3,590 research outputs found

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Explicit formula for the generating series of diagonal 3D rook paths

    Get PDF
    Let ana_n denote the number of ways in which a chess rook can move from a corner cell to the opposite corner cell of an n×n×nn \times n \times n three-dimensional chessboard, assuming that the piece moves closer to the goal cell at each step. We describe the computer-driven \emph{discovery and proof} of the fact that the generating series G(x)=n0anxnG(x)= \sum_{n \geq 0} a_n x^n admits the following explicit expression in terms of a Gaussian hypergeometric function: G(x) = 1 + 6 \cdot \int_0^x \frac{\,\pFq21{1/3}{2/3}{2} {\frac{27 w(2-3w)}{(1-4w)^3}}}{(1-4w)(1-64w)} \, dw.Comment: To appear in "S\'eminaire Lotharingien de Combinatoire

    Non-integrability of density perturbations in the FRW universe

    Full text link
    We investigate the evolution equation of linear density perturbations in the Friedmann-Robertson-Walker universe with matter, radiation and the cosmological constant. The concept of solvability by quadratures is defined and used to prove that there are no "closed form" solutions except for the known Chernin, Heath, Meszaros and simple degenerate ones. The analysis is performed applying Kovacic's algorithm. The possibility of the existence of other, more general solutions involving special functions is also investigated.Comment: 13 pages. The latest version with added references, and a relevant new paragraph in section I

    Scaling functions in the square Ising model

    Full text link
    We show and give the linear differential operators Lqscal{\cal L}^{scal}_q of order q= n^2/4+n+7/8+(-1)^n/8, for the integrals In(r)I_n(r) which appear in the two-point correlation scaling function of Ising model F±(r)=limscalingM±2=nIn(r) F_{\pm}(r)= \lim_{scaling} {\cal M}_{\pm}^{-2} = \sum_{n} I_{n}(r). The integrals In(r) I_{n}(r) are given in expansion around r= 0 in the basis of the formal solutions of Lqscal\, {\cal L}^{scal}_q with transcendental combination coefficients. We find that the expression r1/4exp(r2/8) r^{1/4}\,\exp(r^2/8) is a solution of the Painlev\'e VI equation in the scaling limit. Combinations of the (analytic at r=0 r= 0) solutions of Lqscal {\cal L}^{scal}_q sum to exp(r2/8) \exp(r^2/8). We show that the expression r1/4exp(r2/8) r^{1/4} \exp(r^2/8) is the scaling limit of the correlation function C(N,N) C(N, N) and C(N,N+1) C(N, N+1). The differential Galois groups of the factors occurring in the operators Lqscal {\cal L}^{scal}_q are given.Comment: 26 page
    corecore