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Finding Influential Training Samples for Gradient Boosted Decision Trees

Boris Sharchilev 1 2 Yury Ustinovsky 3 Pavel Serdyukov 2 Maarten de Rijke 1

Abstract
We address the problem of finding influential
training samples for a particular case of tree
ensemble-based models, e.g., Random Forest
(RF) or Gradient Boosted Decision Trees (GBDT).
A natural way of formalizing this problem is
studying how the model’s predictions change
upon leave-one-out retraining, leaving out each in-
dividual training sample. Recent work has shown
that, for parametric models, this analysis can be
conducted in a computationally efficient way. We
propose several ways of extending this frame-
work to non-parametric GBDT ensembles under
the assumption that tree structures remain fixed.
Furthermore, we introduce a general scheme of
obtaining further approximations to our method
that balance the trade-off between performance
and computational complexity. We evaluate our
approaches on various experimental setups and
use-case scenarios and demonstrate both the qual-
ity of our approach to finding influential training
samples in comparison to the baselines and its
computational efficiency.1

1. Introduction and Background
As machine learning-based models become more
widespread and grow in both scale and complexity, methods
of interpreting their predictions are increasingly attracting
attention from the machine learning community. Some
of the applications and benefits of employing these
methods outlined in previous work (Ancona et al., 2017)
include (1) “debugging” the model to expose ways of
model failures not discoverable via conventional test set
performance measuring (e.g., data or target leakages);

1Informatics Institute, University of Amsterdam, Amsterdam,
The Netherlands 2Yandex, Moscow, Russia 3Department of Math-
ematics, Princeton University, Princeton, NJ, USA. Correspon-
dence to: Boris Sharchilev <bshar@yandex-team.ru>, Pavel
Serdyukov <pavser@yandex-team.ru>, Maarten de Rijke <deri-
jke@uva.nl>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1Supporting code for the paper is available at https://
github.com/bsharchilev/influence_boosting.

(2) boosting developer’s trust in the model’s performance in
scenarios when on-line evaluation is not available before
deployment; and (3) increasing user satisfaction and/or
confidence in provided predictions, etc. Various problem
setups (Palczewska et al., 2013; Tolomei et al., 2017;
Fong & Vedaldi, 2017) and interpretation methods, both
model-agnostic (Ribeiro et al., 2016; Lundberg & Lee,
2017) and model-specific (Shrikumar et al., 2017; Tolomei
et al., 2017; Sundararajan et al., 2017), have recently been
proposed in the literature.

A common trait shared by the majority of these methods
is that they do not provide a way of automatically improv-
ing the model, since the model is fixed; the main use-case
thus becomes manual analytics by the user or the devel-
oper, which is both time and resource-consuming. It is thus
desirable to derive a framework for obtaining actionable in-
sights into the model’s behavior allowing us to automatically
improve a model’s performance.

One such framework has recently been introduced by Koh &
Liang (2017); it deals with finding the most influential train-
ing objects. They formalize the notion of “influence” via an
infinitesimal approximation to leave-one-out retraining: the
core question that this work aims to answer is “how would
the model’s performance on a test object xtest change if the
weight of a training object xtrain is perturbed?” Assuming
a smooth parametric model family (e.g., linear models or
neural networks), the authors employ the Influence Func-
tions framework from classical statistics (Cook & Weis-
berg (1980); also see Koh & Liang (2017) for a literature
review on the topic) to show that this quantity can be esti-
mated much faster than via straightforward model retraining,
which makes their method tractable in a real-world scenario.
A natural use-case of such a framework is to consider indi-
vidual test objects (or groups of them) on which the model
performs poorly and either remove the most “harmful” train-
ing objects or prioritize a batch of new objects for labeling
based on which ones are expected to be the most “helpful,”
akin to active learning.

Unfortunately, the method suggested by Koh & Liang (2017)
heavily relies on the smooth parametric nature of the model
family. While this is a large class of machine learning mod-
els, it is by far not the only one. In particular, decision
tree ensembles such as Random Forests (Ho, 1995, RF) and
Gradient Boosted Decision Trees (Friedman, 2001, GBDT)
are probably the most widely used model family in industry,
largely due to their state-of-the-art performance on struc-

https://github.com/bsharchilev/influence_boosting
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tured and/or multimodal data. Thus, it is important to extend
the aforementioned Influence Functions framework to tree
ensembles.

In this paper, we propose a way of doing so, while focusing
specifically on GBDT. We consider two proxy metrics for
the informal notion of influence. For the first one, leave-
one-out retraining, we utilize the inner mechanics of fitting
decision trees (in particular, assuming that a small training
sample perturbation does not change the trees’ structures)
to derive LeafRefit and FastLeafRefit, a well-founded family
of approximations to leave-one-out retraining that trade off
approximation accuracy for computational complexity. For
the second, analogously to the Influence Functions frame-
work, we consider infinitesimal training sample weight per-
turbations and derive LeafInfluence and FastLeafInfluence,
methods for estimating gradients of the model’s predictions
with respect to training objects’ weights. From a theoretical
perspective, LeafInfluence and FastLeafInfluence allow us
to deal with the discontinuous dependency of tree structure
on training sample perturbations; from a practical one, they
allow us to further reduce computational complexity due to
the possibility of precomputing certain derivatives.

