
Matching Is as Easy as the Decision Problem, in
the NC Model
Nima Anari
Computer Science Department, Stanford University, CA, United States
https://nimaanari.com
anari@cs.stanford.edu

Vijay V. Vazirani
Computer Science Department, University of California, Irvine, CA, United States
https://www.ics.uci.edu/~vazirani/
vazirani@ics.uci.edu

Abstract
Is matching in NC, i.e., is there a deterministic fast parallel algorithm for it? This has been an
outstanding open question in TCS for over three decades, ever since the discovery of randomized NC
matching algorithms [17, 27]. Over the last five years, the theoretical computer science community
has launched a relentless attack on this question, leading to the discovery of several powerful ideas.
We give what appears to be the culmination of this line of work: An NC algorithm for finding a
minimum-weight perfect matching in a general graph with polynomially bounded edge weights,
provided it is given an oracle for the decision problem. Consequently, for settling the main open
problem, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact
has qualitatively changed the nature of this open problem.

All known efficient matching algorithms for general graphs follow one of two approaches: given by
[6] and [20]. Our oracle-based algorithm follows a new approach and uses many of ideas discovered
in the last five years.

The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching
vis-a-vis clever relaxations of the class NC. In this vein, recently [10] gave a pseudo-deterministic
RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the
additional requirement that on the same graph, it should return the same (i.e., unique) perfect
matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm
for general graphs.

2012 ACM Subject Classification Theory of computation → Parallel algorithms; Theory of compu-
tation → Graph algorithms analysis; Theory of computation → Pseudorandomness and derandom-
ization

Keywords and phrases Parallel Algorithm, Pseudo-Deterministic, Perfect Matching, Tutte Matrix

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.54

Related Version A full version of the paper is available at https://arxiv.org/abs/1901.10387.

Funding Vijay V. Vazirani: Supported in part by NSF grant CCF-1815901.

1 Introduction

Is matching in NC, i.e., is there a deterministic fast parallel1 algorithm for finding a perfect
or, more generally, a maximum matching in a general graph? This has been an outstanding
open question in theoretical computer science for over three decades, ever since the discovery
of RNC matching algorithms [17, 27]. Over the last five years, the TCS community has
launched a relentless attack on this question, leading to the discovery of numerous powerful

1 That runs in polylogarithmic time using polynomially many processors.

© Nima Anari and Vijay V. Vazirani;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 54; pp. 54:1–54:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://nimaanari.com
mailto:anari@cs.stanford.edu
https://www.ics.uci.edu/~vazirani/
mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.54
https://arxiv.org/abs/1901.10387
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Matching Is as Easy as the Decision Problem, in the NC Model

ideas [8, 32, 10, 1, 31]. We give what appears to be the culmination of this line of work:
An NC algorithm for finding a minimum weight perfect matching in a general graph with
polynomially bounded edge weights, provided it is given an oracle, say O, for the decision
problem. Consequently, for settling the main open problem, it suffices to obtain an NC
algorithm for the decision problem. We believe this new fact has qualitatively changed the
nature of this open problem. Henceforth, by small weights we will mean polynomially bounded
edge weights and acronym MWPM will be short for minimum weight perfect matching.

The difficulty of obtaining an NC matching algorithm led researchers to study matching
vis-a-vis certain clever relaxations of the class NC. One such relaxation is pseudo-deterministic
RNC. This is an RNC algorithm with the additional property that on the same graph, it
must return the same (i.e., unique) solution for almost all choices of random bits [9, 10].
Recently, [10] gave such an algorithm for perfect matching in bipartite graphs. A second
relaxation of NC is quasi-NC, under which the algorithm must run in polylogarithmic time,
though it can use O(nlogO(1) n) processors; see Section 1.1 for results obtained for this model.

A corollary of our result extends [10] to general graphs as follows: The precise decision
problem for our result is: Given a graph G with small weights and a number W , is there
a perfect matching of weight at most W in G. Clearly, this is NC equivalent to: Find the
weight of a minimum weight perfect matching in G. This question is easy to answer in
RNC with inverse-polynomial probability of error using the algorithm of [27]. Therefore,
using this RNC algorithm in place of the oracle we get an RNC matching algorithm with the
property that in a run, all queries to the decision problem will be answered correctly with
overwhelming probability, i.e., this is a pseudo-deterministic RNC matching algorithm.

All known efficient matching algorithms for general graphs follow one of two approaches:
given by [6] and [20]. Our oracle-based algorithm follows a new approach and uses many of
ideas discovered in the last five years. In particular, it uses the overall structure of the recent
NC algorithm of [1] for finding a perfect matching in planar graphs. Since oracle O can be
implemented in NC for planar graphs, our current paper yields a simpler NC algorithm for
finding a perfect matching in planar graphs. The second key ingredient which made our
current result possible is an NC algorithm for finding a maximal laminar family of tight odd
sets in a given face of the perfect matching polytope. This follows from the works of [4]
and [31].

Our main result is:

I Theorem 1. There is an NC algorithm for finding a minimum weight perfect matching in
general graphs with small weights, provided the algorithm is given access to oracle O for the
decision problem. The latter is: Given a graph G with small weights and a target weight W ,
is there a perfect matching of weight at most W in G?

I Corollary 2. There is an NC algorithm for finding a maximum matching in general graphs,
provided the algorithm is given access to the oracle O.

I Corollary 3. There is a pseudo-deterministic RNC algorithm for finding a minimum weight
perfect matching in general graphs with small weights.

We further show that our algorithms only need to call the decision oracle for minors of
the input graph.

I Theorem 4. Let F be a minor-closed family of graphs. If there is an NC algorithm for
deciding whether a perfect matching of weight at most W exists in graphs from F , weighted
with polynomially small weights, then there is also an NC algorithm for finding a MWPM in
such graphs.

N. Anari and V. V. Vazirani 54:3

1.1 Related work and a brief history of parallel matching algorithms
The notion of a pseudo-deterministic algorithm with polynomial expected running time was
given by [9]. Such an algorithm runs in expected polynomial time and is required to output
the same (i.e., unique) solution on a given instance on each run with high probability. Hence,
in this sense, it resembles a deterministic algorithm. [9] gave pseudo-deterministic polynomial
expected running time algorithms for several number theoretic and cryptographic problems.
The notion of pseudo-deterministic RNC algorithms was defined by [10].

An RNC algorithm for the decision problem, of determining if a graph has a perfect
matching, was obtained by [20], using the Tutte matrix of the graph. The first RNC algorithm
for the search problem, of actually finding a perfect matching, was obtained by [18]. This was
followed by a simpler and more versatile algorithm due to [27]; besides perfect matching, it
also yielded RNC algorithms for the problem of exact matching (see Section 8) and for finding
a MWPM in a graph with small weights. The latter fact is crucially used for obtaining
pseudo-deterministic RNC algorithms for bipartite graphs [10] and general graphs (current
paper). The “philosophy” behind [27] will be useful for dealing with a difficulty that arises
in the design of the current algorithm as well, so it is recalled below2.

The matching problem occupies an especially distinguished position in the theory of
algorithms: Some of the most central notions and powerful tools within this theory were
discovered in the context of an algorithmic study of this problem, including the notion of
polynomial time solvability [6], the counting class #P [33] and a polynomial time equivalence
between random generation and approximate counting for self-reducible problems [15], which
lies at the core of the Markov chain Monte Carlo method. The perspective of parallel
algorithms has also led to such a gain, namely the Isolation Lemma [27], which has found
several applications in complexity theory and algorithms. Considering the fundamental
insights gained from an algorithmic study of perfect matchings, the problem of obtaining an
NC algorithm for it has remained a premier open question ever since the 1980s.

The first substantial progress on this question was made for the case of planar bipartite
graphs by [26] via a flow-based approach, followed by [24] using the fact that there is an NC
algorithm for counting perfect matchings in planar graphs. The long-standing problem of
extending this result to non-bipartite planar graphs was resolved by [1]. Subsequently, [31]
also got the same result using different ideas. [1] also extended their algorithm to constant
genus graphs. Subsequently, [7] gave an NC algorithm for perfect matching in one-crossing-
minor-free graphs, which include K5-free graphs and K3,3-free graphs; the resolution of the
latter class settles a thirty-year-old open problem asked in [34].

