
Received May 6, 2022, accepted June 7, 2022, date of publication June 13, 2022, date of current version June 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182714

Accelerating Edit-Distance Sequence Alignment
on GPU Using the Wavefront Algorithm
QUIM AGUADO-PUIG 1, SANTIAGO MARCO-SOLA1,2, JUAN CARLOS MOURE 1,
DAVID CASTELLS-RUFAS 1, LLUC ALVAREZ 2,3, ANTONIO ESPINOSA1,
AND MIQUEL MORETO 2,3
1Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
2Computer Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Spain
3Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Corresponding author: Quim Aguado-Puig (quim.aguado@uab.cat)

This work was supported in part by the European Unions’s Horizon 2020 Framework Program through the DeepHealth Project under Grant
825111; in part by the European Union Regional Development Fund within the Framework of the European Regional Development Fund
(ERDF) Operational Program of Catalonia 2014–2020 with a Grant of 50% of Total Cost Eligible through the Designing RISC-V-based
Accelerators for next-generation Computers Project under Grant 001-P-001723; in part by the Ministerio de Ciencia e Innovacion (MCIN)
Agencia Estatal de Investigación (AEI)/10.13039/501100011033 under Contract PID2020-113614RB-C21 and Contract
TIN2015-65316-P; and in part by the Generalitat de Catalunya (GenCat)-Departament de Recerca i Universitats (DIUiE) (GRR) under
Contract 2017-SGR-313, Contract 2017-SGR-1328, and Contract 2017-SGR-1414. The work of Miquel Moreto was supported in part by
the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal Fellowship under Grant RYC-2016-21104.

ABSTRACT Sequence alignment remains a fundamental problem with practical applications ranging from
pattern recognition to computational biology. Traditional algorithms based on dynamic programming are
hard to parallelize, require significant amounts of memory, and fail to scale for large inputs. This work
presents eWFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute the exact edit-distance
sequence alignment based on the wavefront alignment algorithm (WFA). This approach exploits the
similarities between the input sequences to accelerate the alignment process while requiring less memory
than other algorithms. Our implementation takes full advantage of themassive parallel capabilities of modern
GPUs to accelerate the alignment process. In addition, we propose a succinct representation of the alignment
data that successfully reduces the overall amount of memory required, allowing the exploitation of the
fast shared memory of a GPU. Our results show that our GPU implementation outperforms by 3-9× the
baseline edit-distance WFA implementation running on a 20 core machine. As a result, eWFA-GPU is up
to 265 times faster than state-of-the-art CPU implementation, and up to 56 times faster than state-of-the-art
GPU implementations.

INDEX TERMS Approximate string matching, compute unified device architecture (CUDA), edit-distance,
graphics processing unit (GPU), Levenshtein distance, pairwise sequence alignment, wavefront alignment
algorithm (WFA).

I. INTRODUCTION
Sequence comparison constitutes a fundamental problem for
many practical applications in numerous fields such as pat-
tern matching [1], information retrieval [2], network secu-
rity [3], and computational biology [4], to name a few.
In general, assessing the similarity (or dissimilarity) between
two sequences is an essential building-block within multiple
applications for data mining [5], spell correction [6], [7],
speech recognition [8], signature matching [9], image anal-
ysis [10], and more [11]–[15].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaowen Chu .

In the past decade, sequence alignment has acquired a
special relevance in computational biology and bioinformat-
ics. In particular, it is a critical component for methods like
read mapping [16]–[18], de-novo genome assembly [19],
[20], variant detection [21], [22], multiple sequence align-
ment [23], and many others [24], [25]. Due to the unprece-
dented data-production rates of modern DNA sequencing
machines, the need for fast and accurate algorithms for
sequence analysis has become paramount. In the past years,
computation has become a growing fraction of genomics
cost as sequence data production has increased drastically
and its costs have been significantly reduced [26]. More-
over, with ever-increasing sequence lengths, third-generation

63782 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4871-3192
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0002-7181-9705
https://orcid.org/0000-0003-0506-8867
https://orcid.org/0000-0002-9848-8758
https://orcid.org/0000-0001-9745-4372

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

sequencing technologies pose an additional challenge to these
algorithms and their ability to scale [27].

The need to process large volumes of genomic
data has motivated the mainstream adoption of high-
performance computing (HPC) methods and resources.
In turn, the demanding computational requirements have
forced researchers to investigate solutions using more
efficient hardware accelerators such as GPUs. Compared
to multi-core processors, modern GPUs provide both
higher computation throughput and memory bandwidth.
For that reason, GPUs have been widely adopted as
effective accelerators for many scientific and commercial
applications [28]–[31].

Sequence alignment algorithms have been intensively
studied for more than 40 years, applying multiple
strategies (including dynamic programming [32], [33],
automata [34]–[36], and bit-parallelism techniques [37],
[38]). Nonetheless, these algorithms require quadratic time
and memory on the length of the sequences. With increasing
sequence length, using these classical algorithms becomes
impractical or not even possible. As opposed to classical
methods, our proposal is based on the wavefront alignment
algorithm (WFA) [39]. This novel method exploits similari-
ties between sequences to accelerate the computation of the
optimal alignment. As a result, its time complexity O(ne)
depends on the sequence length n and the optimal edit-
distance e (i.e., the error between the sequences).

This paper presents a GPU implementation of the WFA
algorithm for the exact computation of the edit-distance
alignment between DNA sequences on GPUs. We propose
an algorithmic adaptation of the WFA algorithm to exploit
the parallel computing capabilities of GPU architectures.
Moreover, we introduce a compact piggyback-encoding of
the intermediate wavefront data that allows computing each
alignment using the GPU fast on-chip memories. Further-
more, we propose using a bit-parallel strategy within the
WFA to accelerate DNA sequence comparisons on the GPU.
As a result, we provide a high-performance implementation
based on specialised alignment kernels for input sequences
with different alignment errors. Also, we implement a batch
processing based system that allows computing thousands
of alignments in parallel, overlapping data transfers with
computations. We characterise the performance of our imple-
mentation and present the different performance trade-offs
of our solution. Ultimately, experimental results demonstrate
that our implementation outperforms other state-of-the-art
proposals.

The rest of the paper is structured as follows. Section II
presents the definitions and methods on which our algorithm
is based. Section III describes the proposed algorithmic adap-
tations and optimisation strategies of the GPU implementa-
tion. Then, Section IV shows experimental results, compares
the performance of our method against other state-of-the-
art implementations for both CPU and GPU, and studies the
performance trade-offs of our GPU implementation. Next,
Section V presents an overview of the most relevant sequence

alignment methods presented in the literature focusing on
GPU-based implementations. Finally, Section VI summarises
the main results and contributions of this work.

II. BACKGROUND
A. EDIT-DISTANCE SEQUENCE ALIGNMENT
Edit-distance (also known as Levenshtein distance) is a met-
ric that measures the difference between two sequences.
It is defined as the minimum number of edit operations
(i.e., mismatch, insertion, and deletion) required to transform
one sequence into the other. For instance, the edit-distance
between the sequences P = ‘‘GATTACA’’ and T =

‘‘GAATA’’ is e = 3. That is to say, the minimum number
of edit operations required to transform P into T is 3 (i.e.,
substitute the first T for an A, and remove the last two
elements of the sequence P). Computing the edit-distance
between two sequences is commonly solved using a dynamic
programming (DP) approach [4], [33]. Given two sequences
P = [p0, . . . , pn − 1] and T = [t0, . . . , tm − 1] (of length
n and m, respectively), the edit-distance e between the two
sequences can be computed using the recurrence presented
in the Eq. 1 (being e = Mn,m). By means of storing all the
intermediateMi,j values of the DP-matrix, we can trace back
the edit operations that originated the minimum edit-distance
(i.e., the sequence alignment). It follows that classical algo-
rithms based on this DP approach exhibit quadratic time
complexity and quadratic space complexity on the sequence
length (i.e., O(nm)).

Mi,j =

i if j = 0
j if i = 0

min

Mi−1,j−1 + δ(Pi,Tj)
Mi,j−1 + 1
Mi−1,j + 1

Otherwise
(1a)

δ(pi, tj) =

{
0 if pi = tj
1 if pi 6= tj

(1b)

These DP-based solutions have been extensively studied
and used for many years and in different application contexts.
However, they exhibit a series of computational shortcomings
that limit their scalability and prevent the implementation
of effective parallelization techniques. First, the quadratic
memory requirements limit their practical application to
compute the alignment of long sequences (i.e., thousands
of characters). Second, the computational pattern shown in
Eq. 1 depicts data dependencies that hinder straightforward
usage of SIMD (vector) instructions, which could accelerate
execution speed. Also, in its classical formulation, the algo-
rithm explores unnecessary regions of the DP-matrix that do
not contribute to the optimal solution and generate needless
computations.

Over the past years, many variations and optimiza-
tions have been proposed to overcome these limitations.
These solutions include techniques such as computing the

VOLUME 10, 2022 63783

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

DP-matrix antidiagonal-wise [40], banded approaches that
only compute a portion of the DP-matrix [41], data-layout
organizations that allow using SIMD instructions [42]–[44],
bit-packed encodings [37], [45], and other heuristic meth-
ods [33], [46], [47]. Due to its importance and performance
impact in many applications, multiple libraries have emerged
implementing those algorithms. Among the most widely
used, it is worth mentioning Edlib [48] and BGSA [49],
fast CPU implementations of the Myers bit-vector algorithm
(BPM) [37]; DAligner [50], an efficient implementation of
the O(ND) algorithm [45]; and NVBio [51], a GPU acceler-
ated library for sequence alignment.

