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Abstract. We present a method to speed up approximate string match-
ing by mapping the factual alphabet to a smaller alphabet. We apply the
alphabet reduction scheme to a tuned version of the approximate Boyer–
Moore algorithm utilizing the Four-Russians technique. Our experiments
show that the alphabet reduction makes the algorithm faster. Especially
in the k-mismatch case, the new variation is faster than earlier algorithms
for English data with small values of k.

1 Introduction

The approximate string matching problem is defined as follows. We have a pat-
tern P [1...m] of m characters drawn from an alphabet Σ of size σ, a text T [1...n]
of n characters over the same alphabet, and an integer k. We need to find all
such positions i of the text that the distance between the pattern and a sub-
string of the text ending at that position is at most k. In the k-difference problem
the distance between two strings is the standard edit distance where substitu-
tions, deletions, and insertions are allowed. The k-mismatch problem is a more
restricted one using the Hamming distance where only substitutions are allowed.

Among the most cited papers on approximate string matching are the classi-
cal articles [1,2] by Esko Ukkonen. Besides them he has studied this topic exten-
sively [3,4,5,6,7,8,9,10,11]. In this paper we present a practical improvement for
Esko Ukkonen’s approximate Boyer–Moore algorithm (ABM) [7] developed to-
gether with J. Tarhio. The ABM algorithm is based on Horspool’s variation [12]
of the Boyer–Moore algorithm [13]. ABM has variations both for the k-difference
problem and for the k-mismatch problem. The k-difference variation is a filtra-
tion method. Recently Salmela et al. [14] introduced a tuned version of ABM for
small alphabets. Here we consider an alphabet reduction technique which makes
the tuned ABM more practical in the case of large alphabets. Our approach
reduces the preprocessing time and the space usage of the algorithm. Our exper-
iments show that the new variation is faster than the original ABM. Moreover,
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the new variation is faster than earlier mismatch algorithms for English data
with small values of k.

The rest of the paper is organized as follows. We start with a short review
on alphabet transformations in string matching. After that we review earlier
versions of ABM. Then we explain our alphabet transformations in detail. Before
conclusions we review results of our experiments.

2 Alphabet Transformations in String Matching

Alphabet transformation is a widely used method to increase the efficiency of
string matching. There are several types of alphabet transformations. One of the
most common transformations is hashing [15]. One can check in a hash table,
whether a window of the text possibly equals the pattern. By selecting a suitable
hash function, one can control the probability of false matches [15]. In case of
multiple patterns, one can apply binary search [16] or two-level hashing [17] for
checking candidate matches.

In algorithms of Boyer–Moore type it is common to use q-grams, i.e. sub-
strings of q characters, instead of single characters in shift calculation. This
technique was already mentioned in the classical paper by Boyer and Moore [13].
The aim is to increase the size of effective alphabet, which leads to longer shifts
especially in the case of small alphabets. The approach extends to multidimen-
sional [18,19] and parameterized matching [20]. In many algorithms [21,22], q-
grams and hashing occur together in shift calculation.

It is common to use q-grams instead of single characters also for other pur-
poses than shifting. The aim is to increase practical scanning speed [23,24,25] or
to improve selectivity [3,4,26]. Grams are not always continuous, but they may
be gapped [27] or equidistant [28].

Still another type is relaxed preprocessing with a reduced alphabet [29,30]. In
approximate string matching this extends the applicability of the Four-Russians
technique [31,32], which is used to precompute edit distances between arbitrary
q-grams and the q-grams of a pattern. With a reduced alphabet one can apply
a larger q without extra space and preprocessing time. In Section 4, we will
consider an application of transformations of this type in detail.

3 Tuned Version of ABM

In this section we will describe a tuned version of the ABM algorithm [7]. In the
next section we will then use this algorithm to illustrate how to apply an alphabet
reduction technique to speed up an approximate string matching algorithm that
uses q-grams.

As preprocessing the ABM algorithm computes the shifts for each character
of the alphabet as in the Boyer–Moore–Horspool algorithm [12]. During searching
the shift is then computed by considering last k + 1 characters of the current
window. The shift is the minimum of the precomputed shifts for each of those



k + 1 characters. After shifting, at least one of these characters will be aligned
correctly with the pattern or the pattern is shifted past the first one of these
characters.

Liu et al. [33] tuned the k-mismatch version of ABM for smaller alphabets.
Their algorithm, called FAAST, uses a stronger shift function based on a vari-
ation of the Four-Russians technique [31,32] to speed up the search. Instead of
minimizing k + 1 shifts during search, it uses a precomputed shift table for a
q-gram aligned with the end of the pattern, where q ≥ k + 1 is a parameter of
the algorithm. (The original paper used the notation (k + x)-gram.) The shift
table is calculated so that after the shift at least q − k characters are aligned
correctly or the window is shifted past the last q-gram of the previous window.