The quasi-NC algorithms for matching and its generalizations, mentioned above, work
by achieving a partial derandomization of the Isolation Lemma. First, [8] gave a quasi-NC
algorithm for perfect matching in bipartite graphs, which was followed by the algorithm of
[32] for general graphs. Algorithms were also obtained for the generalization of bipartite
matching to the linear matroid intersection problem by [11], and to a further generalization
of isolating a vertex of a polytope with faces given by totally unimodular constraints, by [12].

2 Under the NC model, any one processor does not even have enough time to read the entire input, and
hence can perform only local computations. On the other hand, a perfect matching is a global object,
unlike say, a maximal independent set. Further difficulties arise from the fact that the number of perfect
matchings in a graph can vary widely, all the way from one to exponentially many (assuming it has at
least one). If there were a unique perfect matching in the graph, the algorithm’s task would become a
lot simpler. [27] achieve uniqueness via a powerful probabilistic fact, the Isolating Lemma: under an
assignment of randomly chosen small weights to the edges it claims that the MWPM will be unique
with high probability.

ITCS 2020

54:4 Matching Is as Easy as the Decision Problem, in the NC Model

1.2 What is the “right” decision problem?
Consider the following two decision problems for perfect matching:

Given a graph G with small weights and a target W , is there a perfect matching of weight
at most W in G?
Does graph G have a perfect matching?

Clearly, the second can be reduced to the first and is therefore “easier”. This leads to a
legitimate question: why not attempt to reduce, in NC, the search problem to the second
decision problem? Our experience suggests that the first problem is much more basic for the
setting at hand. We next provide evidence to this effect.

Seeking a MWPM in a graph with small weights was the central problem in the work of
[27]. The Isolating Lemma helped find small weights under which there was a unique MWPM.
The second half of [27] gave an NC algorithm for finding this (unique) perfect matching, using
the Tutte matrix of the graph and matrix inversion; the latter is known to be in NC [3]. Ever
since then, perhaps the most popular avenue for obtaining an NC matching algorithm has
been to derandomize the Isolating Lemma. This would deterministically yield small weights
under which there is a unique MWPM, and it could be found using the second half of [27].

The question of MWPM in a graph with small weights plays a central role in NC-type
approaches to all non-bipartite, and even some bipartite, perfect matching algorithms: partial
derandomization leading to quasi-NC algorithms [8, 32], resolution of the open problem of
non-bipartite planar graphs [1, 31], and quasi-deterministic RNC algorithms for bipartite [10]
and general graphs (current paper).

In mathematics, sometimes solving the harder problem turns out to be easier than solving
the easier one, if the former has a better “behavior”. Our belief is that this is the case here.

1.3 Bipartite vs non-bipartite matching: An intriguing phenomenon
Decades of algorithmic work on the matching problem, from numerous perspectives, exhibits
the following intriguing phenomenon: The bipartite case gets solved first. Then, using much
more elaborate machinery, the general graph case also follows and yields the exact same result!
This phenomenon is made all the more fascinating by the fact that the “elaborate machinery”
consists not of one fact but numerous different structural properties and mathematical facts
which happen to be just right for the problem at hand! We give a number of examples below.

The duality between maximum matching and minimum vertex cover for bipartite graphs
extends to general graphs via the notion of an odd set cover, see [21]. The formulation
of the perfect matching polytope for bipartite graphs extends by introducing constraints
corresponding to odd sets [6]. Polynomial time algorithms for maximum matching and
maximum weight matching in bipartite graphs generalize via the notion of blossoms [21]. The
most efficient known algorithm for maximum matching in bipartite graphs [13, 19] obtained
via an alternating breadth first search, extends via a much more elaborate algorithm with
the same running time via the graph search procedure of double depth first search [25]
and blossoms defined from the perspective of minimum length alternating paths [35]. The
RNC matching algorithms [18, 27] use Tutte’s theorem to extend to general graphs. The
randomized matching algorithm of [30] uses Tutte’s theorem and a theorem of Frobenius
about ranks of sub-matrices of skew-symmetric matrices.

More recent work exhibits this phenomenon as well. The quasi-NC algorithm of [8] for
bipartite graphs extends by handling tight odd cuts appropriately [32]. The NC algorithm
of [24] for planar bipartite graphs was extended to non-bipartite graphs via Edmonds’
formulation of the perfect matching polytope [6], an NC algorithm for max-flow in planar

N. Anari and V. V. Vazirani 54:5

graphs [16], and a result of [28] proving that the Gomory-Hu tree of a graph must contain a
tight odd cut, and an elaborate NC algorithm for uncrossing tight odd cuts [1]. In the same
vein, the current paper is extending the pseudo-deterministic RNC bipartite algorithm of
[10] by giving a way of dealing with tight odd cuts in Edmonds’ formulation of the perfect
matching polytope [6] and using an NC procedure for finding a maximal laminar family of
tight odd cuts [4, 31].

2 Overview and Technical Ideas

Most of this paper will concentrate on the problem of finding a perfect matching in a general
graph in NC, given oracle O. In Section 6.1 we will extend our ideas to finding a MWPM for
small weights. Then, an algorithm for finding a maximum matching in a general graph in
NC will easily follow. In this section, we will also give a number of key definitions which will
be used throughout the paper.

2.1 The bipartite case
For ease of comprehension, we will first give an outline of a proof of Theorem 1 for the case
of bipartite graphs. Such a proof can be gleaned from the paper of [10]; however, to the
best of our knowledge, this important fact was not derived so far. Below, we build on the
quasi-NC algorithm of [8] to obtain a somewhat simpler proof of this result.

The algorithm of [8] first starts with the perfect matching polytope and then iteratively
moves to lower dimensional faces of this polytope, terminating when a vertex of the polytope
is reached; this will be a perfect matching.

I Definition 5. In a general graph G = (V,E) with edge weight function w, an edge e is
called an allowed edge if it participates in MWPM. Let E[w] denote the set of all allowed
edges. Edges in the complement of this set will be called disallowed edges.

Assume w are small weights and let PM[w] denote the face of the polytope containing all
fractional and integral MWPMs w.r.t. w. Since we are in the bipartite case, PM[w] has a
simple description: It is defined by the set of disallowed edges, since they are set to zero,
or equivalently its complement, i.e., the set of allowed edges, E[w]. The description of the
algorithm given above can be refined to: Iteratively modify the weight vector w so that the
dimension of face PM[w] keeps dropping, and equivalently E[w] keeps getting sparser, until
E[w] is a perfect matching.

As argued earlier, using oracle O, we can find the weight of a MWPM in G. Further, it is
easy to see that for a given edge e, we can determine in NC if e participates in a MWPM, i.e.,
if e ∈ E[w]. Repeating for all edges in parallel, we can compute E[w] in NC. The following
is a fundamental notion in all recent NC-type matching algorithms:

I Definition 6 ([5]). Number the edges of an even cycle C in a general graph G with edge-
weights w starting from an arbitrary edge. The circulation of cycle C is the absolute value of
the difference of the sum of weights of odd-numbered and even-numbered edges and is denoted
circw(C).

It is easy to prove that if the MWPM in G is not unique, then any cycle in the symmetric
difference of two such matchings must have zero circulation3.

3 Hence, if we find a weight vector w such that each cycle in G has nonzero circulation, then the MWPM
must be unique and can be found in NC.

ITCS 2020

54:6 Matching Is as Easy as the Decision Problem, in the NC Model

I Proposition 7 ([8]). In a bipartite graph, let cycle C ⊆ E[w] have circw(C) = 0. Let G
denote the graph on edge set E[w]. Assign small weights w′ to edges E[w] so that circ′

w(C) > 0.
Then C will not be present in E[w′], i.e., at least one of its edges will be dropped in going
from E[w] to E[w′]. We will say that C got destroyed.

Hence, if we find a weight vector that destroys all cycles of G, we would be done. However,
G may have exponentially many cycles, so this is non-trivial. One of the key ideas of [8] is a
systematic way of destroying cycles: They iteratively destroy cycles of length 4, 8, 16, . . . , n;
clearly, the number of iterations needed is O(logn). In the first round, G has at most O(n4)
cycles of length 4. [8] show that if all cycles of length at most 2i have already been destroyed,
then there are at most O(n4) cycles of length at most 2i+1 left. Hence, in each iteration only
O(n4) cycles need to be destroyed.

Suppose the current iteration starts with small weights w under which all cycles of length
at most 2i have already been destroyed. In this iteration, the algorithm finds a weight vector
w′ for the edges in E[w] under which all cycles of length at most 2i+1 are destroyed. The
following fact will play a central role in the current paper as well:

I Proposition 8 ([8]). In order to destroy any set of s cycles, it suffices to try certain
well-chosen O(n2s) integral weight vectors each of which uses numbers that are O(n2s); one
of these vectors is sure to work.

