3,288 research outputs found

    Finding a Shortest Non-zero Path in Group-Labeled Graphs via Permanent Computation

    Get PDF
    A group-labeled graph is a directed graph with each arc labeled by a group element, and the label of a path is defined as the sum of the labels of the traversed arcs. In this paper, we propose a polynomial time randomized algorithm for the problem of finding a shortest s-t path with a non-zero label in a given group-labeled graph (which we call the Shortest Non-Zero Path Problem). This problem generalizes the problem of finding a shortest path with an odd number of edges, which is known to be solvable in polynomial time by using matching algorithms. Our algorithm for the Shortest Non-Zero Path Problem is based on the ideas of Björklund and Husfeldt (Proceedings of the 41st international colloquium on automata, languages and programming, part I. LNCS 8572, pp 211–222, 2014). We reduce the problem to the computation of the permanent of a polynomial matrix modulo two. Furthermore, by devising an algorithm for computing the permanent of a polynomial matrix modulo 2r for any fixed integer r, we extend our result to the problem of packing internally-disjoint s-t paths

    Determinant Sums for Undirected Hamiltonicity

    Full text link
    We present a Monte Carlo algorithm for Hamiltonicity detection in an nn-vertex undirected graph running in O∗(1.657n)O^*(1.657^{n}) time. To the best of our knowledge, this is the first superpolynomial improvement on the worst case runtime for the problem since the O∗(2n)O^*(2^n) bound established for TSP almost fifty years ago (Bellman 1962, Held and Karp 1962). It answers in part the first open problem in Woeginger's 2003 survey on exact algorithms for NP-hard problems. For bipartite graphs, we improve the bound to O∗(1.414n)O^*(1.414^{n}) time. Both the bipartite and the general algorithm can be implemented to use space polynomial in nn. We combine several recently resurrected ideas to get the results. Our main technical contribution is a new reduction inspired by the algebraic sieving method for kk-Path (Koutis ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in which we are set to count weighted arc labeled cycle covers over a finite field of characteristic two. We reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant summation technique for Exact Set Covers (Bj\"orklund STACS 2010) to evaluate it.Comment: To appear at IEEE FOCS 201

    Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity

    Get PDF

    Design and analysis of sequential and parallel single-source shortest-paths algorithms

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra\u27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Engineering Planar-Separator and Shortest-Path Algorithms

    Get PDF
    "Algorithm engineering" denotes the process of designing, implementing, testing, analyzing, and refining computational proceedings to improve their performance. We consider three graph problems -- planar separation, single-pair shortest-path routing, and multimodal shortest-path routing -- and conduct a systematic study in order to: classify different kinds of input; draw concrete recommendations for choosing the parameters involved; and identify and tune crucial parts of the algorithm
    • 

    corecore