1,576 research outputs found

    Finding Translation Examples for Under-Resourced Language Pairs or for Narrow Domains; the Case for Machine Translation

    Get PDF
    The cyberspace is populated with valuable information sources, expressed in about 1500 different languages and dialects. Yet, for the vast majority of WEB surfers this wealth of information is practically inaccessible or meaningless. Recent advancements in cross-lingual information retrieval, multilingual summarization, cross-lingual question answering and machine translation promise to narrow the linguistic gaps and lower the communication barriers between humans and/or software agents. Most of these language technologies are based on statistical machine learning techniques which require large volumes of cross lingual data. The most adequate type of cross-lingual data is represented by parallel corpora, collection of reciprocal translations. However, it is not easy to find enough parallel data for any language pair might be of interest. When required parallel data refers to specialized (narrow) domains, the scarcity of data becomes even more acute. Intelligent information extraction techniques from comparable corpora provide one of the possible answers to this lack of translation data

    Multilingual Neural Translation

    Get PDF
    Machine translation (MT) refers to the technology that can automatically translate contents in one language into other languages. Being an important research area in the field of natural language processing, machine translation has typically been considered one of most challenging yet exciting problems. Thanks to research progress in the data-driven statistical machine translation (SMT), MT is recently capable of providing adequate translation services in many language directions and it has been widely deployed in various practical applications and scenarios. Nevertheless, there exist several drawbacks in the SMT framework. The major drawbacks of SMT lie in its dependency in separate components, its simple modeling approach, and the ignorance of global context in the translation process. Those inherent drawbacks prevent the over-tuned SMT models to gain any noticeable improvements over its horizon. Furthermore, SMT is unable to formulate a multilingual approach in which more than two languages are involved. The typical workaround is to develop multiple pair-wise SMT systems and connect them in a complex bundle to perform multilingual translation. Those limitations have called out for innovative approaches to address them effectively. On the other hand, it is noticeable how research on artificial neural networks has progressed rapidly since the beginning of the last decade, thanks to the improvement in computation, i.e faster hardware. Among other machine learning approaches, neural networks are known to be able to capture complex dependencies and learn latent representations. Naturally, it is tempting to apply neural networks in machine translation. First attempts revolve around replacing SMT sub-components by the neural counterparts. Later attempts are more revolutionary by fundamentally changing the whole core of SMT with neural networks, which is now popularly known as neural machine translation (NMT). NMT is an end-to-end system which directly estimate the translation model between the source and target sentences. Furthermore, it is later discovered to capture the inherent hierarchical structure of natural language. This is the key property of NMT that enables a new training paradigm and a less complex approach for multilingual machine translation using neural models. This thesis plays an important role in the evolutional course of machine translation by contributing to the transition of using neural components in SMT to the completely end-to-end NMT and most importantly being the first of the pioneers in building a neural multilingual translation system. First, we proposed an advanced neural-based component: the neural network discriminative word lexicon, which provides a global coverage for the source sentence during the translation process. We aim to alleviate the problems of phrase-based SMT models that are caused by the way how phrase-pair likelihoods are estimated. Such models are unable to gather information from beyond the phrase boundaries. In contrast, our discriminative word lexicon facilitates both the local and global contexts of the source sentences and models the translation using deep neural architectures. Our model has improved the translation quality greatly when being applied in different translation tasks. Moreover, our proposed model has motivated the development of end-to-end NMT architectures later, where both of the source and target sentences are represented with deep neural networks. The second and also the most significant contribution of this thesis is the idea of extending an NMT system to a multilingual neural translation framework without modifying its architecture. Based on the ability of deep neural networks to modeling complex relationships and structures, we utilize NMT to learn and share the cross-lingual information to benefit all translation directions. In order to achieve that purpose, we present two steps: first in incorporating language information into training corpora so that the NMT learns a common semantic space across languages and then force the NMT to translate into the desired target languages. The compelling aspect of the approach compared to other multilingual methods, however, lies in the fact that our multilingual extension is conducted in the preprocessing phase, thus, no change needs to be done inside the NMT architecture. Our proposed method, a universal approach for multilingual MT, enables a seamless coupling with any NMT architecture, thus makes the multilingual expansion to the NMT systems effortlessly. Our experiments and the studies from others have successfully employed our approach with numerous different NMT architectures and show the universality of the approach. Our multilingual neural machine translation accommodates cross-lingual information in a learned common semantic space to improve altogether every translation direction. It is then effectively applied and evaluated in various scenarios. We develop a multilingual translation system that relies on both source and target data to boost up the quality of a single translation direction. Another system could be deployed as a multilingual translation system that only requires being trained once using a multilingual corpus but is able to translate between many languages simultaneously and the delivered quality is more favorable than many translation systems trained separately. Such a system able to learn from large corpora of well-resourced languages, such as English → German or English → French, has proved to enhance other translation direction of low-resourced language pairs like English → Lithuania or German → Romanian. Even more, we show that kind of approach can be applied to the extreme case of zero-resourced translation where no parallel data is available for training without the need of pivot techniques. The research topics of this thesis are not limited to broadening application scopes of our multilingual approach but we also focus on improving its efficiency in practice. Our multilingual models have been further improved to adequately address the multilingual systems whose number of languages is large. The proposed strategies demonstrate that they are effective at achieving better performance in multi-way translation scenarios with greatly reduced training time. Beyond academic evaluations, we could deploy the multilingual ideas in the lecture-themed spontaneous speech translation service (Lecture Translator) at KIT. Interestingly, a derivative product of our systems, the multilingual word embedding corpus available in a dozen of languages, can serve as a useful resource for cross-lingual applications such as cross-lingual document classification, information retrieval, textual entailment or question answering. Detailed analysis shows excellent performance with regard to semantic similarity metrics when using the embeddings on standard cross-lingual classification tasks