Since in the current iteration s = O(n4), at most O(n6) weight vectors suffice. The
algorithm for choosing a weight vector that works is as follows. In parallel, for each of the
O(n6) weight vectors, y, compute E[y] and find the girth of the resulting graph; this can
easily be done in NC. Pick the lexicographically first weight vector, say w′, such that E[w′]
has girth > 2i+1. Clearly, w′ destroys all cycles of length at most 2i+1.

2.2 Extension to general graphs
Matching algorithms for general graphs, in different computational models, are far harder
because they need to handle odd cycles in special ways. The set of constraints capturing
the perfect matching polytope is also more complex: it includes exponentially many odd
set constraints. An odd set S ⊂ V which satisfies this constraint with equality is called a
tight odd set. The description of face PM[w] is also much more involved: in addition to edges
E[w], we need a maximal laminar family of tight odd sets, say L; see Section 3.2.

The “engine” underlying our algorithm

Analogous to the bipartite case, there is an “engine” underlying our algorithm as well – it
iteratively reduces the size of the graph. This engine can be thought of as composed of three
components which draw on different domains to establish structural facts and algorithms.

2.2.1 Component based on the structure of the perfect matching
polytope

Proposition 7, which yielded the “engine” for the bipartite case, does not hold in general
graphs. Thus a non-bipartite graph may have an even cycle C ⊆ E[w] with circw(C) > 0.
The reason for this is the presence of a tight odd set. As a result, Proposition 7 needs to be
enhanced to the fact stated below. We will say that a cycle C crosses a tight odd set S if C
has vertices in S as well as in (V − S). Similarly, edge e crosses S if one of its endpoints is
in S and the other is in V − S.

N. Anari and V. V. Vazirani 54:7

1
3

1
3

1
3

1
3

1
3

1
3−ε

1
3−ε

1
3 +ε 1

3 +ε

S

Figure 1 The orange even cycle crosses
tight odd set S; example due to [8, 32].

1
3

1
3

1
3

1
3

1
3

1
3

S

Figure 2 Resulting graph after shrinking
tight odd set S.

I Proposition 9 ([32]). In a general graph G, suppose even cycle C ⊆ E[w] has circw(C) > 0.
Then, there must be a tight odd set S such that C crosses S.

This is illustrated in Figure 1. In this graph, the three edges in δ(S) have weight 1 and
the rest have weight 0. Observe that each edge participates in a MWPM and hence E[w]
consists of all edges. The cycle consisting of the four orange edges, say C, has positive
circulation even though it is contained in E[w]. Cycle C crosses tight odd set S.

I Definition 10. Assume that even cycle C crosses tight odd set S. Number the edges of
C starting from an arbitrary edge. Let no and ne denote the number of odd-numbered and
even-numbered edges, respectively, that cross S. Then the mismatch of C and S, denoted
mismatch(C, S), is |no − ne|.

Note that in Figure 1, mismatch(C, S) = 2. Observe that if the MWPM is not unique
and C is a cycle in the symmetric difference of two such perfect matchings then the following
must hold:

circw(C) = 0.
If C crosses a tight odd set S, then mismatch(C, S) = 0; the reason is that each perfect
matching crosses each tight set exactly once.

I Proposition 11 (Lemma 25). Consider a general graph G with weights w and even cycle
C ⊆ E[w] with circw(C) > 0. Let S be a tight odd set such that C crosses S. Then
mismatch(C, S) > 0 and at least one edge of C has both its endpoints in S.

Our strategy for dealing with cycle C having circw(C) > 0 is to shrink the tight odd set
S it crosses; this is illustrated in Figure 2. By Proposition 11, this will shrink at least one
edge of C, hence resulting in a smaller graph. Our overall strategy is as follow: Suppose
w.r.t. weight vector w, circw(C) = 0. Let w′ be a weight vector such that circw′(C) > 0. If
so, [32] show that either C must lose an edge in going from E[w] to E[w′] or a new odd set
S goes tight w.r.t. w′ such that C crosses S. In the latter case, we shrink S. In either case
we will obtain a smaller graph and in both cases we will say that C is destroyed.

2.2.2 Component based on graph-theoretic facts
As stated in the Introduction, the overall structure of our algorithm is similar to that of [1].
Both algorithms require in each iteration a large enough number of edge-disjoint even cycles
whose destruction will result in the removal of a corresponding number of edges. However,
in both cases, the graph may have not such cycles. The recourse is to resort to even walks.

ITCS 2020

54:8 Matching Is as Easy as the Decision Problem, in the NC Model

I Definition 12 ([32]). We call an ordered list of an even number of edges C = (e1, . . . , e2k),
not necessarily distinct, that start and end at the same vertex, an even walk if this list
traverses either a simple even cycle or two odd cycles with a path joining them; in the latter
case, the cycles are traversed once each and the path twice, once in each direction.

The list C of edges of an even walk contains each edge either once or twice, and if
it contains an edge e twice, then both copies will have the same parity. The notions of
circulation and mismatch can be extended to even walks in a natural way by taking into
consideration multiplicity of edges. Thus if e occurs twice in walk C, is odd-numbered and
crosses tight odd set S, then it contributes 2 to no in the computation of mismatch(C, S) (see
Definition 10) and it contributes 2we to the sum of odd-numbered edges in the computation
of circw(C) (see Definition 6). As shown in [32], all statements made above about destroying
even cycles carry over to even walks as well.

[1] critically used Euler’s formula and the planar dual of G for first finding a large number
of edge-disjoint cycles in NC. If more than half were even, they sufficed. Otherwise, they
paired up odd cycles and found paths connecting each pair to obtain even walks. This was
done in a such a manner that the resulting even walks were edge-disjoint.

Finding edge-disjoint cycles in a general graph in NC appears to be quite difficult. Instead,
we take a cue from the bipartite case, which finessed the issue of finding edge-disjoint cycles
by using Proposition 7. As a result, showing the existence of cycles sufficed! However, there
is a subtle difference: in the bipartite case, we needed to upper bound the number of cycles
that needed to be destroyed in each iteration, whereas here we need to lower bound them;
the latter is the case in [1] as well.

Using ideas from [2] we show that if the graph G = (V,E) is not very sparse (see
Definition 31), then it contains Ω

(
|E|

log2|V |

)
edge-disjoint even cycles. Then, using ideas from

[1], we show how to pair up odd cycles to form walks. Unlike [1], the walks don’t need to be
found explicitly – establishing existence suffices.

If in an iteration the graph is very sparse, it will not have the required number of
edge-disjoint cycles. For this case, we define the notion of a triad in Definition 21; this is
a tight odd set consisting of three vertices. We show that the graph has sufficiently many
disjoint triads, and a maximal independent set algorithm can find a large enough subset of
these in NC. These can be shrunk simultaneously.

2.2.3 Component based on facts from matching theory
Suppose that in a certain iteration our algorithm is trying weight function w, as per
Proposition 7. We will need to find in NC a description of face PM[w], which involves, in
addition to edges E[w], a maximal laminar family of tight odd sets, say L. Computing E[w]
using oracle O is straightforward. However, finding family L in NC is a difficult question.
The difficulty is similar to that of finding a perfect matching in a graph, i.e., the presence
of a plethora of solutions. Recall the “philosophy” of [27] given in Section 1.1, for dealing
with this issue for perfect matching, namely attempt to narrow down the choices to one.
Clearly unlike [27], randomization is not a resource we can use for this purpose. The solution
involves imposing more and more restrictions on the family of tight odd sets until it becomes
unique! These restrictions arise from deep structural facts from matching theory. Additional
facts lead to an NC algorithm for computing L with the help of O. These ideas are from [4]
and [31] and are given in Section 3.2.

N. Anari and V. V. Vazirani 54:9

For the “correct” weight function, say w, among the set of even walks being handled in
this iteration, some will be destroyed by losing an edge and some by crossing a tight odd set.
By updating the edge set to E[w], we can accrue the advantage from the first set of walks.
For obtaining advantage from the second set of walks, for each such walk, say C, we need to
shrink a tight odd set, say S, that it crosses. A major obstacle is that our algorithm does
not “know” any of the walks! The way we finesse this difficulty is to shrink all outermost
sets of L, which are clearly be disjoint, in the graph on edge set E[w].

