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Abstract
Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative
n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m
matrix H. Restricted NMF requires in addition that the column spaces of M and W coincide.
Finding the minimal inner dimension d is known to be NP-hard, both for NMF and restricted
NMF. We show that restricted NMF is closely related to a question about the nature of minimal
probabilistic automata, posed by Paz in his seminal 1971 textbook. We use this connection to
answer Paz’s question negatively, thus falsifying a positive answer claimed in 1974.

Furthermore, we investigate whether a rational matrix M always has a restricted NMF of
minimal inner dimension whose factors W and H are also rational. We show that this holds
for matrices M of rank at most 3 and we exhibit a rank-4 matrix for which W and H require
irrational entries.
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1 Introduction

Nonnegative matrix factorization (NMF) is the task of factoring a matrix of nonnegative real
numbers M (henceforth a nonnegative matrix) as a product M = W ·H such that matrices
W and H are also nonnegative. The smallest inner dimension of any such factorization is
called the nonnegative rank of M , written rank+(M).
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103:2 On Restricted Nonnegative Matrix Factorization

In machine learning, NMF was popularized by the seminal work of Lee and Seung [14] as
a tool for finding features in facial-image databases. Since then, NMF has found a broad
range of applications – including document clustering, topic modelling, computer vision,
recommender systems, bioinformatics, and acoustic signal processing [5, 4, 7, 19, 21, 22].
In applications, matrix M can typically be seen as a matrix of data points: each column
of M corresponds to a data point and each row to a feature. Then, computing a nonnegative
factorization M = W ·H corresponds to expressing the data points (columns of M) as convex
combinations of latent factors (columns of W ), i.e., as linear combinations of latent factors
with nonnegative coefficients (columns of H).

From a computational perspective, perhaps the most basic problem concerning NMF
is whether a given nonnegative matrix of rational numbers M admits an NMF with inner
dimension at most a given number k. Formally, the NMF problem asks whether rank+(M) ≤ k.
In practical applications, various heuristics and local-search algorithms are used to compute
an approximate nonnegative factorization, but little is known in terms of their theoretical
guarantees. The NMF problem under the separability assumption of Donoho and Stodden [9]
is tractable: an NMF M = W ·H is called separable if every column of W is also a column
of M . In 2012, Arora et al. [2] showed that it is decidable in polynomial time whether a
given matrix admits a separable NMF with a given inner dimension. Further progress was
made recently, with several efficient algorithms for computing near-separable NMFs [13, 12].

Vavasis [20] showed that the problem of deciding whether the rank of a nonnegative
matrix is equal to its nonnegative rank is NP-hard. This result implies that generalizations
of this problem, such as the aforementioned NMF problem, the problem of computing the
factors W,H (in both exact and approximate versions), and nonnegative rank determination,
are also NP-hard. It is not known whether any of these problems are in NP.

Vavasis [20] notes that the difficulty in proving membership in NP lies in the fact
that a certificate for a positive answer to the NMF problem seems to require the sought
factors: a pair of nonnegative matrices W,H such that M = W ·H. Related to this, Cohen
and Rothblum [8] posed the question of whether, given a nonnegative matrix of rational
numbers M , there always exists an NMF M = W ·H of inner dimension equal to rank+(M)
such that both W and H are also matrices of rational numbers. A natural route to proving
membership of the NMF problem in NP would be to give a positive answer to the question
of Cohen and Rothblum (as well as a polynomial bound on the bit-length of the factors
W and H). However, the question remains open. Currently the best complexity bound
for the NMF problem is membership in PSPACE, which is obtained by translation into
the existential theory of real-closed fields [2]. Such a translation shows that one can always
choose the entries of W and H to be algebraic numbers.

In this work, we focus on the so-called restricted NMF (RNMF) problem, introduced
by Gillis and Glineur [11]. The RNMF problem is defined as the NMF problem, except
that the column spaces of M and W are required to coincide. (Note that for any NMF, the
column space of M is a subspace of the column space of W .) This problem has a natural
geometric interpretation as the nested polytope problem (NPP): the problem of finding a
minimum-vertex polytope nested between two given convex polytopes. In more detail, for a
rank-r matrix M , finding an RNMF with inner dimension d is known to correspond exactly
to finding a nested polytope with d vertices in an (r − 1)-dimensional NPP.

Our contributions are as follows.
1. We establish a tight connection between NMF and the coverability relation in labelled

Markov chains (LMCs). The latter notion was introduced by Paz [15]. Loosely speaking,
an LMCM′ covers an LMCM if for any initial distribution over the states ofM there is
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an initial distribution over the states ofM′ such thatM andM′ are equivalent. In 1971,
Paz [15] asked a question about the nature of minimal covering LMCs. The question
was supposedly answered positively in 1974 [3]. However, we show that the correct
answer is negative, thus falsifying the claim in [3]. Instrumental to our counterexample is
the observation that restricted nonnegative rank and nonnegative rank can be different.
(Indeed, the wrong claims in [3] seem to implicitly rely on the opposite assumption,
although the notions of NMF and RNMF had not yet been developed.)