    Computational Phraseology light: automatic translation of multiword expressions without translation resources

    Get PDF
    This paper describes the first phase of a project whose ultimate goal is the implementation of a practical tool to support the work of language learners and translators by automatically identifying multiword expressions (MWEs) and retrieving their translations for any pair of languages. The task of translating multiword expressions is viewed as a two-stage process. The first stage is the extraction of MWEs in each of the languages; the second stage is a matching procedure for the extracted MWEs in each language which proposes the translation equivalents. This project pursues the development of a knowledge-poor approach for any pair of languages which does not depend on translation resources such as dictionaries, translation memories or parallel corpora which can be time consuming to develop or difficult to acquire, being expensive or proprietary. In line with this philosophy, the methodology developed does not rely on any dictionaries or parallel corpora, nor does it use any (bilingual) grammars. The only information comes from comparable corpora, inexpensively compiled. The first proofof- concept stage of this project covers English and Spanish and focuses on a particular subclass of MWEs: verb-noun expressions (collocations) such as take advantage, make sense, prestar atención and tener derecho. The choice of genre was determined by the fact that newswire is a widespread genre and available in different languages. An additional motivation was the fact that the methodology was developed as language independent with the objective of applying it to and testing it for different languages. The ACCURAT toolkit (Pinnis et al. 2012; Skadina et al. 2012; Su and Babych 2012a) was employed to compile automatically the comparable corpora and documents only above a specific threshold were considered for inclusion. More specifically, only pairs of English and Spanish documents with comparability score (cosine similarity) higher 0.45 were extracted. Statistical association measures were employed to quantify the strength of the relationship between two words and to propose that a combination of a verb and a noun above a specific threshold would be a (candidate for) multiword expression. This study focused on and compared four popular and established measures along with frequency: Log-likelihood ratio, T-Score, Log Dice and Salience. This project follows the distributional similarity premise which stipulates that translation equivalents share common words in their contexts and this applies also to multiword expressions. The Vector Space Model is traditionally used to represent words with their co-occurrences and to measure similarity. The vector representation for any word is constructed from the statistics of the occurrences of that word with other specific/context words in a corpus of texts. In this study, the word2vec method (Mikolov et al. 2013) was employed. Mikolov et al.’s method utilises patterns of word co-occurrences within a small window to predict similarities among words. Evaluation results are reported for both extracting MWEs and their automatic translation. A finding of the evaluation worth mentioning is that the size of the comparable corpora is more important for the performance of automatic translation of MWEs than the similarity between them as long as the comparable corpora used are of minimal similarity

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)

    Democratizing Neural Machine Translation with OPUS-MT

    Full text link
    This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices

    Romanian Language Technology — a view from an academic perspective

    Get PDF
    The article reports on research and developments pursued by the Research Institute for Artificial Intelligence "Mihai Draganescu" of the Romanian Academy in order to narrow the gaps identified by the deep analysis on the European languages made by Meta-Net white papers and published by Springer in 2012. Except English, all the European languages needed significant research and development in order to reach an adequate technological level, in line with the expectations and requirements of the knowledge society
    • …
    corecore