Finally, among all weight functions, we will pick the one, say w, that yields a graph
with the smallest number of edges. There is no guarantee that w would have destroyed all
s walks which we had established the existence of up-front. However, at least one of the
weight functions must have done so and therefore led to a decrease of at least s edges. Hence,
w must also decrease at least s edges, and that suffices for making progress. As shown in
Lemma 42, the number of non-isolated edges gets reduced by a factor of 1−Ω(1/ log2|V |) in
each iteration.

2.3 The final idea: balanced viable set
Our current strategy is to iteratively reduce the number of edges until a perfect matching
remains. After picking its edges, we need to recursively find a perfect matching in each
of the shrunk sets (after removing its matched vertex). The resulting algorithm would
have polylogarithmic depth; however, it does not run in polylogarithmic time because of
the following inherent sequentiality: Perfect matchings in shrunk sets can be found only
after finding a perfect matching in the shrunk graph, because the algorithm needs to know
the vertex in S that is matched outside S. Moreover, perfect matchings in the shrunk
graph and the shrunk sets need to be found via a recursive application of the full algorithm
described so far.

The exact same issue arose in [1] as well. The solution proposed there was meant for
general graphs and hence it works here as well. The solution is quite elaborate and hence is
not repeated here; instead, we direct the reader to Section 4.2 in [1]. We note that the task
is somewhat easier here because we have recourse to oracle O; [1] had to resort to computing
Pfaffians orientations, etc. We give a short, high-level summary below.

An odd set S is viable if there is at least one perfect matching in G which picks exactly one
edge from δ(S). A set S is balanced if both S and its complement contain a constant fraction
of the vertices. [1] show how to find in NC a balanced viable odd set. Let S be such a set.
Clearly, using oracle O, we can find an edge e ∈ δ(S) which is the unique edge in a perfect
matching from this cut. Now we are done by a simple divide-and-conquer strategy: match e,
remove its end-points and find perfect matchings in the two sides of the cut recursively, in
parallel. Observe that even though perfect matchings in the two sides can be found only
after finding the matched edge e, the latter can be done without any recursive calls, hence,
leading to a polylogarithmic running time.

3 Preliminaries

We represent undirected graphs by G = (V,E), where V is the set of vertices and E is
the set of edges. Unless otherwise specified, we only work with graphs that have no loops,
i.e., an edge from a vertex to itself. An edge between vertices u and v is represented as
{u, v}. For a set S ⊆ V , we use δ(S) to denote the cut between S and its complement, i.e.,
δ(S) = {{u, v} ∈ E | u ∈ S, v /∈ S}. When S is a singleton, i.e., {v} for some v ∈ V , we use
the shorthand δ(v) = δ({v}). A perfect matching is a subset of edges M ⊆ E such that for
all v ∈ V we have |M ∩ δ(v)| = 1.

ITCS 2020

54:10 Matching Is as Easy as the Decision Problem, in the NC Model

I Definition 13. We call an edge e = {u, v} isolated if deg(u) = deg(v) = 1.

By this definition a graph is a perfect matching if it has no isolated vertices and all of its
edges are isolated.

For a set S ⊆ E of edges we use 1S ∈ RE to denote the indicator of S. We use the
shorthand 1e to denote the e-th element of the standard basis for RE , where e ∈ E. We
denote the standard inner product between vectors w, x ∈ RE by 〈w, x〉.

Given a convex polytope P ⊆ RE , and a weight vector w ∈ RE , we use P [w] to denote
the set of points minimizing the weight function x 7→ 〈w, x〉:

P [w] = {x ∈ P | ∀y ∈ P : 〈w, x〉 ≤ 〈w, y〉}.

Note that P [w] is a face of P ; all faces of P can be obtained as P [w] for appropriately
chosen w.

3.1 The perfect matching polytope
Given a graph G = (V,E), we call a subset of edges M ⊆ E a perfect matching if it
contains exactly one edge in every degree cut, i.e., |M ∩ δ(v)| = 1 for all v. We call a graph
matching-covered if any of its edges can be extended to a perfect matching.

I Definition 14. A graph G = (V,E) is matching-covered if for every edge e ∈ E, there
exists a perfect matching M such that e ∈M .

The perfect matching polytope for G = (V,E) is the convex hull of all perfect matchings
of G in RE . Thus,

PMG = conv{1M |M ⊆ E is a perfect matching of G}.

Clearly the perfect matchings of G are in one-to-one correspondence with the vertices of this
polytope.

When G is clear from context, we simply use PM to refer to this polytope. PM is
alternatively described by the following set of linear equalities and inequalities [6]:

PM =

x ∈ RE
∣∣∣∣∣∣
〈1δ(v), x〉 = 1 ∀v ∈ V,
〈1δ(S), x〉 ≥ 1 ∀S ⊆ V, with |S| odd,
〈1e, x〉 ≥ 0 ∀e ∈ E.

. (1)

Any face F of PM can be either described by a weight vector w, i.e., F = PM[w], or it
can be alternatively described by the set of inequalities turned into equalities in Equation (1).
These correspond to odd sets S and edges e. When face F is clear from context, we call odd
sets whose inequalities have been turned into equalities, tight odd sets. We call an edge e
allowed if xe > 0 for some x ∈ F , i.e., if the inequality corresponding to e in Equation (1)
has not been turned into equality. We use E[w] or E[F] to denote the set of allowed edges in
the face F = PM[w]. Putting it all together, to describe a face F it is enough to describe
the set of allowed edges as well as tight odd sets.

3.2 Finding a description of a face
A key step in our oracle-based algorithm is: given small weights w, compute a description
of the face F = PM[w]. As stated before, using oracle O, E[w] can be computed in NC.
However, as far as tight odd sets go, there are typically exponentially many choices of a

N. Anari and V. V. Vazirani 54:11

family of such sets that suffice. At this point, it will be useful to recall the “philosophy” of
[27] given in Section 1.1, namely when designing an NC algorithm, faced with a plethora
of solutions, one should attempt to narrow down the choices to one. Clearly unlike [27],
randomization is not a resource we can use for this purpose. The solution to this puzzle is
indeed one of the keys that enables our result and is described below. It involves imposing
more and more structure on the family of tight odd sets we seek until it becomes unique! It
turns out that the latter can be computed in NC with the help of O.

Two tight odd sets S1, S2 ⊆ V are said to cross if they are not disjoint and neither is a
subset of the other. A family of these sets L ⊆ 2V is said to be laminar if no pair of sets in
it cross. It is well-known that each face F of the perfect matching polytope can be described
by the set of allowed edges and a laminar family of tight odd sets L:

F =
{
x ∈ PM

∣∣∣∣ 〈1δ(S), x〉 = 1 ∀S ∈ L,
〈1e, x〉 = 0 ∀e /∈ E[F].

}
.

In fact, L can be taken to be any maximal laminar family of tight odd sets for the given
face F (see, e.g., [32, Lemma 2.2]). Note that we will always include all singletons {v} in the
laminar family L since the equalities 〈1δ(v), x〉 = 1 are automatically satisfied over all of PM.
However, there are still potentially many choices for the laminar family L describing face F ,
so we impose more conditions on L.

I Definition 15. Suppose we are given a face F = PM[w]. A laminar optimal dual solution
is a laminar family L of tight odd sets, including all singletons, together with a function
π : L → R such that for S ∈ L, π(S) > 0 whenever |S| > 1 and for all edges e

we ≥
∑

S∈L:e∈δ(S)

π(S),

with equality for allowed edges.

This definition gives dual solutions for the linear program min{〈w, x〉 | x ∈ PM} that
satisfy complimentary slackness and are in laminar form. By complimentary slackness, for
any such solution,

∑
S∈L π(S) is equal to the weight of a MWPM. Laminar optimal dual

solutions exist but are still not unique.
[4] showed that extra conditions can be imposed on laminar optimal dual solution to

make it unique. They studied the notion of balanaced critical dual solutions and they showed
how this unique L can be found by computing primal solutions to the MWPM problem. [31]
used this procedure to design an alternative NC algorithm for planar graph perfect matching.
We describe this procedure below. For more details see the work of [4]. Note that we will
not use these rather complex and elaborate extra conditions in any other context, so we will
not state them explicitly.

The following was shown by [4, Lemma 28].

I Lemma 16 ([4]). If E[w] is connected, then a balanced critical dual is unique and Algo-
rithm 1 finds its support, the laminar family L.