2. We show that the RNMF problem for matrices M of rank 3 or less can be solved in
polynomial time. In fact, we show that there is always a rational NMF of M with inner
dimension rank+(M), and that it can be computed in polynomial time in the Turing
model of computation. This improves a result in [11] where the RNMF problem is shown
to be solvable in polynomial time assuming a RAM model with unit-cost arithmetic.
Both our algorithm and the one in [11] exploit the connection to the 2-dimensional NPP,
allowing us to take advantage of a geometric algorithm by Aggarwal et al. [1]. We need
to adapt the algorithm in [1] to ensure that the occurring numbers are rational and can
be computed in polynomial time in the Turing model of computation.

3. We exhibit a rank-4 matrix that has an RNMF with inner dimension 5 but no rational
RNMF with inner dimension 5. We construct this matrix via a particular instance of the
3-dimensional NPP, again taking advantage of the geometric interpretation of RNMF.
Our result answers the RNMF variant of Cohen and Rothblum’s question in [8] negatively.
The original (NMF) variant remains open.

Detailed proofs of all results can be found in the full version of this paper.

2 Nonnegative Matrix Factorization

Let N and N0 denote the set of all positive and nonnegative integers, respectively. For
every n ∈ N, we write [n] for the set {1, 2, . . . , n} and write In for the identity matrix of
order n. For any ordered field F, we denote by F+ the set of all its nonnegative elements.
For any vector v, we write vi for its ith entry. A vector v is called stochastic if its entries
are nonnegative real numbers that sum up to one. For every i ∈ [n], we write ei for the ith
coordinate vector in Rn. We write 1(n) for the n-dimensional column vector with all ones.
We omit the superscript if it is understood from the context.

For any matrix M , we write Mi for its ith row, M j for its jth column, and Mi,j for its
(i, j)th entry. The column space (resp., row space) of M , written Col(M) (resp., Row(M)), is
the vector space spanned by the columns (resp., rows) of M . A matrix is called nonnegative
(resp., zero or rational) if so are all its entries. A nonnegative matrix is column-stochastic
(resp., row-stochastic) if the element sum of each of its columns (resp., rows) is one.

2.1 Nonnegative Rank

Let F be an ordered field, such as the reals R or the rationals Q. Given a nonnegative matrix
M ∈ Fn×m+ , a nonnegative matrix factorization (NMF) over F of M is any representation of
the form M = W ·H where W ∈ Fn×d+ and H ∈ Fd×m+ are nonnegative matrices. Note that
Col(M) ⊆ Col(W ). We refer to d as the inner dimension of the NMF, and hence refer to
NMF M = W ·H as being d-dimensional. The nonnegative rank over F of M is the smallest
number d ∈ N0 such that there exists a d-dimensional NMF over F of M . An equivalent
characterization [8] of the nonnegative rank over F of M is as the smallest number of rank-1
matrices in Fn×m+ such that M is equal to their sum. The nonnegative rank over R will
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103:4 On Restricted Nonnegative Matrix Factorization

henceforth simply be called nonnegative rank, and will be denoted by rank+(M). For any
nonnegative matrix M ∈ Rn×m+ , it is easy to see that rank(M) ≤ rank+(M) ≤ min{n,m}.

Given a nonzero matrixM ∈ Fn×m+ , by removing the zero columns ofM and dividing each
remaining column by the sum of its elements, we obtain a column-stochastic matrix M ′ with
equal nonnegative rank. Similarly, if M = W ·H then after removing zero columns in W and
multiplying with a suitable diagonal matrixD, we getM = W ·H = WD·D−1H whereWD is
column-stochastic. IfM is column-stochastic then 1> = 1>M = 1>WD ·D−1H = 1>D−1H,
hence D−1H is column-stochastic as well. Thus, without loss of generality one can consider
NMFs of column-stochastic matrices into column-stochastic matrices [8, Theorem 3.2].

NMF problem: Given a matrix M ∈ Qn×m+ and k ∈ N, is rank+(M) ≤ k?

The NMF problem is NP-hard, even for k = rank(M) (see [20]). On the other hand, it is
reducible to the existential theory of the reals, hence by [6, 16] it is in PSPACE.

For a matrixM ∈ Qn×m+ , its nonnegative rank over Q is clearly at least rank+(M). While
those ranks are equal if rank(M) ≤ 2, a longstanding open question by Cohen and Rothblum
asks whether they are always equal [8]. In other words, it is conceivable that there exists
a rational matrix M ∈ Qn×m+ with rank+(M) = d that has no rational NMF with inner
dimension d. Recently, Shitov [17] exhibited a nonnegative matrix (with irrational entries)
whose nonnegative rank over a subfield of R is different from its nonnegative rank over R.

