●●

●●●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●●

●●●

●●

●●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●

●●

●

●

●●●●●

●●

●●●

●

●●

●●●●●●●●

●

●●

●

●

●●●

●●●

●

●

●●

●●

●

●

●●●●●

●●

●

●●●●●

●

●

●●

●

●●●

●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●

●

●

●●●●●●●●●●●●●

●

●●●●

●

●

●●●●●●●●●●●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●

●●●●●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●●●

●

●●

●

●

●●

●●●

●

●●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●

●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●

●

●●●●●●

●

●

●●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●●

●

●●

●●

●

●●

●

●●●●

●

●●●

●

●●

●

●●●●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●●●●

●

●●

●

●

●●

●●●

●●●

●●●●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●●●●●●●●

●

●●

●

●●●●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●●

●

●

●●●

●●

●

●

●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●●●●●●●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●●●●●●

●

●

●●

●

●●

●●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●●

●●●●

●

●●●●●●●●●●●●

●

●●

●●

●●●

●

●

●●

●●

●●●●●●

●

●

●

●●●

●●●●

●●●●

●

●●

●

●●●

●

●●●

●

●

●

●●●●●●

●●

●

●

●●●●

●

●●●

●

●●●

●●●●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●●●●●●●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●

●

●●

●●

●●●●●●●

●

●

●

●●●●

●●

●●●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●

●●●

●●

●●

●●

●●●●

●

●

●

●●●

●

●●

●●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●

●●

●

●●●●

●

●●

●●

●

●●●

●

●●

●

●●●

●

●

●●

●

●●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●

●

●●

●●

●●●

●●

●●●

●

●●●

●●

●●●

●●●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●●

●●

●●●●●●●●●

●

●●●●

●

●●

●●

●●●●

●●

●●

●●●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●●●●●

●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●

●

●●

●●

●●●

●●

●●●

●

●●●●

●●

●●

●●●●

●

●●●

●●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●

●●●●●●●●

●

●●●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●●●

●

●

●●●

●

●●

●●

●

●

●

●●●●

●●

●●

●

●

●●

●

●

●●●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●

●●●●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●●●●●●

●

●

●

●

●●●●

●●●

●

●●

●

●●●●

●●

●●●

●●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●●●●●●

●●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●●

●

●●●●●●●

●

●

●

●

●●

●●

●●●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●●

●●

●

●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●●

●●

●

●

●●●

●●●●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●●●●

●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●●●●

●

●

●●

●●

●●●

●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●●●●

●

●●●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●●●●

●●

●

●

●●●●●

●

●

●

●●●●●●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●●●

●●●●●

●

●

●●

●

●

●●

●

●●

●●●●

●

●

●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●

●●

●●●

●

●

●

●

●

●●

●●●●●●●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●●●●●●

●

●●

●●

●●

●

●

●

●●●●●

●

●●

●

●●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●●●

●●

●

●●●●●●●

●

●

●

●●

●●●●

●

●●●●

●●

●●●●●●

●

●

●●●●●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●●●●●●

●●

●

●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●

●●

●

●

●●●●●●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●

●

●●●

●●

●

●●●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●

●●

●●

●

●●●●●

●

●

●

●

●●●●●●

●

●●

●●

●

●●

●●

●

●●●

●●

●

●

●●

●●●●●●●

●●

●●●●

●

●

●

●

●

●●

●

●●

●●

●●●

●●

●●●

●

●●●●

●

●●

●●●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●

●●

●●●

●

●

●

●●

●

●●●●

●

●●●●●

●

●●●

●●

●●●●●●●●●●●●●

●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●●

●●

●

●●●

●●●●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●●●●●

●

●●●●●

●

●

●●●●●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●●

●●

●

●

●

●●●●●●●

●

●●●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●●●

●

●●

●●

●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●●●●●●●●

●

●●

●

●

●●●●

●

●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●●

●●●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●●●●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●●

●

●●

●●

●

●●

●●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●●

●●

●●●

●

●

●●

●

●

●●●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●●

●

●●●●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●●●●●●●●●

●

●

●

●●

●●●

●

●●●●●

●

●

●●

●●●●●●

●●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●●

●

●

●●

●●●●

●●●

●

●●●●●●●●

●

●

●●●●●

●

●●

●●●

●

●●●●●●

●

●●

●

●●●●●●●●●

●

●

●●●●

●●

●

●●

●

●

●●

●

●●●●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●●●

●●●●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●●●

●

●●●●●

●●

●

●

●●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●●●

●

●●

●

●●●●

●

●●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●●

●

●

●●

●●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●

●

●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●●●●

●

●●

●●●●

●

●

●●●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●●

●●

●●

●

●

●●

●

●●●

●

●●

●●●●●●●●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●●●

●●●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●●●●●

●

●●

●

●●●

●

●●

●

●●●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●●●

●●

●●

●

●●●●●

●

●

●

●●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●●

●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●●●●●●

●

●●●

●

●●

●●●●●●●●

●●●●●●

●

●

●●●

●

●

●

●●

●

●●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●

●●

●●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

●●●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●●

●

●

●

●●

●

●●●●

●●●

●

●●●●●●●

●

●

●●

●

●

●●

●●

●

●●●●●●●

●●

●●

●

●

●●

●●●

●

●●

●●

●

●●

●

●●●●

●

●

●

●

●●●●●●

●

●●

●●●●●●●●●●

●

●●●●

●●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●●

●

●●●

●●●●●●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●●

●

●●

●●

●●

●●

●●●●●

●

●

●●●

●

●●

●

●●

●

●

●●●

●●

●●

●

●●●●

●

●

●

●

●●●●●●

●

●●

●●●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●●

●●●

●●

●●

●

●●●●

●

●●●

●●●●

●

●●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●●

●

●●

●

●

●

●●

●●

●●●

●

●●●●●●●

●

●●

●

●

●●

●●●●

●

●●●●●●●●●●

●●

●●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●●●●●●●●

●●

●

●●●●●

●

●

●

●●

●●●

●

●●●●

●●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●

●

●●

●●

●●●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●

●

●●●

●

●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●●●●

●

●●●●●●

●

●●●

●●

●●●

●

●●

●●

●

●

●●●

●

●

●●●●

●

●●●

●

●●●

●●

●●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●●●●●●●●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●●

●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●

●

●●

●

●●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●

●●●●

●●●●

●●

●●●●●

●

●●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●

●●●●●

●

●●●●

●

●

●●

●

●●●●

●

●●

●

●●●

●●

●

●●

●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

●●●●●

●●●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●●●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●●

●

●●

●●●●

●●

●●●●●●●

●

●●

●

●●●●●●●●

●

●

●●

●●

●●●●

●●

●●

●

●●

●

●

●●●●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●●●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●

●

●●

●●●

●

●●●●●

●

●

●●

●●●●●

●

●

●●●

●●●●●●●●●●

●

●●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●●

●

●

●●●●

●

●

●●

●

●●

●

●

●●●●●●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●

●●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●●●

●

●

●●

●

●●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●

●●●●

●●●

●

●●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●●

●

●

●●

●●

●●●

●●

●●●

●

●●

●

●

●

●●●●

●

●●●

●

●●●●

●

●●●●●●

●●

●●

●●

●●●●●●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●●●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●●●●