B. THE WAVEFRONT ALIGNMENT ALGORITHM
Recently, in [39], the authors proposed a fast and exact pair-
wise alignment algorithm: the WFA algorithm. As opposed
to other approaches, the WFA algorithm proposes an alter-
native encoding of the DP-matrix and an efficient algorithm
to compute partial alignments of increasing distance. As a
result, the WFA algorithm only needs to calculate a small
number of DP-matrix cells to find the optimal alignment.
This way, WFA exploits similarities between sequences to
reduce the time complexity to O(ne), being n the sequence
length and e the optimal edit-distance, reducing the memory
requirements to O(e2). In the following, we formally present
the WFA algorithm to compute the edit-distance alignment.

For a given distance e, let a wavefront W̃e,k be a vector of
integer offsets that, for each diagonal k , encodes the diag-
onal offset from the leftmost column of the DP-matrix to
the farthermost cell that has distance e. As opposed to DP
methods that explicitly represent the distance of each cell in
the DP-matrix, the WFA algorithm uses wavefront offsets
W̃e,k that encodes only the farthermost cell in the diagonal
k that has distance e. Then, starting from W̃0,0 = 0 (i.e.,
the upper-left corner of the DP-matrix), the WFA algorithm
progressively computes wavefronts W̃e of increasing distance
until a wavefront reaches the bottom-right corner of the
DP-matrix (i.e., the end position of the alignment). For that,
theWFA algorithm repeatedly applies two operators: extend()
and computeNext().
Given an initial wavefront W̃e, the extend() operator

increases each offset of the wavefront vector accord-
ing to the number of contiguous matching characters
between the sequences. This way, the WFA algorithm
exploits the property that diagonals are monotonically
increasing [52]. In particular, for a given cell Mi,j of
the DP-matrix, we know from Eq. 1 that Mi,j =

min(Mi−1,j−1 + δ(Pi,Tj),Mi,j−1 + 1,Mi−1,j + 1). If Pi =
Tj, there is no better outcome than retaining the same cell
value along the diagonal; that is,Mi,j = Mi−1,j−1. Moreover,
note that theMi,j−1 andMi−1,j values do not affect this com-
putation and therefore it is not necessary to explicitly compute
these cells. WFA exploits this operation, denoted diagonal
extension (Algorithm 1), to find the farthest reaching (f.r.)
offset on each diagonal for a given distance.

Algorithm 1:WFA extend() Operator

Function extend (P,T , W̃e):
for k ←−e to e do

// Compute (v,h) position
v← W̃e,k − k
h← W̃e,k
// Compute diagonal matches
while Pv = Th do

v← v+ 1
h← h+ 1
W̃e,k ← W̃e,k + 1

Once all the offsets of a wavefront have been diago-
nally extended, the algorithm checks whether any offset W̃e,k
reaches the bottom-right cell (m, n). If that is not the case,
WFA proceeds to generate the next wavefront W̃e+1 using the
computeNext() operator. For each diagonal k , computeNext()
uses the previous offsets in W̃e (i.e., W̃e,k−1, W̃e,k , W̃e,k+1)
to compute the f.r. offset with distance e + 1 on diagonal k .
Using Eq. 2, computeNext() finds the most advanced position
with distance e + 1 considering a deletion, an insertion, or a
mismatch from the f.r. offsets of the previous wavefront W̃e
(Algorithm 2).

W̃e+1,k = max

W̃e,k+1 (Deletion)
W̃e,k + 1 (Mismatch)
W̃e,k−1 + 1 (Insertion)

(2)

Algorithm 2:WFA computeNext() Operator

Function computeNext (W̃e,W̃e+1):
klo←−(e+ 1)
khi← (e+ 1)
for k ← klo to khi do

W̃e+1,k ← max{W̃e,k−1 + 1, W̃e,k + 1, W̃e,k+1}

TheWFA algorithm (Algorithm 3) progressively computes
wavefronts (containing f.r. offsets) of increasing distance
applying the operators extend() and computeNext(). Once
a W̃e,k reaches the bottom-right cell (m, n), the algorithm
concludes that e is the minimum alignment distance. Addi-
tionally, note that the sequence of operations that led to
the offset W̃e,k constitute the optimal alignment and can be
recovered by tracing back the path from W̃e,k to W̃0,0. To put
it into perspective, Figure 1 shows a side-by-side compar-
ison of the classical DP-based algorithm and the WFA to
compute the edit-distance between P = ‘‘GATTACA’’ and
T = ‘‘GAATA’’. Note how the WFA operations have a direct
mapping on the DP-matrix.

Altogether, the WFA algorithm requires computing e
wavefronts to compute an alignment of distance e. From

63784 VOLUME 10, 2022

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

Algorithm 3:WFA Edit-Distance Alignment

FunctionWFA_align (P,T ,W̃e,W̃e+1):
// Initial conditions
W̃0,0← 0
extend (W̃0,0)
// Compute wavefronts
e← 0
while W̃e,m−n 6= m do

computeNext (W̃e,W̃e+1)
e← e+ 1
extend (P,T ,W̃e)

FIGURE 1. Edit-distance WFA depicted inside a DP table. Dotted lines
represent the computeNext operator, while continuous lines represent
the extend operator. The extend operator of the offset W̃2,−2 is shown as
a red line. At M2,4, as T2 = P4, the offset is extended. At M3,5, T3 6= P5,
so the extend operator stops.

the initial wavefront W̃0,0 of unitary length, each succes-
sive wavefront increases its length by two. It follows that
the e-wavefront has length 1 + 2e and the total number of
wavefront-offsets needed is

∑e
n=0 1+ 2n = (e + 1)2. Thus,

that the overall memory complexity is O(e2). Moreover, note
that the operator computeNext() runs in time proportional
to the wavefront length. Then, for each diagonal, the total
number of wavefront extensions performed by the extend()
operator is bounded by the maximum number of diagonally
matching characters (i.e., max{n,m}). Therefore, we con-
clude that the running time of the WFA algorithm is bounded
in the worst case by O(max{n,m} · e) or O(ne) when the
sequences have the same length.

Besides presenting a better time and memory complexity,
the WFA algorithm presents additional advantages compared
to classical DP-based alignment algorithms. Most notably,
WFA presents a simple data-processing pattern that allows
processing each wavefront offset independently and storing
them consecutively in memory. As opposed to traditional
DP-based algorithms, the WFA algorithm can be effectively
vectorized using SIMD instructions. Furthermore, the WFA
algorithm encodes offsets in the range of the sequence length
instead of storing the actual distance or score, as DP-based
algorithms do. Therefore, wavefront elements are bounded
by the maximum sequence length and can be encoded using

less memory. In turn, this succinct encoding allows enhancing
SIMD performance further. In the present work, we aim to
exploit these advantageous properties to implement an effi-
cient parallel strategy on GPUs using a SIMT programming
model.

C. GPU ARCHITECTURE AND CUDA PROGRAMMING
MODEL
GPUs are massively parallel devices containing multiple
throughput-oriented processing units called streaming mul-
tiprocessors (SMs). SMs execute hundreds of instructions in
parallel by using deep pipelines and aggressive fine-grained
multithreading. SMs share an L2 cache of a few MB and a
globalmemory of several GB. Each SM is equippedwithmul-
tiple SIMD cores capable of performing in-order execution
of instructions. At the same time, each SM contains a register
file (around 256KB) and a fast on-chip scratchpad memory
that can be shared among threads (around 48KB per block of
threads).

Since its release in 2006, CUDA has become the most pop-
ular programming model for general-purpose GPU comput-
ing. CUDA comes with a software environment that allows
using a superset of C/C++, together with API calls, to pro-
gram one or multiple GPU devices. The CUDA program-
mingmodel provides a heterogeneous environment where the
host code runs on the CPU, and the device code runs on a
physically separate GPU. Both the host and device can main-
tain their own separate memory spaces; meanwhile, CUDA
supports data transfer between host and device memory. The
CUDA programming model defines a computation hierarchy
formed by kernels, thread blocks, warps, and threads:

• Kernel:Minimum unit of work sent from the CPU to the
GPU. In short, a kernel is a function executed in parallel
on a GPU by a large number of different CUDA threads.

• Thread block: Group of threads that are executed by
one SM and cannot migrate to other SMs (except dur-
ing preemption or dynamic parallelism). Threads within
a block can cooperate via synchronization primitives,
using registers, or shared memory. Thread blocks are
scheduled non-deterministically for independent MIMD
execution into SMs.

• Warp: A thread block is divided into batches of
32 threads, called warps, which are the smallest schedul-
ing unit.

• Thread: Minimum execution unit of programmed
instructions in CUDA.

GPU applications must launch kernels composed of tens
of thousands of threads to simultaneously achieve high-
performance executions. To that end, between 32 and
64 warps from one or multiple thread blocks are dynami-
cally scheduled for execution in the same SM. This mech-
anism, often known as H/W multithreading, is the primary
latency-hiding strategy on GPUs. Furthermore, a GPU exe-
cutes warps of parallel threads using a SIMT model (Single
Instruction Multiple Threads), which allows each thread to

VOLUME 10, 2022 63785

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

access its registers, load and store from divergent addresses,
and follow divergent control flow paths.

However, GPU executions can suffer from performance
limitations due to several factors. In particular, when threads
of a warp diverge due to conditional branches, only a sub-
set of the threads are active, which may reduce the overall
performance. This situation is known as divergence, and it
is an inherent performance limitation of SIMD architectures
that must be addressed when designing the algorithm. Sim-
ilarly, another critical performance limitation can arise from
sparse memory accesses. When executing a SIMD load/store
instruction, the memory addresses provided by all the threads
in the same warp coalesce (i.e., combine) to generate one or
multiple memory block access requests. GPU applications
seek to coalesce data requests from global memory into a
few memory blocks to achieve efficient transfers. Access to
global memory is relatively slow compared to fast on-chip
memory (i.e., shared memory and registers). For that reason,
it is always preferred that all threads in a CUDA block exploit
local memory whenever possible. However, the amount of
shared memory and registers used by a CUDA block lim-
its the number of concurrent CUDA blocks running on the
same SM and may reduce the GPU occupancy (i.e., threads
assigned per SM). Having a high occupancy is important to
hide the latency of memory accesses and compute operations.