2.2 Restricted Nonnegative Rank
For all matrices M ∈ Fn×m+ , an NMF M = W ·H is called restricted NMF (RNMF) [11]
if rank(M) = rank(W ). As we know Col(M) ⊆ Col(W ) holds for all NMF instances, the
condition rank(M) = rank(W ) is then equivalent to Col(M) = Col(W ). The restricted
nonnegative rank over F of M is the smallest number d ∈ N0 such that there exists a
d-dimensional restricted nonnegative factorization over F of M . Unless indicated otherwise,
henceforth we will assume F = R when speaking of the restricted nonnegative rank of M ,
and denote it by rrank+(M).

RNMF problem: Given a matrix M ∈ Qn×m+ and k ∈ N, is rrank+(M) ≤ k?

We have the following basic properties.

I Lemma 1 ([11]). Let M ∈ Rn×m+ . Then rank(M) ≤ rank+(M) ≤ rrank+(M) ≤ m.
Moreover, if rank(M) = rank+(M) then rank(M) = rrank+(M).

Thus, with the above-mentioned NP-hardness result, it follows that the RNMF problem is
also NP-hard and in PSPACE.

For a matrix M ∈ Qn×m+ , its restricted nonnegative rank over Q is clearly at least
rrank+(M). As with nonnegative rank, in general it is not known whether the restricted
nonnegative ranks of M over R and over Q are equal. By [8, Theorem 4.1] and Lemma 1,
this is true when rank(M) ≤ 2.

RNMF has the following geometric interpretation. For a dimension ` ∈ N, the convex
combination of a set {v1, . . . , vm} ⊂ R` is a point λ1v1 + · · ·+ λmvm where (λ1, . . . , λm) is a
stochastic vector. The convex hull of {v1, . . . , vm}, written as conv{v1, . . . , vm}, is the set
of all convex combinations of {v1, . . . , vm}. We call conv{v1, . . . , vm} a polytope spanned by
v1, . . . , vm. A polyhedron is a set {x ∈ R` | Ax+ b ≥ 0 } with A ∈ Rn×` and b ∈ Rn. A set
is a polytope if and only if it is a bounded polyhedron. A polytope is full-dimensional (i.e.,
has volume) if the matrix (A b) ∈ Rn×(`+1) has rank `+ 1.
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Nested polytope problem (NPP): Given r, n ∈ N, let A ∈ Qn×(r−1) and b ∈ Qn be
such that P = {x ∈ Rr−1 | Ax+ b ≥ 0 } is a full-dimensional polytope. Let S ⊆ P be
a full-dimensional polytope described by spanning points. The nested polytope problem
(NPP) asks, given A, b, S and a number k ∈ N, whether there exist k points that span
a polytope Q with S ⊆ Q ⊆ P . Such a polytope Q is called nested between P and S.

The following proposition appears as Theorem 1 in [11].

I Proposition 2. The RNMF problem and the NPP are interreducible in polynomial time.

More specifically, the reductions are as follows.
1. Given a nonnegative matrix M ∈ Qn×m+ of rank r, one can compute in polynomial time

A ∈ Qn×(r−1) and b ∈ Qn such that P = {x ∈ Rr−1 | Ax+ b ≥ 0 } is a full-dimensional
polytope, andm rational points that span a full-dimensional polytope S ⊆ P such that
(a) any d-dimensional RNMF (rational or irrational) of M determines d points that span

a polytope Q with S ⊆ Q ⊆ P , and
(b) any d points (rational or irrational) that span a polytope Q with S ⊆ Q ⊆ P

determine a d-dimensional RNMF of M .
2. Let A ∈ Qn×(r−1) and b ∈ Qn such that P = {x ∈ Rr−1 | Ax+b ≥ 0 } is a full-dimensional

polytope. Let S ⊆ P be a full-dimensional polytope spanned by s1, . . . , sm ∈ Qr−1. Then
matrix M ∈ Qn×m with M i = Asi + b for i ∈ [m] satisfies (a) and (b).

Importantly, the correspondences (a) and (b) preserve rationality. In the full version we
detail the reduction from point 2 above, thereby filling in a small gap in the proof of [11].

I Example 3 ([11, Example 1]). Using the geometric interpretation of restricted nonnegative
rank it follows easily that, in general, we may have rank(M) < rank+(M) < rrank+(M).
Let 3D-cube NPP be the NPP instance where the inner and outer polytope are the standard
3D cube, i.e., P = S = {x ∈ R3 | xi ∈ [0, 1], 1 ≤ i ≤ 3 }. The only nested polytope is Q = P .
The corresponding restricted NMF problem consists of the following matrix M ∈ R6×8

+ :

M =

 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

 .