●

●

●

●●

●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●●●●

●●

●●

●

●●●●●

●

●

●

●

●

●

●●

●●●

●●●●●

●

●●●

●●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●

●●

●

●●●●

●

●●●

●●●●●

●

●●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●

●●

●

●●

●

●●●●

●

●

●●

●●

●

●●●●

●●

●

●●●

●

●●●●

●

●

●

●●●

●

●●

●

●

●●

●●●●●

●

●

●●

●●●●

●

●●●●

●

●

●

●

●

●●●●●

●

●●●

●

●●●

●

●●●

●

●

●●●●●●

●

●●

●●

●●

●

●●

●

●

●●●

●

●

●●●

●●

●

●

●●●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●

●●

●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●

●

●

●●

●

●●

●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●

●●

●

●

●●●●●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●●

●●●●

●

●

●●●●●●

●

●●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●●●

●

●●●

●●●

●●●

●

●●

●●

●●●●

●●

●●

●●●●

●

●

●●●

●

●

●

●

●

●

●●●●●

●●●●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●

●

●●

●

●●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●●●

●

●●●●

●

●●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●●●●●●●●●●

●

●●

●●●●●●●

●

●●●

●

●●●●●

●

●

●●

●

●●●●

●

●●

●

●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●●

●

●●

●●●

●

●●●

●

●

●●●●●●●●

●

●

●

●●●

●

●●

●

●●●●

●●

●

●●●●

●

●●

●

●

●●●●●●●●

●

●●●●●●

●

●

●

●●●

●●

●●●●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●●●

●

●●●●●●

●●

●

●

●

●

●●●

●●

●●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●●●

●●●●●

●●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●●●●●●●●

●●

●

●

●●●●●

●

●●●●●●●

●

●●

●●

●●●●●●●

●

●●●

●●

●●●

●●

●●●

●

●

●●

●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●

●

●●

●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●

●●●●

●●

●

●

●

●●●

●●●●

●●●

●●

●●●●

●

●●

●

●

●

●●●●●●

●

●

●●●●●●

●

●●

●

●●●

●

●

●

●●●●

●

●●

●●

●●●

●

●●

●●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●●●

●●

●

●●

●

●

●●

●

●●

●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●

●

●●

●●●

●●

●●

●●●

●

●●●●

●

●●●

●●●●●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●●●●●●●

●●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●●

●●

●●●

●●

●●●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●●

●

●

●●●●●

●

●

●●

●●●●

●

●

●

●

●●●●

●●

●

●

●●

●

●●

●

●

●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●

●●●●●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●●

●

●

●●

●●●

●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●●●

●

●

●●●●●●

●

●●●●●●

●●

●●●●●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●

●●●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●●●●

●

●●

●

●

●●●●●●

●

●●

●●●●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●●

●●

●

●●

●●

●●●

●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●●

●

●●

●

●●●●●

●

●

●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●

●●

●●●●

●

●

●

●●●●

●

●●●

●

●

●●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●

●●

●●●

●

●●●●

●

●●●●●●

●

●●

●

●●●

●●

●●●●●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●●

●

●●

●●

●●●●●●●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●●●●

●●●

●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●●

●●●

●●

●●

●

●●●●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●●

●●●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●●

●

●●●

●●

●●●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●

●

●●●●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●●●

●●

●

●●●

●

●

●

●●

●

●●●●●●●●

●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●

●●●

●

●

●●●●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●●

●●

●●●●●●

●

●

●●●

●

●

●●●●●

●

●●

●

●●

●

●●●

●●●

●

●●

●

●●●

●

●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●●

●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●●●

●●

●

●●

●●●●

●●●

●

●●●

●

●●●●

●

●

●●●●●●

●●

●●●●●●

●

●●●

●

●●

●●●●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●●

●●●●●●●

●●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●●●●

●●●●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●●

●●

●●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●●

●

●●

●

●●

●●

●●

●

●

●●●

●●●●●

●

●●●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●

●●

●●●●●●

●●

●●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●●●●

●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●●●●

●

●●

●●

●

●●●

●

●●

●●●

●

●

●

●

●●●●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●●

●●

●●

●●●●

●

●●

●

●

●●●

●●

●●

●●

●●

●

●●●

●●

●

●●

●

●●

●●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●●●

●

●

●

●●

●

●●●●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●●●●●●

●●●●

●

●

●●

●

●

●●●●

●

●

●●●●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●●●

●●●

●

●

●●●●

●●●

●

●

●

●●

●

●●●

●

●●●

●●●●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●●

●●●●●●

●

●●

●

●

●●●●

●●

●●

●●●

●●●●●●

●●

●●●●

●●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●●●

●●

●

●

●●

●●

●

●●●●●●

●●

●●●●●

●

●●

●●●●

●

●

●●●●●

●

●●●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●●●

●●●●

●●

●●●

●

●

●

●

●

●●

●●●●●

●

●

●●

●●●

●●●●

●

●●

●●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●

●●●

●●

●●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●●

●

●●

●

●●●●●●

●

●●●

●●

●●

●

●●●

●

●●

●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●●

●

●●●●

●

●●

●●

●●

●●●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●●●

●●●●●

●

●●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●●●●

●

●●

●

●

●●●

●

●

●●

●

●●

●●●●●●

●

●●

●

●●●

●●

●

●

●

●●●

●

●

●

●●●●●●

●●

●●●●●

●

●

●

●●

●

●●●

●●

●

●●●

●●

●

●

●●

●●●

●

●●●●

●

●●●

●●●●

●

●

●●●●●●●●

●

●●

●

●●

●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●●

●●

●

●

●●●●●●

●●

●

●●●●

●

●●●●●●

●

●●

●

●

●

●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●●●●

●

●●●

●●

●●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●●

●●●●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●●●●●

●●

●●●●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●●

●●

●●

●

●●●●

●●

●●

●●●●

●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●

●

●●●●

●

●●●●●

●

●●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●

●

●

●

●●●●●●●●●●

●●

●●

●●

●●

●

●●

●

●

●●

●●

●

●

●

●●

●●●●●

●

●●●●●●●

●●

●●

●

●

●

●●●

●

●

●●●

●●●●

●

●●

●

●●

●

●●●●●●●

●

●●●

●●

●●●●●●

●●

●●●●●●

●●●●●●

●

●●

●

●

●●

●

●●

●●

●●●

●●

●

●

●●●

●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●●●●

●

●●●

●●●

●

●●

●

●●●●

●

●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●●

●●

●●●●●

●●

●●●●

●

●

●

●

●●●●

●●●

●

●●

●●

●

●

●

●●●

●●

●

●

●●●

●●●●

●

●●●●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●●●●●●●

●●

●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●●●●●

●

●●

●●

●

●●●

●

●●

●●

●●●

●●

●

●●●

●

●

●

●●●

●

●●●

●●

●●●●●

●●

●

●

●

●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●

●

●●●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●

●●

●●

●

●●●●●

●

●●

●

●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●

●

●●●●

●

●●●●

●●

●

●

●●●●●●

●

●●●

●●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●●●●

●●●●

●●●

●

●●●

●

●●●

●●

●●●●●

●●

●●●●

●

●

●

●●

●●

●

●●●●●●●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●

●●●●

●●●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●

●●●●●●

●●

●●

●

●●

●●●●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●●

●

●

●●●●●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●●●

●

●●●●

●

●

●

●●

●

●●●●

●●

●●●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●●

●

●●

●●

●●

●●●●

●●

●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●●●

●

●●●●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●●

●●●●

●●●

●

●●●

●

●●●

●

●●●●●●

●

●

●●●●●●

●●

●●

●

●●

●●●

●

●

●

●●

●

●

●

●●

●●●

●●

●

●

●●

●●

●

●

●●●

●●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●●

●●

●●

●

●●●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●●●●

●

●●

●

●

●●

●●

●

●●

●●●

●

●●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●●●

●

●●●●●●●●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●

●

●●●●●

●

●●

●

●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●●●●●

●●●

●●

●●●●

●●

●

●●

●

●

●

●

●●●●●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●●

●

●●●●

●

●●●●●

●●●●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●

●●●●

●

●

●●

●

●●●

●

●●●●

●

●●●●●

●●

●●●●●●

●●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●

●

●●●●

●●

●

●

●●●●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●

●●●

●●●●●●

●●

●●●●●●

●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●●●

●●●●●●●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●●

●

●●●

●

●

●

●●

●●

●

●

●

●●●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●

●●

●●●●●●

●●

●●

●

●●

●●●●●●●●

●

●●●

●

●

●●●

●●

●

●

●●

●●●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●●

●●

●

●●

●

●●

●●●●

●

●●

●●●

●

●●●

●

●●●●

●●

●●●●

●●●

●

●●●●

●●

●●●●●●

●●●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●●

●

●●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●●●

●

●

●●●●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

●●

●

●●

●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●●●

●

●●

●

●

●●●●

●

●●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●●●●

●●●

●

●●●●

●●

●●●●●

●

●

●

●●●●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●●●●●

●

●●

●●

●

●

●

●

●●●●●●●●●

●

●●●

●

●●

●

●●●●

●●●

●

●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●●

●

●

●●

●●●

●

●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●

●●●●●●

●

●

●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●

●

●●●

●

●●●

●●●●●

●●

●

●●●

●

●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●●●

●

●●●

●●●

●

●

●●●●●

●●

●

●

●●●●

●

●

●●

●

●●

●

●●

●●●

●●

●

●●

●

●

●●

●

●●●

●●●

●●●●●●

●

●

●

●

●

●●●●

●

●●

●●

●●●

●

●

●

●●●

●

●●●

●●●

●●

●●●●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●●●●

●●●

●

●

●●

●

●

●

●

●●●

●

●●●●●

●●

●●●

●

●●

●

●●●●

●

●

●●●

●

●

●●

●●●●

●

●●

●●

●

●●●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●●

●●●●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●

●

●

●

●●●●●●

●

●●

●

●●●●●●

●

●

●●

●●●●●

●

●●●

●

●●●

●●●●●●

●

●●

●

●

●●●

●

●●

●

●

●●

●●

●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●●●●●

●

●●●

●

●

●●

●●●

●

●●●●

●●

●

●●●●●●●●●

●

●●●●●●

●●

●●

●

●●

●●

●●

●

●●

●●●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●●

●●●●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●

●●●

●●

●●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●●●

●

●●

●●

●

●

●

●

●●●

●●●●

●●●●

●

●

●●

●

●●●●●●●●

●

●●●●●●

●●

●●

●

●●●

●

●●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●●

●

●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●●●●●

●

●●

●●

●

●

●●●

●

●

●●●●●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●●●

●●●

●

●●

●

●

●

●●●

●

●

●●●●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●●●●

●●●

●

●

●●●●

●●

●●●●●●●

●

●●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●

●●●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●●●●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●●●●

●

●

●●

●●●

●

●

●●

●

●●●●

●

●●●●●●

●●

●

●●●●

●●

●●

●

●●●

●●

●

●

●●●

●

●●

●

●

●●●●●

●●

●

●

●●

●●

●

●

●●●

●●●●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●●●●

●

●

●●●●

●

●●●●●

●

●

●●●●●●●●●

●●

●●●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●●●

●

●●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●●●

●●●

●●●

●

●●

●

●

●●●●

●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●●

●●●●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●●

●●●●

●

●

●●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●●

●

●●

●

●

●●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●

●●●

●

●●●

●

●●●●

●

●●●●●●

●●

●●●●●●

●●

●

●

●●

●●●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●

●

●●

●

●●●●●

●

●●

●●

●

●●●●●●

●

●●

●●

●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●●●●

●●

●

●●●●●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●

●

●●

●●●●

●

●●●

●●

●

●

●

●

●●

●

●●●●●

●

●

●●●

●●●●

●●●●

●●●●

●

●●●

●

●●●●

●

●●●●●

●

●

●●

●●●●●●

●●

●●

●

●

●●●●●●●

●

●●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●●

●●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●●●●●

●

●

●

●●

●●

●●

●

●●

●●●

●

●●

●●

●●●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●●●●●●●●

●

●●●

●●

●●●●●●●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●

●

●

●●

●●●●●

●

●●

●

●●●●●●

●

●

●●

●●●●

●

●

●●

●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●

●●●

●

●

●●

●

●

●●

●

●●●●●

●

●

●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●

●

●

●

●

●●●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●●

●●●●●

●

●●

●●●●●●●

●

●●●

●●●●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●●●●

●

●●●●●

●●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●●●

●

●●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●●●●

●

●●

●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●●●

●

●

●

●●●

●

●●●●

●

●

●

●●●

●●

●●

●●●●

●●

●

●●●●●●●●

●

●

●

●●

●

●●

●

●●

●●

●●●●●●●

●

●

●●

●●

●

●

●

●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●●

●●

●●●●●

●●●

●

●

●

●

●●●●

●

●●●●●●●

●●

●●●●

●

●●●●●●

●

●

●

●●●●●●

●●

●●

●●

●

●

●●●

●

●●●

●●●●

●●

●

●

●

●●●●●●●●

●●

●●

●

●

●●

●

●●

●

●●

●

●

●●●●

●●

●●●●●

●

●

●●●●●●●●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●●●

●●

●

●●●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●●●●●●●●

●●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●●●

●

●●●●●●●

●●●

●

●●●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●●●●●●●

●●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

●●●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●●

●●●●●●●

●

●

●

●

●●

●

●●

●●●●●●●●

●

●●●●

●

●

●

●

●●●●●●●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●

●●

●●

●●●●●●●●●

●

●

●

●●●●

●

●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●●

●●

●●●

●●

●●

●

●●●

●

●

●●

●●

●

●

●

●●●●●●

●

●●

●●●●●●●●

●

●●●

●

●

●

●●●

●●

●

●

●●●●

●●●

●

●●●

●●

●●●

●

●●

●

●●●

●●●

●●●●●●

●●

●●

●

●●

●●●●●●●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●●●●●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●

●

●●

●

●●

●●●

●

●

●●

●●

●●●●

●

●●

●

●

●●

●●

●

●●●●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●

●

●●●●●●

●

●

●

●●●●●●●●●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●●

●

●

●●●

●●●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●●

●

●●

●

●●●●●

●●

●

●●

●

●

●

●●●

●●●●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●●

●●

●●●●●●

●●

●●

●

●●

●●●●●●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●●

●●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●●●●

●●

●

●

●

●●●

●●●●●●●

●

●●●●●●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●●●

●●

●

●

●●

●●●●

●

●

●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●●●

●

●●●●

●

●●●●●

●

●

●●●●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●●●●●●●

●●●

●

●●●

●●

●●●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●●●

●●

●●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●●

●●

●

●●●●

●

●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●●

●

●●●●

●

●●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●

●●

●●●●●●

●●●

●●

●

●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●●●●

●

●●●●

●

●●●●●

●●

●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●

●

●●●

●

●●

●●

●●●

●●

●●●●

●

●●●●●

●

●●●

●

●●

●

●●

●

●

●●●●●

●

●

●●●●●

●

●●●

●●

●●●●

●

●●

●

●

●●

●●

●

●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●

●●●

●●●●●

●

●

●●●●●

●●

●●●

●

●●●●●●●●

●

●●●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●●

●●●

●

●●

●●●●●

●

●

●●●●

●

●●●●●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●●

●

●●●●

●●

●

●●●●●●●●●

●

●●●●●●

●●

●●

●●

●●

●●

●●

●

●●

●●●●●●●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●●●

●●●●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●●

●●

●

●●

●●●●

●

●

●

●

●●●●

●

●

●●●

●●●

●●●●

●

●

●

●●●●

●

●●●●

●

●

●●●●

●

●●●●

●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●

●●●●●

●

●

●

●

●●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●

●●

(a) (b)

(c)

Figure 5.15: Results of the application of CREx2-APP and CREx (Bernt et al.,
2007) to the data set consisting of 532 unique metazoan gene
orders. (a) Box plots of the length of the scenarios that were
computed by CREx (bright gray) and CREx2-APP (dark gray).
(b) Absolute frequency of inversions (I), inverse transpositions
(iT), transpositions (T), and tandem duplication random losses
(TDRL) in the scenarios that are computed by both algorithms.
(c) The fraction of the computed scenarios of both algorithms in
relation to its length.

the absolute frequency of TDRLs and inversions can be explained by
the different methods that both algorithms use for handling prime
nodes in the corresponding SITs. While the method in CREx solves
the corresponding sorting problem by using sequences of TDRLs and
inversions, CREx2-APP uses all four types of genome rearrangements
in which TDRLs are used prevalently. An interesting difference of the
results of CREx and CREx2-APP can be seen by considering the rela-
tive fraction of the different types of rearrangements in the computed
scenarios. For the scenarios computed with CREx transpositions, in-
versions, inverse transpositions, and TDRLs occur with the fraction
0.13, 0.54, 0.03, and 0.30, respectively. The respective fractions for the
scenarios that are computed with CREx2-APP are 0.17, 0.27, 0.03, and
0.53. Hence, in the scenarios computed with CREx2-APP transpositions
occur with a slightly higher relative fraction while the relative frac-
tion of inverse transpositions is equal for both algorithms. The rela-
tive fractions of inversions and TDRLs seems to be inversely related:

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 177

the scenarios obtained with CREx are dominated by inversions while
TDRLs dominate the scenarios obtained with CREx2-APP.

The fraction of the computed scenarios relative to its length is illus-
trated in Figure 5.15 (c). The figure shows that the number of scenar-
ios with a small length (i. e., length 1 to 5) is almost equal for both
algorithms. Scenarios of length 6 to 9 are computed to a much greater
extent by CREx2-APP than by CREx. Apart from that, CREx computes a
larger number of scenarios of a length greater than 9 than CREx2-APP.

The results show that CREx2-APP computes in general shorter re-
arrangements than the CREx heuristic. For the data set that contains
a high number of problem instances with a prime SIT, the scenarios
obtained by CREx2-APP tend to be dominated by rearrangements of
type TDRL. In addition, it is shown that CREx2-APP is well-suited for
large scale comparisons of metazoan mitochondrial gene orders.

The aim of the last experiment that is performed in this section is
to compare the performance of both variants of CREx2, i. e., CREx2-APP
and CREx2-ILP, on biological data. Recall that CREx2-ILP has an ex-
ponential runtime in the worst case. Therefore, it is not feasible to an-
alyze the complete set of metazoan mitochondrial gene orders with
CREx2-ILP. For this reason, three taxonomical subsets of all metazoan
mitochondrial gene orders are utilized in order to perform the ex-
periments in a reasonable amount of time. In particular, the consid-
ered phylogenetic groups are Chordata, Ecdysozoa, and Lophotrochozoa.
While Lophotrochozoa, Ecdysozoa, and Deuterostomia are major subtaxa
of Bilateria (which itself is a major subtaxa of the kingdom Meta-
zoa), Chordata is a phylum within Deuterostomia. The three taxonomic
groups are chosen with respect to the diversity of their gene orders
which is relatively low for Chordata and comparably high for Lophotro-
chozoa and Ecdysozoa, e. g., see Bernt et al. (2013a) and Podsiadlowski
et al. (2009).

For all gene orders that are considered, the highly variable posi-
tions of tRNAs were excluded. Hence, each gene order in the data
sets contains 13 protein-encoding genes and two ribosomal genes. Ex-
cluding the tRNAs is done in accordance to the presumption that
mitochondrial tRNAs are selectively neutral, see Dowton et al. (2009)
and Section 2.1.3. The resulting data sets consists of 11 Chordata, 63
Ecdysozoa, and 43 Lophotrochozoa unique gene orders. Taking the fact
into consideration that the 4900 metazoan mitochondrial gene orders
in the RefSeq release 89 contain 3220 (66%) chordates, 1422 (29%)
ecdysozoan, and 222 (0.05%) lophotrochozoan gene orders, it can be
seen that the number of different gene orders among the considered
gene groups is highly different. While for Chordata only a few differ-
ent gene orders can be found, the relative number of different gene
orders is much greater in Ecdysozoa and even more in Lophotrochozoa.
However, this effect might also be caused by uneven sampling. Nev-
ertheless, the diversity of the gene orders within the different data
sets is also supported by the number of linear strong interval trees
for pairwise gene order comparisons. In particular, more than half
(67.3%) of the pairwise comparisons of the Chordata mitochondrial
gene orders have no prime node in the corresponding strong interval

[April 2019 at 13:18 – classicthesis 4.4]

178 algorithms for sorting by mitochondrial rearrangements

●●●●●●●●●

●

●

●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●●

●●

●●●

●

●

●●

●

●

●●●●

●

●●

●●●

●

●

●

●●

●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●●●●

●

●●

●●

●

●●

●

●●●●

●●

●

●

●●

●

●●●●●●●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●

(a)

● ●●●●●●●●●●●●● ●●

●

●

●
●

●
●●
●●
●●●●
●●●●
●●●
●
●
●●

●

●
●
●●
●●●●●●●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●●
●
●●●
●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●●

●

●●●●
●●

●

●●
●

●

●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●●●

●

●●

●

●●

●
●

●●●●●

●

●●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

(b)

Figure 5.16: Results of the application of CREx2-ILP (bright gray) and
CREx2-APP (dark gray) to pairs of gene orders from the Chor-
data (C), Ecdysozoa (E), and Lophotrochozoa (L) data set. Box plots
showing (a) the length of the constructed scenarios and (b) the
corresponding runtimes of both algorithms for all three data
sets.

trees. On the contrary, only a minor fraction of the strong interval
trees of the Ecdysozoa (29.07%) and Lophotrochozoa (9.04%) data sets
have a linear strong interval tree.

The computation of all pairwise rearrangement scenarios for each
of the three data sets with CREx2-APP and CREx2-ILP was performed
on a single core of an AMD Opteron 2435 with 2.6 GHz. All pair-
wise scenarios were computed with equally weighted rearrangements
which is in accordance with the results obtained in Section 5.5.1. To
limit the runtime of CREx2-ILP a time limit of 300 seconds was used
for a single prime node, i. e., L = 300. Recall that if a computation
of a prime node exceeds 300 seconds, then the solution obtained by
CREx2-ILP might not be exact.

Within the time limit 110 (100%), 3351 (85, 79%), and 1030 (57.03%)
of the pairwise comparisons were solved exactly by CREx2-ILP for the
Chordata, Ecdysozoa, and Lophotrochozoa data set, respectively. Hence,
CREx2-ILP was able to exactly compute more than 88% of all compar-
isons. Figure 5.16 (a) shows box plots for the lengths of the scenarios
obtained by both algorithms. It can be seen that the lengths of the
scenarios obtained by both algorithms are almost equivalent for the
Chordata data set. For the Ecdysozoa and Lophotrochozoa data sets it is
shown that CREx2-ILP produces shorter scenarios than CREx2-APP. In
particular, the average length of a scenario is 3.9 (respectively 5.2) for
CREx2-ILP and 4.2 (respectively 5.6) for CREx2-APP for the Ecdysozoa
(respectively Lophotrochozoa) data set. Recall that the relative fraction
of prime nodes is much higher in the Lophotrochozoa data set than
in the Ecdysozoa data set and that the Chordata data set has a much
smaller fraction than both other data sets. As both algorithms are
identical for linear nodes in the strong interval trees, the difference
in the scenario lengths increases for an increasing number of prime
nodes. Overall, CREx2-ILP produces shorter rearrangements scenar-

[April 2019 at 13:18 – classicthesis 4.4]

5.5 evaluation 179

Figure 5.17: Fractions of pairwise comparisons of gene orders from the Chor-
data (C), Ecdysozoa (E), and Lophotrochozoa (L) data set for which
the shortest scenario was produced either with CREx2-ILP
(bright gray), CREx2-APP (gray), or both algorithms (dark gray).

ios than CREx2-APP on average. However, the price for this is a signif-
icantly increased runtime as shown in Figure 5.16 (b).