III. GPU IMPLEMENTATION OF THE WFA ALGORITHM
Nowadays, analysing large-scale workloads requires aligning
millions of relatively large sequences to a given reference
genome in a very short time. Previous research work has
shown the capabilities of modern GPUs to accelerate HPC
applications in general and alignment tools in particular.
Specifically, parallel programming using CUDA can be very
effective to accelerate string matching algorithms, as shown
in many recent studies [30], [47], [53]–[56]. This section
presents our proposed method to accelerate edit-distance
sequence alignment using theWFA algorithm on GPU. In the
following, we present the main challenges to adapt the WFA
algorithm to the CUDA programming model and the contri-
butions and trade-offs of the proposed implementation.

Mainly, there are two strategies to parallelize computations
on GPU devices: coarse and fine-grained. In the case of
the WFA algorithm, a coarse-grained parallelization strategy
devotes each CUDA thread to compute a single alignment,
whereas, in a fine-grained strategy, multiple CUDA threads
collaborate to align a single pair of sequences.

In a coarse-grained approach, each thread within the block
requires its own pair of sequences and wavefront data struc-
tures to perform the alignment. Due to the limited size of
the shared memory, using this approach forces storing data
in global memory space, resulting in long-latency memory
accesses. Moreover, a coarse-grained strategy is bound to
generate divergence across threads’ execution within a block
as each alignment requires a different amount of computa-
tions. Ultimately, a coarse-grain approach faces significant

FIGURE 2. Mapping of CUDA resources into WFA work.

performance limitations that can largely reduce the overall
execution speed of the algorithm on a GPU.

In contrast, a fine-grained strategy computes each align-
ment using a thread block. This way, all threads within the
block cooperatively work to compute one alignment problem.
This approach heavily reduces the consumption of shared
memory and registers, allowing the storage of the wavefront
structures in shared memory for several thread blocks, which
can operate concurrently in the same SM (increasing the
occupancy). Furthermore, the computational pattern depicted
by the WFA algorithm allows to efficiently map the compu-
tations across the threads of a block (Figure 2). We exploit
the fact that computations on each diagonal are independent,
allowing to compute every element in each wavefront W̃e
in parallel for both operations extend() and computeNext().
Our solution exploits this parallelism approach where each
thread block computes a single alignment problem, and each
thread within the block is assigned a different diagonal off-
set to compute. This way, we implement Algorithm 3 to
be computed using a thread block. For each wavefront W̃e
(containing 2e+1 diagonals), threads within the block extend
independently each diagonal k offset (i.e., apply operator
extend()); and then, compute the corresponding k offset of the
next wavefront W̃e+1 (i.e., apply operator computeNext()).

Nevertheless, this approach faces some performance
challenges of its own. Concerning the memory utilisation,
wavefronts naturally become larger as the alignment error
e considered grows during the alignment computation (i.e.,
|W̃e| = 1 + 2e). It follows that the overall number of
wavefront elements required to align a pair of sequences with
alignment error e is given by

∑e
n=0 1+ 2n = (e + 1)2.

Note that all the wavefronts need to be stored to retrieve
the edit operations that originated the minimum edit-distance
alignment. Consequently, the memory requirements grow
quadratically with the alignment error, posing a scalability

63786 VOLUME 10, 2022

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

limitation when storing the data on shared memory. To palli-
ate this limitation and exploit the benefits of using the fast
shared memory, we propose a succinct encoding scheme
where thewavefronts store partial backtraces as the alignment
is computed (Section III-A).

Depending on the alignment error between the input
sequences, some alignments may require more shared mem-
ory than others. Requesting memory for the worst-case align-
ments will limit the number of concurrent thread blocks
running on an SM and, ultimately, the performance of the
whole execution. For that reason, we implement three dif-
ferent kernel specialisations, each one supporting a different
maximum alignment error. This way, our implementation can
optimise the resource usage for each scenario and achieve
higher performance for cases where the alignment error is
bounded (Section III-B).

Moreover, the computation performed by the extend()
operator can be largely irregular as it depends on the number
of matching characters on each diagonal. To minimise thread
divergence, we use a packed sequence encoding that allows
performing bit-parallel sequence comparisons (i.e., block-
wise comparisons), reducing the chances of divergence, and
saving memory at the same time (see Section III-C).

Additionally, modern GPUs allow simultaneous data trans-
fers and kernel execution to exploit parallelism further. In this
way, the system minimises the impact of data offloading
from the host and overlaps transference with computation
on the device. Our solution implements an alignment batch
system that allows multiple alignment problems to be solved
in parallel while performing data transfers HtoD and DtoH
(see Section III-D).

A. PIGGYBACKED ALIGNMENT OPERATIONS
As stated before, the WFA algorithm requires storing all the
intermediate wavefront vectors W̃e to be able to trace back the
optimum alignment. As a result, the memory consumption of
the algorithm grows quadratically with the alignment error,
posing a severe constraint on the shared memory scalability.
Here, we propose a succinct encoding of thewavefronts based
on storing partial backtraces as the alignment is computed.

For an alignment of distance e, the WFA backtrace algo-
rithm computes the optimum alignment path from (n,m) to
(0, 0), traversing all the wavefront vectors from W̃e to W̃0.
In particular, each step of the backtrace checks the adjacent
offsets (e.g., from W̃e,k to W̃e−1,k+1, W̃e−1,k , or W̃e−1,k−1) for
the one that originated the minimum cost alignment accord-
ing to Eq. 2. In essence, each iteration in the backtrace process
computes a step in the alignment path. To avoid storing
explicitly all the wavefront offsets, we propose to explicitly
compute each backtrace step (i.e., ←,↖,↙) and store it
together with the previous steps in a backtrace vector. In this
way, our implementation piggybacks the partial backtraces
B̃e,k from every offset W̃e,k to the beginning of the alignment
W̃0,0. As a result, our solution only needs to store two wave-
fronts (i.e., W̃e and W̃e+1) and their partial backtraces B̃e and
B̃e+1 for each step of the algorithm.

FIGURE 3. Wavefront data layout for aligning the sequences T = ‘‘GAATA’’
and P = ‘‘GATTACA’’.

Figure 3 illustrates our proposal aligning the sequences
T = ‘‘GAATA’’ and P = ‘‘GATTACA’’. The example shows
that the alignment process ends at W̃3,−2 (i.e., the minimum
edit-distance between P and T is e = 3). The alignment path
from W̃3,−2 to W̃0,0 is explicitly stored in the backtrace vector
at B̃e,k = ‘‘←↖↖’’.

However, the backtrace vector does not contain the full
alignment path but just the edit operations (i.e., mismatches,
insertions, and deletions) within the alignment. To recover the
full alignment path, we need to recover the matches between
backtrace steps. To that purpose, we use the WFA’s extend()
operator to compute stretches of matches between successive
backtrace steps. This strategy is shown in Algorithm 4. Note
that this algorithm only has to operate a single time over
the backtrace vector of the optimum alignment, and its time
complexity is proportional to the alignment path.

In practice, each backtrace step can be efficiently com-
puted within the computeNext() operation and encoded using
two bits (i.e., 32 backtrace steps for each 64-bit word). For
that, we piggyback each offset in Eq. 2 with its corresponding
backtrace step on its two less significant bits. After the maxi-
mum calculation, the resulting backtrace step is appended to
the backtrace vector at the end.

The succinct encoding of the backtrace steps leads to a
significant reduction in memory consumption. Using 32-bits
offsets, the straightforward implementation of theWFA algo-
rithm requires (e+1)2×4 bytes to align a pair of sequences of
error e. Using the proposed scheme, we reduce the required
memory structures to the last two computed wavefronts and
their corresponding backtrace vectors (i.e., 4e × (4 + 2e/8)
bytes). For any sufficiently large e, this represents up to a
4x reduction in memory usage. In practice, for moderately
large e values, all the backtrace vectors can be fitted in shared

VOLUME 10, 2022 63787

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

Algorithm 4:Algorithm to Retrieve the Alignment From
the Backtrace Vector
Function retrieveAlignment (P,T ,W̃e,W̃e+1):

offset ← 0
k ← 0
A← ∅
for i← 0 to e do

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · ·,’M’

op← B̃k [i]
switch op do

case↖ do // Deletion
k ← k − 1
A← A+’D’

case← do // Mismatch
offset ← offset + 1
A← A+’X’

case↙ do // Insertion
offset ← offset + 1
k ← k + 1
A← A+’I’

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · ·,’M’

memory. Furthermore, to enable coalesced memory accesses
and avoid bank conflicts, we implement a struct-of-arrays
approach, separating the wavefront offsets from the backtrace
vectors. As a result, subsequent backtrace vectors are stored
contiguously, enabling fast accesses when all threads in a
warp access the backtrace vectors.

B. KERNEL SPECIALISATION
Even though the introduction of the backtrace vectors
(Section III-A) reduces the memory requirements, shared
memory usage is a major performance limitation when scal-
ing to larger alignment errors (see Section IV-C). In practice,
our implementation uses bit-vectors to store the backtrace
vectors. For instance, using 64-bit words, we could store
up to 32 edit operations (i.e., each edit operation encoded
using 2 bits). As the maximum alignment error increases, this
approach requires longer bit-vectors. In turn, large bit-vectors
put additional pressure on the share memory usage and hinder
performance. Therefore, it is important to bound the maxi-
mum alignment error for each batch of sequences and use the
most suitable configuration that minimises the memory used
by the backtrace vectors.

