1,126 research outputs found

    Universal, Unsupervised (Rule-Based), Uncovered Sentiment Analysis

    Get PDF
    We present a novel unsupervised approach for multilingual sentiment analysis driven by compositional syntax-based rules. On the one hand, we exploit some of the main advantages of unsupervised algorithms: (1) the interpretability of their output, in contrast with most supervised models, which behave as a black box and (2) their robustness across different corpora and domains. On the other hand, by introducing the concept of compositional operations and exploiting syntactic information in the form of universal dependencies, we tackle one of their main drawbacks: their rigidity on data that are structured differently depending on the language concerned. Experiments show an improvement both over existing unsupervised methods, and over state-of-the-art supervised models when evaluating outside their corpus of origin. Experiments also show how the same compositional operations can be shared across languages. The system is available at http://www.grupolys.org/software/UUUSA/Comment: 19 pages, 5 Tables, 6 Figures. This is the authors version of a work that was accepted for publication in Knowledge-Based System

    Aspect-based Sentiment Analysis on Car Reviews Using SpaCy Dependency Parsing and VADER

    Get PDF
    All businesses, including car manufacturers, need to understand what aspects of their products are perceived as positive and negative based on user reviews so that they can make improvements for the negative aspects and maintain the already positive aspects of their products. One of the available tools for this task is Sentiment Analysis. The traditional document-level and sentence-level sentiment analysis will only classify each document / sentence into a class. This approach is incapable of finding the more fine-grained sentiment for a specific aspect of interest, for example, comfort, price, engine, paint, etc. Therefore, in this case, Aspect-based Sentiment Analysis is used. A total of 22.702 rows of car review data are scraped from the Edmunds website (www.edmunds.com) for a specific car manufacturer. Dependency Parsing and noun phrase extraction were carried out using the SpaCy module in Python, and VADER sentiment analysis was used to determine the polarity of the sentiment for each noun phrase. Results showed that the vast majority of the sentiments are on the positive aspects: comfortable to drive, good fuel economy / mileage, reliability, spaciousness, value for money, helpful rear camera, quiet ride, good acceleration, well-designed, good sound system, and solid build. The results for the negative aspects have some similar aspects with those in the positive class but has a very low frequency. This finding means that the vast majority of the users are satisfied with multiple aspects of the produced cars. The limitation of this research and future research direction are discussed

    Sentiment Analysis: An Overview from Linguistics

    Get PDF
    Sentiment analysis is a growing field at the intersection of linguistics and computer science, which attempts to automatically determine the sentiment, or positive/negative opinion, contained in text. Sentiment can be characterized as positive or negative evaluation expressed through language. Common applications of sentiment analysis include the automatic determination of whether a review posted online (of a movie, a book, or a consumer product) is positive or negative towards the item being reviewed. Sentiment analysis is now a common tool in the repertoire of social media analysis carried out by companies, marketers and political analysts. Research on sentiment analysis extracts information from positive and negative words in text, from the context of those words, and the linguistic structure of the text. This brief survey examines in particular the contributions that linguistic knowledge can make to the problem of automatically determining sentiment

    How important is syntactic parsing accuracy? An empirical evaluation on rule-based sentiment analysis

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10462-017-9584-0[Abstract]: Syntactic parsing, the process of obtaining the internal structure of sentences in natural languages, is a crucial task for artificial intelligence applications that need to extract meaning from natural language text or speech. Sentiment analysis is one example of application for which parsing has recently proven useful. In recent years, there have been significant advances in the accuracy of parsing algorithms. In this article, we perform an empirical, task-oriented evaluation to determine how parsing accuracy influences the performance of a state-of-the-art rule-based sentiment analysis system that determines the polarity of sentences from their parse trees. In particular, we evaluate the system using four well-known dependency parsers, including both current models with state-of-the-art accuracy and more innacurate models which, however, require less computational resources. The experiments show that all of the parsers produce similarly good results in the sentiment analysis task, without their accuracy having any relevant influence on the results. Since parsing is currently a task with a relatively high computational cost that varies strongly between algorithms, this suggests that sentiment analysis researchers and users should prioritize speed over accuracy when choosing a parser; and parsing researchers should investigate models that improve speed further, even at some cost to accuracy.Carlos Gómez-Rodríguez has received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant Agreement No 714150), Ministerio de Economía y Competitividad (FFI2014-51978-C2-2-R), and the Oportunius Program (Xunta de Galicia). Iago Alonso-Alonso was funded by an Oportunius Program Grant (Xunta de Galicia). David Vilares has received funding from the Ministerio de Educación, Cultura y Deporte (FPU13/01180) and Ministerio de Economía y Competitividad (FFI2014-51978-C2-2-R)

    Econometrics meets sentiment : an overview of methodology and applications

    Get PDF
    The advent of massive amounts of textual, audio, and visual data has spurred the development of econometric methodology to transform qualitative sentiment data into quantitative sentiment variables, and to use those variables in an econometric analysis of the relationships between sentiment and other variables. We survey this emerging research field and refer to it as sentometrics, which is a portmanteau of sentiment and econometrics. We provide a synthesis of the relevant methodological approaches, illustrate with empirical results, and discuss useful software
    corecore