It was observed by [31] that all steps of Algorithm 1 can be performed in NC except for
finding allowed edges E[w] and the computation of µ(v)’s. We note that using oracle O,
both these steps can be also be performed in NC.
I Remark 17. When E[w] is not connected, Algorithm 1 still works but should be run in
parallel for each connected component of E[w].

ITCS 2020

54:12 Matching Is as Easy as the Decision Problem, in the NC Model

Algorithm 1 Finding a balanced critical dual.

L ← {{v} | v ∈ V }.
for v ∈ V in parallel do

µ(v)← min{〈w,1M 〉 |M ⊆
E[w] is a perfect matching on V \ {u, v} for some vertex u}.

end
Let w′

e ← we + µ(u) + µ(v) for each e ∈ E[w].
for t ∈ {w′

e | e ∈ E[w]} in parallel do
Find the connected components of the graph (V, {e ∈ E[w] | w′

e ≤ t}).
Add each nontrivial connected component to L.

end
return L.

3.3 Contraction of tight odd sets, matching minors, and triads
[6] observed that if a collection of tight odd sets are disjoint, one can shrink each one to a
single node and obtain a smaller graph whose perfect matchings can be extended to perfect
matchings in the original graph. For the sake of completeness we state and prove this
fact here.

I Proposition 18. Suppose that F = PM[w] is a face of the matching polytope for G = (V,E)
and S1, . . . , Sk are disjoint tight odd sets w.r.t. F . Let H be obtained from G by removing
disallowed edges and contracting each Si to a single node. Then any perfect matching in H
can be extended to a perfect matching in G.

Proof. Suppose that M is a perfect matching in H. We can think of edges in M as edges
in E as well; in fact M ⊆ E[w], because we remove disallowed edges to obtain H. Because
M is a perfect matching in H, for each Si, there is a unique ei ∈ M ∩ δG(Si). Now since
ei is an allowed edge, there must be some perfect matching Mi of G such that ei ∈Mi and
1Mi ∈ F . Since Si is a tight odd set, Mi cannot have any other edge in δ(Si), except for ei.
So if we look at {{u, v} ∈Mi | u, v ∈ Si}, we must have a matching covering all vertices of
Si except for the endpoint of ei. Combining all of these matchings for i = 1, . . . , k together
with M will give us a perfect matching in G as desired. J

Note that the graph H obtained above is a minor of the graph G. But it is not an
arbitrary minor. It has the additional property that every perfect matching of it can be
extended back to a perfect matching of the original graph. For convenience we name these
minors, matching minors.

I Definition 19. A matching minor H of a graph G, is a graph that can be obtained by a
sequence of the following operations: Pick a face of the matching polytope and a collection
of disjoint tight odd sets. Remove disallowed edges, and contract each tight odd set into a
single node.

The following statement follows directly from Proposition 18.

I Lemma 20. If H is a matching minor of the graph G, then every perfect matching in H
can be extended to a perfect matching in G.

In our algorithms, we use the simple observation that a path of length 2 on vertices of
degree 2 yields a tight odd set for the entire matching polytope. We call these paths triads.

N. Anari and V. V. Vazirani 54:13

I Definition 21. A triad in graph G = (V,E) is a set of three vertices {a, b, c} such that
deg(a) = deg(b) = deg(c) = 2, and {a, b}, {b, c} ∈ E.

I Lemma 22. A triad {a, b, c} is a tight odd set for the matching polytope and all of its
faces.

Proof. The only two neighbors of b are a, c. So in every perfect matching, b must be matched
to one of them. The other vertex must have an edge to an outside vertex, and in fact that is
the only possible edge in δ({a, b, c}). J

I Remark 23. Note that the proof of Lemma 22 does not use the assumptions deg(a) =
deg(c) = 2 and only uses deg(b) = 2. We will use these extra assumptions elsewhere, to
prove that in certain situations, we can find many triads in our graph.

3.4 Even walks and weight vectors
Even walks were defined in Definition 12. For an even walk C, define the signature of C to
be the vector:

sign(C) =
2k∑
i=1

(−1)i1ei
.

The notions of circulation and mismatch can be stated in terms of signature:

circw(C) = |〈w, sign(C)〉|

mismatch(C, S) = |〈1δ(S), sign(C)〉|

Now, there cannot be two distinct points x, y ∈ PM[w] whose difference x−y is a multiple
of sign(C), since otherwise we would have 〈w, x〉 6= 〈w, y〉. Another way of stating this is
that if x ∈ PM[w], then x+ ε sign(C) /∈ PM[w] for any ε 6= 0. So, some inequality or equality
describing PM[w] must be violated for this point. If we pick x to be in the relative interior
of the face PM[w] we will have some slack for non-tight inequalities describing PM[w]. So
the violated constraint for x+ ε sign(C) must be a constraint that is tight for the entire face
PM[w]. This implies that:

I Lemma 24. Let C be an even walk with circw(C) > 0. Then either there is an edge e ∈ C
that is disallowed, i.e., e /∈ E[w], or for any laminar dual (L, π) describing PM[w], there is
some set S such that mismatch(C, S) > 0.

For a more detailed proof of this, see [1, 32]. Note that if mismatch(C, S) > 0, then C
must have an edge with both endpoints inside S.

I Lemma 25. If C is an even walk and S is a tight odd set such that mismatch(C, S) > 0,
then there is an edge e = {u, v} ∈ C such that u, v ∈ S.

Proof. If this is not true, then every time C enters S it must immediately exit. So if we
compute mismatch(C, S) by looking at edges that cross S, we always get a +1 followed by a
−1, and a −1 followed by a +1. So the entire sum would be 0 which is a contradiction. J

We also borrow from [8] the following important result, which is also stated in [32] and
as Proposition 7 in this paper.

ITCS 2020

54:14 Matching Is as Easy as the Decision Problem, in the NC Model

I Lemma 26 ([8]). There exists a polynomial sized family of polynomially bounded weight
vectors W, such that for any set of edge disjoint even walks C1, . . . , Ck, there is some w ∈ W
which ensures

∀i : circw(C) > 0.

Proof. This lemma is actually proved in [8, 32] for any collection of nonzero vectors, not
just sign(Ci)’s, as long as there is both a polynomial bound on the number of vectors and
the absolute value of their coordinates. Edge-disjointness of even walks automatically puts a
bound of |E| on their number, and the coordinates of our even walks are always bounded in
absolute value by 2. J

3.5 Maximal independent sets
Given a graph G = (V,E), we call a subset S ⊆ V independent if no edge e ∈ E has
both endpoints in S. We call an independent set maximal if no strict superset T) S is
independent. We will crucially use the fact that maximal independent sets can be found
in NC.

I Theorem 27 ([22]). There is a deterministic NC algorithm that on input graph G = (V,E)
returns a maximal independent set S ⊆ V .

We usually want a large, rather than a maximal, independent set. We will use the fact that
in bounded degree graphs, any maximal independent set is automatically large.

I Proposition 28. If G = (V,E) is a graph with deg(v) ≤ ∆ for all v ∈ V , then any maximal
independent set S ⊆ V satisfies

|S| ≥ |V |
∆ + 1 .

4 The Decision Oracle

We will assume that our algorithm is equipped with an oracle O which answers the following
type of queries: Given a graph G = (V,E) and small weights w ∈ ZE , what is the weight of
a MWPM in G? We denote the answer by

O(G,w) = min{〈w, x〉 | x ∈ PMG}.

We now list several deterministic NC primitives based on O. Versions of these two
lemmas appear implicitly, stated for planar graphs, in [31], but we prove them for the sake
of completeness.

I Lemma 29. Given access to O, for polynomially bounded w ∈ ZE, one can find E[w] in
NC.

Proof. An edge e = {u, v} can be in a MWPM if and only if O(G,w) = we +O(G− {u} −
{v}, w), where G − {u} − {v} is obtained from G by removing vertices u, v. This can be
checked in parallel for all edges e. J

I Lemma 30. Given access to O, for polynomially bounded w ∈ ZE, one can run Algorithm 1
in NC.

N. Anari and V. V. Vazirani 54:15

Proof. As was observed by [31], all steps of Algorithm 1 can be run in NC except for finding
E[w] and computing µ(v). Given access to O, we can find E[w] in NC by Lemma 29.
Furthermore observe that for any v ∈ V

µ(v) = min{O(G− {u} − {v}, w) | u ∈ V − {v}},

which can be computed by making all queries O(G − {u} − {v}, w) in parallel and then
taking the minimum. J

An implementation for the oracle, in RNC with arbitrarily small inverse polynomial
probability of error for general graphs, follows from [27], since they give an RNC algorithm for
finding a MWPM for small weights. Since O is promised to be called at most polynomially
many times, the probability of error over the entire run of the algorithm can be made inverse
polynomially small.

