7 research outputs found

    Finding Influential Training Samples for Gradient Boosted Decision Trees

    Get PDF
    We address the problem of finding influential training samples for a particular case of tree ensemble-based models, e.g., Random Forest (RF) or Gradient Boosted Decision Trees (GBDT). A natural way of formalizing this problem is studying how the model's predictions change upon leave-one-out retraining, leaving out each individual training sample. Recent work has shown that, for parametric models, this analysis can be conducted in a computationally efficient way. We propose several ways of extending this framework to non-parametric GBDT ensembles under the assumption that tree structures remain fixed. Furthermore, we introduce a general scheme of obtaining further approximations to our method that balance the trade-off between performance and computational complexity. We evaluate our approaches on various experimental setups and use-case scenarios and demonstrate both the quality of our approach to finding influential training samples in comparison to the baselines and its computational efficiency.Comment: Added the "Acknowledgements" sectio

    Towards Efficient Data Valuation Based on the Shapley Value

    Full text link
    "How much is my data worth?" is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits among multiple data contributors and determining prospective compensation when data breaches happen. In this paper, we study the problem of data valuation by utilizing the Shapley value, a popular notion of value which originated in coopoerative game theory. The Shapley value defines a unique payoff scheme that satisfies many desiderata for the notion of data value. However, the Shapley value often requires exponential time to compute. To meet this challenge, we propose a repertoire of efficient algorithms for approximating the Shapley value. We also demonstrate the value of each training instance for various benchmark datasets

    Less Is Better: Unweighted Data Subsampling via Influence Function

    Full text link
    In the time of Big Data, training complex models on large-scale data sets is challenging, making it appealing to reduce data volume for saving computation resources by subsampling. Most previous works in subsampling are weighted methods designed to help the performance of subset-model approach the full-set-model, hence the weighted methods have no chance to acquire a subset-model that is better than the full-set-model. However, we question that how can we achieve better model with less data? In this work, we propose a novel Unweighted Influence Data Subsampling (UIDS) method, and prove that the subset-model acquired through our method can outperform the full-set-model. Besides, we show that overly confident on a given test set for sampling is common in Influence-based subsampling methods, which can eventually cause our subset-model's failure in out-of-sample test. To mitigate it, we develop a probabilistic sampling scheme to control the worst-case risk over all distributions close to the empirical distribution. The experiment results demonstrate our methods superiority over existed subsampling methods in diverse tasks, such as text classification, image classification, click-through prediction, etc.Comment: AAAI 202

    HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks

    Full text link
    The behaviors of deep neural networks (DNNs) are notoriously resistant to human interpretations. In this paper, we propose Hypergradient Data Relevance Analysis, or HYDRA, which interprets the predictions made by DNNs as effects of their training data. Existing approaches generally estimate data contributions around the final model parameters and ignore how the training data shape the optimization trajectory. By unrolling the hypergradient of test loss w.r.t. the weights of training data, HYDRA assesses the contribution of training data toward test data points throughout the training trajectory. In order to accelerate computation, we remove the Hessian from the calculation and prove that, under moderate conditions, the approximation error is bounded. Corroborating this theoretical claim, empirical results indicate the error is indeed small. In addition, we quantitatively demonstrate that HYDRA outperforms influence functions in accurately estimating data contribution and detecting noisy data labels. The source code is available at https://github.com/cyyever/aaai_hydra_8686
    corecore