12,920 research outputs found

    Matching Is as Easy as the Decision Problem, in the NC Model

    Get PDF
    Is matching in NC, i.e., is there a deterministic fast parallel algorithm for it? This has been an outstanding open question in TCS for over three decades, ever since the discovery of randomized NC matching algorithms [KUW85, MVV87]. Over the last five years, the theoretical computer science community has launched a relentless attack on this question, leading to the discovery of several powerful ideas. We give what appears to be the culmination of this line of work: An NC algorithm for finding a minimum-weight perfect matching in a general graph with polynomially bounded edge weights, provided it is given an oracle for the decision problem. Consequently, for settling the main open problem, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact has qualitatively changed the nature of this open problem. All known efficient matching algorithms for general graphs follow one of two approaches: given by Edmonds [Edm65] and Lov\'asz [Lov79]. Our oracle-based algorithm follows a new approach and uses many of the ideas discovered in the last five years. The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching vis-a-vis clever relaxations of the class NC. In this vein, recently Goldwasser and Grossman [GG15] gave a pseudo-deterministic RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the additional requirement that on the same graph, it should return the same (i.e., unique) perfect matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm for general graphs.Comment: Appeared in ITCS 202

    Recognizing sparse perfect elimination bipartite graphs

    Get PDF
    When applying Gaussian elimination to a sparse matrix, it is desirable to avoid turning zeros into non-zeros to preserve the sparsity. The class of perfect elimination bipartite graphs is closely related to square matrices that Gaussian elimination can be applied to without turning any zero into a non-zero. Existing literature on the recognition of this class and finding suitable pivots mainly focusses on time complexity. For n×nn \times n matrices with m non-zero elements, the currently best known algorithm has a time complexity of O(n3/logn)O(n^3/\log n). However, when viewed from a practical perspective, the space complexity also deserves attention: it may not be worthwhile to look for a suitable set of pivots for a sparse matrix if this requires Ω(n2)\Omega(n^2) space. We present two new algorithms for the recognition of sparse instances: one with a O(nm)O(n m) time complexity in Θ(n2)\Theta(n^2) space and one with a O(m2)O(m^2) time complexity in Θ(m)\Theta(m) space. Furthermore, if we allow only pivots on the diagonal, our second algorithm can easily be adapted to run in time O(nm)O(n m)

    Hamilton cycles in dense vertex-transitive graphs

    Get PDF
    A famous conjecture of Lov\'asz states that every connected vertex-transitive graph contains a Hamilton path. In this article we confirm the conjecture in the case that the graph is dense and sufficiently large. In fact, we show that such graphs contain a Hamilton cycle and moreover we provide a polynomial time algorithm for finding such a cycle.Comment: 26 pages, 3 figures; referees' comments incorporated; accepted for publication in Journal of Combinatorial Theory, series

    Fully Dynamic Matching in Bipartite Graphs

    Full text link
    Maximum cardinality matching in bipartite graphs is an important and well-studied problem. The fully dynamic version, in which edges are inserted and deleted over time has also been the subject of much attention. Existing algorithms for dynamic matching (in general graphs) seem to fall into two groups: there are fast (mostly randomized) algorithms that do not achieve a better than 2-approximation, and there slow algorithms with \O(\sqrt{m}) update time that achieve a better-than-2 approximation. Thus the obvious question is whether we can design an algorithm -- deterministic or randomized -- that achieves a tradeoff between these two: a o(m)o(\sqrt{m}) approximation and a better-than-2 approximation simultaneously. We answer this question in the affirmative for bipartite graphs. Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give stronger results for graphs whose arboricity is at most \al, achieving a (1+ \eps) approximation in worst-case time O(\al (\al + \log n)) for constant \eps. When the arboricity is constant, this bound is O(logn)O(\log n) and when the arboricity is polylogarithmic the update time is also polylogarithmic. The most important technical developement is the use of an intermediate graph we call an edge degree constrained subgraph (EDCS). This graph places constraints on the sum of the degrees of the endpoints of each edge: upper bounds for matched edges and lower bounds for unmatched edges. The main technical content of our paper involves showing both how to maintain an EDCS dynamically and that and EDCS always contains a sufficiently large matching. We also make use of graph orientations to help bound the amount of work done during each update.Comment: Longer version of paper that appears in ICALP 201

    Parity balance of the ii-th dimension edges in Hamiltonian cycles of the hypercube

    Full text link
    Let n2n\geq 2 be an integer, and let i{0,...,n1}i\in\{0,...,n-1\}. An ii-th dimension edge in the nn-dimensional hypercube QnQ_n is an edge v1v2{v_1}{v_2} such that v1,v2v_1,v_2 differ just at their ii-th entries. The parity of an ii-th dimension edge \edg{v_1}{v_2} is the number of 1's modulus 2 of any of its vertex ignoring the ii-th entry. We prove that the number of ii-th dimension edges appearing in a given Hamiltonian cycle of QnQ_n with parity zero coincides with the number of edges with parity one. As an application of this result it is introduced and explored the conjecture of the inscribed squares in Hamiltonian cycles of the hypercube: Any Hamiltonian cycle in QnQ_n contains two opposite edges in a 4-cycle. We prove this conjecture for n7n \le 7, and for any Hamiltonian cycle containing more than 2n22^{n-2} edges in the same dimension. This bound is finally improved considering the equi-independence number of Qn1Q_{n-1}, which is a concept introduced in this paper for bipartite graphs
    corecore