On that account, we implemented three different kernels,
each one supporting a different maximum alignment error:
32, 64, and 128 errors. For convenience, we call these kernels
E32, E64, and E128, respectively. Each kernel requires stor-
ing 64-bits, 128-bit, and 256-bits words per diagonal of the

wavefront and therefore require more shared memory as the
alignment error supported increases. The execution of these
kernels display different performance tradeoffs discussed in
Section IV-C.
It is important to note that the length of the backtrace

vector imposes a limit on the maximum alignment error
but not on the maximum sequence supported. For instance,
the E128 implementation could be used to align sequences
of 1000 nucleotides up to a 12.8% error rate or 10K long
sequences up to a 1.28% error rate. For moderately long
sequences (i.e., between 100 and 1000 nucleotides), our
implementation supports alignments up to more than a 10%
error rate. Nevertheless, it is possible to extend this approach
to higher error rates, using longer bit-vectors, at the cost of
using more memory and potential performance slowdowns
(see Section IV-C).

C. BIT-PARALLEL PACKED SEQUENCE COMPARISON
As opposed to the computeNext() operation, the extend()
operation can require performing a different amount of com-
putations per diagonal. Specifically, the inner loop of Algo-
rithm 1 iterates as many times as the total characters that
match along each diagonal. Thus, threads within a block
executing this operation are bound to diverge, which can
diminish the overall performance.

To mitigate this problem, we use a packed sequence encod-
ing that allows performing bit-parallel sequence compar-
isons; that is, comparing blocks of characters, anticipating
comparisons, and reducing the variability between diago-
nals. Taking advantage of the reduced DNA alphabet (i.e.,
nucleotides A, C, G, and T), we propose to use a 2bits-packed
encoding scheme to increase the number of nucleotides
compared per block (i.e., 16 nucleotides per 32 bits word).
Furthermore, packing and reducing the size of the input
sequences reduces the memory requirements on the shared
memory and, in turn, allows fitting more CUDA blocks in
the same SM.

Nonetheless, this approach introduces the need of packing
the input sequences beforehand. Sequence packing can be
performed on the host CPU, or it can be offloaded to the
GPU. Although packing sequences on CPU would help to
reduce the amount of data that has to be transferred to the
GPU, packing computations and memory transfers can be
overlapped with the alignment kernels (see Section III-D).
Not to mention that current high-speed transfer technologies,
such as NVLink, allow even faster transfers from the host to
the device. For instance, using a Nvidia V100, the offloading
of raw sequences and packing on the GPU turns out to be
faster than packing the sequences on the CPU and transferring
the packed sequences.

Furthermore, sequence packing turns out to be a straight-
forward operation. Due to the ASCII representation of the
DNA letters (i.e., A=1000001, C=1000011, G=1000111,
T=1010100), it only requires to extract the bits on posi-
tion 1 and 2 (unique bits in every DNA letter encoded in
the ASCII). This encoding has been extensively used in

63788 VOLUME 10, 2022

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

FIGURE 4. Compute kernels of multiple batches are overlapped with data
transfers (DthH and HtoD).

multiple bioinformatics and genomics applications for pack-
ing DNA sequence databases and genome references. How-
ever, our implementation does not assume the preprocessing
of the input sequences and allows using ASCII-encodedDNA
sequences, packing its content on the GPU.

Altogether, this approach accelerates the computations per-
formed within the extend() kernel, decreasing the execution
divergence between threads, and reducing the number of
instructions executed as well as the overall shared memory
used. Compared to the vanilla implementation, our experi-
ments show that this strategy accelerates the kernel execu-
tion time from 1.6× to 1.9× and reduces the number of
executed instructions by a factor of 1.7× to 2.1×. Most
importantly, it reduces between 1.2× and 1.7× the number of
predicated-off threads in a warp (i.e., inactive threads when
divergent branches occur and threads take separated paths).

D. BATCH EXECUTION. OVERLAPPING KERNEL
COMPUTATION WITH DATA TRANSFERS
At the system level, memory transfers from host to device
take a significant percentage of the total execution time since
all the sequences have to be stored in the device to perform
the alignment. Hiding transfer latencies with computation is
key to avoid performance slowdowns due to the offloading
of computation to the GPU. The CUDA programming model
allows the creation of various streams to overlap comput-
ing kernels with memory transfers. All operations within a
CUDA stream are synchronous; however, they can operate
asynchronously between other running streams. As a result,
launching independent kernels and memory transfers to dif-
ferent CUDA streams can effectively overlap computation
with memory transfers.

To effectively implement this strategy, we created batches
of sequences to be transferred and aligned in parallel. This
way, compute kernels of a given batch can be overlapped with
computations and memory transfers from other batches. This
concept is illustrated in Figure 4.

IV. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of the
eWFA-GPU. We compare our implementation against state-
of-the-art libraries and tools for pairwise sequence align-
ment. Then, we present a detailed study of the performance,
scalability, and limitations of our implementation, showing
a comprehensive profiling of the kernel executions on GPU.

Afterwards, we evaluate the performance effect of parameter
tuning our implementation and conclude presenting an eval-
uation on other GPU devices.

A. EXPERIMENTAL SETUP
We performed the experimental evaluation of our solution
on an IBM Power9 processor (20 cores with 4 threads per
core), equipped with an NVIDIA V100 GPU with 16GB
of HBM2 memory connected through NVLink. We used
synthetic datasets consisting of 10 million sequence pairs of
lengths 150, 300, and 1000 nucleotides, and error rates of 2%,
5%, and 10%. For comparison, we selected representative
and widely-used libraries and tools from the state-of-the-art.
We focused on those CPU and GPU implementations that
stand out in terms of performance or implement the latest
algorithmic approaches.

For the CPU evaluation, we selected Edlib [48]; eWFA,
an optimised CPU version of the WFA [39] adapted to the
edit-distance; BPM, a highly optimised version of the Bit-
Parallel Myers algorithm [37]; and the O(ND) algorithm [45]
used at the core of the Linux diff-tool. All CPU executions
were performed using 80 threads, as the best performance
(execution time) is obtained with this number of threads.

From the multiple GPU implementations available,
we have selected those that could be deployed, executed
without faults, and had a competitive execution time. In par-
ticular, we evaluated two methods from the widely-used
NVBio [51] framework, the WmCudaTile algorithm from
xbitpar [57], and the highly optimised GASAL2 [58]. Note
that NVBio implementation only computes the alignment
distance, not producing the complete alignment. Also, note
that GASAL2 implements the gap-affine distance and, con-
sequently, requires more computation than edit-distance.
Notwithstanding, its inclusion in the benchmark is interesting
for comparison purposes. We tuned GASAL2’s gap-affine
parameters to this end, so the library computes the edit-
distance alignment.

B. PERFORMANCE EVALUATION
In order to present a comprehensive evaluation of the dif-
ferent methods’ performance, Table 1 shows the alignment
time taken by each implementation for aligning 10 million
sequences of different lengths and error rates. We report total
execution time, including transfer times (i.e., host to device
and back) for the GPU executions. All CPU implementations
were executed using 80 threads. Overall, results show that
eWFA-GPU executes 2.9-265× faster than the CPU-based
methods and 8-56× faster than other GPU implementations.

Compared to established CPU alignment algorithms,
eWFA-GPU performs 24-102× faster than the BPM algo-
rithm and 19-100× faster than the O(ND) implementation.
Similarly, we obtain speedups of 31-265× compared to Edlib.
Compared to the CPU implementation of the eWFA, our
GPU implementation delivers 3-9× times more performance.
In particular, the speedups obtained by eWFA-GPU increase
with higher alignment error rates as thewavefronts increase in

VOLUME 10, 2022 63789

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

TABLE 1. Alignment time (in milliseconds) for an input of 10 million alignments using different alignment implementations on CPU and GPU. Note that
CPU implementations were executed using 80 threads. The first half of the table presents alignment times of implementations that only compute the
edit-distance (not the alignment). The second half shows alignment times of implementations that compute the edit-distance and the full alignment path.
Best execution times are marked in bold.

size and more wavefront computation can be done in parallel
(see Section IV-C).

Regarding the GPU implementations, eWFA-GPU outper-
forms the widely-used NVBio library, achieving speedups of
2.5-7.4× compared to NVBio’s classical DP-based imple-
mentation and speedups of 4.5-7.2× compared to NVBio’s
BPM. Compared to wmCudaTile, eWFA-GPU achieves up
to 12× speedup for short sequences (i.e., 150 nucleotides)
and up to 56× speedup for longer sequences. Compared to
GASAL2, eWFA-GPU is 10-30× faster. In general, eWFA-
GPU execution time scales better with the sequence length,
compared to the other GPU implementations. In particu-
lar, the performance of DP-based methods, like GASAL2,
is strongly limited by the sequence length. Ultimately, align-
ing long sequences with GASAL2 becomes impractical (e.g.,
1000 nucleotides or more). For a fair comparison, it is impor-
tant to acknowledge that GASAL2 implements the gap-affine
distance, which is more complex and costly than computing
the edit-distance alignment.

Unsurprisingly, DP-based implementations (i.e., BPM,
Edlib, NVBio, and GASAL2) are insensitive to the align-
ment error, performing the same amount of computations
to align similar sequences as to align very divergent ones.
As a result, the performance of classical DP-based algorithms
is heavily constrained by the sequence length and not by
the sequences homology. For that reason, some tools, like
Edlib, implement heuristics that prune the DP computations
at the expense of potentially missing the optimal alignment
(note the reduction in the execution time when aligning
sequences of 1000 nucleotides with e>=5%). In contrast,
error-sensitive methods, like the eWFA-GPU, perform faster
when aligning highly similar sequences, exploiting similari-
ties between the sequences to accelerate the alignment pro-
cess. These methods are only constrained by the nominal
amount of differences between the sequences.