Salmela et al. [14] further refined the FAAST algorithm and adapted it also
to the k-difference problem. Their algorithm stores the number of substitutions
or differences for aligning each q-gram with the end of the pattern and uses this
precomputed value in the searching phase instead of recomputing it. We will use
Algorithms 1 and 2 from [14] as a basis for our algorithm with alphabet reduction.
The first one is an algorithm for the k-mismatch problem and the second one
solves the k-difference problem. The pseudo code of these algorithms is shown as
Algorithm 1. The preprocessing of these algorithms takes O(mσq) time3 and the
average complexity of searching is O(n(logσ m+k)/m) when q = Θ(logσ m+k).
In the average complexity of searching and when computing the value of q, σ
should be replaced by 1/p, where p is the probability of two random characters
matching, if the alphabet is not uniform. The space complexities of the mismatch
version and the difference version of the algorithm are O(mσq + mq) = O(mσq)
and O(mσq + mq + m2) = O(mσq), respectively. We see now that the naive
approach of using an alphabet of size 256 for English text is not feasible as
the space (and preprocessing) requirement of the algorithm grows exponentially
when q is increased. Even if we map each character to a unique integer, the
alphabet size is too large to be practical for larger values of q.

4 Algorithm with Alphabet Reduction

We are now ready to present an alphabet reduction scheme for approximate
string matching. The scheme can be applied to any algorithm using q-grams. As
an example, we apply it to the tuned version of the ABM algorithm presented in
the previous section. A similar alphabet reduction scheme has been earlier pre-
sented by Fredriksson and Navarro [30], but their alphabet mapping is different
from ours.

We will first present the algorithm with alphabet reduction assuming we have
a mapping function g : Σ 7→ Σ̂ which maps each character of the alphabet to
a character in the reduced alphabet Σ̂ of size σ̂. We first note that if a pattern
has an (approximate) occurrence in a text, then the pattern that is mapped to
the reduced alphabet has the same (approximate) occurrence in a text that is

3 See [14] for details on how to implement the preprocessing phase to reach this bound.



Algorithm 1 Search for P [1...m] in T [1...n] with at most k errors

1: Preprocessing:
2: for all G ∈ Σq do

3: for i← 1 to m do

4: D[i]←
the minimum number of errors for aligning G with P [1...i] when
deletions in the beginning of either G or P [1...i] are free

5: M [G]← D[m]
6: Ds[G]← m−max{i | i < m and D[i] ≤ k}
7: Searching:
8: j ← m− k {j ← m for the mismatch version of the algorithm}
9: while j ≤ n do

10: G← T [j − q + 1...j]
11: if M [G] ≤ k then

12: verify the potential match
13: j ← j + Ds[G]

also mapped to the reduced alphabet. However, the mapped pattern might also
have additional (approximate) occurrences in the mapped text.

Instead of mapping the whole text to the reduced alphabet, we will use
the following method which only maps the needed q-grams of the text to the
reduced alphabet. The preprocessing phase will now operate with the reduced
alphabet. That is, we map each character of the pattern to the reduced alphabet
and compute the arrays M and Ds for all q-grams in the reduced alphabet. The
searching phase uses the same mapping of the q-grams of the text when accessing
the arrays M and Ds but the verification of a potential match is performed with
the original alphabet. The time complexity of the preprocessing phase is reduced
to O(mσ̂q) and the average complexity of searching becomes O(n(logσ̂ m+k)/m)
when q = Θ(logσ̂ m+k). The space complexities of the mismatch and difference
versions of the algorithm are also reduced to O(mσ̂q + mq) = O(mσ̂q) and
O(mσ̂q + mq + m2) = O(mσ̂q), respectively. We now see that if we map the
English alphabet for example to a reduced alphabet of size 8, using much larger
values of q becomes feasible.

We notice that the average complexity of searching in the reduced alphabet
scheme is theoretically larger than in the plain algorithm. However, our experi-
ments show that in practise searching is faster in the reduced alphabet scheme.
First we note that if the alphabet is nonuniform, some characters may be very
rare and without alphabet reduction these characters increase the q-gram space
unnecessarily as they are rarely accessed and thus do not improve filtering notice-
ably. Another issue is that q must be an integer and therefore we might have to
make compromises when choosing the value of q as the optimal q is c(logσ m+k)
for some constant c and this optimal q might not be an integer. This problem is
emphasized when the alphabet is large as there are fewer feasible choices for the
value of q. Furthermore if k is large, even choosing q = k + 1, which is the mini-
mum possible value for q in the algorithm, might be infeasible with the original



alphabet and then reducing the alphabet size can make it feasible to use a large
enough q.