We have rrank+(M) = 8 and rank(M) = 4. Since rank+(M) is bounded above by the
number of rows in M , we have rank+(M) ≤ 6. It is shown in [11] that rank+(M) = 6.

3 Coverability of Labelled Markov Chains

In this section, we establish a connection between RNMF and the coverability relation for
labelled Markov chains. We thereby answer an open question posed in 1971 by Paz [15]
about the nature of minimal covering labelled Markov chains.

A labelled Markov chain (LMC ) is a tupleM = (n,Σ, µ) where n ∈ N is the number of
states, Σ is a finite alphabet of labels, and function µ : Σ→ [0, 1]n×n specifies the transition
matrices and is such that

∑
σ∈Σ µ(σ) is a row-stochastic matrix. The intuitive behaviour of

the LMCM is as follows: WhenM is in state i ∈ [n], it emits label σ and moves to state j,
with probability µ(σ)i,j .

We extend the function µ to words by defining µ(ε) := In and µ(σ1 . . . σk) := µ(σ1) · · ·µ(σk)
for all k ∈ N, and all σ1, . . . , σk ∈ Σ. Observe that µ(xy) = µ(x) ·µ(y) for all words x, y ∈ Σ∗.
We view µ(w) for a word w ∈ Σ∗ as follows: ifM is in state i ∈ [n], it emits w and moves to
state j in |w| steps, with probability µ(w)i,j .

ICALP 2016



103:6 On Restricted Nonnegative Matrix Factorization

For i ∈ [n] and w ∈ Σ∗, we write prMi (w) := e>i · µ(w) · 1(n) for the probability that,
starting in state i, M emits word w. For example, in Figure 1 we have prM0 (a1b1) = 1

12 .
More generally, for a given initial distribution π on the set of states [n] (viewed as a stochastic
row vector), we write prMπ (w) := π · µ(w) · 1(n) for the probability thatM emits word w
starting from state distribution π.

We say that an LMCM is covered by an LMCM′, written asM′ ≥M, if for every initial
distribution π forM there exists a distribution π′ forM′ such that prMπ (w) = prM′π′ (w) for
all words w ∈ Σ∗.

The backward matrix ofM is a matrix BackM∈ R[n]×Σ∗
+ where (BackM)i,w = prMi (w)

for every i ∈ [n] and w ∈ Σ∗. The rank of M is defined by rank(M) = rank(BackM).
(Matrix BackM is infinite, but since it has n rows, its rank is at most n.) It follows easily
from the definition (see also [15, Theorem 3.1]) thatM′ ≥M if and only if there exists a
row-stochastic matrix A such that A · BackM′ = BackM.

LMCs can be seen as a special case of stochastic sequential machines, a class of probabilistic
automata introduced and studied by Paz [15]. More specifically, they are stochastic sequential
machines with a singleton input alphabet and Σ as output alphabet. In his seminal 1971
textbook on probabilistic automata [15], Paz asks the following question:

I Question 4 (Paz [15], p. 38). If an n-state LMC M is covered by an n′-state LMC M′
where n′ < n, isM necessarily covered by some n∗-state LMCM∗, where n∗ < n, such that
M∗ andM have the same rank?

In 1974, a positive answer to this question was claimed [3, Theorem 13]. In fact, the author
of [3] makes a stronger claim, namely that the answer to Question 4 is yes, even if the
inequality n∗ < n in Question 4 is replaced by n∗ ≤ n′. To the contrary, we show:

I Theorem 5. The answer to Question 4 is negative.

Theorem 5 falsifies the claim in [3]. In the full version we discuss in detail the mistake in [3].
To prove Theorem 5 we establish a tight connection between NMF and LMC coverability:

I Proposition 6. Given a nonnegative matrix M ∈ Qn×m+ of rank r, one can compute in
polynomial time an LMCM = (m+ 2,Σ, µ) of rank r + 2 such that for all d ∈ N:
(a) any d-dimensional NMF M = W · H determines an LMC M′ = (d + 2,Σ, µ′) with
M′ ≥M and rank(M′) = rank(W ) + 2, and

(b) any LMCM′ = (d+2,Σ, µ′) withM′ ≥M determines a d-dimensional NMFM = W ·H
with rank(M′) = rank(W ) + 2.

In particular, for all d ∈ N the inequality rrank+(M) ≤ d holds if and only ifM is covered
by some (d+ 2)-state LMCM′ such thatM′ andM have the same rank.