C. PROFILING, SCALABILITY, AND LIMITATIONS
Our solution relies on exploiting the fast on-chip memory
of the GPU to improve the execution time. As explained in

Section III, our implementation stores the algorithm’s work-
ing set (i.e., sequences, offsets, and backtraces) in shared
memory, enabling fast accesses at the expense of limiting
the maximum amount of memory that each alignment can
use. As the shared memory required by the algorithm grows
quadratically with the alignment error, thememory consumed
by the offsets and backtraces becomes the most limiting
factor. In turn, increasing the shared memory consumed per
each alignment limits the amount of thread blocks that can be
executed concurrently on each SM. Therefore, the maximum
alignment error supported strongly constrains the number of
alignments that can be processed on each SM, thus limiting
the performance and scalability of the solution to high error
rates. Due to these limitations, our solution implements three
specialised alignment kernels, each supporting a different
maximum number of errors per alignment (i.e., 32, 64, and
128 errors; see Section III-B). In this section we show that
selecting the proper kernel, adjusted the maximum expected
alignment error, is crucial to obtain the best performance.

1) OVERALL SYSTEM PROFILING
Having three different specialised kernels, the performance
of the executions change depending on the alignment error
between the sequences. Fig. 5 shows the application execu-
tion times aligning datasets with different error rates, broken
down into transference time (i.e., HtoD and DtoH), kernels
execution time, and total execution time. In the figure, each
execution is represented using three columns: the first one
showing the aggregated time of the memory copies between
CPU and GPU, the second one showing the GPU kernels
computation times, and the third one showing the overall exe-
cution time. Note how transference times are being effectively
overlapped with kernel computations.

In particular, when aligning homologous sequences (e.g.,
20 differences between the sequences) with the E32 kernel,
we observe that data transfers become the main performance
bottleneck. In this case, the kernels’ computation can be
effectively overlapped with transfers (disregarding initialisa-
tion times), resulting in the fastest execution times. As the

63790 VOLUME 10, 2022

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

FIGURE 5. Application execution time broken down into transference
time (i.e., host to device and device to host), kernel execution time, and
total execution time. Each execution was performed using a dataset
contain 1 million sequences of 1000 nucleotides with different error rates
(i.e., 20, 35, 50, 75, and 100 nominal errors).

TABLE 2. Performance metrics of each specialised alignment kernel on
the Nvidia V100 GPU. Executions were performed using datasets of 1M
sequences of 1000 nucleotides. Each dataset contains sequences that
align with an average error rate of 2%, 5%, and 10% (i.e., 20, 50, and
100 nominal differences). Each execution was performed using the
minimum alignment error supporting kernel (i.e., E32, E64, E128).

number of differences increases, our implementation requires
using kernels that support higher error rates. In these scenar-
ios (E64 and E128), the kernel’s computing time overtakes
the transfer time and becomes the main bottleneck. Most
notably, the alignment kernel time increases with higher error
rates (specially, due to increments in the size of the backtrace
vectors from E64 to E128). As opposed, transfer, packing,
and backtrace times remain constant across all executions for
all datasets used (i.e., sequences of 1000 nucleotides).

2) ALIGNMENT KERNEL PERFORMANCE PROFILING
Due to its significance, we focus on the alignment kernel
to characterise its performance and understand the GPU
resource utilisation. Table 2 reports a summary of the most

relevant performance metrics of the execution of the three
alignment kernel specialisations.

Concerning memory utilisation, the alignment kernel only
accesses global memory at the beginning of the execution
to copy the input sequences into shared memory. Due to
the limited usage of global memory, the effective throughput
reached is very low and rapidly decreases as the compute time
grows for executions using higher alignment error rates. For
the rest of the execution, the alignment kernel only accesses
the fast on-chip shared memory.

Regarding computation on the GPU, in Table 2 we observe
that all the alignment kernel specialisations are consistently
between 60% and 87.74% of the maximum SM core instruc-
tion throughput (i.e., SM busy). Furthermore, a more detailed
profiling reveals that none of the SM computing pipelines
is fully saturated. In particular, the most used computing
pipeline, the ALU pipeline, reaches a 87% utilisation on the
E32 kernel, 80% on the E64 kernel, and 30% utilisation on the
E128 kernel. Additionally, note that the warp stall time (i.e.,
warp cycles per issued instruction) remains similar across all
executions.

These results reveal that the real limiting factor of these
executions is not the lack of computing resources on the GPU
but the lack of computing parallelism. When aligning up to
higher alignment error rates, the wavefronts become larger;
and thus, an SM can exploit more threads to perform parallel
computations. Accordingly, Table 2 shows that the average
active threads per warp increases from 10.1 to 27.4 (out of a
maximum of 32 threads per warp) when executing kernels
with higher alignment error support. In turn, this increase
in parallelism is reflected on the total warp instructions exe-
cuted. As the alignment error increases, we would expect an
O(e2) increase in the number of warp instructions. However,
we observe a much gentle growth alleviated by the utilisation
of more threads per each warp.

Nevertheless, this increase in the number of active threads
per warp does not immediately translates into higher SM
utilisation (i.e., SM busy). Note that higher alignment error
supporting kernels require more shared memory per block
(Table 2). Therefore, the maximum number of active warps
per SM is bounded by the total shared memory available
and the shared memory required per block. Table 2 shows
that the occupancy drops from 31.86 to 19.94 when aligning
sequences up to 100 nominal differences using the E128
kernel. As a result, the SM busy and the computing pipelines
usage is reduced from 87.74% to 61.96%. Ultimately, as the
profiling results show, the performance of the alignment
kernel execution attends to a trade-off between the shared
memory required by each thread block and the maximum
active threads per warp that can be exploited to perform the
alignment computations.

3) ALIGNMENT KERNEL SELECTION
In order to maximise performance, it is crucial to select the
alignment kernel that minimises the shared memory con-
sumption while being capable of aligning up to the maximum

VOLUME 10, 2022 63791

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

TABLE 3. Performance metrics of each specialised alignment kernel on
the Nvidia V100 GPU. All executions were performed using 32 threads per
block, aligning a dataset of 1M sequences of 150 nucleotides with an
average error rate of 5% (i.e., average of 7.5 nominal differences). Each
execution was performed using a different alignment kernel; that is, E32,
E64, and E128.

error required by the input dataset. Table 3 presents the
performance results from using the three different kernel
specialisation to align the same dataset. First, we can observe
how gradually each alignment kernel requires more shared
memory (from 1.65KiB up to 18.61KiB per thread block),
reducing the occupancy (from 31.50 down to 4.88), and ulti-
mately leading to longer kernel execution times (i.e., an slow-
down of 11× from E32 to E128). When using the same
dataset, all three executions compute the same alignments
and process wavefronts of the same length. Consequently, the
effective parallelism attained is the same for all the kernels
(i.e., average active threads per warp) and the executed warp
instructions remains constant for all the executions (ignoring
overheads associated to operating with longer backtrace vec-
tors). Hence, the maximum amount of parallel computations
depends on the maximum alignment error, not on the align-
ment kernel specialisation. Considering that the three kernels
are capable of supporting themaximum alignment error of the
dataset, selecting an oversized kernel can lead to a slowdown
up to 3.8×.

In conclusion, utilising the best fitted kernel (in terms
of maximum alignment error supported and shared memory
consumed) is key for performance. Specially, for alignments
with a small alignment error where the parallelism is rather
limited and only a few threads per block can effectively com-
pute useful work in parallel. Balancing the number of align-
ments per SM and the maximum number of active threads
per block is crucial for an efficient exploitation of the GPU
computing resources.

D. PARAMETER TUNING
Most often, GPU-based implementations depict specific
parameters that can strongly impact performance and have to
be configured with caution. For the eWFA-GPU, the number
of threads per block (and, therefore, the number of threads per
alignment) determines the maximum work that can be done
in parallel computing an alignment. If there are more threads
than wavefront elements, some threads never perform useful

TABLE 4. Alignment time (in milliseconds) of 10 million alignments using
a different number of threads per block. All the datasets used for this
comparison have a 10% error rate.

TABLE 5. Properties of devices used for evaluation.

work, andGPU resources are not efficiently used. Conversely,
if a wavefront is larger than the number of threads in a block,
the implementation requires multiple iterations; hence, losing
parallelism.

Table 4 lists the performance trade-offs using a differ-
ent number of threads per block. For short sequences and
small error rates, using small blocks (e.g., one warp) reduces
the number of idle threads per block. In the case of short
and medium sequences (i.e., 150-300 nucleotides), using
32 and 64 threads per block gives very similar perfor-
mance results. However, using more threads per block leads
to a performance drop caused by idle threads consuming
GPU resources. Similarly, for aligning long sequences (i.e.,
1000 nucleotides), the best performance is achieved by using
128 threads per block. Note that using fewer threads per block
leads to an underutilization of GPU resources and, usingmore
threads, to a waste of GPU resources by idle threads.

E. EVALUATION ON OTHER DEVICES
To offer a thorough analysis of the performance of the pro-
posed solution, we also evaluated our implementation using
two other GPU models: an Nvidia GeForce RTX 2080 Ti and
an Nvidia GeForce RTX 3080. The computing capabilities of
each device used are listed in Table 5.
The results of the execution on other GPU devices are

shown in Table 6. On the GeForce RTX 2080 Ti, our imple-
mentation is bounded by the bandwidth between the CPU
and the GPU. The device is connected through PCI Express,
achieving a bandwidth of 13GB/s on average. For instance,
a batch of 10 million sequences of 1000 nucleotides repre-
sents 21GB of input data. Transferring all this data to the GPU
using the available peak bandwidth of 13GiB/s would take
1615 milliseconds. That is about 87% of the total execution

63792 VOLUME 10, 2022

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

TABLE 6. Alignment time (in milliseconds) of 10 million alignments using
eWFA-GPU on different devices.

time. Even with the proposed strategy to overlap computation
with transfers, the overall execution time is bounded by data
transfers to the device.