The remaining problem is to find the mapping function g given the size of
the reduced alphabet. The mapping function should minimize the probability
that two random characters match. This probability is minimized by a mapping
that produces the most uniform reduced alphabet [30]. Fredriksson and Navarro
[30]4 have earlier used the following method to find this mapping. They first sort
the characters in ascending order of frequency. The i:th character in this order
is then mapped to the (i mod σ̂):th character in the reduced alphabet.

The problem of finding the mapping is defined formally as follows. We are
given the frequency fc of each character c ∈ Σ and an integer σ̂ that defines the
size of the reduced alphabet. Our task is now to partition the characters in Σ
into σ̂ subsets Si such that the following objective function is minimized:

max
i∈[1,σ̂]

{

∑

c∈Si

fc

}

− min
i∈[1,σ̂]

{

∑

c∈Si

fc

}

.

Each of the subsets Si is then mapped to a unique character in Σ̂. This formu-
lation is equivalent to the σ̂-way number partitioning problem.

The number partitioning problem has been shown to be NP-complete [34]
and thus we resort to the following well known greedy algorithm to find the
mapping function. We first sort the characters in decreasing order of frequency.
Starting from the most frequent character we map that character to the least
frequent character of the reduced alphabet.

We considered the following schemes for reducing the alphabet:

Pattern Alphabet The reduced alphabet consists of all characters that occur
in the pattern and one extra character [29]. All characters that do not occur
in the pattern are mapped to this extra character.

Reduced Alphabet We compute the reduced alphabet using the greedy algo-
rithm outlined above.

Reduced Pattern Alphabet We combine the two above methods. We first
form an alphabet consisting of the characters occurring in the pattern and
an extra character as in the pattern alphabet method. Then we use the
reduced alphabet method to reduce this alphabet.

We also tried first classifying the characters into separators and letters or sep-
arators, vowels, and consonants, and then applying alphabet reduction to these
groups separately but this approach was not competitive.

5 Experimental Results

Experiments were run on an Intel 3.16 GHz dual core CPU with 3.7 GB of
memory and 32 kB L1 cache and 6144 kB L2 cache. The computer was run-
ning Linux 2.6.27. The algorithms were written in C and compiled with the gcc

4 This method is not outlined in the paper but can be found in the corresponding
code.



4.3.2 compiler producing 32-bit code. We used the 50 MB English text from the
PizzaChili site, http://pizzachili.dcc.uchile.cl. Each pattern set consists
of 200 different patterns of the same length. The patterns are randomly chosen
from the text and a substitution, insertion, or deletion is introduced at every
position with probability 0.05. As an example, the 200 patterns of length 20 have
261 total matches when searching allowing one substitution and a total of 680
matches when allowing one substitution, deletion, or insertion.

5.1 Comparison of Alphabet Reduction Techniques

The value of q was varied from 2 to 7, and we tried reduced alphabet sizes of 4, 8,
16, and 32. We show the results for the best observed values of these parameters.
Figure 1 shows the searching times excluding the preprocessing time for the k-
mismatch and k-difference problems for k = 1 and k = 2. Table 1 shows the best
parameter values for each of the methods. As can be seen, the best method in
all cases is the reduced pattern alphabet method.
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Fig. 1. Search times

Figure 2 shows the combined preprocessing and search times. Again we see
that the reduced pattern alphabet method is the best. Furthermore, comparing
Figures 1(a) and 2(a) we note that in the k-mismatch problem the preprocess-
ing time is much smaller than the searching time. In the k-difference problem,
especially the pattern alphabet method has a high preprocessing cost but also
the other methods have a moderately high preprocessing cost when k = 2.

The increase in the preprocessing time is due to using a larger value of q to
speed up searching. Figure 3 shows how the preprocessing time grows when q is
increased in the k-difference algorithms when m = 10 and k = 1.



Table 1. The parameters yielding the best search time for each of the methods and the
corresponding number of different q-grams in the reduced alphabet. If different values
were best for different pattern lengths, the alternative values are shown on subsequent
rows. To compute the number of different q-grams in the pattern alphabet method, we
use the average reduced alphabet size for pattern length 30 which was 17.21. Note that
the reduced pattern alphabet method is equivalent to the pattern alphabet method for
the 1-mismatch problem because the size of the reduced alphabet is larger than the
length of the pattern.