5 Structural Facts

Our algorithm requires two structural facts, one for the case that the graph G is very sparse
and the other for the complementary case. They are encapsulated in Lemmas 32 and 34.

I Definition 31. A connected graph G = (V,E) is said to be very sparse if |E| < |V |/(1− ε),
for some constant ε < 1/9.

I Lemma 32. If G = (V,E) is a matching-covered, very sparse graph, then the number of
triads in any maximal set of node-disjoint triads in G is at least c1|E|, for some constant
c1(ε) > 0.

The proof of this lemma involves two steps: first, we prove that the total number of triads
is large and second, that a maximal node-disjoint set of triads must also be large. The first
step is accomplished in the following lemma.

I Lemma 33. Suppose that G = (V,E) is a graph with no vertices of degree 0 or 1. Then
the number of triads in G is at least 9|V | − 8|E|.

Proof. Consider a charging scheme, where we allocate a budget of 1 to each edge, and the
edge distributes its budget between its two endpoints. We then sum up the charge on all
vertices and use the fact that this sum is exactly |E|.

Let e = {u, v} be an edge. If neither u nor v is of degree 2, let the edge give 1/2 to u, and
1/2 to v. If both u and v are of degree 2, we allocate the budget the same way by splitting it
equally between u and v. The only remaining case is when one of u and v has degree 2 and
the other has degree at least 3; by symmetry let us assume that deg(u) = 2 and deg(v) ≥ 3.
Then we allocate 5/8 to u and 3/8 to v.

Now let us lower bound the charge that each vertex v receives. Note that the minimum
amount v receives from any of its adjacent edges is 3/8, so an obvious lower bound is
3 deg(v)/8. If deg(v) ≥ 3, this is at least 9/8. Now consider the case when deg(v) = 2. Then
v receives at least 1/2 from each of its adjacent edges. If one of the neighbors of v is not of
degree 2, then the charge that v receives will be at least 1/2 + 5/8 = 9/8. The only possible
case where v does not receive at least 9/8 is when it is of degree 2, and both of its neighbors
are also of degree 2 (the center of a triad), in which case it receives 1.

Now let k be the number of triads. Then, by the above argument the total charge on all
the vertices is at least

9
8(|V | − k) + k ≤ |E|.

Rearranging yields k ≥ 9|V | − 8|E|. J

ITCS 2020

54:16 Matching Is as Easy as the Decision Problem, in the NC Model

Proof of Lemma 32. We know that the number of triads is at least 9|V |−8|E| = (1−9ε)|E|.
Now consider the conflict graph of triads, where nodes represent triads, and edges represent
having an intersection. It is easy to see that any triad can only intersect at most 4 other
triads. So the degrees in this conflict graph are bounded by 4. By Proposition 28, any
maximal node-disjoint set of triads will contain at least (1− 9ε)|E|/5 many triads. So we
can take c1(ε) = (1− 9ε)/5 which is positive for ε < 1/9. J

I Lemma 34. If G = (V,E) is a matching-covered graph on |V | > 2 vertices that is not
very sparse, then there exist c2|E|/ log2|V | edge-disjoint even walks in G, for some constant
c2(ε) > 0.

We first show that there are many edge-disjoint cycles in a non-sparse graph. If at least
half of them are even, we are done. Otherwise, we show how to pair up odd cycles and
connect them via suitable paths to get sufficiently many edge-disjoint even walks. A proof of
the next lemma can be found in [2]; however, for the sake of completeness we provide it here.

I Lemma 35. In a graph G = (V,E) there exists a collection of edge-disjoint cycles with at
least the following number of cycles:

|E| − |V |
2 log2|V |

.

Proof. We prove this by induction on |V |+ |E|. We have several cases:
i) If there are any loops in the graph, we extract that as one of our cycles, and remove the

edge from the graph. The promised quantity goes down by 1/(2 log2|V |) which is ≤ 1/2.
So from now on we assume that G has no loops.

ii) If there are any two parallel edges e, e′, we extract those as a cycle of length 2, and
remove both from the graph. The promised number of edge-disjoint cycles goes down by
2/(2 log2|V |) ≤ 1. So adding the cycle we extracted fulfills the promise. From now on
we assume that G is simple.

iii) If G has any vertices of degree 0: We can simply remove it and the promised quantity
grows.

iv) If G has a vertex of degree 1: We can also remove this vertex. This operation does not
change the numerator but shrinks the denominator, which results in a larger promised
quantity.

v) If G has a vertex v of degree 2: Let e, e′ be the two adjacent edges to v. Remove v, e, e′

from the graph, and place a new edge e′′ between the two former neighbors of v. By
doing this, both |V | and |E| go down by 1. So now the promised number of edge-disjoint
cycles becomes larger. By induction we find them, and now we replace the edge e′′ if it
is used at all in a cycle, by the path of length two consisting of e, e′. Since e′′ appears in
at most one cycle, this operation preserves edge-disjointness.

vi) Finally if G is a simple graph with no vertices of degree ≤ 2, it must have a cycle of
length at most 2 log2|V |. If we prove this, we are done by induction, because we can
remove the edges of this cycle and the promised quantity goes down by at most 1. Now
to prove the existence of this cycle, assume the contrary, that the length of the minimum
cycle of the graph is at least 2 log2|V |+ 1. Pick a vertex v and look at all simple paths
of length at most log2|V | going out of v. The number of paths of length i is at least
twice the number of paths of length i − 1. This is because every path of length i − 1
ending at a vertex u can be extended in at least deg(u)− 1 ≥ 2 ways, and none of these
extensions will intersect themselves, otherwise we would get a cycle of length log2|V |+ 1.

N. Anari and V. V. Vazirani 54:17

So in the end, the total number of such paths will be > 2log2|V | = |V |, which means that
two of the paths must share an endpoint. But now from the union of these two paths,
we can extract a cycle of length at most log2|V |+ log2|V | = 2 log2|V |. J

If at least half of the cycles guaranteed by Lemma 35 are odd, we need to pair them up
and connect them with paths. We use a spanning tree to do this.

I Proposition 36 ([1, Lemma 20]). Consider a tree T with an even number of tokens placed
on its vertices, with possibly multiple tokens on each vertex. There is a pairing, i.e., a
partitioning of tokens into partitions of size two, such that the unique tree paths connecting
each pair are all edge-disjoint.

I Lemma 37. Suppose that there are 2` edge-disjoint cycles of odd length in a matching-
covered connected graph G = (V,E). Then G contains at least Ω(`2/|E|) edge-disjoint even
walks.

Proof. We will pair up the odd cycles by paths connecting each pair. This will create ` even
walks, but they might not be edge-disjoint. We will then show how to extract Ω(`2/|E|)
edge-disjoint even walks out of them.

Consider a spanning tree T of G. For each of the 2` odd cycles, pick an arbitrary vertex,
and put a token on that vertex. Now we have an even number of tokens on the vertices. We
can pair up these tokens, so that the unique tree paths (of possibly length 0) connecting each
pair are edge-disjoint, see Proposition 36.

Now for each pair of odd cycles C1, C2 whose tokens got paired up, we create an even walk.
Let P be the tree path connecting tokens from C1 and C2. If P has no common edges with
C1, C2 we can simply create our even walk, but this is not guaranteed to happen. So instead,
traverse P from C1’s token to C2’s token and look at the last exit from C1; afterwards look
for the first time any vertex of C2 is visited. This portion of P is a subpath connecting C1
and C2 having no common edged with either. We use C1, C2 and this subpath of P to create
our even walk.

So far we have created ` even walks, but they might not be edge-disjoint. The odd cycles
are edge-disjoint, as are the paths connecting them, but one of the paths might share an edge
with an unrelated odd cycle. This also means that no edge e can be shared between more
than two even walks; e can be used once as part of an odd cycle, and once as part of a path.

Now consider the number of edges in each even walk. If we sum this over all even walks,
we get at most 2|E|, since each edge can appear in at most two even walks. So the average
number of edges in an even walk is ≤ 2|E|/`. By Markov’s inequality at least half of the
even walks, `/2 of them, will have at most twice this average number of edges, 4|E|/`. Now
create a conflict graph where nodes represent these `/2 even walks, and an edge is placed
when the two even walks share an edge. The degree of each node is at most 4|E|/`. So if
pick a maximal independent set in this conflict graph, it will consist of at least Ω(`2/|E|)
many even walks. J

We are finally ready to prove Lemma 34.