Figure 5.17 shows the fractions of problem instances for which
one of the algorithms yields a smaller, an equal, or a larger sce-
nario length. It can be seen that almost all scenarios (108 of 110) ob-
tained by CREx2-APP and CREx2-ILP have the same length for gene
order pairs of the Chordata date set. For the remaining two gene
order pairs of the Chordata date set CREx2-ILP computed scenarios
that use one rearrangement less than the corresponding scenarios ob-
tained by CREx2-APP. The figure also shows that in the 3906 pairwise
comparisons (i. e., the Ecdysozoa data set) the resulting scenarios of
CREx2-ILP and CREx2-APP are equal for 2807 (71%) instances, for 1083
(28%) instances CREx2-ILP provides shorter scenarios than CREx2-APP,
and for 16 (1%) instances CREx2-APP provides shorter scenarios than
CREx2-ILP. It may seems surprising that CREx2-APP is able to pro-
duce shorter rearrangement scenarios than CREx2-ILP. However, this
case can occur if CREx2-ILP is used with a time limit L for solving
a prime node in the considered SIT. In particular, this case can occur
if L is exceeded and an unfavorable signed quotient permutation is
chosen by the fallback method, see Section 5.4.4. On average, a sce-
nario obtained with CREx2-APP is shorter (longer) than the scenario
obtained with CREx2-ILP by a factor of 1.69 (respectively 1.13). For the
Lophotrochozoa data set, both algorithms obtained solutions with an
equal length for 1128 (62%) gene order pairs and for 666 (37%) gene
order pairs CREx2-ILP produced a shorter scenario than CREx2-APP.
If a scenario of CREx2-ILP is shorter (larger) than the corresponding
scenario computed by CREx2-APP, then the average difference is 1.2
(respectively 2.1) rearrangements. Finally, it can be seen that the frac-
tion of instances for which both algorithms generate solutions of the
same length becomes smaller as the relative number of prime nodes
in the data set increases.

[April 2019 at 13:18 – classicthesis 4.4]

180 algorithms for sorting by mitochondrial rearrangements

Figure 5.18: Distribution of inversions (I), inverse transpositions (iT), trans-
positions (T), and tandem duplication random losses (TDRL) in
the scenarios obtained by the application of CREx2-ILP (bright
gray) and CREx2-APP (dark gray) to the Chordata, Ecdysozoa, and
Lophotrochozoa data set.

Figure 5.18 shows the distribution of the different types of rear-
rangements for both algorithms and all three data sets. It is shown
that the distributions of the different types of rearrangements in
the computed scenarios are not substantially different for both algo-
rithms. While the distribution is almost equivalent for the Chordata
data set, the distributions for the ecdysozoan and lophotrochozoan
data sets reveal that CREx2-ILP uses a smaller number of inversions,
transpositions, and TDRLs and a larger number of inverse transposi-
tions. It is worth mentioning that the Chordata data set is dominated
by transposition rearrangements. This is not the case in the other two
data sets in which TDRLs are used predominantly.

The results of the experiments on biological data show that the so-
lutions of CREx2 are likely to improve the solutions of the CREx heuris-
tic with respect to the parsimony assumption. In addition, for almost
80% of the gene order comparisons both variants of CREx2 compute re-
arrangement scenarios that have the same length and approximately
the same distribution of the different types of 4-type rearrangements.
For an increasing number of prime nodes in the considered data
set CREx2-ILP computes shorter scenarios than CREx2-APP. However,
to obtain these solution CREx2-ILP needs significantly more runtime.
The two variants of CREx2 are intended to be utilized for different pur-
poses. While CREx2-APP is well-suited for large-scale comparisons of
mitochondrial gene orders, CREx2-ILP gives the possibility to obtain
exact rearrangement scenarios for a small-sized data sets.

5.6 conclusion

This chapter has investigated the sorting problem and the distance
problem for signed linear permutations under the genome rearrange-
ment model M4-type that considers the four types of rearrangements
relevant for evolution of metazoan mitochondrial genomes, i. e., in-

[April 2019 at 13:18 – classicthesis 4.4]

5.6 conclusion 181

version, transposition, inverse transposition, and tandem duplication
random loss (TDRL). It has been shown that the distance problem can
sufficiently be approximated such that the rearrangement distance is
larger by at most 2. A corresponding algorithm that computes rear-
rangement scenarios for two given gene orders while achieving this
approximation factor has been developed. It has been shown that
the general sorting problem under M4-type is less valuable for the re-
construction of biologically meaningful rearrangement scenarios of
mitochondrial gene order evolution. The reason is that TDRLs are
predominantly used in parsimonious rearrangement scenarios which
contradicts with the literature on mitochondrial evolution, e. g., see
Section 2.1.3. To address this problem, methods for two biological
motivated variants of the sorting problem under M4-type have been
presented. The first variant has considered that a weighting scheme
is employed on the M4-type model weighting every rearrangement by
its type. The resulting weighted sorting problem has been solved by
means of an integer linear program. The second variant has extended
the first one by explicitly enforcing rearrangement scenarios between
gene orders to preserve certain gene clusters, i. e., groups of genes
that occur in both considered gene orders in close proximity. Those
clusters are represented formally by the notion of common intervals
of permutations. The exact dynamic programming algorithm CREx2

that solves the corresponding problem efficiently for large classes of
problem instances has been proposed. CREx2 is based on the strong
interval tree data structure and can compute an exact solution in lin-
ear runtime for gene order pairs for which the corresponding strong
interval tree is organized in a linear structure. For pairs of gene
orders with a non-linear strong interval tree two variants of CREx2

have been provided: CREx2-APP computes approximated rearrange-
ment scenarios efficiently and CREx2-ILP computes exact solutions
but has a worst case exponential runtime. Thereby, a significant im-
provement of the heuristic algorithm CREx (Bernt et al., 2007) has been
provided.

An empirical evaluation of CREx2 has been conducted on artificial
and biological gene order data. The results have shown that CREx2

is able to compute parsimonious rearrangement scenarios for most
pairs of gene orders, even if only a small fraction has a linear strong
interval tree. It has empirically been demonstrated that CREx2 is able
to reconstruct gene order rearrangement scenarios with reliable accu-
racy, especially in the case of problem instances with a linear strong
interval tree. Biologically motivated parameters, properties of the
strong interval tree, and different weighting schemes that increase
the accuracy of the CREx2 reconstructions have been determined. In
addition, it has been demonstrated how different weighting schemes
for the types of rearrangements influence the fractions of these types
in the constructed solutions.

Algorithm CREx2-APP has successfully been applied to the complete
metazoan mitochondrial gene order data set. Thereby allowing a com-
parison of CREx and CREx2 which has indicated that the solutions
obtained by CREx2 are likely to improve the solutions of the CREx

[April 2019 at 13:18 – classicthesis 4.4]

182 algorithms for sorting by mitochondrial rearrangements

heuristic. Furthermore, a comparison of CREx2-APP and CREx2-ILP

has been performed showing the advantages and disadvantages of
both methods: CREx2-APP facilitates an efficient exploration of gene
order comparisons for large-sized sets of gene orders, but in some
cases it violates the parsimony principle by computing approximated
rearrangement scenarios. CREx2-ILP provides exact solutions, but has
a significantly increased runtime.

[April 2019 at 13:18 – classicthesis 4.4]

6
C O N C L U S I O N

Understanding the evolutionary history and relationships
among living beings is one of the central problems in evolu-
tionary biology. A powerful approach to address this prob-

lem is to compare the genetic information of a pair of species. Espe-
cially animal mitochondrial genomes have been shown to be valuable
for supporting various phylogenetic hypotheses. The reason is that
these genomes exhibit beneficial characteristics such as a small size, a
considerable conservation of their genes, and, most often, the absence
of gene duplicates. With these characteristics, gene orders of meta-
zoan mitochondrial genomes can be modeled formally by permuta-
tions. Representing evolutionary events on mitochondrial genomes
as rearrangement operations on permutations allows to study mito-
chondrial evolution by theoretical analyses. Two central algorithmic
problems for such analyses are the sorting problem and the distance
problem. The sorting problem asks for the shortest sequence of rear-
rangements that transforms one permutation into another permuta-
tion. The distance problem aims to find the length of such a short-
est rearrangement sequence. In this thesis both of these fundamental
genome rearrangement problems have been studied under various
rearrangement models. The main focus was set on the tandem du-
plication random loss (TDRL) genome rearrangement model which
has been proven to be indispensable for understanding the evolution
of metazoan mitochondrial genomes. Thereby, previous works on the
TDRL rearrangement model have been extended significantly.

The first problem analyzed in this work is the distance problem for
circular permutations under the TDRL rearrangement model. This
problem is relevant since the usual mitochondrial genome is orga-
nized in a single circular structure and TDRL rearrangements are
common in such genomes. It has been shown that the TDRL distance,
i. e., the solution of the distance problem under the TDRL model, be-
tween two circular permutations is either less by one or equal to the
TDRL distance of the corresponding linear representatives. Moreover,
it has been shown that this difference is even larger if the circular
permutations have no pre-defined reading direction. The results have
revealed that using an unfavorable choice of linear representatives
may lead to an overestimation of the TDRL distance. A formula for
computing the probability of this error has been provided. It has been
demonstrated empirically on metazoan mitochondrial gene orders
that the circularity of the genomes should be considered, since other-
wise the TDRL distance is overestimated for a considerable fraction
of the pairwise gene order comparisons. Furthermore, combinatorial
properties of the TDRL rearrangement model on circular permuta-
tions have led to a characterization of sets of equivalent TDRLs, i. e.,
TDRLs that have the same effect when applied to the same permuta-

[April 2019 at 13:18 – classicthesis 4.4]

184 conclusion

tion. The relevance of the theoretical findings was pointed out by a
detailed analysis of two pairs of gene orders that have been used
in the literature to argue for the tandem duplication non-random
loss model. The analysis has highlighted the importance of explicitly
studying the circular case.

The inverse tandem duplication random loss (iTDRL) rearrange-
ment model, a variant of the TDRL model, has currently been sug-
gested to be a potential evolutionary mechanism in mitochondrial
genomes. In this work, the distance problem and the sorting problem
with respect to iTDRLs have been studied. It has been shown that
the iTDRL distance can be computed in linear time, and that a corre-
sponding scenario that solves the sorting problem can be obtained in
quasilinear time. Thereby, the combinatorial exploration of the iTDRL
model on signed linear permutations has been initialized. One charac-
teristic that makes the iTDRL model particularly interesting is that it
can mimic all types of rearrangements that are predominant in meta-
zoan mitochondrial genomes, i. e., inversions, transpositions, inverse
transpositions, and TDRLs. Using this benefit, it has been shown that
the iTDRL distance is a 2-approximation on the minimum number of
inversions, transpositions, inverse transpositions, and TDRLs that are
necessary to transform one given permutation into another.

The last part of this thesis has been devoted to investigate the
4-type rearrangement model. This model is especially attractive
as it considers all major rearrangement operations that are rele-
vant for metazoan mitochondrial genomes, i. e., inversions, transpo-
sitions, inverse transpositions, and TDRLs. The distance problem
for signed linear permutations under the 4-type model has been
studied. It has been shown that the 4-type distance can be ap-
proximated in linear time such that the discrepancy from the ac-
tual distance is not more than two. As a byproduct, a quasilinear
approximation algorithm has been obtained for the corresponding
sorting problem. The algorithm guarantees to compute rearrange-
ment scenarios that differ from minimum length scenarios by at
most two rearrangement operations. Thereby, an important step to-
wards an efficient and exact resolution of the sorting problem un-
der the 4-type model has been made. Based on these results, the in-
sight has been gained that the general sorting problem under the
4-type model is less valuable for the inference of plausible recon-
structions of mitochondrial gene order evolution. This is due to
the fact that parsimonious rearrangement scenarios contain predom-
inantly rearrangements of type TDRL which is – up to now – not
supported by the literature on mitochondrial evolution. As a conse-
quence, two biologically motivated variants of the sorting problem,
that are more relevant for mitochondrial evolution, have been investi-
gated.

The first variant considers a weighting scheme on the 4-type re-
arrangement model in which each rearrangement is weighted with
respect to its type. Since the corresponding sorting problem is NP-
hard, one cannot hope for an efficient algorithm that solves all prob-
lem instances. Therefore, the polynomial-size integer linear program

[April 2019 at 13:18 – classicthesis 4.4]

conclusion 185

GeRe-ILP has been proposed. GeRe-ILP provides an exact solution,
but has an exponential runtime in the worst case. The second vari-
ant extents the first one by enforcing scenarios of rearrangements to
preserve certain gene clusters of the input gene orders. In this work,
those gene clusters were formally modeled by common intervals of
the input permutations. To solve the corresponding sorting problem,
the exact dynamic programming algorithm CREx2 has been proposed.
For two given signed linear permutations and a weight value for ev-
ery type of rearrangement, CREx2 is able to compute a scenario of
4-type rearrangements that has a minimum weight and preserves the
common intervals of the considered permutations. In addition, CREx2
provides exact solutions within linear runtime for a large class of
problem instances in which the common intervals are organized in a
linear structure. Thereby, a significant improvement of the heuristic
algorithm CREx (Bernt et al., 2007) has been provided. For the case
that the common intervals are organized in a non-linear structure
two variants of CREx2 have been developed, each making a different
trade-off between exactness and runtime: CREx2-APP runs efficiently
but gives only approximate results. CREx2-ILP makes the opposite
trade-off by finding exact solutions but lagging behind in terms of
runtime and memory requirements.

The accuracy of the CREx2 has been analyzed empirically in a study
for simulated artificial and real metazoan mitochondrial gene orders.
For the simulated data set, it has been demonstrated empirically that
CREx2 is able to reconstruct a significant fraction of the simulated rear-
rangement events for different rearrangement models. However, the
reliability of the CREx2 reconstructions drops if the common intervals
of a considered problem instance are organized in a non-linear struc-
ture. A comparison of CREx2-APP and the CREx heuristic on both data
sets has demonstrated that CREx2 is able to compute competitive rear-
rangement scenarios and allows to efficiently analyze large data sets
of hundreds of gene orders.