Assuming Proposition 6 we can prove Theorem 5:

Proof of Theorem 5. Let M ∈ {0, 1}6×8 be the matrix from Example 3. LetM = (10,Σ, µ)
be the associated LMC from Proposition 6. Since M = I6 · M is an NMF with inner
dimension 6, by Proposition 6 (a) there is an LMCM′ = (8,Σ, µ′) withM′ ≥M. Towards
a contradiction, suppose the answer to Question 4 were yes. Then M is also covered by
some n∗-state LMC M∗, where n∗ ≤ 9, such that M∗ and M have the same rank. The
last sentence of Proposition 6 then implies that rrank+(M) ≤ 7. But this contradicts the
equality rrank+(M) = 8 from Example 3. Hence, the answer to Question 4 is no. J

To prove Proposition 6 we adapt a reduction from NMF to the trace-refinement problem
in Markov decision processes [10].
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Figure 1 LMCM is constructed from matrix M =
( 1/4 1/2 3/4

3/4 1/2 1/4

)
whereas LMCM′ is obtained

by NMF M = I2 ·M .

Proof sketch of Proposition 6. Let M ∈ Qn×m+ be a nonnegative matrix of rank r. As
argued in Section 2.1, without loss of generality we may assume that M is column-stochastic
and consider factorizations of M into column-stochastic matrices only.

We define an LMC M = (m + 2,Σ, µ) with m + 2 states {0, 1, . . . ,m,m + 1}. The
alphabet is Σ = {a1, . . . , am} ∪ {b1, . . . , bn} ∪ {X} and the function µ, for all i ∈ [m] and all
j ∈ [n], is defined by:

µ(ai)0,i = 1
m , µ(bj)i,m+1 = (M>)i,j = Mj,i, µ(X)m+1,m+1 = 1,

and all other entries of µ(ai), µ(bj), and µ(X) are 0. See Figure 1 for an example. We have:

BackM =



ε b1 ··· bn X ai aibj b1X ··· bnX X2 ···

1 0 · · · 0 0 1
m

1
mMj,i 0 · · · 0 0 · · ·

1 M1,1 · · · Mn,1 0 0 0 M1,1 · · · Mn,1 0 · · ·
...

...
. . .

...
...

...
...

...
. . .

...
... · · ·

1 M1,m · · · Mn,m 0 0 0 M1,m · · · Mn,m 0 · · ·
1 0 · · · 0 1 0 0 0 · · · 0 1 · · ·

.

Thus rank(M) = rank(BackM) ≥ rank(M) + 2. The first n + 2 columns (indexed by
ε, b1, . . . , bn,X) in BackM span Col(BackM). Therefore, rank(M) = rank(M) + 2 = r + 2.

For d ∈ N, letM = W ·H for some column-stochastic matricesW ∈ Rn×d+ and H ∈ Rd×m+ .
Define an LMCM′ = (d+ 2,Σ, µ′) where the states are {0, 1, . . . , d, d+ 1}. The function µ′,
for all i ∈ [m], j ∈ [n], and l ∈ [d], is defined by:

µ′(ai)0,l = 1
mHl,i, µ′(bj)l,d+1 = Wj,l, µ′(X)d+1,d+1 = 1,

and all other entries of µ′(ai), µ′(bj), and µ′(X) are 0. From the NMF M = W ·H it follows
that we can factor BackM as follows:


1 0 · · · 0 0
0 H1,1 · · · Hd,1 0
...

...
. . .

...
...

0 H1,m · · · Hd,m 0
0 0 · · · 0 1

·


ε b1 ··· bn X ai aibj bjX X2 ···

1 0 · · · 0 0 1
m

1
mMj,i 0 0 · · ·

1 W1,1 · · · Wn,1 0 0 0 Wj,1 0 · · ·
...

...
. . .

...
...

...
...

...
... · · ·

1 W1,d · · · Wn,d 0 0 0 Wj,d 0 · · ·
1 0 · · · 0 1 0 0 0 1 · · ·


where the left factor is row-stochastic (as H is column-stochastic), and the right factor equals
BackM′. It follows thatM′ ≥M. J
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103:8 On Restricted Nonnegative Matrix Factorization

4 Restricted NMF of Rank-3 Matrices

In this section we consider rational matrices of rank at most 3. We show that for such matrices
the restricted nonnegative ranks over R and Q are equal and we give a polynomial-time
algorithm that computes a minimal-dimension RNMF over Q.

I Theorem 7. Given a matrix M ∈ Qn×m+ where rank(M) ≤ 3, there is a rational RNMF
of M with inner dimension rrank+(M) and it can be computed in polynomial time in the
Turing model of computation.

Using reduction 1 of Proposition 2, we can reduce in polynomial time the RNMF problem
for rank-3 matrices to the 2-dimensional NPP, i.e., the nested polygon problem in the plane.
As noted in Section 2.2, the correspondence between restricted nonnegative factorizations
and nested polygons preserves rationality. Thus to prove Theorem 7 it suffices to prove:

I Theorem 8. Given polygons S ⊆ P ⊆ R2 with rational vertices, there exists a minimum-
vertex polygon Q nested between P and S that also has rational vertices. Moreover there is
an algorithm that, given P and S, computes such a polygon in polynomial time in the Turing
machine model.