In our experiments we (1) study the conditions under which
our methods, FastLeafRefit and FastLeafInfluence, success-
fully approximate their proxy metrics, (2) demonstrate our
methods’ ability to target training objects which are influ-
ential for specific test objects, and (3) show that our al-
gorithms run much faster than straightforward retraining,
which makes them applicable in practical scenarios.

2. Problem Definition
First, we formally define the problem setup. We con-
sider standard supervised training of a GBDT ensemble2

F (x;w) :=
∑T

t=1 f
t
P (x)t

(At−1) on a training sample
Xtrain. Learning consists of two separate stages: model
structure selection and picking the optimal leaf values. The
way of choosing the model structure is not important for
our work; we refer the interested reader to existing imple-
mentations, e.g., Chen & Guestrin (2016); Dorogush et al.
(2017). For picking optimal leaf values, we consider two
most commonly used formulas:

Gradient: At leaf l at step t, output negative average gradi-
ents (calculated at current predictions) over the leaf objects:

f tG;l(A
t−1) := − Gt

l(A
t−1)

Ht
G;l(A

t−1)
. (1)

This is equivalent to minimizing the empirical loss function
w.r.t. the current leaf value by doing a single gradient step
in function space (Chen & Guestrin, 2016).

Newton: At leaf l at step t, output the negative total gradient

2Mathematical notations are defined in Table 1.

Table 1: Mathematical notations used in the paper.

Notation Description

x = (x, y) Data point
X = {(xi, yi)}ni=1 Training/test sample
L(ytrue, ypred) Loss function
w = (w1, ..., wn) Weights of training samples
P (x) = (i1, ..., iT ) Path (leaf indices) of x
F (x) GBDT prediction at point x
f tl Value in leaf l at step t
Itl Training points belonging to

leaf l at step t
At = {Ati :=∑t

τ=1 f
τ
P (xi)τ

}ni=1

Intermediate predictions on
{xi}ni=1

gti(A
t−1
i ) :=

∂L(yi,z)
∂z

|
z=At−1

i

i-th first derivative at training
step t

hti(A
t−1
i ) :=

∂2L(yi,z)

∂z2
|
z=At−1

i

i-th second derivative at
training step t

kti(A
t−1
i ) :=

∂3L(yi,z)

∂z3
|
z=At−1

i

i-th third derivative at training
step t

Gtl(A
t−1) :=∑

j∈It
l
wjg

t
j(A

t−1
j )

Sum of leaf derivatives

Ht
H;l(A

t−1) :=∑
j∈It

l
wjh

t
j(A

t−1
j )

Sum of leaf second derivatives

Ht
G;l(A

t−1) :=∑
j∈It

l
wj

Sum of leaf weights

Infgrad(x1,x2) Influence of object x1 on x2

divided by the total second derivative over the leaf objects:

f tH;l(A
t−1) := − Gt

l(A
t−1)

Ht
H;l(A

t−1)
. (2)

This is equivalent to minimizing the empirical loss function
w.r.t. the current leaf value by doing a single Newton step in
function space (Chen & Guestrin, 2016).

3. Approach
In this section, we describe our approach to efficiently cal-
culating the influence of training points. Since the notion of
“influence” is not rigorously defined and partly intuitive, we
need to introduce a well-defined, measurable quantity that
aims to capture the desired intuition; we refer to it as a proxy
for influence. In this work, we follow the general framework
of Koh & Liang (2017) and quantify influence through train
set perturbations. We consider two proxies that reflect two
natural variations of this approach. First, we describe an
algorithm for faster exact leave-one-out retraining of GBDT
under the assumption that the model structure remains fixed,
and explain how to use that framework for estimating the
influence of training points on specific test samples. Sec-
ondly, we derive an iterative algorithm to compute gradients
of GBDT predictions w.r.t. the weights of training sample
and analyze the resulting expressions.
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3.1. Leave-One-Out Retraining

For the first proxy, following Koh & Liang (2017), we quan-
tify the (negative) influence of a training sample xtrain on
a model’s prediction on a test sample F (xtest;w) as the
change of loss on xtest after retraining the model without
xtrain:

Proxy 1. Infgrad(xtrain,xtest) := L(ytest, F (xtest)) −
L(ytest, F̂\xtrain(xtest)), where F̂\xtrain is the model re-
trained without xtrain.

Since, in order to rank the training points according to
Infgrad(xtrain,xtest), we would have to compute Proxy 1
for each xtrain, straightforward leave-one-out retraining
would be prohibitively expensive even for moderately-sized
datasets. Moreover, as mentioned in Section 1, the paramet-
ric model framework of Koh & Liang (2017) is not directly
applicable here. Thus, a solution tailored specifically for
tree ensembles is required.