The topics studied in this thesis are far from being exhaustively
explored. Instead, the results presented in this thesis pave the way
for many avenues of further research – to mention only two: The ef-
fect of considering the circular structure of mitochondrial gene orders
has only been analyzed for the TDRL model in this thesis. A partic-
ularly interesting research question that needs further investigation
is the study of the fundamental genome rearrangement problems for
circular permutations under the iTDRL or the 4-type rearrangement
model. Another challenging and still unresolved research question,
for which this work may serve as a starting point, aims for the com-
putational complexity of the median problem under the TDRL model.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

B I B L I O G R A P H Y

Abou-Sleiman, P. M., M. M.-K. Muqit, and N. W. Wood (2006). “Ex-
panding insights of mitochondrial dysfunction in Parkinson’s dis-
ease.” In: Nature Reviews Neuroscience 7.3, p. 207.

Adam, Z., M. Turmel, C. Lemieux, and D. Sankoff (2007). “Com-
mon intervals and symmetric difference in a model-free phyloge-
nomics, with an application to streptophyte evolution.” In: Jour-
nal of Computational Biology 14.4, pp. 436–445.

Adams, K. L., D. O. Daley, Y.-L. Qiu, J. Whelan, and J. D. Palmer
(2000). “Repeated, recent and diverse transfers of a mitochon-
drial gene to the nucleus in flowering plants.” In: Nature 408.6810,
p. 354.

Aguileta, G., D. M. De Vienne, O. N. Ross, M. E. Hood, T. Giraud, E.
Petit, and T. Gabaldón (2014). “High variability of mitochondrial
gene order among fungi.” In: Genome Biology and Evolution 6.2,
pp. 451–465.

Aigner, M., G. M. Ziegler, K. H. Hofmann, and P. Erdos (2010). Proofs
from the Book. Vol. 274. Springer.

Ajana, Y., J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk (2002).
“Exploring the set of all minimal sequences of reversals – an
application to test the replication-directed reversal hypothesis.”
In: Proc. 2nd Int’l Workshop on Algorithms in Bioinformatics (WABI
2002). Springer, pp. 300–315.

Alberts B., Johnson A. Lewis J. Raff M. Roberts K. and P. Walter (2003).
Molecular biology of the cell (4th ed.) Garland Science.

Aldous, D. and P. Diaconis (1986). “Shuffling cards and stopping
times.” In: The American Mathematical Monthly 93.5, pp. 333–348.

Alekseyev, M. A. and P. A. Pevzner (2008). “Multi-break rearrange-
ments and chromosomal evolution.” In: Theoretical Computer Sci-
ence 395.2-3, pp. 193–202.

Alexeyev, M., I. Shokolenko, G. Wilson, and S. LeDoux (2013). “The
maintenance of mitochondrial DNA integrity – critical analysis
and update.” In: Cold Spring Harbor Perspectives in Biology 5.5,
a012641.

Angibaud, S., G. Fertin, I. Rusu, and S. Vialette (2006). “How pseudo-
boolean programming can help genome rearrangement distance
computation.” In: Proc. 4th Int’l Workshop on Comparative Genomics
(RECOMB-CG 2006). Springer, pp. 75–86.

Angibaud, S., G. Fertin, I. Rusu, A. Thévenin, and S. Vialette (2007).
“A pseudo-boolean programming approach for computing the
breakpoint distance between two genomes with duplicate genes.”
In: Proc. 5th Int’l Workshop on Comparative Genomics (RECOMB-CG
2007). Springer, pp. 16–29.

— (2009). “On the approximability of comparing genomes with du-
plicates.” In: Journal of Graph Algorithms and Applications 13.1,
pp. 19–53.

[April 2019 at 13:18 – classicthesis 4.4]

188 bibliography

Applegate, D. L., R. E. Bixby, V. Chvàtal, and W. J. Cook (2006). The
traveling salesman problem: a computational study. Princeton Univer-
sity Press.

Arndt, A. and M. J. Smith (1998). “Mitochondrial gene rearrangement
in the sea cucumber genus Cucumaria.” In: Molecular Biology and
Evolution 15.8, pp. 1009–1016.

Asakawa, S., H. Himeno, K.-I. Miura, and K. Watanabe (1995). “Nu-
cleotide sequence and gene organization of the starfish Asterina
pectinifera mitochondrial genome.” In: Genetics 140.3, pp. 1047–
1060.

Awadalla, P., A. Eyre-Walker, and J. M. Smith (1999). “Linkage dise-
quilibrium and recombination in hominid mitochondrial DNA.”
In: Science 286.5449, pp. 2524–2525.

Bader, D. A., B. M. E. Moret, and M. Yan (2001). “A linear-time al-
gorithm for computing inversion distance between signed per-
mutations with an experimental study.” In: Proc. 7th Workshop on
Algorithms and Data Structures (WADS 2001). Springer, pp. 365–
376.

Bader, M. (2011). “The transposition median problem is NP-
complete.” In: Theoretical Computer Science 412.12-14, pp. 1099–
1110.

Bader, M. and E. Ohlebusch (2007). “Sorting by weighted reversals,
transpositions, and inverted transpositions.” In: Journal of Compu-
tational Biology 14.5, pp. 615–636.

Badrinarayanan, A., T. B. Le, and M. T. Laub (2015). “Bacterial chro-
mosome organization and segregation.” In: Annual Review of Cell
and Developmental Biology 31, pp. 171–199.

Bafna, V. and P. A. Pevzner (1996). “Genome rearrangements and sort-
ing by reversals.” In: SIAM Journal on Computing 25.2, pp. 272–
289.

Bafna, V. and P. Pevzner (1995). “Sorting permutations by tansposi-
tions.” In: Proc. 6th ACM-SIAM Symposium on Discrete Algorithms
(SODA 1995). Society for Industrial and Applied Mathematics,
pp. 614–623.

Baril, J.-L. and R. Vernay (2010). “Whole mirror duplication-random
loss model and pattern avoiding permutations.” In: Information
Processing Letters 110.11, pp. 474–480.

Basso, A., M. Babbucci, M. Pauletto, E. Riginella, T. Patarnello, and E.
Negrisolo (2017). “The highly rearranged mitochondrial genomes
of the crabs Maja crispata and Maja squinado (Majidae) and gene
order evolution in Brachyura.” In: Scientific reports 7.1, p. 4096.

Bayer, D. and P. Diaconis (1992). “Trailing the dovetail shuffle to its
lair.” In: The Annals of Applied Probability 2.2, pp. 294–313.

Béal, M.-P., A. Bergeron, S. Corteel, and M. Raffinot (2004). “An al-
gorithmic view of gene teams.” In: Theoretical Computer Science
320.2-3, pp. 395–418.

Beckenbach, A. T. (2011). “Mitochondrial genome sequences of Ne-
matocera (lower Diptera): evidence of rearrangement following a
complete genome duplication in a winter crane fly.” In: Genome
Biology and Evolution 4.2, pp. 89–101.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 189

Bender, M. A., D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and
F. Swidan (2008). “Improved bounds on sorting by length-
weighted reversals.” In: Journal of Computer and System Sciences
74.5, pp. 744–774.

Bérard, S., A. Bergeron, and C. Chauve (2004). “Conservation of com-
binatorial structures in evolution scenarios.” In: Proc. 2nd Int’l
Workshop on Comparative Genomics (RECOMB-CG 2004). Springer,
pp. 1–14.

Bérard, S., A. Bergeron, C. Chauve, and C. Paul (2007). “Perfect sort-
ing by reversals is not always difficult.” In: IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 4, pp. 4–16.

Bérard, S., C. Chauve, and C. Paul (2008). “A more efficient algorithm
for perfect sorting by reversals.” In: Information Processing Letters
106.3, pp. 90–95.

Bérard, S., A. Chateau, C. Chauve, C. Paul, and E. Tannier (2009).
“Computation of perfect DCJ rearrangement scenarios with linear
and circular chromosomes.” In: Journal of Computational Biology
16.10, pp. 1287–1309.

Bergeron, A. (2001). “A very elementary presentation of the
Hannenhalli-Pevzner theory.” In: Proc. 12th Symposium on Com-
binatorial Pattern Matching (CPM 2001). Springer, pp. 106–117.

Bergeron, A. and J. Stoye (2006). “On the similarity of sets of permu-
tations and its applications to genome comparison.” In: Journal of
Computational Biology 13.7, pp. 1340–1354.

— (2013). “The genesis of the DCJ formula.” In: Models and Algo-
rithms for Genome Evolution. Springer, pp. 63–81.

Bergeron, A., S. Heber, and J. Stoye (2002a). “Common intervals and
sorting by reversals: a marriage of necessity.” In: Bioinformatics
18.Suppl 2.

Bergeron, A., C. Chauve, T. Hartman, and K. St-Onge (2002b). “On
the properties of sequences of reversals that sort a signed permu-
tation.” In: Proceedings of JOBIM 2, pp. 99–108.

Bergeron, A., S. Corteel, and M. Raffinot (2002c). “The algorithmic of
gene teams.” In: Proc. 2nd Int’l Workshop Algorithms in Bioinformat-
ics (WABI 2002). Springer, pp. 464–476.

Bergeron, A., J. Mixtacki, and J. Stoye (2004). “Reversal distance with-
out hurdles and fortresses.” In: Proc. 15th Symposium on Combina-
torial Pattern Matching (CPM 2004). Springer, pp. 388–399.

— (2006). “A unifying view of genome rearrangements.” In: Proc. 6th
Int’l Workshop Algorithms in Bioinformatics (WABI 2006). Springer,
pp. 163–173.

Bergeron, A., C. Chauve, F. De Montgolfier, and M. Raffinot (2008).
“Computing common intervals of k permutations, with applica-
tions to modular decomposition of graphs.” In: SIAM Journal on
Discrete Mathematics 22.3, pp. 1022–1039.

Bergeron, A., P. Medvedev, and J. Stoye (2010). “Rearrangement mod-
els and single-cut operations.” In: Journal of Computational Biology
17.9, pp. 1213–1225.

[April 2019 at 13:18 – classicthesis 4.4]

190 bibliography

Berman, P. and S. Hannenhalli (1996). “Fast sorting by reversal.” In:
Proc. 7th Symposium on Combinatorial Pattern Matching (CPM 1996).
Springer, pp. 168–185.

Berman, P. and M. Karpinski (1999). “On some tighter inapproxima-
bility results.” In: Proc. 26th Int’l Colloquium on Automata, Lan-
guages, and Programming (ICALP 1999). Springer, pp. 200–209.

Berman, P., S. Hannenhalli, and M. Karpinski (2002). “1.375-
approximation algorithm for sorting by reversals.” In: Proc. 1st
European Symposium on Algorithms (ESA 2002). Springer, pp. 200–
210.

Bernt, M. and M. Middendorf (2011). “A method for computing an in-
ventory of metazoan mitochondrial gene order rearrangements.”
In: BMC Bioinformatics. Vol. 12. 9. BioMed Central, S6.

Bernt, M., D. Merkle, and M. Middendorf (2006). “Genome rearrange-
ment based on reversals that preserve conserved intervals.” In:
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 3.3, pp. 275–288.

Bernt, M., D. Merkle, K. Ramsch, G. Fritzsch, M. Perseke, D. Bernhard,
M. Schlegel, P. F. Stadler, and M. Middendorf (2007). “CREx: in-
ferring genomic rearrangements based on common intervals.” In:
Bioinformatics 23.21.

Bernt, M., D. Merkle, and M. Middendorf (2008a). “An algorithm
for inferring mitogenome rearrangements in a phylogenetic
tree.” In: Proc. 6th International Workshop on Comparative Genomics
(RECOMB-CG 2008). Springer, pp. 143–157.

— (2008b). “Solving the preserving reversal median problem.” In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
5.3, pp. 332–347.

Bernt, M., K.-Y. Chen, M.-C. Chen, A.-C. Chu, D. Merkle, H.-L. Wang,
K.-M. Chao, and M. Middendorf (2011). “Finding all sorting tan-
dem duplication random loss operations.” In: Journal of Discrete
Algorithms 9.1, pp. 32–48.

Bernt, M., C. Bleidorn, A. Braband, J. Dambach, A. Donath, G.
Fritzsch, A. Golombek, H. Hadrys, F. Jühling, K. Meusemann,
et al. (2013a). “A comprehensive analysis of bilaterian mitochon-
drial genomes and phylogeny.” In: Molecular Phylogenetics and
Evolution 69.2, pp. 352–364.

Bernt, M., A. Braband, B. Schierwater, and P. F. Stadler (2013b). “Ge-
netic aspects of mitochondrial genome evolution.” In: Molecular
Phylogenetics and Evolution 69.2, pp. 328–338.

Bernt, M., A. Donath, F. Jühling, F. Externbrink, C. Florentz, G.
Fritzsch, J. Pütz, M. Middendorf, and P. F. Stadler (2013c). “MI-
TOS: improved de novo metazoan mitochondrial genome annota-
tion.” In: Molecular Phylogenetics and Evolution 69.2, pp. 313–319.

Bernt, M., N. Wieseke, and M. Middendorf (2013d). “On Weighting
Schemes for Gene Order Analysis.” In: Proc. 5th German Confer-
ence on Bioinformatics (GCB 2013), pp. 14–23.

Bernt, Matthias (2009). “Gene order rearrangement methods for the
reconstruction of phylogeny.” PhD thesis. University Leipzig.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 191

Bertsimas, D. and J. N. Tsitsiklis (1997). Introduction to linear optimiza-
tion. Vol. 6. Athena Scientific Belmont, MA.

Bhatia, S., P. Feijão, and A. R. Francis (2016). “Position and content
paradigms in genome rearrangements: the wild and crazy world
of permutations in genomics.” In: arXiv preprint arXiv:1610.00077.

Bianconi, E., A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Fra-
betti, L. Vitale, M. C. Pelleri, S. Tassani, F. Piva, et al. (2013). “An
estimation of the number of cells in the human body.” In: Annals
of Human Biology 40.6, pp. 463–471.

Blanchette, M., T. Kunisawa, and D. Sankoff (1996). “Parametric
genome rearrangement.” In: Gene 172.1, GC11–GC17.

Bleidorn, C., I. Eeckhaut, L. Podsiadlowski, N. Schult, D. McHugh,
K. M. Halanych, M. C. Milinkovitch, and R. Tiedemann (2007).
“Mitochondrial genome and nuclear sequence data support My-
zostomida as part of the annelid radiation.” In: Molecular Biology
and Evolution 24.8, pp. 1690–1701.

Blin, G., D. Faye, and J. Stoye (2010). “Finding nested common inter-
vals efficiently.” In: Journal of Computational Biology 17.9, pp. 1183–
1194.

Bóna, M. (2004). Combinatorics of permutations. Chapman and Hal-
l/CRC.

Boore, J. L. (1999). “Animal mitochondrial genomes.” In: Nucleic Acids
Research 27.8, pp. 1767–1780.

— (2000). “The duplication/random loss model for gene rearrange-
ment exemplified by mitochondrial genomes of deuterostome
animals.” In: Comparative Genomics: Empirical and analytical ap-
proaches to gene order dynamics, map alignment and the evolution of
gene families. Springer, pp. 133–147.

— (2006). “The complete sequence of the mitochondrial genome of
Nautilus macromphalus (Mollusca: Cephalopoda).” In: BMC Ge-
nomics 7.1, p. 182.