In fact, Aggarwal et al. [1] give an algorithm for the 2-dimensional NPP and prove that
it runs in polynomial time in the RAM model with unit-cost arithmetic. However, they
freely use trigonometric functions and do not address the rationality of the output of the
algorithm nor its complexity in the Turing model. To prove Theorem 8 we show that, by
adopting a suitable representation of the vertices of a nested polygon, the algorithm in [1]
can be adapted so that it runs in polynomial time in the Turing model. We furthermore
use this representation to prove that the minimum-vertex nested polygon identified by the
resulting algorithm has rational vertices.

The remainder of the section is devoted to the proof of Theorem 8. We first recall some
terminology from [1] and describe their algorithm.

A supporting line segment is a directed line segment, with its initial and final points on
the boundary of the outer polygon P , that touches the inner polygon S on its left. A nested
polygon with vertices on the boundary of P is said to be supporting if all but at most one of
its edges are supporting line segments. A polygon nested between P and S is called minimal
if it has the minimum number of vertices among all polygons nested between P and S. It is
shown in [1, Lemma 4] that there is always a supporting polygon that is also minimal, and
the algorithm given therein outputs such a polygon.

Let k be the number of vertices of a minimal nested polygon. Given a vertex v on the
boundary of P , there is a uniquely defined supporting polygon Qv with at most k+ 1 vertices.
To determine Qv one computes the supporting line segments v1v2, . . . , vkvk+1, where v1 = v;
see Figure 2. Then Qv is either the polygon with vertices v1, . . . , vk or the polygon with
vertices v1, . . . , vk+1. In the first case, Qv is minimal. The idea behind the algorithm of [1]
is to search along the boundary of P for an initial vertex v such that Qv is minimal.

As a central ingredient for our proof of Theorem 8, we choose a convenient representation
of the vertices of supporting polygons. To this end, we assume that the edges of P are
oriented counter-clockwise, and we represent a vertex v on an edge pq of P by the unique
λ ∈ [0, 1] such that v = (1− λ)p+ λq. We call this the convex representation of v.

Similar to [1], we associate with each supporting line segment uv a ray function r, such
that if λ is the convex representation of u then r(λ) is the convex representation of v. The
same ray function applies for supporting line segments u′v′ with u′ in a small enough interval
containing u.
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p1 = p′3
p′1 = p2

p′2

p3

s1

s2

s3

v1

v2
v3

v4

λ1

λ4 = r3(λ3)

λ2 = r1(λ1)

λ3 = r2(λ2)

Figure 2 Supporting polygon Qv1 . For every i ∈ [3], vertex vi lies on edge pip′i of P , and si is
the point where the supporting line segment vivi+1 touches the inner polygon S on its left.

In the following, when we say polynomial time, we mean polynomial time in the Turing
model. To obtain a polynomial time bound, the key lemma is as follows:

I Lemma 9. Consider bounded polygons S ⊆ P ⊆ R2 whose vertices are rational and of
bit-length L. Then the ray function associated with a supporting line segment uv has the
form r(λ) = aλ+b

cλ+d , where coefficients a, b, c, d are rational numbers with bit-length O(L) that
can be computed in polynomial time.

Suppose that v1v2, . . . , vkvk+1 is a sequence of k supporting line segments, with corres-
ponding ray functions r1, . . . , rk. Then v1, . . . , vk are the vertices of a minimal supporting
polygon if and only if (rk ◦ . . . ◦ r1)(λ) ≥ λ, where λ is the convex representation of v1.

It follows from [1] that, for each edge of P , one can compute in polynomial time a
partition I of [0, 1] into intervals with rational endpoints such that if λ1, λ2 are in the
same interval I ∈ I then the points with convex representation λ1 and λ2 are associated
with the same sequence of ray functions r1, . . . , rk. Using Lemma 9 we can, for each
interval I ∈ I, compute these ray functions in polynomial time. Define the slack function
s(λ) = (rk ◦ . . . ◦ r1)(λ)− λ. In fact, this function has the form s(λ) = aλ+b

cλ+d − λ for rational
numbers a, b, c, d that are also computable in polynomial time. Then it is straightforward to
check whether s(λ) ≥ 0 has a solution λ ∈ I.

Next we show that if such a solution exists, then there exists a rational solution, which,
moreover, can be computed in polynomial time. To this end, let λ∗ ∈ I be such that
s(λ∗) ≥ 0. If λ∗ is on the boundary of I, then λ∗ ∈ Q. If λ∗ is not on the boundary and is
not an isolated solution, then there exists a rational solution in its neighbourhood. Lastly,
let λ∗ be an isolated solution not on the boundary. Then, λ∗ is a root of both s and its
derivative s′. For every λ ∈ I, we have

(cλ+ d) · s(λ) = aλ+ b− λ · (cλ+ d).