Algorithm 1-mismatch 2-mismatch 1-difference 2-difference

Param. σ̂q Param. σ̂q Param. σ̂q Param. σ̂q

Pattern Alphabet q = 3 < 213 q = 4 < 217 q = 5 < 221 q = 6 < 225

q = 5 < 221

Reduced Alphabet σ̂ = 16, q = 3 212 σ̂ = 4, q = 6 212 σ̂ = 8, q = 6 218 σ̂ = 8, q = 7 221

σ̂ = 8, q = 4 212 σ̂ = 8, q = 5 215 σ̂ = 4, q = 8 216

Reduced Pattern σ̂ = 32, q = 3 215 σ̂ = 8, q = 4 212 σ̂ = 8, q = 6 218 σ̂ = 8, q = 7 221

Alphabet σ̂ = 8, q = 5 215
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Fig. 2. Combined preprocessing and search times for a text of length 50 MB
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m = 10 and k = 1. Reduced alphabet and reduced pattern alphabet methods use
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We also ran similar experiments with the 50 MB protein text from the
PizzaChili site, http://pizzachili.dcc.uchile.cl. The results with protein
data were very similar to our results with English text.

5.2 Comparison with Other Algorithms

We compared the performance of the best alphabet reduction scheme, reduced
pattern alphabet, with the following algorithms:

– ABM: The original ABM algorithm.
– BYP: The algorithm by Baeza-Yates and Perleberg [35] divides the pattern

into smaller pieces so that if the pattern occurs at some position, at least one
of the pieces must have an exact occurrence at that position. The algorithm
then searches for exact matches of the pieces and verifies the occurrences
found by the exact search.

– FN: The algorithm by Fredriksson and Navarro [30] reads non-overlapping
q-grams (ℓ-grams in the original paper) in an alignment and with the help
of preprocessed tables determines the minimum number of substitutions or
differences for aligning the q-grams with the pattern in some way. When
the minimum number of substitutions or differences exceeds k, the pattern
is shifted so that the first of these q-grams is no longer aligned with the
pattern. The potential matches must be verified. To make the comparison
fair, we modified their algorithm so that it uses the reduced pattern alphabet
method, which improved its performance although the improvement was not
as clear as in our algorithm.

Figure 4 shows the searching times of the algorithms. As can be seen, the al-
phabet reduction technique combined with the use of q-grams makes the new



algorithm significantly faster than the plain ABM algorithm. In the k-mismatch
case, our new algorithm is the fastest, BYP being the second fastest, FN third,
and ABM clearly the slowest. In the k-difference case BYP takes the lead which
was also the case in the experiments by Fredriksson and Navarro [30]. Overall
FN is the second best although our algorithm is faster for short patterns which
are important in practise. Again ABM is clearly the slowest.
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Fig. 4. Comparison of the best alphabet reduction scheme, reduced pattern alphabet,
ABM, BYP, and FN

6 Conclusions

We have presented an alphabet reduction technique to speed up algorithms for
approximate string matching. We applied the technique to a Boyer–Moore style
algorithm which uses the Four-Russians technique to compute shifts with small
alphabets. When improved with alphabet reduction, the algorithm performs sur-
prisingly well on large alphabets too. The space usage of the Four-Russians ap-
proach used in the algorithm is not feasible if the whole large alphabet is used
but becomes practical with alphabet reduction. Our experiments on English data
show that the algorithm with alphabet reduction is the fastest algorithm in the
k-mismatch problem for small values of k.

Acknowledgements We thank the referee, who helped us to improve this
paper.



References

1. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64(1-3) (1985) 100–118

2. Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms 6(1) (1985)
132–137

3. Jokinen, P., Ukkonen, E.: Two algorithms for approximate string matching in
static texts. In: Proc. 16th Symposium on Mathematical Foundations of Computer
Science. Vol. 520 of LNCS, Berlin, Springer (1991) 240–248

4. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1) (1992) 191–211

5. Ukkonen, E.: Approximate string-matching over suffix trees. In: Proc. 4th Sym-
posium on Combinatorial Pattern Matching. Vol. 684 of LNCS, Berlin, Springer
(1993) 228–242

6. Ukkonen, E., Wood, D.: Approximate string matching with suffix automata. Al-
gorithmica 10(5) (1993) 353–364

7. Tarhio, J., Ukkonen, E.: Approximate Boyer–Moore string matching. SIAM J.
Comput. 22(2) (1993) 243–260

8. Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching
algorithms. Software–Pract. Exp. 26(12) (1996) 1439–1458

9. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate
two dimensional pattern matching allowing rotations. In: Proc. 13th Symposium
on Combinatorial Pattern Matching. Vol. 2373 of LNCS, Berlin, Springer (2002)
235–248
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