Boore, J. L. and W. M. Brown (1998). “Big trees from little genomes:
mitochondrial gene order as a phylogenetic tool.” In: Current
Opinion in Genetics & Development 8.6, pp. 668–674.

Boore, J. L., T. M. Collins, D. Stanton, L. L. Daehler, and W. M. Brown
(1995). “Deducing the pattern of arthropod phytogeny from mi-
tochondrial DNA rearrangements.” In: Nature 376.6536, pp. 163–
165.

Boore, J. L., D. V. Lavrov, and W. M. Brown (1998). “Gene transloca-
tion links insects and crustaceans.” In: Nature 392.6677, p. 667.

Boore, J. L., J. R. Macey, and M. Medina (2005). “Sequencing and com-
paring whole mitochondrial genomes of animals.” In: Methods in
Enzymology. Vol. 395. Elsevier, pp. 311–348.

Booth, K. S. and G. S. Lueker (1976). “Testing for the consecutive
ones property, interval graphs, and graph planarity using PQ-
tree algorithms.” In: Journal of Computer and System Sciences 13.3,
pp. 335–379.

Bourque, G. and P. A. Pevzner (2002). “Genome-scale evolution: re-
constructing gene orders in the ancestral species.” In: Genome Re-
search 12.1, pp. 26–36.

[April 2019 at 13:18 – classicthesis 4.4]

192 bibliography

Bourque, G., Y. Yacef, and N. El-Mabrouk (2005). “Maximizing syn-
teny blocks to identify ancestral homologs.” In: Proc. 3rd Int’l
Workshop on Comparative Genomics (RECOMB-CG 2005). Springer,
pp. 21–34.

Bouvel, M. and E. Pergola (2010). “Posets and permutations in the
duplication-loss model: Minimal permutations with d descents.”
In: Theoretical Computer Science 411.26-28, pp. 2487–2501.

Bouvel, M. and D. Rossin (2009). “A variant of the tandem
duplication-random loss model of genome rearrangement.” In:
Theoretical Computer Science 410.8-10, pp. 847–858.

Bouvel, M., C. Chauve, M. Mishna, and D. Rossin (2011). “Average-
case analysis of perfect sorting by reversals.” In: Discrete Mathe-
matics, Algorithms and Applications 3.03, pp. 369–392.

Braga, M. D. V., M.-F. Sagot, C. Scornavacca, and E. Tannier (2008).
“Exploring the solution space of sorting by reversals, with exper-
iments and an application to evolution.” In: IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 5.3, pp. 348–356.

Breton, S., D. T. Stewart, S. Shepardson, R. J. Trdan, A. E. Bogan, E. G.
Chapman, A. J. Ruminas, H. Piontkivska, and W. R. Hoeh (2010).
“Novel protein genes in animal mtDNA: a new sex determination
system in freshwater mussels (Bivalvia: Unionoida)?” In: Molecu-
lar Biology and Evolution 28.5, pp. 1645–1659.

Brito, K. L., A. R. Oliveira, U. Dias, and Z. Dias (2018). “Heuristics for
the Sorting Signed Permutations by Reversals and Transpositions
Problem.” In: Proc. 5th Int’l Conference on Algorithms for Computa-
tional Biology (AlCoB 2018). Springer, pp. 65–75.

Brocchieri, L. (2001). “Phylogenetic inferences from molecular se-
quences: review and critique.” In: Theoretical Population Biology
59.1, pp. 27–40.

Brown, W. M. (1985). “The mitochondrial genome of animals.” In:
Molecular Evolutionary Genetics.

Bryant, D. (2000). “The complexity of calculating exemplar dis-
tances.” In: Comparative Genomics. Springer, pp. 207–211.

Bui-Xuan, B.-M., M. Habib, and C. Paul (2005). “Revisiting T. Uno
and M. Yagiura’s algorithm.” In: Proc. 14th Int’l Symposium on
Algorithms and Computation (ISAAC 2006). Springer, pp. 146–155.

Bulteau, L., G. Fertin, and I. Rusu (2012). “Sorting by transpositions is
difficult.” In: SIAM Journal on Discrete Mathematics 26.3, pp. 1148–
1180.

Burke, E. K., P. De Causmaecker, G. V. Berghe, and H. Van Lan-
deghem (2004). “The state of the art of nurse rostering.” In: Jour-
nal of Scheduling 7.6, pp. 441–499.

Caprara, A (1997a). “Formulations and complexity of multiple sort-
ing by reversals.” In: Proc. 3rd Int’l Conference on Computational
Molecular Biology (RECOMB 1999), pp. 84–93.

Caprara, A. (1997b). “Sorting by reversals is difficult.” In: Proc. 1st Int’l
Conference on Computational Molecular Biology (RECOMB 1997).
ACM, pp. 75–83.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 193

Caprara, A. and R. Rizzi (2002). “Improved approximation for break-
point graph decomposition and sorting by reversals.” In: Journal
of Combinatorial Optimization 6.2, pp. 157–182.

Caprara, A., G. Lancia, and S. K. Ng (2000). “Fast practical solution of
sorting by reversals.” In: Proc. 11th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2000). Society for Industrial and Applied
Mathematics, pp. 12–21.

Caprara, G., A. Lancia, and S.-K. Ng (1999). “A column-generation
based branch-and-bound algorithm for sorting by reversals.” In:
Mathematical Support for Molecular Biology 47, p. 213.

Cardazzo, B., S. Minuzzo, G. Sartori, A. Grapputo, and G. Carignani
(1998). “Evolution of mitochondrial DNA in yeast: gene order and
structural organization of the mitochondrial genome of Saccha-
romyces uvarum.” In: Current Genetics 33.1, pp. 52–59.

Castellana, S., S. Vicario, and C. Saccone (2011). “Evolutionary pat-
terns of the mitochondrial genome in Metazoa: exploring the
role of mutation and selection in mitochondrial protein-coding
genes.” In: Genome Biology and Evolution 3, pp. 1067–1079.

Chan, D. C. (2006). “Mitochondria: dynamic organelles in disease, ag-
ing, and development.” In: Cell 125.7, pp. 1241–1252.

Chaudhuri, K., K. Chen, R. Mihaescu, and S. Rao (2006). “On the
tandem duplication-random loss model of genome rearrange-
ment.” In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2006). Society for Industrial and Applied Mathematics,
pp. 564–570.

Chen, T. and S. S. Skiena (1996). “Sorting with fixed-length reversals.”
In: Discrete Applied Mathematics 71.1-3, pp. 269–295.

Chen, X., J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang
(2005). “Assignment of orthologous genes via genome rearrange-
ment.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2.4, pp. 302–315.

Cheng, Y.-C., T. Hartmann, P.-Y. Tsai, and M. Middendorf (2016).
“Population based ant colony optimization for reconstructing
ECG signals.” In: Evolutionary Intelligence 9.3, pp. 55–66.

Christie, D. A. (1998a). “A 3/2-Approximation Algorithm for Sort-
ing by Reversals.” In: Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms (SODA 1998), pp. 244–252.

— (1998b). “Genome rearrangement problems.” PhD thesis. Univer-
sity of Glasgow.

Clayton, D. A. (1982). “Replication of animal mitochondrial DNA.”
In: Cell 28.4, pp. 693–705.

— (1991). “Replication and transcription of vertebrate mitochondrial
DNA.” In: Annual Review of Cell Biology 7.1, pp. 453–478.

Cosner, M. E., R. K. Jansen, J. D. Palmer, and S. R. Downie
(1997). “The highly rearranged chloroplast genome of Trachelium
caeruleum (Campanulaceae): multiple inversions, inverted repeat
expansion and contraction, transposition, insertions/deletions,
and several repeat families.” In: Current Genetics 31.5, pp. 419–
429.

[April 2019 at 13:18 – classicthesis 4.4]

194 bibliography

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection,
or the Preservation of Favored Races in the Struggle for Life. Murray.

De Giorgi, C., A. Martiradonna, C. Lanave, and C. Saccone (1996).
“Complete sequence of the mitochondrial DNA in the sea urchin
Arbacia lixula: conserved features of the Echinoid mitochondrial
genome.” In: Molecular Phylogenetics and Evolution 5.2, pp. 323–
332.

Dias, U. and Z. Dias (2013). “Heuristics for the transposition distance
problem.” In: Journal of Bioinformatics and Computational Biology
11.05, p. 1350013.

Dias, Z. and C. C. de Souza (2007). “Polynomial-sized ILP models for
rearrangement distance problems.” In: Proc. 2nd Brazilian Sympo-
sium on Bioinformatics (BSB 2007), pp. 74–85.

Didier, G. (2003). “Common intervals of two sequences.” In: Proc.
3rd Int’l Workshop on Algorithms in Bioinformatics (WABI 2003).
Springer, pp. 17–24.

Dobzhansky, T. and A. H. Sturtevant (1938). “Inversions in the chro-
mosomes of Drosophila pseudoobscura.” In: Genetics 23.1, pp. 28–
64.

Dörr, D. (2016). “Gene family-free genome comparison.” PhD thesis.
Bielefeld University.

Dowton, M., S. L. Cameron, J. I. Dowavic, A. D. Austin, and M. F.
Whiting (2009). “Characterization of 67 mitochondrial tRNA gene
rearrangements in the Hymenoptera suggests that mitochondrial
tRNA gene position is selectively neutral.” In: Molecular Biology
and Evolution 26.7, pp. 1607–1617.

Drake, J. W. and R. H. Baltz (1976). “The biochemistry of mutagene-
sis.” In: Annual Review of Biochemistry 45.1, pp. 11–37.

Dwork, C., R. Kumar, M. Naor, and D. Sivakumar (2001). “Rank ag-
gregation methods for the web.” In: Proc. 10th Int’l Conference on
World Wide Web (WWW 2001). ACM, pp. 613–622.

ENCODE Project Consortium (2012). “An integrated encyclopedia of
DNA elements in the human genome.” In: Nature 489.7414, p. 57.

El-Mabrouk, N. and D. Sankoff (2012). “Analysis of gene order
evolution beyond single-copy genes.” In: Evolutionary Genomics.
Springer, pp. 397–429.

Elias, I. and T. Hartman (2006). “A 1.375-approximation algorithm for
sorting by transpositions.” In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 3.4.

Eriksen, N. (2001). “(1+ε)-Approximation of Sorting by Reversals and
Transpositions.” In: Proc. 1st Int’l Workshop on Algorithms in Bioin-
formatics (WABI 2001). Springer, pp. 227–237.

Eriksson, H., J.and Svensson L. Eriksson K.and Karlander, and J.
Wästlund (2001). “Sorting a bridge hand.” In: Discrete Mathemat-
ics 241.1-3, pp. 289–300.

Ezkurdia, I., D. Juan, J. M. Rodriguez, A. Frankish, M. Diekhans, J.
Harrow, J. Vazquez, A. Valencia, and M. L. Tress (2014). “Multi-
ple evidence strands suggest that there may be as few as 19000
human protein-coding genes.” In: Human Molecular Genetics 23.22,
pp. 5866–5878.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 195

Feijao, P. and J. Meidanis (2011). “SCJ: a breakpoint-like distance that
simplifies several rearrangement problems.” In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 8.5, pp. 1318–
1329.

Feijão, P., A. Mane, and C. Chauve (2017). “A Tractable Variant of
the Single Cut or Join Distance with Duplicated Genes.” In: Proc.
15th Int’l Workshop on Comparative Genomics (RECOMB-CG 2017).
Springer, pp. 14–30.

Felsenstein, J. (2004). Inferring phylogenies. Vol. 2. Sinauer associates
Sunderland.

Feng, J. and D. Zhu (2007). “Faster algorithms for sorting by transpo-
sitions and sorting by block interchanges.” In: ACM Transactions
on Algorithms 3.3, p. 25.

Fertin, G., A. Labarre, I. Rusu, E. Tannier, and S. Vialette (2009). Com-
binatorics of genome rearrangements. MIT press.

Figeac, M. and J.-S. Varré (2004). “Sorting by reversals with common
intervals.” In: Proc. 4th Int’l Workshop on Algorithms in Bioinformat-
ics (WABI 2004). Springer, pp. 26–37.

Fonseca, M. M. and D. J. Harris (2008). “Relationship between mi-
tochondrial gene rearrangements and stability of the origin of
light strand replication.” In: Genetics and Molecular Biology 31.2,
pp. 566–574.

Galperin, M. Y. and E. V. Koonin (2000). “Who’s your neighbor? New
computational approaches for functional genomics.” In: Nature
Biotechnology 18.6, p. 609.

Galvão, G. R., O. Lee, and Z. Dias (2015). “Sorting signed permu-
tations by short operations.” In: Algorithms for Molecular Biology
10.1, p. 12.

Galvao, G. R., C. Baudet, and Z. Dias (2017). “Sorting circular permu-
tations by super short reversals.” In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics 14.3, pp. 620–633.

Gan, H. M., M. H. Tan, Y. P. Lee, M. B. Schultz, P. Horwitz, Q. Burn-
ham, and C. M. Austin (2018). “More evolution underground:
Accelerated mitochondrial substitution rate in Australian burrow-
ing freshwater crayfishes (Decapoda: Parastacidae).” In: Molecular
Phylogenetics and Evolution 118, pp. 88–98.

Gerstein, M. B., C. Bruce, J. S. Rozowsky, D. Zheng, J. Du, J. O. Kor-
bel, O. Emanuelsson, Z. D. Zhang, S. Weissman, and M. Snyder
(2007). “What is a gene, post-ENCODE? History and updated
definition.” In: Genome Research 17.6, pp. 669–681.

Gissi, C., F. Iannelli, and G. Pesole (2008). “Evolution of the mito-
chondrial genome of Metazoa as exemplified by comparison of
congeneric species.” In: Heredity 101.4, p. 301.

Graham, G. J. (1995). “Tandem genes and clustered genes.” In: Journal
of Theoretical Biology 175.1, pp. 71–87.

Granlund, T. and the GMP development team (2012). GNU MP: The
GNU Multiple Precision Arithmetic Library. 5.0.5. http://gmplib.
org/.

Gray, F. (1953). Pulse code communication. US Patent 2,632,058.

[April 2019 at 13:18 – classicthesis 4.4]

http://gmplib.org/
http://gmplib.org/

196 bibliography

Gray, M. W. (1989). “Origin and evolution of mitochondrial DNA.”
In: Annual Review of Cell Biology 5.1, pp. 25–50.

Gredilla, Ricardo (2011). “DNA damage and base excision repair in
mitochondria and their role in aging.” In: Journal of Aging Research
2011.

Gu, Q.-P., S. Peng, and H. Sudborough (1999). “A 2-approximation
algorithm for genome rearrangements by reversals and transpo-
sitions.” In: Theoretical Computer Science 210.2, pp. 327–339.

Gurobi Optimization, LLC (2018). Gurobi Optimizer Reference Manual.
url: http://www.gurobi.com.

Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge University Press.

Hannenhalli, S. and P. A. Pevzner (1995). “Transforming men into
mice (polynomial algorithm for genomic distance problem).” In:
Proc. 36th Symposium on Foundations of Computer Science (FOCS
1995). IEEE, pp. 581–592.