Taking the derivative of the above equation with respect to λ, we get

c · s(λ) + (cλ+ d) · s′(λ) = a− d− 2cλ. (1)

Since s(λ∗) = s′(λ∗) = 0, from (1) we get 0 = a− d− 2cλ∗. Note that c 6= 0 since otherwise
s ≡ 0. Therefore, λ∗ = a−d

2c ∈ Q.

ICALP 2016
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It follows that the vertex v represented by λ∗ has rational coordinates computable in
polynomial time. By computing (ri ◦ . . . ◦ r1)(λ∗) for i ∈ [k], we can compute in polynomial
time the convex representation of all vertices of the supporting polygon Qv. Observe, in
particular, that all vertices are rational. Hence we have proved Theorem 8.

5 Restricted NMF Requires Irrationality

Here we show that the restricted nonnegative ranks over R and Q are, in general, different.

I Theorem 10. Let

M =



1/8 1/2 17/22 0 0 0
0 0 0 1/2 3/4 7/12

3/4 3/4 3/11 2 1/2 1/6
1/4 1/4 8/11 1/4 19/8 55/24
1/2 1/8 1/11 1/8 15/16 17/16

11/16 5/16 7/44 1/16 7/32 43/96


∈ Q6×6

+ .

The restricted nonnegative rank of M over R is 5. The restricted nonnegative rank of M
over Q is 6.

Proof. Matrix M has an NMF M = W ·H with inner dimension 5 with W,H as follows:

W =



0 3+
√

2
14

11+
√

2
14 0 0

0 0 0 12−2
√

2
17

5
7 +

√
2

14
2−
√

2 1 3−
√

2
7

26+7
√

2
17 0

−1 +
√

2 0 4+
√

2
7

21−12
√

2
17

39
14 + 5

√
2

28√
2

2
2
7 −

√
2

14 0 7−4
√

2
17

33
28 +

√
2

56
1
2 +

√
2

4
15
28 −

√
2

14
3−
√

2
28 0 3

8 −
√

2
16


,

H =



1+
√

2
4 0

√
2

11
1
4 −

√
2

8 0 1
6 +

√
2

12
3−
√

2
4

1
2 +

√
2

8 0 0 0 0
0 1

2 −
√

2
8 1−

√
2

11 0 0 0
0 0 0 3

4 +
√

2
8

13
34 −

7
√

2
68 0

0 0 0 0 21
34 + 7

√
2

68
5
6 −

√
2

12

 .

Since rank(M) = rank(W ) = 4, the NMF M = W ·H is restricted. This RNMF has been
obtained by reducing, according to Proposition 2, an NPP instance, which we now describe.

Figure 3 shows the outer 3-dimensional polytope P with 6 faces. The polytope P
is the intersection of the following half-spaces: y ≥ 0 (blue), z ≥ 0 (brown), x ≥ 0
(pink), −x + 5

2z + 1 ≥ 0 (yellow), − 1
2x − y + 1

4z + 1 ≥ 0 (green), − 1
4x − y −

7
8z + 1 ≥ 0

(transparent front). The figure also indicates an interior polytope S spanned by 6 points (black
dots): s1 = ( 3

4 ,
1
8 , 0)>, s2 = ( 3

4 ,
1
2 , 0)>, s3 = ( 3

11 ,
17
22 , 0)>, s4 = (2, 0, 1

2 )>, s5 = ( 1
2 , 0,

3
4 )>,

s6 = ( 1
6 , 0,

7
12 )>. In the following we discuss possible locations of 5 points q1, q2, q3, q4, q5

that span a nested polytope Q. Since s1, s2, s3 all lie on the (brown) face on the xy-plane,
but not on a common line, at least 3 of the qi must lie on the xy-plane. A similar statement
holds for s4, s5, s6 and the xz-plane. So at least one qi, say q1, must lie on the x-axis.

Suppose another qi, say q2, lies on the x-axis. Without loss of generality we can take
q1 = (0, 0, 0)> and q2 = (1, 0, 0)>, as all points in P on the x-axis are enclosed by these q1,
q2.
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x

y

z
x

y

z

Figure 3 Instance of the nested polytope problem. The two images show orthogonal projections
of a 3-dimensional outer polytope P . The black dots indicate 6 inner points (3 on the brown xy-face,
and 3 on the blue xz-face) that span the interior polytope S. The two triangles on the xy-face and
on the xz-face indicate the (unique) location of 5 points that span the nested polytope Q. The two
slightly different projections are designed to create a 3-dimensional impression using stereoscopy.
The “parallel-eye” technique should be used, see, e.g., [18]. See the full version for a “cross-eyed”
variant.