3.1.1. LEAFREFIT

In the problem definition (Section 2) we noted that train-
ing each tree requires picking its structure and leaf values.
Moreover, these two operations respond to small training
set perturbations differently: the tree structure is piecewise
constant (i.e., it either stays the same or changes abruptly),
whereas leaf values change more smoothly. Thus, a natural
assumption to make is:

Assumption 1. The effect of removing a single training
point can be estimated while treating each tree’s structure
as fixed.

Under Assumption 1, it is thus sufficient to estimate how the
leaf values of each tree are going to change. Since selecting
optimal feature splits, e.g. via CART (Quinlan, 1986) or
C4.5 (Quinlan, 2014) algorithms, is often the computational
bottleneck in fitting decision trees, this observation already
yields a significant complexity reduction.

Thus, our first algorithm for approximate leave-one-out re-
training, LeafRefit, is equivalent to fixing the structure of
every tree and fitting leaf values without the removed point.
A formal listing of the resulting algorithm is given in Algo-
rithm 1.

Note that the effect of removing a training object xi is
twofold: on each step, we have to (1) remove xi from its
leaf (Algorithm 1, line 7) and (2) recalculate the leaf values
and record the resulting changes of intermediate predictions
for each training object (line 14). Thus, despite improving
upon straightforward retraining by not having to search for
the optimal tree splits, LeafRefit is still an expensive algo-
rithm. Running it for each training sample has an asymptotic
complexity ofO(Tn2); moreover, in practice, for each train-
ing step t it involves an expensive routine of recalculating
derivatives for each training point.

Algorithm 1 LeafRefit
1: Input: training point index to remove i0, sample-to-leaf as-

signments {Itl }T,Lt=1,l=1, leaf formula type formula

2: Output: new leaf values {f̂ tl }T,Lt=1,l=1

3: Initialize ∆0
i ← 0, A0

i ← 0, i = 1 . . . n
4: for t = 1 to T do
5: Ât−1

i ← At−1
i + ∆t−1

i , i = 1 . . . n
6: for l = 1 to L do
7: Îtl ← Itl \ {i0}
8: if formula == Gradient then
9: f̂ tl ← fG;t

l ({Ât−1
i }i∈Ît

l
)

10: else
11: f̂ tl ← fN ;t

l ({Ât−1
i }i∈Ît

l
)

12: end if
13: ∆f tl ← f̂ tl − f tl
14: ∆t

i ← ∆t−1
i + ∆f tl , i ∈ Itl

15: end for
16: end for
17: return {f̂ tl }T,Lt=1,l=1

3.1.2. FASTLEAFREFIT

We seek to limit the number of calculations at each step
of LeafRefit. Note that, in LeafRefit, we generally cannot
make any use of caching the original first and/or second
derivatives, since any ∆t−1

i (Algorithm 1, line 14) can be
nonzero, which forces us to recompute the derivatives for
each object. We build on the intuition that, in practice, a
lot of ∆t−1

i may be negligible; an extreme example is when
training samples can be separated in disjoint cliques, i.e.,
It1l = It2l ∀t1, t2 = 1, . . . , T , l = 1 . . . L. In this case, re-
moving each training point only affects its clique Il0 := I1l0 .
Thus, at each training step t, we may select a subset of train-
ing samples3 U t whose deltas we take into account, and
suppose Ât−1

i = At−1
i ∀i /∈ U t. We refer to U t as the up-

date set. Combining this with caching the originalAt−1
i and

sums of derivatives in each leaf, we reduce the asymptotic
complexity to O(TnC), where C = maxt |U t|, which is
a significant reduction if C � n. A formal listing of the
resulting algorithm, FastLeafRefit, is given in Algorithm 2.

3.1.3. SELECTING THE UPDATE SET

In Section 3.1.2, we introduced FastLeafRefit, an approxi-
mate algorithm potentially achieving lower complexity than
LeafRefit. Its definition, however, allowed for an arbitrary
choice of the update set U t telling us which training points’
prediction changes to take into account at boosting step t. It
is intuitively clear that different strategies of selecting U t

allow us to optimize the trade-off between computational
complexity and quality of approximating leave-one-out re-
training; thus, FastLeafRefit provides a principled way of
obtaining approximations of different rigor to LeafRefit. Nat-
ural strategies for selecting the update set include:

SinglePoint: don’t update any points’ predictions and only

3Methods of selecting U t will be given below.
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Algorithm 2 FastLeafRefit

Input: i0, {Itl }T,Lt=1,l=1, {gti(At−1
i )}T,nt=1,i=1,

{hti(At−1
i )}T,nt=1,i=1, {Gtl(At−1)}T,Lt=1,l=1,

{Ht
l (A

t−1)}T,Lt=1,l=1, leaf formula type formula

Output: New leaf values {f̂ tl }T,Lt=1,l=1

Initialize ∆0
i ← 0, i = 1...n

for t = 1 to T do
U t ← UpdateSet(t)
for l = 1 to L do

U tl ← U t ∩ Itl
f̂ tl ← LeafRecalc(t, l, {Itl }T,Lt=1,l=1, {g

t
i(A

t−1
i )}T,nt=1,i=1,

{hti(At−1
i )}T,nt=1,i=1, G

t
l(A

t−1), Ht
l (A

t−1), U tl , formula)