Proof of Lemma 34. First note that if our graph is not an isolated edge and is matching-
covered it must contain at least one even cycle. This is so because there must be at least two
perfect matchings in the graph, and in their symmetric difference, we can find one such cycle.

Because we are guaranteed to have at least 1 cycle, we can simply show that asymptotically
we can extract Ω(|E|/ log2|V |) edge-disjoint even walks. Then the asymptotic statement
translates to the more concrete bound of c2|E|/ log2|V |.

ITCS 2020

54:18 Matching Is as Easy as the Decision Problem, in the NC Model

If (1− ε)|E| ≥ |V |, by Lemma 35, we have at least ε|E|/2 log2|V | = Ω(|E|/ log|V |) cycles.
If at least half of them are of even length, we are done. Otherwise we get Ω(|E|/ log|V |) odd
cycles. Perhaps by throwing away one of them, we can assume the number of odd cycles we
have is even. Then we can apply Lemma 37 to obtain Ω(|E|/ log2|V |) edge-disjoint walks.
This completes the proof. J

6 The Oracle-Based Algorithm

In this section we describe our oracle-based algorithm for finding a perfect matching. In
Section 6.1, we will extend this to finding a minimum weight perfect matching for small
weights.

On input G = (V,E), our algorithm proceeds by finding smaller and smaller matching
minors H of G, until H has a unique perfect matching, or in other words is a perfect matching.
Then we pick the edges in H as a partial matching in G and extend this partial matching to
a perfect matching independently and in parallel for the preimage of each node in H. That is
for each node s in H, we take the set S ⊆ V that got shrunk to s, remove the single endpoint
of the partial matching from S, and recursively find a perfect matching in S. In the end we
return the results of all these recursive calls along with the edges of H as the final answer.

We crucially make sure that the pre-image of nodes in H never contain more than a
constant fraction of V . This makes sure that our recursive calls end in O(log|V |) steps.

In all of our algorithms, when we construct matching minors, we implicitly maintain
the mapping from the resulting edges to the original edges, and the mapping from original
vertices to the minor’s vertices. These are trivial to maintain in NC, but for clarity we avoid
explicitly mentioning them. We also keep node weights for matching minors, where the
weight of a node is simply the number of original vertices that got shrunk to it.

Algorithm 2 Divide-and-conquer algorithm for finding a perfect matching.

PerfectMatching(G = (V,E))
if V = ∅ then

return ∅.
else

Call PartialMatching(G), and let H be the matching minor returned.
Let M ⊆ E be the edges of H.
for each node s of H in parallel do

Let S ⊆ V be the nodes of G that are shrunk to s.
Let v be the unique endpoint of the unique edge of M in δ(S).
Let Gs be the induced graph on S − {v}.
M ←M ∪ PerfectMatching(Gs).

end
return M .

end

The pseudocode for the main algorithm PerfectMatching can be seen in Algorithm 2.
On input G, the algorithm calls PartialMatching to find a matching minor H of G which
itself is a perfect matching. Then the edges of H, which form a partial matching in G, are
extended to a perfect matching independently and in parallel in the preimage of each node
from H. Since H is a matching minor, this extension can always be performed by Lemma 20.

The pseudocode for PartialMatching can be seen in Algorithm 3. This algorithm keeps
a node-weighted matching minor of the input graph G. It tries several ways of obtaining a
smaller matching minor, where size of a matching minor is measured in terms of the number

N. Anari and V. V. Vazirani 54:19

Algorithm 3 Find a matching minor of the input graph that is itself a perfect matching.

PartialMatching(G = (V,E))
Assign node weight 1 to each node v ∈ V .
while G is not a perfect matching do

if any node v of G has at least 1/6 of the total node weight then
Remove disallowed edges e /∈ E[0] from G.
Contract the complement of {v} to a single node. If there are parallel edges,
remove all except for an arbitrary one.

return G.
end
Find a maximal set of node-disjoint triads in G.
Let H be obtained from G by removing disallowed edges and contracting each
triad into a single node.
U ← {H}.
for w ∈ W in parallel do

Call Reduce(G,w) and let the result be H.
U ← U ∪ {H}.

end
Find the graph H ∈ U with the minimum number of non-isolated edges.
G← H.

end
return G.

Algorithm 4 Remove disallowed edges and contract certain tight odd sets.

Reduce(G = (V,E), w) ; // The graph G has node weights.
Remove disallowed edges e /∈ E[w] from G.
Find all connected components of G.
for each connected component C of G in parallel do

Run Algorithm 1 on C to find a laminar family of tight odd sets L.
for S ∈ L in parallel do

if node weight of S is more than half of the node weight of C then
Replace S in L with C − S.

end
end
Find the inclusion-wise maximal sets in L and shrink each one to a single node.

end
return G.

ITCS 2020

54:20 Matching Is as Easy as the Decision Problem, in the NC Model

of non-isolated edges, see Definition 13. One way of obtaining a smaller matching minor
is by picking a maximal node-disjoint set of triads and shrinking them simultaneously. By
Lemma 22, this produces a matching minor. Also note that the maximal set of node-disjoint
triads can be found in NC by enumerating all triads and using Theorem 27.

Another way of obtaining smaller matching minors is by trying weights from the set of
weight vectors W and calling Reduce to remove disallowed edges e /∈ E[w] and shrinking
top-level sets of a laminar family of tight odd sets w.r.t. w.

Finally. the pseudocode for Reduce can be seen in Algorithm 4. This algorithm is simply
fed a graph G = (V,E) and a weight vector w. It removes disallowed edges e /∈ E[w] and
shrinks the maximal sets of a laminar family of tight odd set. The laminar family is found
using Algorithm 1, but is modified to make sure that no shrunk set becomes too large; to be
more precise no shrunk vertex in the end will have node weight more than half of the total
node weight.

6.1 Finding a minimum weight perfect matching
We extend our algorithm so it returns not just any perfect matching, but rather a minimum
weight perfect matching, for small weights.

Given an input graph G = (V,E) and a weight vector w, we can remove disallowed edges
e /∈ E[w], and find a laminar family of tight odd sets L w.r.t. w, by calling Algorithm 1
on each connected component of G. By complementary slackness, any perfect matching
that has only one edge in δ(S) for each S ∈ L will automatically be of minimum weight,
see Definition 15. We can simply contract the top level sets in L, use Algorithm 2 to find
a perfect matching in the shrunk graph, and recursively extend this to a minimum weight
perfect matching in each shrunk piece. Following an almost identical argument as in the
proof of Proposition 18, the perfect matching in the shrunk graph can be extended to a
minimum weight perfect matching.

The only problem with this method is that the recursion depth is not guaranteed to be
polylogarithmic. However we can fix that by making sure that tight odd sets S ∈ L do
not have more than half of the vertices in the graph; if they do, we replace them by their
complements and we will see in Lemma 40 why this operation preserves laminarity.

6.2 Minor-closed families of graphs
Throughout our algorithm we only call the decision oracle on graphs obtained from the
original through a sequence of edge and vertex removals and contractions. In this section
we will prove that the decision oracle is only called on minors of the original graph, that is
those graphs obtained by vertex and edge removals and contractions of connected subgraphs.

I Lemma 38. Algorithms 2 to 4 call the decision oracle on minors of their input graph only.

This lemma is all we need to prove Theorem 4. Note that there are several minor-closed
families of graphs where the decision problem can be solved in NC by using a counting oracle.
In particular we can count perfect matchings in graphs embedded on surfaces of genus at
most O(logn), and therefore solve the decision problem, all in NC. This improves upon the
genus bound of O(

√
logn) given by [1].

I Corollary 39. For graphs embedded on a surface of genus at most O(logn) and weighted
with polynomially bounded edge weights, there is an NC algorithm to find a minimum weight
perfect matching.

N. Anari and V. V. Vazirani 54:21

Another consequence of Theorem 4 is an alternative algorithm for K3,3-free graphs, which
was resolved earlier by [7].

Now we prove Lemma 38.

