64 research outputs found

    Finding approximate palindromes in strings

    Full text link
    We introduce a novel definition of approximate palindromes in strings, and provide an algorithm to find all maximal approximate palindromes in a string with up to kk errors. Our definition is based on the usual edit operations of approximate pattern matching, and the algorithm we give, for a string of size nn on a fixed alphabet, runs in O(k2n)O(k^2 n) time. We also discuss two implementation-related improvements to the algorithm, and demonstrate their efficacy in practice by means of both experiments and an average-case analysis

    An improved Levenshtein algorithm for spelling correction word candidate list generation

    Get PDF
    Candidates’ list generation in spelling correction is a process of finding words from a lexicon that should be close to the incorrect word. The most widely used algorithm for generating candidates’ list for incorrect words is based on Levenshtein distance. However, this algorithm takes too much time when there is a large number of spelling errors. The reason is that calculating Levenshtein algorithm includes operations that create an array and fill the cells of this array by comparing the characters of an incorrect word with the characters of a word from a lexicon. Since most lexicons contain millions of words, then these operations will be repeated millions of times for each incorrect word to generate its candidates list. This dissertation improved Levenshtein algorithm by designing an operational technique that has been included in this algorithm. The proposed operational technique enhances Levenshtein algorithm in terms of the processing time of its executing without affecting its accuracy. It reduces the operations required to measure cells’ values in the first row, first column, second row, second column, third row, and third column in Levenshtein array. The improved Levenshtein algorithm was evaluated against the original algorithm. Experimental results show that the proposed algorithm outperforms Levenshtein algorithm in terms of the processing time by 36.45% while the accuracy of both algorithms is still the same

    Accelerating edit-distance sequence alignment on GPU using the wavefront algorithm

    Get PDF
    Sequence alignment remains a fundamental problem with practical applications ranging from pattern recognition to computational biology. Traditional algorithms based on dynamic programming are hard to parallelize, require significant amounts of memory, and fail to scale for large inputs. This work presents eWFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute the exact edit-distance sequence alignment based on the wavefront alignment algorithm (WFA). This approach exploits the similarities between the input sequences to accelerate the alignment process while requiring less memory than other algorithms. Our implementation takes full advantage of the massive parallel capabilities of modern GPUs to accelerate the alignment process. In addition, we propose a succinct representation of the alignment data that successfully reduces the overall amount of memory required, allowing the exploitation of the fast shared memory of a GPU. Our results show that our GPU implementation outperforms by 3- 9× the baseline edit-distance WFA implementation running on a 20 core machine. As a result, eWFA-GPU is up to 265 times faster than state-of-the-art CPU implementation, and up to 56 times faster than state-of-the-art GPU implementations.This work was supported in part by the European Unions’s Horizon 2020 Framework Program through the DeepHealth Project under Grant 825111; in part by the European Union Regional Development Fund within the Framework of the European Regional Development Fund (ERDF) Operational Program of Catalonia 2014–2020 with a Grant of 50% of Total Cost Eligible through the Designing RISC-V-based Accelerators for next-generation Computers Project under Grant 001-P-001723; in part by the Ministerio de Ciencia e Innovacion (MCIN) Agencia Estatal de Investigación (AEI)/10.13039/501100011033 under Contract PID2020-113614RB-C21 and Contract TIN2015-65316-P; and in part by the Generalitat de Catalunya (GenCat)-Departament de Recerca i Universitats (DIUiE) (GRR) under Contract 2017-SGR-313, Contract 2017-SGR-1328, and Contract 2017-SGR-1414. The work of Miquel Moreto was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal Fellowship under Grant RYC-2016-21104.Peer ReviewedPostprint (published version

    Porting and optimizing BWA-MEM2 using the Fujitsu A64FX processor

    Get PDF
    Sequence alignment pipelines for human genomes are an emerging workload that will dominate in the precision medicine field. BWA-MEM2 is a tool widely used in the scientific community to perform read mapping studies. In this paper, we port BWA-MEM2 to the AArch64 architecture using the ARMv8-A specification, and we compare the resulting version against an Intel Skylake system both in performance and in energy-to-solution. The porting effort entails numerous code modifications, since BWA-MEM2 implements certain kernels using x86 64 specific intrinsics, e.g., AVX-512. To adapt this code we use the recently introduced Arm’s Scalable Vector Extensions (SVE). More specifically, we use Fujitsu’s A64FX processor, the first to implement SVE. The A64FX powers the Fugaku Supercomputer that led the Top500 ranking from June 2020 to November 2021. After porting BWA-MEM2 we define and implement a number of optimizations to improve performance in the A64FX target architecture. We show that while the A64FX performance is lower than that of the Skylake system, A64FX delivers 11.6% better energy-to-solution on average. All the code used for this article is available at https://gitlab.bsc.es/rlangari/bwa-a64fx

    Porting and optimizing BWA-MEM2 using the Fujitsu A64FX processor

    Get PDF
    Sequence alignment pipelines for human genomes are an emerging workload that will dominate in the precision medicine field. BWA-MEM2 is a tool widely used in the scientific community to perform read mapping studies. In this paper, we port BWA-MEM2 to the AArch64 architecture using the ARMv8-A specification, and we compare the resulting version against an Intel Skylake system both in performance and in energy-to-solution. The porting effort entails numerous code modifications, since BWA-MEM2 implements certain kernels using x86_64 specific intrinsics, e.g., AVX-512. To adapt this code we use the recently introduced Arm's Scalable Vector Extensions (SVE). More specifically, we use Fujitsu's A64FX processor, the first to implement SVE. The A64FX powers the Fugaku Supercomputer that led the Top500 ranking from June 2020 to November 2021. After porting BWA-MEM2 we define and implement a number of optimizations to improve performance in the A64FX target architecture. We show that while the A64FX performance is lower than that of the Skylake system, A64FX delivers 11.6% better energy-to-solution on average. All the code used for this article is available at https://gitlab.bsc.es/rlangari/bwa-a64fxThis work has been partially supported by the Spanish Ministry of Economy and Competitiveness (contracts PID2019-107255GB-C21 / AEI /10.13039/501100011033 and PID2019-105660RB-C21 / AEI / 10.13039/501100011033), Gobierno de Aragon (T5820R research group), the Generalitat de Catalunya (contracts 2017-SGR-1328 and 2017-SGR1414), and the European Union’s Horizon 2020 research and innovation program (Mont-Blanc 2020 project, grant agreement 779877). Finally, A. Armejach and M. Moreto have been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Juan de la Cierva fellowship no. IJCI-2017-33945 and Ramon y Cajal fellowship no. RYC-2016-21104, respectively.Peer ReviewedPostprint (author's final draft
    corecore