∆f tl ← f̂ tl − f tl
∆t
i ← ∆t−1

i + ∆f tl , i ∈ Itl
end for

end for
return {f̂ tl }T,Lt=1,l=1

Algorithm 3 LeafRecalc

Input: boosting step t, leaf index l, {Itl }
T,L
t=1,l=1,

{gti(A
t−1
i )}T,n

t=1,i=1, {hti(A
t−1
i )}T,n

t=1,i=1, Gt
l(A

t−1),
Ht

l (A
t−1), U t

l , leaf formula type formula
Output: New leaf value f̂ tl
I ← I[i0 ∈ Itl ]
∆ gtj ← gtj(A

t−1
j + ∆t−1

j )− gtj(A
t−1
j ), j ∈ U t

l

Ĝt
l ← Gt

l(A
t−1) +

∑
j∈Utl

wj∆ gtj − Iwi0g
t
i0

(At−1
i0

)

if formula == Gradient then
Ĥt

l ←
∑

j∈Itl \{i0}
wj

else
∆htj ← htj(A

t−1
j + ∆t−1

j )− htj(A
t−1
j ), j ∈ U t

l

Ĥt
l ← Ht

l (A
t−1)+

∑
j∈Utl

wj∆htj−Iwi0h
t
i0

(At−1
i0

)

end if
return − Ĝtl

Ĥt
l

ignore the derivatives of i (the index of the training point to
be removed) in each leaf, i.e., U t = ∅. Also note that this
strategy is equivalent to disregarding dependencies between
consecutive trees in GBDT and treating the ensemble like a
Random Forest. Its complexity is O(Tn).

AllPoints: make no approximations and update each point
at each step, i.e., U t = {1, . . . , |Xtrain|}. This reduces
FastLeafRefit to LeafRefit.

TopKLeaves(k): this heuristic builds on the observation
that, at each step t, each ∆t

j , j ∈ Itl increases over ∆t−1
j by

the same amount ∆f tl across the leaf l (see Algorithm 2).
∆f tl ’s magnitude, in turn, is expected to be larger for leaves
where ∆t−1

j , j ∈ Itl (and, subsequently, ∆gtj) are already
large. Informally, the “snowball” effect holds: the larger the
change accumulated in the leaf so far, the greater its value
will change. Thus, to exploit this intuition, TopKLeaves(k)

only updates ∆t
j of training points in k leaves with the

largest accumulated prediction change so far:

U t = {i ∈ Itl | l ∈ {Lt
j}kj=1},

Lt = argsort
[
−
∑

i∈Itl
|∆t−1

i |, l = 1 . . . L
] (3)

Note: formally, this strategy is still O(Tn2) due to the
fact that computing U t according to Eq. 3 takes O(n). In
practice, overhead for computing Eq. 3 may be negligible
because, firstly, sums of ∆t−1

i can be quickly computed in
a parallel or vectorized fashion and, secondly, because the
complexity of addition is negligible compared to, e.g., cal-
culating derivatives. However, if this still poses a problem,
a natural way of getting around it is sampling m training
points uniformly from Xtrain and using a sample estimator
of Eq. 3. The complexity of FastLeafRefit thus becomes
O(Tn[C +m]), which is useful if m� n.

3.2. Prediction gradients

In the previous sections we introduced LeafRe-
fit and FastLeafRefit, fast methods of estimating the
effect of a training sample on the GBDT ensemble, which
can then be used to rank training points, e.g., by their
influence on a test point of interest. Under Assumption 1,
these methods are valid approximations of leave-one-out
retraining, which gives them theoretical grounding.
However, perhaps surprisingly, our experiments show
that Assumption 1 fails quite often: in particular, for the
Adult dataset (see Section 4.2), 58% of training points
change the structures of at least one tree in the ensemble.
Moreover, as shown in Section 4.3, when Assumption 1 is
violated, LeafRefit and FastLeafRefit are no longer valid
approximations to Proxy 1.

The intuition underlying Assumption 1, however, still holds:
for a small enough perturbation to the training data, the struc-
ture will remain fixed, whereas leaf values will still be chang-
ing smoothly. Note that retraining the model without a sam-
ple i is equivalent to setting wnew

i = wold
i + ∆wi; ∆wi =

−wold
i . This change may be large enough to trigger struc-

tural shifts in the ensemble; thus, we need a tool to study a
model’s response to smaller (arbitrarily small) perturbations.

An obvious choice for such a tool is the derivative of a
model’s prediction w.r.t. a sample’s weight, which was also
a crucial tool in the Influence Functions framework from
classical statistics (Cook & Weisberg, 1980):

Proxy 2. Infgrad(xtrain,xtest) := ∂L(ytest,F (xtest))
∂wi(xtrain)

,

where i(xtrain) is the index of xtrain in Xtrain.