— (1999). “Transforming cabbage into turnip: polynomial algorithm
for sorting signed permutations by reversals.” In: Journal of the
ACM 46.1, pp. 1–27.

Hao, F.-C., M. Zhang, and H. W. Leong (2017). “A 2-Approximation
Scheme for Sorting Signed Permutations by Reversals, Transpo-
sitions, Transreversals, and Block-Interchanges.” In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics.

Hardison, R. C. (2003). “Comparative genomics.” In: PLoS Biology 1.2,
e58.

Härlid, A., A. Janke, and U. Arnason (1997). “The mtDNA se-
quence of the ostrich and the divergence between paleognathous
and neognathous birds.” In: Molecular Biology and Evolution 14.7,
pp. 754–761.

Harman, D. (1972). “The biologic clock: the mitochondria?” In: Journal
of the American Geriatrics Society 20.4, pp. 145–147.

Hartman, T. (2003). “A simpler 1.5-approximation algorithm for sort-
ing by transpositions.” In: Proc. 14th Symposium on Combinatorial
Pattern Matching (CPM 2003). Springer, pp. 156–169.

Hartman, T. and R. Shamir (2006). “A simpler and faster 1.5-
approximation algorithm for sorting by transpositions.” In: In-
formation and Computation 204.2, pp. 275–290.

Hartman, T. and R. Sharan (2005). “A 1.5-approximation algorithm
for sorting by transpositions and transreversals.” In: Journal of
Computer and System Sciences 70.3, pp. 300–320.

Hartmann, T., N. Wieseke, R. Sharan, M. Middendorf, and M. Bernt
(2017). “Genome Rearrangement with ILP.” In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 15.5, pp. 1585–
1593.

Hartmann, T., M. Bernt, and M. Middendorf (2018a). “An Exact Al-
gorithm for Sorting by Weighted Preserving Genome Rearrange-
ments.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics. (in press).

Hartmann, T., A.-C. Chu, M. Middendorf, and M. Bernt (2018b).
“Combinatorics of tandem duplication random loss mutations on

[April 2019 at 13:18 – classicthesis 4.4]

http://www.gurobi.com

bibliography 197

circular genomes.” In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 15.1, pp. 83–95.

Hartmann, T., M. Bernt, and M. Middendorf (2018c). “EqualTDRL: il-
lustrating equivalent tandem duplication random loss rearrange-
ments.” In: BMC Bioinformatics 19.192.

Hartmann, T., M. Middendorf, and M. Bernt (2018d). “Genome Rear-
rangement Analysis: Cut and Join Genome Rearrangements and
Gene Cluster Preserving Approaches.” In: Comparative Genomics:
Methods and Protocols. Springer, pp. 261–289.

Hartmann, T., M. Bannach, and M. Middendorf (2018e). “Sorting
Signed Permutations by Inverse Tandem Duplication Random
Losses.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics. (in press).

Hazkani-Covo, E. and D. Graur (2006). “A comparative analysis of
numt evolution in human and chimpanzee.” In: Molecular Biology
and Evolution 24.1, pp. 13–18.

He, Y. and T. Chen (2003). “A new approximation algorithm for sort-
ing of signed permutations.” In: Journal of Computer Science and
Technology 18.1, pp. 125–130.

Heber, S. and J. Stoye (2001a). “Algorithms for finding gene clusters.”
In: Proc. 1st Int’l Workshop on Algorithms in Bioinformatics (WABI
2001). Springer, pp. 252–263.

— (2001b). “Finding all common intervals of k permutations.” In:
Proc. 12th Symposium on Combinatorial Pattern Matching (CPM
2001). Vol. 2089. LNCS, pp. 207–218.

Heber, S., R. Mayr, and J. Stoye (2011). “Common intervals of multiple
permutations.” In: Algorithmica 60.2, pp. 175–206.

Held, M. and R. M. Karp (1970). “The traveling-salesman prob-
lem and minimum spanning trees.” In: Operations Research 18.6,
pp. 1138–1162.

Hoberman, R. and D. Durand (2005). “The incompatible desiderata
of gene cluster properties.” In: Proc. 3rd Int’l Workshop on Compar-
ative Genomics (RECOMB-CG 2005). Springer, pp. 73–87.

Hoffmann, R. J., J. L. Boore, and W. M. Brown (1992). “A novel mi-
tochondrial genome organization for the blue mussel, Mytilus
edulis.” In: Genetics 131.2, pp. 397–412.

Holt, I. J. (2009). “Mitochondrial DNA replication and repair: all a
flap.” In: Trends in Biochemical Sciences 34.7, pp. 358–365.

Holt, I. J., A. E. Harding, and J. A. Morgan-Hughes (1988). “Deletions
of muscle mitochondrial DNA in patients with mitochondrial my-
opathies.” In: Nature 331.6158, p. 717.

Holt, I. J., H. E. Lorimer, and H. T. Jacobs (2000). “Coupled
leading-and lagging-strand synthesis of mammalian mitochon-
drial DNA.” In: Cell 100.5, pp. 515–524.

Huang, X. C., J. Rong, Y. Liu, M. H. Zhang, Y. Wan, S. Ouyang, C. H.
Zhou, and X. P. Wu (2013). “The complete maternally and pater-
nally inherited mitochondrial genomes of the endangered fresh-
water mussel Solenaia carinatus (Bivalvia: Unionidae) and implica-
tions for Unionidae taxonomy.” In: PLoS ONE 8.12, e84352.

[April 2019 at 13:18 – classicthesis 4.4]

198 bibliography

Huynen, M., B. Snel, W. Lathe 3rd, and P. Bork (2000). “Predicting
protein function by genomic context: quantitative evaluation and
qualitative inferences.” In: Genome Research 10.8, pp. 1204–1210.

Iannelli, F., F. Griggio, G. Pesole, and C. Gissi (2007). “The mito-
chondrial genome of Phallusia mammillata and Phallusia fumi-
gata (Tunicata, Ascidiacea): high genome plasticity at intra-genus
level.” In: BMC Evolutionary Biology 7.1, p. 155.

Inoue, J. G., M. Miya, K. Tsukamoto, and M. Nishida (2003). “Evolu-
tion of the Deep-Sea Gulper Eel Mitochondrial Genomes: Large-
Scale Gene Rearrangements Originated Within the Eels.” In:
Molecular Biology and Evolution 20.11, pp. 1917–1924.

Iwasaki, W., T. Fukunaga, R. Isagozawa, K. Yamada, Y. Maeda, T.
P. Satoh, T. Sado, K. Mabuchi, H. Takeshima, M. Miya, and M.
Nishida (2013). “MitoFish and MitoAnnotator: A mitochondrial
genome database of fish with an accurate and automatic annota-
tion pipeline.” In: Molecular Biology and Evolution 30.11, pp. 2531–
2540.

Janke, A., G. Feldmaier-Fuchs, W. K. Thomas, A. Von Haeseler, and
S. Pääbo (1994). “The marsupial mitochondrial genome and the
evolution of placental mammals.” In: Genetics 137.1, pp. 243–256.

Jerrum, M. R. (1985). “The complexity of finding minimum-length
generator sequences.” In: Theoretical Computer Science 36, pp. 265–
289.

Jiang, S. and M. A. Alekseyev (2011). “Weighted Genomic Distance
Can Hardly Impose a Bound on the Proportion of Transposi-
tions.” In: Proc. 15th Int’l Conference on Computational Molecular
Biology (RECOMB 2011), pp. 124–133.

Jones, N. C. and P. A. Pevzner (2004). An introduction to bioinformatics
algorithms. MIT press.

Jühling, F., J. Pütz, M. Bernt, A. Donath, M. Middendorf, C. Flo-
rentz, and P. F. Stadler (2011). “Improved systematic tRNA gene
annotation allows new insights into the evolution of mitochon-
drial tRNA structures and into the mechanisms of mitochon-
drial genome rearrangements.” In: Nucleic Acids Research 40.7,
pp. 2833–2845.

Kaplan, H. and E. Verbin (2003). “Efficient data structures and a new
randomized approach for sorting signed permutations by rever-
sals.” In: Proc. 14th Symposium on Combinatorial Pattern Matching
(CPM 2003). Springer, pp. 170–185.

Kaplan, H., R. Shamir, and R. E. Tarjan (2000). “A faster and sim-
pler algorithm for sorting signed permutations by reversals.” In:
SIAM Journal on Computing 29.3, pp. 880–892.

Kayal, E., B. Bentlage, A. G. Collins, M. Kayal, S. Pirro, and D. V.
Lavrov (2011). “Evolution of linear mitochondrial genomes in
medusozoan cnidarians.” In: Genome Biology and Evolution 4.1,
pp. 1–12.

Kayal, E., B. Bentlage, P. Cartwright, A. A. Yanagihara, D. J. Lindsay,
R. R. Hopcroft, and A. G. Collins (2015). “Phylogenetic analysis
of higher-level relationships within Hydroidolina (Cnidaria: Hy-

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 199

drozoa) using mitochondrial genome data and insight into their
mitochondrial transcription.” In: PeerJ 3, e1403.

Kececioglu, J. and D. Sankoff (1995). “Exact and approximation algo-
rithms for sorting by reversals, with application to genome rear-
rangement.” In: Algorithmica 13.1-2, p. 180.

Knuth, D. E. (1997). The art of computer programming: sorting and search-
ing. Vol. 3. Pearson Education.

Kong, X., X. Dong, Y. Zhang, W. Shi, Z. Wang, and Z. Yu (2009). “A
novel rearrangement in the mitochondrial genome of tongue sole,
Cynoglossus semilaevis: control region translocation and a tRNA
gene inversion.” In: Genome 52.12, pp. 975–984.

Krebs, J. E., B. Lewin, E. S. Goldstein, and S. T. Kilpatrick (2014).
Lewin’s Genes XI. Jones & Bartlett Publishers.

Labarre, A. (2006). “New bounds and tractable instances for the trans-
position distance.” In: IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics 3.4.

Lancia, G., F. Rinaldi, and P. Serafini (2015). “A unified integer pro-
gramming model for genome rearrangement problems.” In: Proc.
3rd Int’l Conference on Bioinformatics and Biomedical Engineering
(IWBBIO 2015). Springer, pp. 491–502.

Lang, B. F., G. Burger, C. J. O’kelly, R. Cedergren, G. B. Golding, C.
Lemieux, D. Sankoff, M. Turmel, and M. W. Gray (1997). “An
ancestral mitochondrial DNA resembling a eubacterial genome
in miniature.” In: Nature 387.6632, pp. 493–497.

Lang, B. F., M. W. Gray, and G. Burger (1999). “Mitochondrial genome
evolution and the origin of eukaryotes.” In: Annual Review of Ge-
netics 33.1, pp. 351–397.

Lathe 3rd, W. C., B. Snel, and P. Bork (2000). “Gene context conser-
vation of a higher order than operons.” In: Trends in Biochemical
Sciences 25.10, pp. 474–479.

Lavrov, D. V. and W. Pett (2016). “Animal mitochondrial DNA as we
do not know it: mt-genome organization and evolution in nonbi-
laterian lineages.” In: Genome Biology and Evolution 8.9, pp. 2896–
2913.

Lavrov, D. V., J. L. Boore, and W. M. Brown (2002). “Complete mtDNA
sequences of two millipedes suggest a new model for mitochon-
drial gene rearrangements: duplication and nonrandom loss.” In:
Molecular Biology and Evolution 19.2, pp. 163–169.

Lefebvre, J.-F., N. El-Mabrouk, E. Tillier, and D. Sankoff (2003). “De-
tection and validation of single gene inversions.” In: Bioinformat-
ics 19.suppl_1, pp. i190–i196.

Levinson, G. and G. A. Gutman (1987). “Slipped-strand mispairing:
a major mechanism for DNA sequence evolution.” In: Molecular
Biology and Evolution 4.3, pp. 203–221.

Li, G. and D. Reinberg (2011). “Chromatin higher-order structures
and gene regulation.” In: Current Opinion in Genetics & Develop-
ment 21.2, pp. 175–186.

Lima, T. A. de and M. Ayala-Rincon (2018). “On the average num-
ber of reversals needed to sort signed permutations.” In: Discrete
Applied Mathematics 235, pp. 59–80.

[April 2019 at 13:18 – classicthesis 4.4]

200 bibliography

Lin, G.-H. and G. Xue (2001). “Signed genome rearrangement by re-
versals and transpositions: models and approximations.” In: The-
oretical Computer Science 259.1-2, pp. 513–531.

Lin, G. and T. Jiang (2004). “A further improved approximation algo-
rithm for breakpoint graph decomposition.” In: Journal of Combi-
natorial Optimization 8.2, pp. 183–194.

Liu, X., H. Li, Y. Cai, F. Song, J.-J. Wilson, and W. Cai (2017). “Con-
served gene arrangement in the mitochondrial genomes of bark-
louse families Stenopsocidae and Psocidae.” In: Frontiers of Agri-
cultural Science and Engineering 4.3, pp. 358–365.

Lohse, M., O. Drechsel, and R. Bock (2007). “OrganellarGenome-
DRAW (OGDRAW): a tool for the easy generation of high-quality
custom graphical maps of plastid and mitochondrial genomes.”
In: Current Genetics 52.5-6, pp. 267–274.

Lou, X.-W. and D.-M. Zhu (2010). “Sorting unsigned permutations by
weighted reversals, transpositions, and transreversals.” In: Journal
of Computer Science and Technology 25.4, pp. 853–863.

Luc, N., J.-L. Risler, A. Bergeron, and M. Raffinot (2003). “Gene teams:
a new formalization of gene clusters for comparative genomics.”
In: Computational Biology and Chemistry 27.1, pp. 59–67.

Lunt, D. H. and B. C. Hyman (1997). “Animal mitochondrial DNA
recombination.” In: Nature 387.6630, p. 247.

Macey, J. R., A. Larson, N. B. Ananjeva, Z. Fang, and T. J. Papenfuss
(1997). “Two novel gene orders and the role of light-strand replica-
tion in rearrangement of the vertebrate mitochondrial genome.”
In: Molecular Biology and Evolution 14.1, pp. 91–104.

Macey, J. R., J. A. Schulte, A. Larson, and T. J. Papenfuss (1998). “Tan-
dem duplication via light-strand synthesis may provide a pre-
cursor for mitochondrial genomic rearrangement.” In: Molecular
Biology and Evolution 15.1, pp. 71–75.

Maddison, W. P. (1997). “Gene trees in species trees.” In: Systematic
Biology 46.3, pp. 523–536.

Mao, M., A. D. Austin, N. F. Johnson, and M. Dowton (2013). “Coexis-
tence of minicircular and a highly rearranged mtDNA molecule
suggests that recombination shapes mitochondrial genome orga-
nization.” In: Molecular Biology and Evolution 31.3, pp. 636–644.

Martijn, J., J. Vosseberg, L. Guy, P. Offre, and T. J.-G. Ettema (2018).
“Deep mitochondrial origin outside the sampled alphaproteobac-
teria.” In: Nature 557.7703, p. 101.

Martin, W. and R. G. Herrmann (1998). “Gene transfer from or-
ganelles to the nucleus: how much, what happens, and why?”
In: Plant Physiology 118.1, pp. 9–17.

