4,943 research outputs found

    On the Geometric Interpretation of the Nonnegative Rank

    Get PDF
    The nonnegative rank of a nonnegative matrix is the minimum number of nonnegative rank-one factors needed to reconstruct it exactly. The problem of determining this rank and computing the corresponding nonnegative factors is difficult; however it has many potential applications, e.g., in data mining, graph theory and computational geometry. In particular, it can be used to characterize the minimal size of any extended reformulation of a given combinatorial optimization program. In this paper, we introduce and study a related quantity, called the restricted nonnegative rank. We show that computing this quantity is equivalent to a problem in polyhedral combinatorics, and fully characterize its computational complexity. This in turn sheds new light on the nonnegative rank problem, and in particular allows us to provide new improved lower bounds based on its geometric interpretation. We apply these results to slack matrices and linear Euclidean distance matrices and obtain counter-examples to two conjectures of Beasly and Laffey, namely we show that the nonnegative rank of linear Euclidean distance matrices is not necessarily equal to their dimension, and that the rank of a matrix is not always greater than the nonnegative rank of its square

    On Restricted Nonnegative Matrix Factorization

    Get PDF
    Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n×mn \times m matrix MM into a product of a nonnegative n×dn \times d matrix WW and a nonnegative d×md \times m matrix HH. Restricted NMF requires in addition that the column spaces of MM and WW coincide. Finding the minimal inner dimension dd is known to be NP-hard, both for NMF and restricted NMF. We show that restricted NMF is closely related to a question about the nature of minimal probabilistic automata, posed by Paz in his seminal 1971 textbook. We use this connection to answer Paz's question negatively, thus falsifying a positive answer claimed in 1974. Furthermore, we investigate whether a rational matrix MM always has a restricted NMF of minimal inner dimension whose factors WW and HH are also rational. We show that this holds for matrices MM of rank at most 33 and we exhibit a rank-44 matrix for which WW and HH require irrational entries.Comment: Full version of an ICALP'16 pape

    Families of short cycles on Riemannian surfaces

    Full text link
    Let MM be a closed Riemannian surface of genus gg. We construct a family of 1-cycles on MM that represents a non-trivial element of the k'th homology group of the space of cycles and such that the mass of each cycle is bounded above by Cmax{k,g}Area(M)C \max\{\sqrt{k}, \sqrt{g}\} \sqrt{Area(M)}. This result is optimal up to a multiplicative constant.Comment: 16 pages, 3 figures. Exposition improved, to appear in Duke Mathematical Journa

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    On the geometric interpretation of the nonnegative rank

    Get PDF
    The nonnegative rank of a nonnegative matrix is the minimum number of nonnegative rank-one factors needed to reconstruct it exactly. The problem of determining this rank and computing the corresponding nonnegative factors is difficult; however it has many potential applications, e.g., in data mining, graph theory and computational geometry. In particular, it can be used to characterize the minimal size of any extended reformulation of a given combinatorial optimization program. In this paper, we introduce and study a related quantity, called the restricted nonnegative rank. We show that computing this quantity is equivalent to a problem in polyhedral combinatorics, and fully characterize its computational complexity. This in turn sheds new light on the nonnegative rank problem, and in particular allows us to provide new improved lower bounds based on its geometric interpretation. We apply these results to slack matrices and linear Euclidean distance matrices and obtain counter-examples to two conjectures of Beasly and Laffey, namely we show that the nonnegative rank of linear Euclidean distance matrices is not necessarily equal to their dimension, and that the rank of a matrix is not always greater than the nonnegative rank of its square.nonnegative rank, restricted nonnegative rank, nested polytopes, computational complexity, computational geometry, extended formulations, linear Euclidean distance matrices.

    Deconstructing Approximate Offsets

    Full text link
    We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance \eps in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using CGAL, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter \delta; its running time additionally depends on \delta. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.Comment: 18 pages, 11 figures, previous version accepted at SoCG 2011, submitted to DC
    corecore