3.2.1. LEAFINFLUENCE

As mentioned above, in the setup of Proxy 2 the statement of
Assumption 1 is now guaranteed to hold and is no longer an
assumption; we may consider the tree structures to be fixed
and only study perturbations of leaf values, which smoothly
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depend on the weights. Using the chain rule

∂L(y, F (x;w))

∂wi
=
∂L(y, z)

∂z
|z=F (x;w) ·

∂F (x;w)

∂wi
, (4)

we can then derive various counterfactuals (e.g., “how would
the loss on a test point change if we upweight a training
point i?”), similarly to Koh & Liang (2017). Since we have

∂F (x;w)

∂wi
=

T∑
t=1

∂f tP (x)t
(At−1)

∂wi
, (5)

for applying Eq. 4 to arbitrary x (for a fixed i) it is nec-
essary and sufficient to calculate ∂ftl (A

t−1)
∂wi

, t = 1 . . . T ,
l = 1 . . . L. Applying Eq. 4 can then be done by running x
though a new tree ensemble having {∂f

t
l (A

t−1)
∂wi

}T,L
t=1,l=1 as

leaf values.

Expressions for leaf value derivatives depend on the type of
leaf formula:4

Proposition 1. Leaf value derivatives are given by:

∂f tG;l

∂wi
= −

Itl (i)(f
t
G;l+g

t
i)+

∑
j∈It

l
wjh

t
jJ(A

t−1)ij

Ht
G;l

and

∂f tH;l

∂wi
= −

Itl (i)(h
t
if
t
H;l+g

t
i)+

∑
j∈It

l
wj(k

t
jf
t
H;l+h

t
j)J(A

t−1)ij

Ht
H;l

,

(6)

where Itl (i) := I[i ∈ Itl ] and J(At)ij :=
∂Atj(w)

∂wi
.

Proof. First, let us derive the desired expression5 for
f tG;l(A

t−1(w),w):

∂f tG;l(A
t−1(w),w)

∂wi
= − ∂

∂wi

[
Gt

l(A
t−1(w),w)

Ht
G;l(A

t−1(w),w)

]
=

= −
∂Gtl(A

t−1(w),w)
∂wi

Ht
G;l(A

t−1(w),w)

Ht
G;l(A

t−1(w),w)2
+

+

∂Ht
G;l(A

t−1(w),w)

∂wi
Gt

l(A
t−1(w),w)

Ht
G;l(A

t−1(w),w)2

(7)
Let us calculate the derivatives of Gt

l(A
t−1(w),w) and

Ht
G;l(A

t−1(w),w) separately:

∂Gt
l(A

t−1(w),w)

∂wi
=

=
∑
j∈Itl

[
δijg

t
j(A

t−1
j (w)) + wjh

t
j(A

t−1
j (w))J(At−1)ij

]
=

= Itl (i)g
t
i(A

t−1
i (w)) +

∑
j∈Itl

wjh
t
j(A

t−1
j (w))J(At−1)ij ;

∂Ht
G;l(A

t−1(w),w)

∂wi
= Itl (i)

4In Proposition 1’s statement, arguments such as w or Ati are
dropped for brevity.

5Throughout this proof, we add w as an extra argument to the
functions we study in order to highlight the dependency.

Plugging this back into Equations 7 and grouping terms
with and without Itl (i) separately, we get:

∂f tG;l(A
t−1(w),w)

∂wi
= −Itl (i)

f tG;l + gti(A
t−1
i (w))

Ht
G;l(A

t−1(w),w)
−

−
∑

j∈Itl
wjh

t
j(A

t−1
j (w))J(At−1)ij

Ht
G;l(A

t−1(w),w)
,

which proves the first part of Proposition 1.

For the second part, all we have to change is to substitute
Ht

H;l(A
t−1(w),w) for Ht

G;l(A
t−1(w),w). Its derivative

is given by

∂Ht
G;l(A

t−1(w),w)

∂wi
=

=
∑
j∈Itl

[
δijh

t
j(A

t−1
j (w)) + wjk

t
j(A

t−1
j (w))J(At−1)ij

]
=

= Itl (i)h
t
i(A

t−1
i (w)) +

∑
j∈Itl

wjk
t
j(A

t−1
j (w))J(At−1)ij

Just like before, plugging it back into Equations 7 and group-
ing terms containing and not containing Itl (i) separately, we
get:

∂f tH;l(A
t−1(w),w)

∂wi
= −Itl (i)

hti(A
t−1
i )f tH;l + gti(A

t−1
i )

Ht
H;l(A

t−1(w),w)
−

−
∑

j∈Itl
wj(k

t
j(A

t−1
j )f tH;l + htj(A

t−1
j ))J(At−1)ij

Ht
H;l(A

t−1(w),w)
.

This concludes the proof of Proposition 1.