McBride, H. M., M. Neuspiel, and S. Wasiak (2006). “Mitochondria:
more than just a powerhouse.” In: Current Biology 16.14, R551–
R560.

Meidanis, J., M. E. M. T. Walter, and Z. Dias (2000). Reversal distance of
signed circular chromosomes. Relatório Técnico IC-00-23. University
of Campinas, Brazil.

Meo, P. D’Onorio de, M. D’Antonio, F. Griggio, R. Lupi, M. Borsani, G.
Pavesi, T. Castrignano, G. Pesole, and C. Gissi (2012). “MitoZoa

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 201

2.0: A database resource and search tools for comparative and
evolutionary analyses of mitochondrial genomes in Metazoa.” In:
Nucleic Acids Research 40.Database issue, pp. D1168–1172.

Mering, C. von, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel
(2003). “STRING: a database of predicted functional associations
between proteins.” In: Nucleic Acids Research 31.1, pp. 258–261.

Miklós, I. and J. Hein (2004). “Genome rearrangement in mitochon-
dria and its computational biology.” In: Proc. 2nd Int’l Workshop on
Comparative Genomics (RECOMB-CG 2004). Springer, pp. 85–96.

Moret, B. M. E. and T. Warnow (2005). “Advances in phylogeny re-
construction from gene order and content data.” In: Methods in
Enzymology. Vol. 395. Elsevier, pp. 673–700.

Moret, B. M. E., L.-S. Wang, T. Warnow, and S. K. Wyman (2001).
“New approaches for reconstructing phylogenies from gene order
data.” In: Bioinformatics 17.suppl_1, S165–S173.

Moret, B. M. E., U. Roshan, and T. Warnow (2002). “Sequence-
length requirements for phylogenetic methods.” In: Proc. 2nd Int’l
Workshop on Algorithms in Bioinformatics (WABI 2002). Springer,
pp. 343–356.

Morrison, C.-L., A.-W. Harvey, S. Lavery, K. Tieu, Y. Huang, and C.-W.
Cunningham (2002). “Mitochondrial gene rearrangements con-
firm the parallel evolution of the crab-like form.” In: Proceedings of
the Royal Society of London B: Biological Sciences 269.1489, pp. 345–
350.

Mueller, R. L. and J. L. Boore (2005). “Molecular mechanisms of exten-
sive mitochondrial gene rearrangement in plethodontid salaman-
ders.” In: Molecular Biology and Evolution 22.10, pp. 2104–2112.

Nakhleh, L., B. M. E. Moret, U. Roshan, K. St. John, J. Sun, and T.
Warnow (2001). “The accuracy of fast phylogenetic methods for
large datasets.” In: Proc. 7th Pacific Symposium on Biocomputing
(PSB 2002). World Scientific, pp. 211–222.

Nasir, A., K. M. Kim, and G. Caetano-Anolles (2012). “Giant viruses
coexisted with the cellular ancestors and represent a distinct su-
pergroup along with superkingdoms Archaea, Bacteria and Eu-
karya.” In: BMC Evolutionary Biology 12.1, p. 156.

Oliveira, A. R., K. L. Brito, Z. Dias, and U. Dias (2018a). “Sorting by
Weighted Reversals and Transpositions.” In: Proc. 11th Brazilian
Symposium on Bioinformatics (BSB 2018). Springer, pp. 38–49.

Oliveira, A. R., G. Fertin, U. Dias, and Z. Dias (2018b). “Sorting signed
circular permutations by super short operations.” In: Algorithms
for Molecular Biology 13.1, p. 13.

Ouangraoua, A., A. Bergeron, and K. M. Swenson (2010). “Ultra-
perfect sorting scenarios.” In: Proc. 8th Int’l Workshop on Compara-
tive Genomics (RECOMB-CG 2010). Springer, pp. 50–61.

Ouangraoua, A., E. Tannier, and C. Chauve (2011a). “Reconstructing
the architecture of the ancestral amniote genome.” In: Bioinformat-
ics 27.19, pp. 2664–2671.

Ouangraoua, A., A. Bergeron, and K. M. Swenson (2011b). “Theory
and practice of ultra-perfection.” In: Journal of Computational Biol-
ogy 18.9, pp. 1219–1230.

[April 2019 at 13:18 – classicthesis 4.4]

202 bibliography

Overbeek, R., M. Fonstein, M. D’souza, G. D. Pusch, and N. Maltsev
(1999). “The use of gene clusters to infer functional coupling.” In:
Proceedings of the National Academy of Sciences 96.6, pp. 2896–2901.

Oxusoff, L., P. Prea, and Y. Perez (2018). “A complete logical approach
to resolve the evolution and dynamics of mitochondrial genome
in bilaterians.” In: PloS One 13.3, e0194334.

Palmer, J. D. and L. A. Herbon (1988). “Plant mitochondrial DNA
evolved rapidly in structure, but slowly in sequence.” In: Journal
of Molecular Evolution 28.1-2, pp. 87–97.

Parida, L. (2006). “A PQ Framework for Reconstructions of Common
Ancestors & Phylogeny.” In: Proc. 10th Int’l Workshop on Compara-
tive Genomics (RECOMB-CG 2006). Springer, pp. 141–55.

Pelletier, L. and I. Rusu (2018). “Common intervals and permutation
reconstruction from MinMax-betweenness constraints.” In: Jour-
nal of Discrete Algorithms 49, pp. 8–26.

Perrin, A., J.-S. Varré, S. Blanquart, and A. Ouangraoua (2015). “Pro-
cars: Progressive reconstruction of ancestral gene orders.” In:
BMC Genomics 16.5, S6.

Perseke, M., G. Fritzsch, K. Ramsch, M. Bernt, D. Merkle, M. Midden-
dorf, D. Bernhard, P. F. Stadler, and M. Schlegel (2008). “Evolu-
tion of mitochondrial gene orders in echinoderms.” In: Molecular
Phylogenetics and Evolution 47.2, pp. 855–864.

Pevzner, P. (2000). Computational molecular biology: an algorithmic ap-
proach. MIT press.

Podsiadlowski, L., A. Braband, T. H. Struck, J. von Döhren, and T. Bar-
tolomaeus (2009). “Phylogeny and mitochondrial gene order vari-
ation in Lophotrochozoa in the light of new mitogenomic data
from Nemertea.” In: BMC Genomics 10.1, p. 364.

Pohjoismäki, J. L.-O. and S. Goffart (2011). “Of circles, forks and hu-
manity: topological organisation and replication of mammalian
mitochondrial DNA.” In: Bioessays 33.4, pp. 290–299.

Pohjoismäki, J. L.-O., S. Goffart, R. W. Taylor, D. M. Turnbull, A. Suo-
malainen, H. T. Jacobs, and P. J. Karhunen (2010). “Developmen-
tal and pathological changes in the human cardiac muscle mito-
chondrial DNA organization, replication and copy number.” In:
PLoS One 5.5, e10426.

Pruitt, K. D., T. Tatusova, and D. R. Maglott (2007). “NCBI reference
sequences (RefSeq): A curated non-redundant sequence database
of genomes, transcripts and proteins.” In: Nucleic Acids Research
35.Database issue, pp. D61–5.

Raimond, R., I. Marcadé, D. Bouchon, T. Rigaud, J.-P. Bossy, and C.
Souty-Grosset (1999). “Organization of the large mitochondrial
genome in the isopod Armadillidium vulgare.” In: Genetics 151.1,
pp. 203–210.

Rajan, V., A. W. Xu, Y. Lin, K. M. Swenson, and B. M. E. Moret (2010).
“Heuristics for the inversion median problem.” In: BMC Bioinfor-
matics 11.1, S30.

Reyes, A., C. Gissi, G. Pesole, and C. Saccone (1998). “Asymmetri-
cal directional mutation pressure in the mitochondrial genome of
mammals.” In: Molecular Biology and Evolution 15.8, pp. 957–966.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 203

Robberson, D. L., H. Kasamatsu, and J. Vinograd (1972). “Replica-
tion of mitochondrial DNA. Circular replicative intermediates in
mouse L cells.” In: Proceedings of the National Academy of Sciences
69.3, p. 737.

Rodgers, K. and M. McVey (2016). “Error-prone repair of DNA
double-strand breaks.” In: Journal of Cellular Physiology 231.1,
pp. 15–24.

Rokas, A. and P. W.H. Holland (2000). “Rare genomic changes as a
tool for phylogenetics.” In: Trends in Ecology & Evolution 15.11,
pp. 454–459.

Rosenberg, M. S. (2009). Sequence alignment: methods, models, concepts,
and strategies. Univ of California Press.

Rot, C., I. Goldfarb, M. Ilan, and D. Huchon (2006). “Putative cross-
kingdom horizontal gene transfer in sponge (Porifera) mitochon-
dria.” In: BMC Evolutionary Biology 6.1, p. 71.

Rusu, I. (2014a). “Extending common intervals searching from permu-
tations to sequences.” In: Journal of Discrete Algorithms 29, pp. 27–
46.

— (2014b). “MinMax-Profiles: A unifying view of common intervals,
nested common intervals and conserved intervals of K permuta-
tions.” In: Theoretical Computer Science 543, pp. 90–111.

— (2016). “Permutation reconstruction from MinMax-Betweenness
constraints.” In: Discrete Applied Mathematics 207, pp. 106–119.

Sagot, M.-F. and E. Tannier (2005). “Perfect sorting by reversals.” In:
Proc. 11th Int’l Computing and Combinatorics Conference (COCOON
2005). Springer, pp. 42–51.

San Mauro, D., D. J. Gower, R. Zardoya, and M. Wilkinson (2005).
“A hotspot of gene order rearrangement by tandem duplication
and random loss in the vertebrate mitochondrial genome.” In:
Molecular Biology and Evolution 23.1, pp. 227–234.

Sankoff, D. (1992). “Edit distance for genome comparison based on
non-local operations.” In: Proc. 3rd Symposium on Combinatorial
Pattern Matching (CPM 1992). Springer, pp. 121–135.

— (2002). “Short inversions and conserved gene clusters.” In: Proc.
17th ACM/SIGAPP Symposium On Applied Computing (SAC 2002).
ACM, pp. 164–167.

Sankoff, D. and M. Blanchette (1997). “The median problem for break-
points in comparative genomics.” In: Proc. 3rd Int’l Computing and
Combinatorics Conference (COCOON 1997). Springer, pp. 251–263.

Sankoff, D., G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Ceder-
gren (1992). “Gene order comparisons for phylogenetic inference:
Evolution of the mitochondrial genome.” In: Proceedings of the Na-
tional Academy of Sciences 89.14, pp. 6575–6579.

Scheffler, I. E. (2011). Mitochondria. John Wiley & Sons.
Schmidt, T. and J. Stoye (2004). “Quadratic time algorithms for find-

ing common intervals in two and more sequences.” In: Proc.
15th Symposium on Combinatorial Pattern Matching (CPM 2004).
Springer, pp. 347–358.

Schrijver, A. (1998). Theory of linear and integer programming. John Wi-
ley & Sons.

[April 2019 at 13:18 – classicthesis 4.4]

204 bibliography

Scouras, A. and M. J. Smith (2001). “A novel mitochondrial gene order
in the crinoid echinoderm Florometra serratissima.” In: Molecular
Biology and Evolution 18.1, pp. 61–73.

Sémon, M. and L. Duret (2006). “Evolutionary origin and mainte-
nance of coexpressed gene clusters in mammals.” In: Molecular
Biology and Evolution 23.9, pp. 1715–1723.

Setubal, J. C. and J. Meidanis (1997). Introduction to computational
molecular biology. 04; QH506, S4. PWS Pub.

Shadel, G. S. and D. A. Clayton (1997). “Mitochondrial DNA main-
tenance in vertebrates.” In: Annual Review of Biochemistry 66.1,
pp. 409–435.

Shao, M. and B. M. E. Moret (2017). “On computing breakpoint dis-
tances for genomes with duplicate genes.” In: Journal of Computa-
tional Biology 24.6, pp. 571–580.

Shao, R., M. Dowton, A. Murrell, and S. C. Barker (2003). “Rates of
gene rearrangement and nucleotide substitution are correlated in
the mitochondrial genomes of insects.” In: Molecular Biology and
Evolution 20.10, pp. 1612–1619.

Shao, R., E. F. Kirkness, and S. C. Barker (2009). “The single mi-
tochondrial chromosome typical of animals has evolved into
18 minichromosomes in the human body louse, Pediculus hu-
manus.” In: Genome Research 19.5, pp. 904–912.

Shi, W., X.-L. Dong, Z.-M. Wang, X.-G. Miao, S.-Y. Wang, and X.-Y.
Kong (2013). “Complete mitogenome sequences of four flatfishes
(Pleuronectiformes) reveal a novel gene arrangement of L-strand
coding genes.” In: BMC Evolutionary Biology 13.1, p. 173.

Siepel, A. C. (2003). “An algorithm to enumerate sorting reversals for
signed permutations.” In: Journal of Computational Biology 10.3-4,
pp. 575–597.

Silva, F. A. M. da, A. R. Oliveira, and Z. Dias (2017). Machine Learn-
ing Applied to Sorting Permutations by Reversals and Transpositions.
Relatório Técnico IC-PFG-17-03. University of Campinas, Brazil.

Silveira, L. Â. da, J. L. Soncco-Álvarez, and M. Ayala-Rincón (2017).
“Parallel genetic algorithms with sharing of individuals for sort-
ing unsigned genomes by reversals.” In: Proc. 10th IEEE Congress
on Evolutionary Computation (CEC 2017). IEEE, pp. 741–748.

Simonaitis, P. and K. M. Swenson (2018). “Finding local genome rear-
rangements.” In: Algorithms for Molecular Biology 13.1, p. 9.

Solomon, A., P. Sutcliffe, and R. Lister (2003). “Sorting circular per-
mutations by reversal.” In: Proc. 9th Workshop on Algorithms and
Data Structures (WADS 2003). Springer, pp. 319–328.

Stadler, P. F., S. J. Prohaska, C. V. Forst, and D. C. Krakauer (2009).
“Defining genes: a computational framework.” In: Theory in Bio-
sciences 128.3, p. 165.

Sturtevant, A. H. and G. W. Beadle (1936). “The relations of inversions
in the X chromosome of Drosophila melanogaster to crossing over
and disjunction.” In: Genetics 21.5, pp. 554–604.

Sturtevant, A. H. and T. Dobzhansky (1936a). “Geographical distribu-
tion and cytology of "sex ratio" in Drosophila pseudoobscura and
related species.” In: Genetics 21.4, pp. 473–490.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 205

— (1936b). “Inversions in the third chromosome of wild races of
Drosophila pseudoobscura, and their use in the study of the his-
tory of the species.” In: Proceedings of the National Academy of Sci-
ences 22.7, pp. 448–450.

Sturtevant, A. H. and E. Novitski (1941). “The homologies of the
chromosome elements in the genus Drosophila.” In: Genetics 26.5,
pp. 517–541.

Swenson, K. M. and B. M. E. Moret (2009). “Inversion-based genomic
signatures.” In: BMC Bioinformatics 10.1, S7.