In the case of the RTX 3080, most execution times are
similar to the RTX 2080 results, as they have similar PCI
Express bandwidth. Overall, computation kernels are faster
than memory transfers and can be effectively overlapped.
However, when aligning 1000 nucleotides long sequences
with 10% of error, computation kernels take more time than
memory transfers, mainly due to the intensive usage of shared
memory. As shown in Table 5, the RTX 3080 has more shared
memory available per SM than other devices, allowing it to
havemore alignments per SM, and therefore, achieving better
performance than the RTX 2080.

V. RELATED WORK
Over the years, many efforts have been invested in finding
new algorithms and more efficient implementations to com-
pute pairwise edit-distance alignments. In [59], Navarro pro-
vides a comprehensive review of the most relevant algorithms
and a performance evaluation for different datasets and con-
figurations. Most alignment algorithms can be classified into
four categories: DP-based, automaton, filters, and bit-parallel
algorithms. In practice, bit-parallel algorithms outperform the
rest approaches. Most notably, these include the BPM [37],
the O(ND) [45], and the Wu-Manber (WM) [35] algorithms.

Based on the most successful algorithmic approaches,
many high-performance CPU libraries have been presented.
Some of them have become extensively used due to their
efficiency or versatility, most notably, Edlib [48], BGSA [49],
and SeqAn [60]. Edlib is an efficient CPU implementa-
tion of the BPM algorithm used within many Bioinformat-
ics tools. BGSA is also a very efficient implementation of
the BPM algorithm, optimised to exploit vectorization on
multi-core and many-core CPUs. SeqAn is a sequence analy-
sis library that implements a hybrid algorithm that combines
the memory-efficient Hirschberg’s algorithm [60] with the
BPM algorithm.

Additionally, there have been many efforts to adapt and
optimise these algorithms on GPU devices. Most relevant
proposals are based onDP, computing cells antidiagonal-wise
in parallel [61]–[65]. Meanwhile, some research efforts have

been focused on producing efficient CUDA implementa-
tion of the classical Needleman-Wunsch [66] algorithm;
other proposals have focused on novel organisations of the
DP-matrix to exploit efficiently the GPU resources [67].
In particular, in [68] and [69], the authors propose an algo-
rithm to reduce memory operations when computing the DP-
matrix, by using warp-shuffle instructions of current Nvidia
GPU architectures.

Many other GPU-based methods have opted for accelerat-
ing bit-parallel algorithms. In [57], the authors propose using
warp-shuffle operations to simulate a 1024-bit machine word,
allowing to perform approximate string matching on long
patterns. Also, in [70], the authors exploit the Crochemore
algorithm based on Suffix automaton for bit-parallel align-
ment. Like [71], other proposals revisit the Shift-Or and Wu-
Manber algorithms, implementing them as inclusive-scan
operations to allowmultiple parallel computations. Similarly,
in [30] the authors propose a thread-cooperative version of the
BPM algorithm, achieving very high performance results in
a Nvidia GTX 680 GPU.

Furthermore, there has been many proposal to optimise
sequence alignment on field programmable gate array devices
(FPGA) [72]–[75]. Most notable FPGA implementations
exploit bit-parallel techniques and custom processing designs
to accelerate the computation of multiple alignments in
parallel.

Comparing the performance of multiple methods imple-
mented on different hardware platforms can be a challenging
task. For the purpose of making meaningful comparisons,
it is common to compare the peak number of Giga Cells
Updated Per Second (GCUPS) achieved by each implemen-
tation. GCUPS is an established metric used to measure the
performance of alignment algorithms regardless of the target
devices and other implementation specifics. It represents the
number of cells from the DP-matrix computed per second
by each implementation. GCUPS can be computed using
Eq. 3 for an alignment of two sequences of length n and m,
taking s seconds. This way, Table 7 compares peak GCUPS
reported by the most relevant implementations. Note that
the eWFA-GPU algorithm doesn’t require computing the full
DP-matrix to obtain the optimal alignment. Even so, for a fair
comparison, we report the total number of CUPS required
to compute to obtain the same alignment as our implemen-
tation. Overall, our solution obtains between 8-1790× more
GCUPs than other GPU implementations. Notwithstanding
the inherent inaccuracies of this comparison method, it is
significant that eWFA-GPU produces 2 orders of magnitude
more GCUPS than the most efficient methods found in the
literature.

GCUPS =
nm
s
× 10−9 (3)

VI. CONCLUSION
This paper presents eWFA-GPU, a GPU-accelerated algo-
rithm based on the WFA algorithm to compute the edit-
distance. Our implementation provides exact edit-distance

VOLUME 10, 2022 63793

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

TABLE 7. Peak GCUPs of different edit-distance alignment tools as
reported on their work.

alignment (i.e., not heuristic), outperforming other state-
of-the-art methods. Also, we present the piggybacked
backtrace strategy, a novel optimisation technique that dra-
matically reduces the amount of memory needed for align-
ing sequences. Not only this technique requires storing only
two wavefronts (fitting in the fast shared GPU memories),
it also makes the alignment generation faster. Addition-
ally, we implemented a high-performance sequence pack-
ing kernel that allows block-wise comparisons between
sequences. This accelerated operation significantly improves
one of the most time-consuming operations of the WFA (the
extend operator). Moreover, our implementation is fully asyn-
chronous and overlaps compute kernels andmemory transfers
to accelerate the algorithm execution, hidingmemory transfer
latencies with computation.

We compared our eWFA-GPU implementation against
other CPU alignment libraries. Results obtained on theNvidia
V100 GPU demonstrate speedups up to 265× compared to
Edlib, and up to 9.2× compared with the CPU version of
the WFA algorithm. Also, we obtain speedups up to 101.7×
compared to the BPM, and up to 100.4× compared to the
O(ND) CPU implementation. Additionally, we compared our
implementation against GPU aligners: wmCudaTile from
XBitPar, GASAL2, and NVBio. We achieve a speedup up to
56.2× compared to wmCudaTile, up to 30.3× compared to
GASAL2, and up to 7.4× compared with NVBio. Beware
that GASAL2 is capable of computing gap-affine distance
(hence it performs more work).

All in all, our implementation represents an efficient solu-
tion for applications that require fast computation of exact
edit-distance alignment of large DNA sequence datasets.
eWFA-GPU is MIT-licence open-source, and its code is
publicly available at https://github.com/quim0/
eWFA-GPU.

REFERENCES
[1] A. Abboud, V. V. Williams, and O. Weimann, ‘‘Consequences of faster

alignment of sequences,’’ in International Colloquium on Automata, Lan-
guages, and Programming. Cham, Switzerland: Springer, 2014, pp. 39–51.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
vol. 463. New York, NY, USA: ACM Press, 1999.

[3] S. Kumar and E. H. Spafford, ‘‘A pattern matching model for misuse
intrusion detection,’’ in Proc. Nat. Comput. Secur. Conf., 1994, pp. 11–21.

[4] D. Gusfield, ‘‘Algorithms on stings, trees, and sequences: Computer sci-
ence and computational biology,’’ ACM SIGACT News, vol. 28, no. 4,
pp. 41–60, Dec. 1997.

[5] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen,
‘‘Episode matching,’’ in Proc. Annu. Symp. Combinat. Pattern Matching.
Cham, Switzerland: Springer, 1997, pp. 12–27.

[6] T. A. Pirinen andK. Lindén, ‘‘State-of-the-art in weighted finite-state spell-
checking,’’ in Proc. Int. Conf. Intell. Text Process. Comput. Linguistics.
Cham, Switzerland: Springer, 2014, pp. 519–532.

[7] R. C. Gonzalez and M. G. Thomason, Syntactic Pattern Recognition: An
Introduction. Reading, MA, USA: Addison-Wesley, 1978.

[8] J. Droppo and A. Acero, ‘‘Context dependent phonetic string edit dis-
tance for automatic speech recognition,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., Mar. 2010, pp. 4358–4361.

[9] Z. Ying and T. G. Robertazzi, ‘‘Signature searching in a networked
collection of files,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5,
pp. 1339–1348, May 2014.

[10] T. Luczak and W. Szpankowski, ‘‘A suboptimal lossy data compression
based on approximate pattern matching,’’ IEEE Trans. Inf. Theory, vol. 43,
no. 5, pp. 1439–1451, Sep. 1997.

[11] Z. Su, B.-R. Ahn, K.-Y. Eom, M.-K. Kang, J.-P. Kim, and M.-K. Kim,
‘‘Plagiarism detection using the levenshtein distance and smith-waterman
algorithm,’’ in Proc. 3rd Int. Conf. Innov. Comput. Inf. Control, Jun. 2008,
p. 569.

[12] D. Lopresti and A. Tomkins, ‘‘On the searchability of electronic ink,’’ in
Proc. 4th Int. Workshop Frontiers Handwriting Recognit., Princeton, NJ,
USA: Citeseer, 1994, pp. 156–165.

[13] D. Sankoff, ‘‘Time warps, string edits, and macromolecules,’’ in The The-
ory and Practice of Sequence Comparison. Reading, MA, USA: Addison-
Wesley, 1983.

[14] J. Heine, M. Sylla, I. Langer, T. Schramm, B. Abendroth, and R. Bruder,
‘‘Algorithm for driver intention detection with fuzzy logic and edit dis-
tance,’’ in Proc. IEEE 18th Int. Conf. Intell. Transp. Syst., Sep. 2015,
pp. 1022–1027.

[15] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, andD.Ničković, ‘‘Quantitative
monitoring of STL with edit distance,’’ Formal Methods Syst. Design,
vol. 53, no. 1, pp. 83–112, Aug. 2018.