It can be seen from Eq. 6 that leaf value derivatives at step t
depend on the Jacobi matrix J(At−1)ij . These values, in
turn, are connected by a recursive relationship:

J(At)ij = J(At−1)ij +
∂f tP (xj)t

∂wi
. (8)

Thus, we can calculate leaf value derivatives in an iterative
fashion similar to LeafRefit. A formal listing of the result-
ing algorithm, LeafInfluence, can be found in Algorithm 4.
Besides providing means for analyzing small weight pertur-
bations, two important traits yielding complexity reductions
can be seen from Eq. 6:

A. Using Eq. 6, we can write out ∇wf
t
l =

(
∂ftl
∂wi

)n
i=1

in

vector form; since computing each ∂ftl
∂wi

involves addition
and a vector dot product, ∇wf

t
l can then be expressed via

vector addition and matrix/vector product for easy paral-
lelization/vectorization.

B. The derivatives {gtj , htj , ktj}
T,n
t=1,j=1 used in Eq. 6 can now

be precomputed only once during GBDT training and not for



Finding Influential Training Samples for Gradient Boosted Decision Trees

Algorithm 4 LeafInfluence

Inputs: training point index i0, sample-to-leaf
assignments {Itl }

T,L
t=1,l=1, {gti(A

t−1
i )}T,n

t=1,i=1,
{hti(A

t−1
i )}T,n

t=1,i=1, {kti(A
t−1
i )}T,n

t=1,i=1, leaf formula
type formula

Outputs: leaf value derivatives {∂f
t
l (A

t−1)
∂wi

}T,L
t=1,l=1

J(A0)ij ← 0, i = 1 . . . n, j = 1 . . . n
for t = 1 to T do

∂ftl (A
t−1)

∂wi0
←/According to Eq. 6/, l = 1 . . . L

J(At)ij ←/According to Eq. 8/,i = 1 . . . n, j =
1 . . . n

end for
return {∂f

t
l (A

t−1)
∂wi

}T,L
t=1,l=1

each training object i whose influence we want to compute.
This contrasts LeafInfluence with LeafRefit and FastLeafRe-
fit, where these derivatives had to be recalculated for each i
depending on the values of ∆t−1

j , which change for differ-
ent i.

3.2.2. FASTLEAFINFLUENCE

The final step to be made is analogous to the transition from
LeafRefit to FastLeafRefit: LeafInfluence is, again, O(Tn2)
because it has to compute matrix/vector products with the
matrix J(At−1)ij for every t. The same approximation that
powers FastLeafRefit can be made here as well: at each step,
we can select an update set U t and only take into account
the influences of a subset of training objects on At−1. This
is equivalent to assuming J(At−1)ij = 0 ∀ j /∈ U t, mak-
ing J(At−1)ij a sparse matrix with the number of nonzero
elements in each row bounded by C := maxt |U t|. Strate-
gies of selecting U t and the resulting asymptotics become
the same as described in Section 3.1.3, with the additional
benefit of being able to compute the derivatives “off-line.”

4. Experiments
4.1. Research Questions

The experiments that we conduct can be broadly categorized
as serving two purposes: (1) studying the fundamentals of
our framework and (2) evaluating its quality in two applied
problem setups. For the first part, the research questions
that we seek to answer are as follows:

RQ1. How well do the different methods introduced in
Sections 3.1 and 3.2 approximate their respective influence
proxies?

RQ2. Do smaller update sets significantly reduce
the runtimes of FastLeafRefit and FastLeafInfluence?
Does FastLeafInfluence yield a notable runtime speedup
over FastLeafRefit?

For the second part, we proceed by considering two ap-

plied scenarios: (1) classification in the presence of label
noise, and (2) classification with train/test domain mismatch.
Specifically, the research questions for this part are:

RQ3. For Scenario 1, do our methods allow to detect noise
in general and, more specifically, to identify training objects
most harmful for specific test points?

RQ4. For Scenario 1, how do the proxies and their respec-
tive approximations compare in terms of quality?

RQ5. For Scenario 2, are our methods capable of detecting
domain mismatch and, moreover, providing recommenda-
tions on how to fix it?

4.2. Datasets and Framework

For our experiments with GBDT, we use CatBoost(cat,
2018) an open-source implementation of GBDT by Yan-
dex6. The datasets used for evaluation are: (1) Adult Data
Set (Adult, (dat, 1996)), (2) Amazon Employee Access
Challenge dataset (Amazon, (dat, 2013)), (3) the KDD Cup
2009 Upselling dataset (Upselling, (dat, 2009)) and, for
the domain mismatch experiment, (4) the Hospital Read-
mission dataset (Strack et al., 2014). Dataset statistics and
corresponding CatBoost parameters can be found in the sup-
plementary material. Since we approach the problem as a
search (for influential examples) problem, the main metrics
we will be using are ranking metrics - specifically, DCG and
NDCG(dcg, 2018) with linear gains.