Swenson, K. M., Y. To, J. Tang, and B. M. E. Moret (2009). “Maximum
independent sets of commuting and noninterfering inversions.”
In: BMC Bioinformatics 10.1, S6.

Swenson, K. M., V. Rajan, Y. Lin, and B. M. E. Moret (2010). “Sorting
signed permutations by inversions in O(n logn) time.” In: Journal
of Computational Biology 17.3, pp. 489–501.

Swenson, K. M., P. Simonaitis, and M. Blanchette (2016). “Models
and algorithms for genome rearrangement with positional con-
straints.” In: Algorithms for Molecular Biology 11.1, p. 13.

Tamames, J. (2001). “Evolution of gene order conservation in prokary-
otes.” In: Genome Biology 2.6, research0020–1.

Tamames, J., G. Casari, C. Ouzounis, and A. Valencia (1997). “Con-
served clusters of functionally related genes in two bacterial
genomes.” In: Journal of Molecular Evolution 44.1, pp. 66–73.

Tan, M. H., H. M. Gan, Y. P. Lee, G. C.-B. Poore, and C. M. Austin
(2017). “Digging deeper: new gene order rearrangements and dis-
tinct patterns of codons usage in mitochondrial genomes among
shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: De-
capoda).” In: PeerJ 5, e2982.

Tan, M. H., H. M. Gan, Y. P. Lee, S. Linton, F. Grandjean, M. L.
Bartholomei-santos, A. D. Miller, and C. M. Austin (2018). “OR-
DER within the chaos: Insights into phylogenetic relationships
within the Anomura (Crustacea: Decapoda) from mitochondrial
sequences and gene order rearrangements.” In: Molecular Phyloge-
netics and Evolution.

Tannier, E. and M.-F. Sagot (2004). “Sorting by reversals in sub-
quadratic time.” In: Proc. 15th Symposium on Combinatorial Pattern
Matching (CPM 2004). Springer, pp. 1–13.

Tannier, E., A. Bergeron, and M.-F. Sagot (2007). “Advances on sorting
by reversals.” In: Discrete Applied Mathematics 155.6-7, pp. 881–
888.

Thorsness, P. E. and T. D. Fox (1990). “Escape of DNA from mito-
chondria to the nucleus in Saccharomyces cerevisiae.” In: Nature
346.6282, p. 376.

Thrash, J. C., A. Boyd, M. J. Huggett, J. Grote, P. Carini, R. J. Yoder,
B. Robbertse, J. W. Spatafora, M. S. Rappé, and S. J. Giovannoni
(2011). “Phylogenomic evidence for a common ancestor of mito-
chondria and the SAR11 clade.” In: Scientific Reports 1, p. 13.

Tillier, E. R. M. and R. A. Collins (2000). “Genome rearrangement by
replication-directed translocation.” In: Nature Genetics 26.2, p. 195.

[April 2019 at 13:18 – classicthesis 4.4]

206 bibliography

Uno, T. and M. Yagiura (2000). “Fast algorithms to enumerate all
common intervals of two permutations.” In: Algorithmica 26.2,
pp. 290–309.

Vallès, Y., K. M. Halanych, and J. L. Boore (2008). “Group II introns
break new boundaries: presence in a bilaterian’s genome.” In:
PLoS One 3.1, e1488.

Vergara, J. P. C. (1997). “Sorting by bounded permutations.” PhD the-
sis. Virginia Tech.

Véron, A. S., C. Lemaitre, C. Gautier, V. Lacroix, and M.-F. Sagot
(2011). “Close 3D proximity of evolutionary breakpoints argues
for the notion of spatial synteny.” In: BMC Genomics 12.1, p. 303.

Wallace, D. C. (2005). “A mitochondrial paradigm of metabolic and
degenerative diseases, aging, and cancer: a dawn for evolutionary
medicine.” In: Annual Review of Genetics 39, pp. 359–407.

Wallace, D. C., G. Singh, M. T. Lott, J. A. Hodge, T. G. Schurr, A.-M.
Lezza, L. J. Elsas, and E. K. Nikoskelainen (1988). “Mitochondrial
DNA mutation associated with Leber’s hereditary optic neuropa-
thy.” In: Science 242.4884, pp. 1427–1430.

Walter, M. E. M. T., Z. Dias, and J. Meidanis (1998). “Reversal and
transposition distance of linear chromosomes.” In: Proc. 5th Int’l
Symposium on String Processing and Information Retrieval (SPIRE
1998). IEEE, pp. 96–102.

— (2000). “A new approach for approximating the transposition dis-
tance.” In: Proc. 7th Int’l Symposium on String Processing and Infor-
mation Retrieval (SPIRE 2000). IEEE, pp. 199–208.

Watson, J. D. and F. H. C. Crick (1953). “Molecular structure of nucleic
acids.” In: Nature 171.4356, pp. 737–738.

Watterson, G. A., W. J. Ewens, T. E. Hall, and A. Morgan (1982). “The
chromosome inversion problem.” In: Journal of Theoretical Biology
99.1, pp. 1–7.

Weigert, A., A. Golombek, M. Gerth, F. Schwarz, T. H. Struck, and C.
Bleidorn (2016). “Evolution of mitochondrial gene order in An-
nelida.” In: Molecular Phylogenetics and Evolution 94, pp. 196–206.

Wielandt, H. (1964). Finite Permutation Groups. Academic Press.
Wieseke, N., T. Hartmann, M. Bernt, and M. Middendorf (2015). “Co-

phylogenetic reconciliation with ILP.” In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics 12.6, pp. 1227–1235.

Woese, C. R., O. Kandler, and M. L. Wheelis (1990). “Towards a natu-
ral system of organisms: proposal for the domains Archaea, Bac-
teria, and Eucarya.” In: Proceedings of the National Academy of Sci-
ences 87.12, pp. 4576–4579.

Wolstenholme, D. R. (1992). “Animal mitochondrial DNA: structure
and evolution.” In: International Review of Cytology. Vol. 141. Else-
vier, pp. 173–216.

Xia, X. (2013). “What is Comparative Genomics?” In: Comparative Ge-
nomics. Springer, pp. 1–20.

Xia, Y., Y. Zheng, R. W. Murphy, and X. Zeng (2016). “Intraspecific re-
arrangement of mitochondrial genome suggests the prevalence
of the tandem duplication-random loss (TDLR) mechanism in
Quasipaa boulengeri.” In: BMC Genomics 17.1, p. 965.

[April 2019 at 13:18 – classicthesis 4.4]

bibliography 207

Xiaochen, L., L. Hu, C. Yao, S. Fan, J.-J. Wilson, and C. Wanzhi (2017).
“Conserved gene arrangement in the mitochondrial genomes of
barklouse families Stenopsocidae and Psocidae.” In: Frontiers of
Agricultural Science and Engineering 4.3, pp. 358–365.

Xu, W., D. Jameson, B. Tang, and P. G. Higgs (2006). “The relationship
between the rate of molecular evolution and the rate of genome
rearrangement in animal mitochondrial genomes.” In: Journal of
Molecular Evolution 63.3, pp. 375–392.

Yamazaki, N., R. Ueshima, J. A. Terrett, S. Yokobori, M. Kaifu, R.
Segawa, T. Kobayashi, K. Numachi, T. Ueda, K. Nishikawa, et
al. (1997). “Evolution of pulmonate gastropod mitochondrial
genomes: comparisons of gene organizations of Euhadra, Cepaea
and Albinaria and implications of unusual tRNA secondary struc-
tures.” In: Genetics 145.3, pp. 749–758.

Yancopoulos, S., O. Attie, and R. Friedberg (2005). “Efficient sorting
of genomic permutations by translocation, inversion and block
interchange.” In: Bioinformatics 21.16, pp. 3340–3346.

Yuan, M.-L., Q.-L. Zhang, L. Zhang, Z.-L. Guo, Y.-J. Liu, Y.-Y. Shen,
and R. Shao (2016). “High-level phylogeny of the Coleoptera in-
ferred with mitochondrial genome sequences.” In: Molecular Phy-
logenetics and Evolution 104, pp. 99–111.

Zeira, R. and R. Shamir (2018). “Genome Rearrangement Problems
with Single and Multiple Gene Copies: A Review.”

Zhang, M. and H. W. Leong (2008). “Gene team tree: A compact rep-
resentation of all gene teams.” In: Proc. 6th Int’l Workshop on Com-
parative Genomics (RECOMB-CG 2008). Springer, pp. 100–112.

Zhang, M., W. Arndt, and J. Tang (2009). “An exact solver for the DCJ
median problem.” In: Proc. 14th Pacific Symposium on Biocomputing
(PSB 2009). World Scientific, pp. 138–149.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

C U R R I C U L U M V I TÆ

personal information

Name: Dipl.-Math. Tom Hartmann

Born on: January 21, 1989

in: Bergen, Germany

education

2014–Present Research assistant at the Leipzig University, Ger-
many

2008–2014 Student of Mathematics at the Leipzig University,
Germany

2007 General Certificate of Education (Abitur), Bismarck-
Gymnasium Genthin, Germany

scientific cooperations

Germany Prof. Martin Middendorf – Leipzig University
Dr. Nicolas Wieseke – Leipzig University
Dr. Matthias Bernt – Helmholtz Centre for Envi-
ronmental Research - UFZ

Israel Prof. Roded Sharan – Tel-Aviv University

India Prof. Millie Pant – Indian Institute of Technology
Roorkee

Taiwan Prof. Pei-Yun Tsai – National Central University
Prof. Yao-Ting Huang – National Chung Cheng
University

April 25, 2019

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

L I S T O F P U B L I C AT I O N S

Cheng, Y.-C., T. Hartmann, P.-Y. Tsai, and M. Middendorf (2016).
“Population based ant colony optimization for reconstructing
ECG signals.” In: Evolutionary Intelligence 9.3, pp. 55–66.

Hartmann, T., N. Wieseke, R. Sharan, M. Middendorf, and M. Bernt
(2017). “Genome Rearrangement with ILP.” In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 15.5, pp. 1585–
1593.

Hartmann, T., M. Bernt, and M. Middendorf (2018a). “An Exact Al-
gorithm for Sorting by Weighted Preserving Genome Rearrange-
ments.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics. (in press).

Hartmann, T., A.-C. Chu, M. Middendorf, and M. Bernt (2018b).
“Combinatorics of tandem duplication random loss mutations on
circular genomes.” In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 15.1, pp. 83–95.

Hartmann, T., M. Bernt, and M. Middendorf (2018c). “EqualTDRL: il-
lustrating equivalent tandem duplication random loss rearrange-
ments.” In: BMC Bioinformatics 19.192.

Hartmann, T., M. Middendorf, and M. Bernt (2018d). “Genome Rear-
rangement Analysis: Cut and Join Genome Rearrangements and
Gene Cluster Preserving Approaches.” In: Comparative Genomics:
Methods and Protocols. Springer, pp. 261–289.

Hartmann, T., M. Bannach, and M. Middendorf (2018e). “Sorting
Signed Permutations by Inverse Tandem Duplication Random
Losses.” In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics. (in press).

Wieseke, N., T. Hartmann, M. Bernt, and M. Middendorf (2015). “Co-
phylogenetic reconciliation with ILP.” In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics 12.6, pp. 1227–1235.

[April 2019 at 13:18 – classicthesis 4.4]

[April 2019 at 13:18 – classicthesis 4.4]

S E L B S TÄ N D I G K E I T S E R K L Ä R U N G

Hiermit erkläre ich, die vorliegende Dissertation selbständig und
ohne unzulässige fremde Hilfe angefertigt zu haben. Ich habe
keine anderen als die angeführten Quellen und Hilfsmittel benutzt
und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröf-
fentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Perso-
nen bereitgestellten Materialien oder erbrachten Dienstleistungen als
solche gekennzeichnet.

Leipzig, 25. April 2019

Tom Hartmann

[April 2019 at 13:18 – classicthesis 4.4]

	Abstract
	Acknowledgments
	Contents
	Publications
	1 Introduction
	2 Background and Related Work
	2.1 Evolution and Mitochondria in a Nutshell
	2.1.1 What is DNA?
	2.1.2 Where there is DNA, there must be mutations!
	2.1.3 What are mitochondria and how do they evolve?
	2.1.4 Mitochondrial Gene Orders for Phylogeny Inference

	2.2 Formal Background
	2.2.1 Gene Orders and Permutations
	2.2.2 Gene Clusters and Common Intervals
	2.2.3 Mutations and Genome Rearrangements
	2.2.4 Tracing Evolution and Rearrangement Problems

	2.3 Background on Genome Rearrangements
	2.3.1 Inversion
	2.3.2 Transposition
	2.3.3 Inverse Transposition
	2.3.4 Tandem Duplication Random Loss
	2.3.5 Inverse Tandem Duplication Random Loss
	2.3.6 Mixed Rearrangement Models
	2.3.7 Multichromosomal Rearrangements and Content Modifications

	3 Tandem Duplication Random Losses on circular Permutations
	3.1 Solving the Distance Problem and Sorting Problem
	3.1.1 Basic Definitions and Preliminaries
	3.1.2 Properties of Circular Chains
	3.1.3 Properties of TDRLs on Circular Permutations
	3.1.4 Tandem Duplication Random Loss Distance on Directed Circular Permutations
	3.1.5 Tandem Duplication Random Loss Distance on Undirected Circular Permutations

	3.2 Consequences for Biological Applications
	3.2.1 Rearrangement Distance Differences
	3.2.2 Evaluation of the Tandem Duplication Non-Random Loss Model

	3.3 Conclusion

	4 Inverse Tandem Duplication Random Losses On Linear Permutations
	4.1 Solving the Distance and the Sorting Problem
	4.1.1 Basic Definitions and Preliminaries
	4.1.2 Structural Characterization of Permutations Generated by Repeated Application of iTDRLs
	4.1.3 Inverse Tandem Duplication Random Loss Distance on Signed Linear Permutations

	4.2 Impact on a General Model for Mitochondrial Evolution
	4.2.1 Bounding the Distance Problem under Major Mitochondrial Rearrangements

	4.3 Conclusion

	5 Algorithms for Sorting by Mitochondrial Rearrangements
	5.1 Basic Definitions and Preliminaries
	5.2 Exploring the 4type Rearrangement Model
	5.2.1 Bounding the 4type Rearrangement Distance
	5.2.2 Approximation Algorithm for Sorting By Mitochondrial Rearrangements
	5.2.3 Consequences for Biological Applications

	5.3 ILP for Sorting by Weighted Rearrangements
	5.3.1 Integer Linear Programming GeRe-ILP
	5.3.2 Implementation

	5.4 Sorting by Weighted Preserving Rearrangements
	5.4.1 Common Intervals and Strong Interval Trees
	5.4.2 Generalized Preserving Rearrangements
	5.4.3 Weighted Preserving Rearrangements
	5.4.4 Dynamic Programming Algorithm CREx2

	5.5 Evaluation
	5.5.1 CREx2 on Simulated Gene Order Data Sets
	5.5.2 CREx2 on Mitochondrial Gene Order Data Sets

	5.6 Conclusion

	6 Conclusion
	 Bibliography
	CV

	Declaration