Figure 4 provides a detailed view of the xy-plane. To enclose s2, some q ∈ {q3, q4, q5}
must also lie on the xy-plane and to the right of the line that connects q2 = (1, 0, 0)> and s2.
To enclose s3, some q′ ∈ {q3, q4, q5} must also lie on the xy-plane and to the left of the line
that connects q1 = (0, 0, 0)> and s3. If q and q′ were identical then they would lie outside P
– a contradiction. Hence 4 points (namely, q1, q2, q, q

′) are on the xy-plane. This leaves only
one point, say q′′, that is not on the xy-plane. To enclose s4 (see the corresponding figure in
the full version), point q′′ must lie on the xz-plane and must lie to the right of the line that
connects q2 = (1, 0, 0)> and s4. To enclose s6, point q′′ must lie to the left of the line that
connects q1 = (0, 0, 0)> and s6. Hence q′′ lies outside P – a contradiction.

Hence we have shown that only one point, say q1, lies on the x-axis, and two points
besides q1, say q2, q3, lie on the xy-plane, and two points besides q1, say q4, q5, lie on the
xz-plane. Figure 4 indicates a possible location (q∗1 , q∗2 , q∗3) of q1, q2, q3. The figure illustrates
that the x-coordinate of q∗1 must be at least 2−

√
2.

Figure 5 illustrates how to prove the same fact more formally, using the concept of a
slack function (see Section 4): The slack function s(λ) for the interval containing 2 −

√
2

has a zero at λ = 2 −
√

2, with a sign change from negative to positive. An inspection of
the intervals (of the partition I from Section 4) to the “left” of 2 −

√
2 reveals that none

of the corresponding slack functions s̃ satisfies s̃(λ) ≥ 0 for λ < 2 −
√

2. Similarly, the
x-coordinate of q∗1 must be at most 2 −

√
2, see corresponding figures in the full version.

Hence q∗1 = (2−
√

2, 0, 0)> is necessary. This uniquely (up to permutations) determines q∗2 , q∗3
and similarly the locations q∗4 , q∗5 of q4, q5. With the reduction from Proposition 2 this NPP
solution determines the RNMF of M mentioned at the beginning of the proof. Since there
is no 4-point solution of the NPP instance, we have rrank+(M) = 5. (Since rank(M) = 4,
Lemma 1 implies rank+(M) = 5.) Since there is no 5-point rational solution of the NPP
instance, the restricted nonnegative rank of M over Q is 6. J

6 Conclusion and Future Work

We have shown that an optimal restricted nonnegative factorization of a rational matrix may
require factors that have irrational entries. An outstanding open problem is whether the
same holds for general nonnegative factorizations. An answer to this question will likely shed
light on the issue of whether the nonnegative rank can be computed in NP.

ICALP 2016



103:12 On Restricted Nonnegative Matrix Factorization

x

y

0.2 0.4 0.8 1.00.6

0.2

0.4

0.6

0.8

1.0

s1

s2

s3

q∗2

q∗3

q∗1 = (2−
√

2, 0, 0)> ≈ (0.5858, 0, 0)>

x

y

0.2 0.4 0.8 1.00.6

0.2

0.4

0.6

0.8

1.0

s1

s2

s3

q∗2

q∗3

q∗1 = (2−
√

2, 0, 0)> ≈ (0.5858, 0, 0)>
Figure 4 Detailed view of the xy-plane. The outer quadrilateral is one of 6 faces of P , the brown

face in Figure 3. The points s1, s2, s3 are among the 6 points that span the inner polytope S. The
points q∗1 , q∗2 , q∗3 are among the 5 points that span the nested polytope Q. The area around q∗1 is
zoomed in on the right-hand side. The picture illustrates that q∗1 cannot be moved left on the
x-axis without increasing the number of vertices of the nested polytope: A dotted ray from a point
slightly to the left of q∗1 is drawn through s1. Its intersection with the line x = 1 is slightly below q∗2 .
Following the algorithm of [1], the dotted ray is continued in a similar fashion, “wrapping around”
s2 and s3, and ending on the x-axis at around x ≈ 0.2, far left of the starting point. On the other
hand, the dashed line illustrates that q∗1 could be moved right (considering only this face).

λ
0.58 0.582 0.584 0.588 0.590.586

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

s(λ)

2−
√

2 ≈ 0.5858

Figure 5 The slack function s(λ) = 52λ−30
15λ−8 − λ corresponding to Figure 4. When s(λ) < 0, there

is no nested triangle with vertex (λ, 0, 0).
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Another contribution of the paper has been to develop connections between nonnegative
matrix factorization and probabilistic automata, thereby answering an old question concerning
the latter. Pursuing this connection, and closely related to the above-mentioned open problem,
one can ask whether, given a probabilistic automaton with rational transition probabilities,
one can always find a minimal equivalent probabilistic automaton that also has rational
transition probabilities.
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