4.3. Proxy Approximation Quality

Here, we evaluate how well do variations of FastLeafR-
efit and FastLeafInfluence match their respective Prox-
ies 1 and 2. For that, we use the Adult Data Set. For LeafR-
efit, its validity heavily depends on whether Assumption 1
holds; thus, we split the training points into two disjoint
sets based on whether they violate Assumption 1 (Changed
in Table 2) or not. We then randomly sample n = 2000
points from both groups to ensure that they are equal in size
and, in both of them, for each test object, we rank the train
points with respect to their influence on this test object. We
then measure NDCG@100 with respect to the relevance
labels produced by ground-truth rankings induced by the
respective proxies for LeafRefit and FastLeafRefit, Proxy 1
and Proxy 2. Finally, we average the results over the test
objects. Results are given in Table 2.

Analysis of Table 2 answers our RQ1. Firstly, as ex-
pected, LeafRefit and its faster variations only approximate
Proxy 1 when Assumption 1 holds. When it does, the qual-
ity of FastLeafRefit uniformly increases with the update
set size, reaching perfect results for Top64Leaves, which
is equivalent to LeafRefit. On the other hand, LeafInflu-
ence approximates Proxy 2 regardless of Assumption 1;
the dependency of FastLeafInfluence on the update set is

6We use the “Plain” mode which disables CatBoost’s concep-
tual modifications to the standard GBDT scheme.
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Table 2: NDCG@100 of proxy ranking approximation.

Method FastLeafRefit FastLeafInfluence
Same Changed Same Changed

SinglePoint 0.38 0.10 0.39 0.80
Top1Leaves 0.41 0.10 0.43 0.81
Top2Leaves 0.53 0.10 0.52 0.83
Top8Leaves 0.87 0.10 0.87 0.94
Top22Leaves 0.96 0.10 0.95 0.98
Top64Leaves 1.00 0.10 1.00 1.00

Figure 1: Wall times elapsed per training object for different
variations of FastLeafRefitand FastLeafInfluence. Top k
denotes the TopKLeaves(k) update set.

analogous to that of FastLeafRefit. This shows that LeafIn-
fluence is more robust in approximating its corresponding
proxy than LeafRefit.

4.4. Runtime Comparison

In this section, we compare different variations (update set
choices) of FastLeafRefit and FastLeafInfluence in terms
of their runtimes. For each dataset used in the study, we
randomly pick k = 100 training objects for influence eval-
uation, calculate the resulting change in the model (new
leaf values for FastLeafRefit and leaf value derivatives
for FastLeafInfluence), measure the total elapsed wall time
and divide the result by k to obtain the average time elapsed
per one training object. The results are given in Fig. 1.
Firstly, as expected, we observe that smaller update sets
considerably reduce the runtimes of our algorithms, with
the most radical speedup yielded by SinglePoint due to
not having to recalculate any derivatives at all. Secondly,
quite naturally, FastLeafInfluence performs much faster than
FastLeafRefit, presumably due to vectorization and gradient
precomputation (see end of Section 3.2.1). These observa-
tions confirm RQ2.

4.5. Harmful Object Removal

In this experiment, we consider a particular use-case sce-
nario, classification in the presence of label noise, and evalu-
ate whether our methods are able to identify training objects
that are (1) noisy, (2) harmful for specific test objects. In
order to do that, we randomly select k training samples,7
flip their labels, and obtain GBDT’s predictions on test data

7We set k = 4000 for Adult and Amazon, and k = 3500 for
Upselling.

Figure 2: ROC-AUC of noise detection qualities.

(a) Logloss reduction on a particular test index.

(b) Logloss reduction on the whole test set.

Figure 3: Mean DCG for relative Logloss reductions.

before and after noise injection. We then conduct two exper-
iments:

A. We sort the training points in ascending order of aver-
age influence on test objects and measure ROC-AUC of
noise detection. In addition to variations of FastLeafRe-
fit and FastLeafInfluence, we also compare against (1) A
noise detection method exploiting the problem structure,
which scores the training points using GBDT’s prediction
in favor of the class opposite to its observed label (Detec-
tor), (2) actual loss changes after leave-one-out retraining
(Leave-One-Out), and (3) ground-truth binary labels of the
train object being noisy (Oracle). The results are given in
Fig. 2.

B. We select n = 50 test points that suffered the largest
Logloss increase, thus simulating problematic test objects.
For each of these objects, we sort the training points in
ascending order of influence and incrementally remove them
from the training set in batches of m = 50 objects; on each
iteration we measure the relative Logloss reduction both on
this given test object and on the whole test set Xtest and,
similarly to ranking, calculate DCG using these reductions
as gains. Finally, we average these metrics over the n test
points. The results are given in Fig. 3a and 3b.

Firstly, from Fig. 2, we note that all variations of FastLeafR-
efit and FastLeafInfluence perform strongly on the over-



Finding Influential Training Samples for Gradient Boosted Decision Trees

all noise detection problem, where they score close to the
top-performing Detector. Secondly, our methods greatly
outperform their competitors (shown in blue on Fig. 3a)
in targeting training objects harmful for a particular test
object. These two observations confirm the hypothesis of
RQ3. Finally, the two parts on Fig. 3 address RQ4 by
clearly showing the way in which larger update sets increase
quality: while all approximations score comparably in tar-
geting particular test objects, smaller update sets lead to
worsening the overall test quality (except for Upselling); in
other words, smaller update sets lead to overfitting the tar-
geted test object. Proper configurations of TopKLeaves, on
the other hand, allow to “fix” a specific test object without
overfitting it (k=8, 22, 64 for Adult and Amazon).