[16] H. Li, ‘‘Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,’’ 2013, arXiv:1303.3997.

[17] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca, ‘‘The GEMmapper:
Fast, accurate and versatile alignment by filtration,’’ Nature Methods,
vol. 9, no. 12, pp. 1185–1188, Dec. 2012.

[18] A. Merkel, M. Fernández-Callejo, E. Casals, S. Marco-Sola, R. Schuyler,
I. G. Gut, and S. C. Heath, ‘‘GemBS: High throughput processing for DNA
methylation data from bisulfite sequencing,’’Bioinformatics, vol. 35, no. 5,
pp. 737–742, Mar. 2019.

[19] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, J. M. Jones, and
I. Birol, ‘‘ABySS: A parallel assembler for short read sequence data,’’
Genome Res., vol. 19, no. 6, pp. 1117–1123, 2009.

[20] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and
M. A. Phillippy, ‘‘Canu: Scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation,’’ Genome Res., vol. 27,
no. 5, pp. 722–736, 2017.

[21] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and
M. A. DePristo, ‘‘The genome analysis toolkit: A mapreduce framework
for analyzing next-generation DNA sequencing data,’’ Genome Res.,
vol. 20, no. 9, pp. 1297–1303, 2010.

[22] B. Rodríguez-Martín, E. Palumbo, S. Marco-Sola, T. Griebel, P. Ribeca,
G. Alonso, A. Rastrojo, B. Aguado, R. Guigó, and S. Djebali, ‘‘ChimPipe:
Accurate detection of fusion genes and transcription-induced chimeras
from RNA-seq data,’’ BMC Genomics, vol. 18, no. 1, pp. 1–17, Dec. 2017.

[23] C. Notredame, D. G. Higgins, and J. Heringa, ‘‘T-coffee: A novel method
for fast and accurate multiple sequence alignment,’’ J. Mol. Biol., vol. 302,
no. 1, pp. 205–217, 2000.

[24] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis: Probabilistic Models Proteins Nucleic Acids. Cambridge, U.K.:
Cambridge Univ. Press, 1998.

[25] N. C. Jones, P. A. Pevzner, and P. Pevzner, An Introduction to Bioinformat-
ics Algorithms. Cambridge, MA, USA: MIT Press, 2004.

63794 VOLUME 10, 2022

https://github.com/quim0/eWFA-GPU
https://github.com/quim0/eWFA-GPU

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

[26] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,
R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, ‘‘Big data: Astronomi-
cal or genomical?’’PLOSBiol., vol. 13, no. 7, Jul. 2015, Art. no. e1002195.

[27] L. M. Petersen, I. W. Martin, W. E. Moschetti, C. M. Kershaw, and
G. J. Tsongalis, ‘‘Third-generation sequencing in the clinical laboratory:
Exploring the advantages and challenges of nanopore sequencing,’’ J. Clin.
Microbiol., vol. 58, no. 1, Dec. 2019, Art. no. e01315.

[28] W.-M. W. Hwu, GPU Computing Gems Emerald Edition. San Mateo, CA,
USA: Morgan Kaufmann, 2011.

[29] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[30] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
‘‘Thread-cooperative, bit-parallel computation of levenshtein distance
on GPU,’’ in Proc. 28th ACM Int. Conf. Supercomput. (ICS), 2014,
pp. 103–112.

[31] C.-H. Lin, J.-C. Li, C.-H. Liu, and S.-C. Chang, ‘‘Perfect hashing based
parallel algorithms for multiple string matching on graphic processing
units,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2639–2650,
Sep. 2017.

[32] P. H. Sellers, ‘‘The theory and computation of evolutionary distances:
Pattern recognition,’’ J. Algorithms, vol. 1, no. 4, pp. 359–373, Dec. 1980.

[33] E. Ukkonen, ‘‘Finding approximate patterns in strings,’’ J. Algorithms,
vol. 6, no. 1, pp. 132–137, Mar. 1985.

[34] R. A. Baeza-Yates, ‘‘Text-retrieval: Theory and practice,’’ in IFIP
Congress, vol. 12. Princeton, NJ, USA: Citeseer, 1992, pp. 465–476.

[35] S. Wu and U. Manber, ‘‘Fast text searching: Allowing errors,’’ Commun.
ACM, vol. 35, no. 10, pp. 83–91, Oct. 1992.

[36] G. Navarro, ‘‘A partial deterministic automaton for approximate string
matching,’’ in Proc. 4th South Amer. Workshop String Process. (WSP).
Carleton Univ. Press, 1997, pp. 112–124.

[37] G. Myers, ‘‘A fast bit-vector algorithm for approximate string matching
based on dynamic programming,’’ J. ACM, vol. 46, no. 3, pp. 395–415,
May 1999.

[38] R. Baeza-Yates, Efficient Text Searching. Waterloo, ON, Canada: Univ.
Waterloo, 1989.

[39] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, ‘‘Fast gap-
affine pairwise alignment using the wavefront algorithm,’’ Bioinformatics,
vol. 37, pp. 456–463, Sep. 2020.

[40] A. H. Wright, ‘‘Approximate string matching using withinword paral-
lelism,’’ Softw., Pract. Exper., vol. 24, no. 4, pp. 337–362, Apr. 1994.

[41] H. Suzuki andM.Kasahara, ‘‘Acceleration of nucleotide semi-global align-
ment with adaptive banded dynamic programming,’’ BioRxiv, Jan. 2017,
Art. no. 130633.

[42] T. Rognes and E. Seeberg, ‘‘Six-fold speed-up of smith-waterman
sequence database searches using parallel processing on common micro-
processors,’’ Bioinformatics, vol. 16, no. 8, pp. 699–706, Aug. 2000.

[43] M. Farrar, ‘‘Striped smith-waterman speeds database searches six times
over other SIMD implementations,’’ Bioinformatics, vol. 23, no. 2,
pp. 156–161, Jan. 2007.

[44] A. Wozniak, ‘‘Using video-oriented instructions to speed up sequence
comparison,’’ Bioinformatics, vol. 13, no. 2, pp. 145–150, 1997.

[45] E. W. Myers, ‘‘AnO(ND) difference algorithm and its variations,’’ Algo-
rithmica, vol. 1, nos. 1–4, pp. 251–266, Nov. 1986.

[46] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth, ‘‘SSW library: An
SIMD smith-waterman C/C++ library for use in genomic applications,’’
PLoS ONE, vol. 8, no. 12, Dec. 2013, Art. no. e82138.

[47] A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Buluc, L. Oliker, and K. Yelick, ‘‘LOGAN: High-performance GPU-
based X-drop long-read alignment,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2020, pp. 462–471.

[48] M. Šošić and M. Šikić, ‘‘Edlib: A C/C ++ library for fast, exact
sequence alignment using edit distance,’’ Bioinformatics, vol. 33, no. 9,
pp. 1394–1395, May 2017.

[49] J. Zhang, H. Lan, Y. Chan, Y. Shang, B. Schmidt, and W. Liu, ‘‘BGSA:
A bit-parallel global sequence alignment toolkit for multi-core and many-
core architectures,’’ Bioinformatics, vol. 35, no. 13, pp. 2306–2308,
Jul. 2019.

[50] G.Myers, ‘‘Efficient local alignment discovery amongst noisy long reads,’’
in Proc. Int. Workshop Algorithms Bioinf., Cham, Switzerland: Springer,
2014, pp. 52–67.

[51] (2015). Subtil N Pantaleoni J. NVBIO. Accessed: Sep. 15, 2021. [Online].
Available: https://nvlabs.github.io/nvbio

[52] E. Ukkonen, ‘‘Algorithms for approximate string matching,’’ Inf. Control,
vol. 64, nos. 1–3, pp. 100–118, Jan. 1985.

[53] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
‘‘Boosting the FM-index on the GPU: Effective techniques to mitigate
randommemory access,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 12,
no. 5, pp. 1048–1059, Sep. 2015.

[54] A. Chacon, S. M. Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
‘‘FM-index on GPU: A cooperative scheme to reduce memory footprint,’’
in Proc. IEEE Int. Symp. Parallel Distrib. Process. With Appl., Aug. 2014,
pp. 1–9.

[55] K. K. Yong and H. H. Ong, ‘‘Accelerating bit-parallel approximate match-
ing on GPU platforms for small patterns,’’ in Proc. 4th Int. Conf. Adv.
Comput., Commun. Autom. (ICACCA), Oct. 2018, pp. 1–5.

[56] K. Balhaf, M. A. Alsmirat, M. Al-Ayyoub, Y. Jararweh, andM. A. Shehab,
‘‘Accelerating levenshtein and Damerau edit distance algorithms using
GPU with unified memory,’’ in Proc. 8th Int. Conf. Inf. Commun. Syst.
(ICICS), Apr. 2017, pp. 7–11.

[57] T. T. Tran, Y. Liu, and B. Schmidt, ‘‘Bit-parallel approximate pattern
matching: Kepler GPU versus Xeon Phi,’’ Parallel Comput., vol. 54,
pp. 128–138, May 2016.

[58] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,
‘‘GASAL2: A GPU accelerated sequence alignment library for high-
throughput NGS data,’’ BMC Bioinf., vol. 20, no. 1, pp. 1–20, Dec. 2019.

[59] G. Navarro, ‘‘A guided tour to approximate string matching,’’ ACM Com-
put. Surv., vol. 33, no. 1, pp. 31–88, Mar. 2001.

[60] A. Döring, D. Weese, T. Rausch, and K. Reinert, ‘‘SeqAn an efficient,
generic C++ library for sequence analysis,’’ BMC Bioinf., vol. 9, no. 1,
pp. 1–9, Dec. 2008.