4.6. Debugging Domain Mismatch

A common issue in the supervised machine learning is do-
main mismatch. This is a situation, when the joint distri-
bution of points in the test dataset Xtest differs from the
one in the labeled training dataset Xtrain. Often in such
scenarios, a model fine-tuned on the training dataset fails
to produce accurate predictions on the test data. A standard
way to cope with this problem is re-weighting Xtrain.

In the following experiment we demonstrate how our meth-
ods allow to detect domain mismatch and get a hint on how
the distribution of points in Xtrain should be modified in
order to better match the distribution of points in Xtest. The
design of this experiment is a modification of the corre-
sponding use-case of Koh & Liang (2017). We use the same
Hospital dataset (see Section 4.2), with each point being a
hospital patient represented by 127 features and the goal is
to predict the readmission. To introduce domain mismatch
we bias the distribution in the training dataset by filtering
out a subsample of patients with age ∈ [40; 50) and label
y = 1. Originally we had 169/1853 readmitted patients in
this group and 2140/20000 overall; after we get 17/1601 in
the age ∈ [40; 50) group and 1988/19848 overall. Clearly,
the distribution of labels in this specific age group becomes
highly biased, while the proportion of positive labels in the
whole dataset changes slightly (from 10.7% to 10.0%).

Training set Xtrain is naturally split into four parts
{Xi

train}4i=1 depending on the value of y and whether
age ∈ [40; 50). One would expect that in the modified
training dataset, samples with age ∈ [40; 50) and y = 1 are
the most (positively) influential, so their removal will be the
most harmful for the performance on the test dataset, while
the removal of the samples with age ∈ [40; 50) and y = 0
might even be beneficial, since it is the most straightforward
way to align the distributions in the test and train datasets.
Below we confirm this expectation.

Let us focus on the subset X0
test := {x ∈ Xtest | age(x) ∈

[40; 50)}, since its elements are expected to be the most
affected by the introduced domain mismatch. We sample
100 points from every part {Xi

train}4i=1 (or take the whole

Table 3: Influence of the points in Xtrain on the loss
on X0

test averaged in the corresponding sampled group
(LR=LeafRefit, LI=LeafInfluence).

age ∈ [40; 50) age 6∈ [40; 50)
Method y = 1 y = 0 y = 1 y = 0

LR SinglePoint -0.525 0.151 0.084 0.141
LR Top1Leaves -0.515 0.150 0.093 0.140
LR Top2Leaves -0.489 0.150 0.103 0.139
LR Top8Leaves -0.397 0.147 0.120 0.137
LR Top22Leaves -0.385 0.146 0.124 0.137
LR Top64Leaves -0.384 0.146 0.124 0.137

LI SinglePoint -0.652 0.015 -0.052 0.005
LI Top1Leaves -0.642 0.014 -0.043 0.004
LI Top2Leaves -0.616 0.014 -0.033 0.003
LI Top8Leaves -0.524 0.011 -0.015 0.001
LI Top22Leaves -0.512 0.011 -0.012 0.001
LI Top64Leaves -0.511 0.010 -0.011 0.001

part, if it has < 100 points). For each of the methods
FastLeafRefit and FastLeafInfluence with various update
sets we compute the influence of the training samples on
X0

test. Specifically, (a) with FastLeafRefit, for an element
x ∈ Xtrain we find the average Logloss reduction on X0

test,
introduced by removing x; (b) with FastLeafInfluence, for
an element x ∈ Xtrain we find the derivative of the average
Logloss on X0

test with respect to the weightw of x atw = 1.

Table 3 provides the average influence among the sampled
train points with the fixed label y ∈ {0, 1} and the fixed
indicator I(age ∈ [40; 50)) ∈ {0, 1}. As expected, with all
methods, the train samples of the same type are consistently
the most influential, which corresponds to maximal loss
increase upon addition. In all cases removal of elements
with y = 0 and age ∈ [40; 50) is estimated to be profitable,
also confirming the initial expectations. These results allow
us to answer RQ5 in the positive.

5. Conclusion
In this work, we addressed the problem of finding train
objects that exerted the largest influence on the GBDT’s
prediction on a particular test object. Building on the In-
fluence Function framework for parametric models, we de-
rived LeafRefit and LeafInfluence, methods for estimating
influences based on their respective proxy metrics, Prox-
ies 1 and 2. By utilizing the structure of tree ensembles,
we also derived computationally efficient approximations to
these methods, FastLeafRefit and FastLeafInfluence. In our
experiments, through considering several applied scenarios,
we showed the practical applicability of these approaches, as
well as their ability to produce actionable insights allowing
to improve the existing model.
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