[61] A. Dhraief, R. Issaoui, and A. Belghith, ‘‘Parallel computing the longest
common subsequence (LCS) on GPUs: efficiency and language suit-
ability,’’ in Proc. 1st Int. Conf. Adv. Commun. Comput. (INFOCOMP),
Oct. 2011, pp. 1–6.

[62] A. Tomiyama and R. Suda, ‘‘Automatic parameter optimization for edit
distance algorithm on GPU,’’ in Int. Conf. High Perform. Comput. Comput.
Sci., Cham, Switzerland: Springer, 2012, pp. 420–434.

[63] K. Balhaf, M. A. Shehab, W. T. Al-Sarayrah, M. Al-Ayyoub, M. Al-Saleh,
and Y. Jararweh, ‘‘Using GPUs to speed-up levenshtein edit distance com-
putation,’’ in Proc. 7th Int. Conf. Inf. Commun. Syst. (ICICS), Apr. 2016,
pp. 80–84.

[64] Z. Li, A. Goyal, and H. Kimm, ‘‘Parallel longest common sequence algo-
rithm on multicore systems using OpenACC, OpenMP and OpenMPI,’’ in
Proc. IEEE 11th Int. Symp. Embedded Multicore/Many-Core Syst. Chip
(MCSoC), Sep. 2017, pp. 158–165.

[65] K. W. Kalare, M. S. Obaidat, J. V. Tembhurne, C. Meshram, and
K.-F. Hsiao, ‘‘Parallelization of global sequence alignment on graphics
processing unit,’’ in Proc. Int. Conf. Commun., Comput., Cybersecurity,
Informat. (CCCI), Nov. 2020, pp. 1–5.

[66] D. Li and M. Becchi, ‘‘Multiple pairwise sequence alignments with the
Needleman–Wunsch algorithm on GPU,’’ in Proc. SC Companion, High
Perform. Comput., Netw. Storage Anal., Nov. 2012, pp. 1471–1472.

[67] R. Farivar, H. Kharbanda, S. Venkataraman, and R. H. Campbell, ‘‘An algo-
rithm for fast edit distance computation on GPUs,’’ in Proc. Innov. Parallel
Comput. (InPar), May 2012, pp. 1–9.

[68] L. S. Nunes, J. L. Bordim, K. Nakano, and Y. Ito, ‘‘A fast approximate
string matching algorithm on GPU,’’ in Proc. 3rd Int. Symp. Comput. Netw.
(CANDAR), Dec. 2015, pp. 188–192.

[69] T. Ho, S.-R. Oh, and H. Kim, ‘‘A parallel approximate string matching
under levenshtein distance on graphics processing units using warp-shuffle
operations,’’ PLoS ONE, vol. 12, no. 10, Oct. 2017, Art. no. e0186251.

[70] K. Kawanami and N. Fujimoto, ‘‘A gpu implementation of a bit-parallel
algorithm for computing the longest common subsequence,’’ Inf. Media
Technol., vol. 10, no. 1, pp. 8–16, 2015.

[71] Y. Mitani, F. Ino, and K. Hagihara, ‘‘Parallelizing exact and approximate
string matching via inclusive scan on a GPU,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 7, pp. 1989–2002, Jul. 2017.

[72] D. Castells-Rufas, S. Marco-Sola, Q. Aguado-Puig, A. Espinosa-Morales,
J. C. Moure, L. Alvarez, and M. Moreto, ‘‘OpenCL-based FPGA accel-
erator for semi-global approximate string matching using diagonal bit-
vectors,’’ in Proc. 31st Int. Conf. Field-Program. Log. Appl. (FPL),
Aug. 2021, pp. 174–178.

[73] L. Cai, Q. Wu, T. Tang, Z. Zhou, and Y. Xu, ‘‘A design of FPGA acceler-
ation system for Myers bit-vector based on OpenCL,’’ in Proc. Int. Conf.
Intell. Informat. Biomed. Sci. (ICIIBMS), Nov. 2019, pp. 305–312.

VOLUME 10, 2022 63795

Q. Aguado-Puig et al.: Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront Algorithm

[74] J. Hoffmann, D. Zeckzer, and M. Bogdan, ‘‘Using FPGAs to accelerate
Myers bit-vector algorithm,’’ in Proc. 14th Medit. Conf. Med. Biol. Eng.
Comput., Cham, Switzerland: Springer, 2016, pp. 535–541.

[75] A. Haghi, S. Marco-Sola, L. Alvarez, D. Diamantopoulos, C. Hagleitner,
and M. Moreto, ‘‘An FPGA accelerator of the wavefront algorithm for
genomics pairwise alignment,’’ in Proc. 31st Int. Conf. Field-Program.
Log. Appl. (FPL), Aug. 2021, pp. 151–159.

[76] A. Ozsoy, A. Chauhan, and M. Swany, ‘‘Achieving TeraCUPS on longest
common subsequence problem using GPGPUs,’’ in Proc. Int. Conf. Paral-
lel Distrib. Syst., Dec. 2013, pp. 69–77.

[77] A. Ozsoy, A. Chauhan, and M. Swany, ‘‘Towards tera-scale performance
for longest common subsequence using graphics processor,’’ in Proc. IEEE
Supercomputing (SC), Dec. 2013, pp. 1–2.

[78] L. S. N. Nunes, J. L. Bordim, K. Nakano, and Y. Ito, ‘‘A memory-access-
efficient implementation of the approximate string matching algorithm on
GPU,’’ in Proc. 4th Int. Symp. Comput. Netw. (CANDAR), Nov. 2016,
pp. 483–489.

[79] M. U. Sadiq, M. M. Yousaf, L. Aslam, M. Aleem, S. Sarwar, and
S. W. Jaffry, ‘‘NvPD: Novel parallel edit distance algorithm, correct-
ness, and performance evaluation,’’ Cluster Comput., vol. 23, no. 2,
pp. 879–894, Jun. 2020.

[80] J. Daily, ‘‘Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments,’’ BMC Bioinf., vol. 17, no. 1, pp. 1–11,
Dec. 2016.

QUIM AGUADO-PUIG received the B.Sc.
degree in computer science from the Universitat
Autònoma de Barcelona (UAB), in 2019. He is
currently pursuing the M.Sc. degree with the Uni-
versitat Politècnica de Catalunya (UPC) in the
innovation and research in informatics program.
He also works as a Research Engineer in the
project Designing RISC-V-based Accelerators for
next-generation Computers (DRAC) at UAB in
collaboration with the Barcelona Supercomputing

Center (BSC). His research interests include high-performance computing,
massively parallel architectures, and GPU programming, with applications
to genomics, computational biology, and sequence alignment.

SANTIAGO MARCO-SOLA received the M.Sc.
and Ph.D. degrees in computer science from the
Universitat Politècnica de Catalunya (UPC), in
2012 and 2017, respectively. During his Ph.D.,
he worked with the Algorithm Development and
Bioinformatics Group, Spanish National Cen-
tre for Genome Analysis (CNAG). He is cur-
rently a Postdoctoral Researcher at the Barcelona
Supercomputing Center (BSC) and a Lecturer at
the Universitat Autònoma de Barcelona (UAB).

He participates in the project Designing RISC-V-based Accelerators for
next-generation Computers (DRAC). His research interests include high-
performance computing, heterogeneous architectures, genomic data analy-
sis, and machine learning algorithms in the context of bioinformatics and
computational biology.

JUAN CARLOS MOURE is currently an Asso-
ciate Professor with the Computer Architecture
and Operating Systems Department, Universitat
Autònoma of Barcelona (UAB), where he teaches
computer architecture, performance engineering,
and parallel programming. He is the author of
more than 50 articles, and has participated in
several European and Spanish projects related to
high-performance computing. His current research
interests include massive parallel architectures,

programming, and algorithms, mainly focused on computer vision, signal
processing, and bioinformatics applications.

DAVID CASTELLS-RUFAS received the B.S.,
M.S., and Ph.D. degrees in computer science from
the Universitat Autònoma de Barcelona (UAB),
Spain, in 1994, 2009, and 2016, respectively.
From 2003 to 2018, he was working as a Research
Assistant and a Postdoctoral Researcher with the
CEPHIS/CAIAC Research Center, UAB, where
he was an Adjunct Professor. Since 2020, he has
been with the Computer Architecture and Oper-
ating Systems Department, UAB. His research

interests include high-performance computing, reconfigurable systems, and
embedded systems.

LLUC ALVAREZ received the B.Sc. degree from
the Universitat de les Illes Balears (UIB), Palma,
Spain, in 2006, and the M.Sc. and Ph.D. degrees
from the Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain, in 2009 and 2015,
respectively. He is currently a Researcher with
the Barcelona Supercomputing Center (BSC) and
a Lecturer with the Universitat Politecnica de
Catalunya (UPC). His main research interests
include parallel architectures, memory systems,

programming models for high-performance computing, and accelerators for
bioinformatics applications.

ANTONIO ESPINOSA received the B.Sc. and
Ph.D. degrees in computer science, in 1994 and
2000, respectively. He is currently an Asso-
ciate Professor with the Computer Architecture
and Operating Systems Department, Universi-
tat Autònoma de Barcelona. During the last ten
years, he has participated in several European
and national projects related to bioinformatics
and high-performance computing, in collaboration
with a number of biotechnology companies and
research institutions.

MIQUEL MORETO received the Ph.D. degree
from the Universitat Politècnica de Catalunya
(UPC), in 2010. He is currently a Ramón y Cajal
Fellow at the UPC and an Associate Researcher
at the Barcelona Supercomputing Center (BSC).
Prior to joining UPC, he was a Fulbright Postdoc-
toral Fellow at the International Computer Science
Institute (ICSI), Berkeley, CA, USA. His research
interests include high-performance computer
architectures and domain-specific accelerators.

63796 VOLUME 10, 2022