Proof of Lemma 38. First we prove this for Algorithm 4. In this algorithm, we only remove
edges from the input graph, and shrink tight odd sets in connected components. We just
have to show that what we shrink is already connected. Consider a tight odd set S in a
connected component C. If it is not internally connected, then one of its internal connected
components must have odd size; let that be S′. Since S ⊆ C and C is a connected component,
there is an edge e ∈ δ(S − S′). Since S′ is not internally connected to S − S′, it must be
that e ∈ δ(S) too. Now since the graph is matching-covered with minimum weight perfect
matchings, there must be some minimum weight perfect matching M 3 e. But because S′ is
odd, there must also be an edge f ∈M ∩ δ(S′). But note that e 6= f , and both e, f ∈ δ(S).
This is a contradiction, since S cannot have more than one edge in a perfect matching. This
shows that S must be connected and Algorithm 4 only produces minors of its input graph.

Next we prove the statement for Algorithm 3. This algorithm either calls Algorithm 4, or
finds triads and contracts them. The former produces minors of the input graph, and the
latter also produces minors of the input graph since triads are connected.

Note that the graph returned by Algorithm 3 may not be a proper minor of the input
graph; that could happen if the node weight of some v goes above 1/6 the total node weight.
In this scenario, the complement of v might not be connected and yet we contract it. However
the algorithm immediately returns and the decision oracle is not called on this returned
graph. So this does not contradict the statement of the lemma.

Finally we prove the statement for Algorithm 2. The only graphs produced and passed
onto Algorithm 3 are obtained from the input graph by vertex removals and edge removals.
So they are all minors of the input graph. The output of Algorithm 3 might not be a proper
minor, but this output is only used to decide which edges and vertices to remove from the
original graph to get to induced graphs on S − {v}. J

7 Analysis of the algorithm

First we will prove that our oracle-based algorithm returns a correct answer. Next, we will
bound the running time and prove that our algorithm runs in NC, modulo the calls to O;
this constitutes the most challenging part of the analysis.

7.1 Correctness
We will need the following lemma.

I Lemma 40. Suppose that L is a laminar family of sets in a node-weighted graph G = (V,E),
and we replace every S ∈ L whose node weight is larger than half of the total node weight by
the complement, i.e., V − S. Then the resulting family of sets L′ is also laminar.

Proof. Let S, S′ be two sets in L. They are either disjoint or one is contained in the other.
If S ∩ S′ = ∅: They cannot both have node weight more than 1/2. So at most one of

them gets replaced by its complement. Then it is easy to see that the resulting sets do not
cross.

If S ⊆ S′: There are three possibilities. If none of them gets replaced by their complements,
or both of them get replaced by their complements, they remain nested and therefore do not
cross. If one of them gets replaced by its complement, it has to be the larger set S′. In that
case the resulting sets become disjoint, and still do not cross. J

ITCS 2020

54:22 Matching Is as Easy as the Decision Problem, in the NC Model

Using Lemma 40 and Lemma 20, we deduce that Reduce always returns a matching
minor of its input graph. By definition, PartialMatching also returns a matching minor of
its graph when it finishes (for the analysis of running time see Section 7.2).

This proves the correctness of the algorithm, since we always find a matching minor that
has a unique perfect matching (itself), and by Lemma 20, we can extend it to a perfect
matching, independently in the preimage of each node.

7.2 Running time
First we analyze PerfectMatching (Algorithm 2) assuming the calls to PartialMatching
(Algorithm 3) are in NC.

I Lemma 41. Assuming the calls to PartialMatching are in NC, PerfectMatching is
in NC.

Proof. We simply need to bound the number of levels in the recursion. We will prove that
when PartialMatching returns a matching minor H, the node weight of every node is at
most 5/6 the total node weight. This proves that in each recursive call to PerfectMatching,
the number of vertices gets reduced by a factor of 5/6.

Note that the first time in Algorithm 3 that a node’s weight goes above 1/6 the total
weight, the algorithm stops and returns a two-node minor. So we just need to prove that
the weight of the node that just went above 1/6 is not more than 5/6. The current minor
was obtained from the previous minor by either Reduce, or by shrinking triads. But Reduce
never creates nodes with weight more than half the total weight. The weight of each node in
a triad is also at most 1/6 the total weight, so after shrinking the triad, the new weight can
be at most 1/6 + 1/6 + 1/6 = 1/2 the total weight. This finishes the proof. J

Finally, we need to prove that PartialMatching finishes in a polylogarithmic number
of steps. Using the structural facts, Lemma 42 and Lemmas 32 and 34, we establish the
following lemma.

I Lemma 42. In each iteration of Algorithm 3, the number of non-isolated edges gets reduced
by a factor of 1− Ω(1/ log2|V |).

Proof. First assume G is a connected graph. Then we can directly apply Lemmas 32 and 34
for some fixed ε < 1/9 to show that we either find c1|E| triads or there exist c2|E|/ log2|V |
edge-disjoint even walks. In the former case, after contracting the triads, the number of edges
gets reduced by a factor of 1− c1. In the latter case, let C1, C2, . . . , Ck be the edge-disjoint
even walks, and let w ∈ W be the weight vector such that 〈w, sign(Ci)〉 6= 0. Note that w is
guaranteed to exist by Lemma 26. In the call to Reduce(G,w), every Ci loses at least edge
by Lemmas 24 and 25, either because one of its edges becomes disallowed or it gets shrunk
as a result of shrinking top-level tight odd sets. Therefore, one of the candidate graphs in U
in Algorithm 3 will have a factor of 1− c3/ log2|V | fewer edges, for some constant c3 > 0.

Next assume G is not connected. If so, we apply the above-stated argument to each
connected component that is not an isolated edge. We can further assume the same weight
vector w works for all connected components. Now if H1 is the graph obtained from shrinking
triads, and H2 is the result of Reduce(G,w), then we know that the average number of edges
in H1 and H2 for each connected component is at most 1− c3/2 log2|V | times the number of
edges in the connected component. So one of H1, H2 must have at most (1− c3/2 log2|V |)
times as many non-isolated edges as G. J

N. Anari and V. V. Vazirani 54:23

Note that Lemma 42 gives a polylogarithmic upper bound on the number of iterations
in Algorithm 3, since if we track the number of non-isolated edges, after every Θ(log2|V |)
steps we get a constant factor reduction, and therefore it takes at most O(log|E| · log2|V |)
iterations for it to reach 0.

8 Discussion

This paper has identified what appears to be the “core” of the difficult open problem of
obtaining an NC matching algorithm, namely the decision problem. We must immediately
mention that both decision problems stated in Section 1.2 have been the subject of numerous
attacks over the past decades and hence resolution is not likely to be an easy matter. At the
same time, we hope that since the “target” has been more precisely identified, the resolution
of the open problem will gain added impetus.

An obvious open question is to build on the quasi-NC algorithm of [11] and related results
of [12] to obtain the appropriate oracle-based NC algorithms and pseudo-deterministic RNC
algorithms for linear matroid intersection and for finding a vertex of a polytope with faces
given by totally unimodular constraints. An interesting problem defined by Papadimitriou
and Yannakakis [29] , called Exact Matching, is the following: Given a graph G with a subset
of the edges marked red and an integer k, find a perfect matching with exactly k red edges.
This problem is known to be in RNC [27], even though it is not yet known to be in P. Is
there a pseudo-deterministic RNC algorithm for it?

The phenomenon identified in Section 1.3 clearly deserves to be studied in depth. To
the best of our knowledge, there are only two algorithmic results for bipartite matching
that have not been extended to general graphs. The first is obtaining a fully polynomial
randomized approximation scheme for counting the number of perfect matchings [14]; this
is also among the outstanding open problems of theoretical computer science today. The
second is obtaining an O(m10/7) algorithm for maximum matching [23], which beats the
earlier algorithms for sparse graphs.

References
1 Nima Anari and Vijay V. Vazirani. Planar Graph Perfect Matching is in NC. In Proceedings

of the 59th IEEE Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, 2018.

2 Alberto Caprara, Alessandro Panconesi, and Romeo Rizzi. Packing cycles in undirected graphs.
Journal of Algorithms, 48(1):239–256, 2003.

3 Laszlo Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618–623, 1976.

4 Marek Cygan, Harold N Gabow, and Piotr Sankowski. Algorithmic Applications of Baur-
Strassen’s Theorem: Shortest Cycles, Diameter and Matchings. arXiv preprint, 2012. arXiv:
1204.1616.

5 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47(3):737–757, 2010.

6 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

7 David Eppstein and Vijay V. Vazirani. NC Algorithms for Computing a Perfect Matching,
Number of Perfect Matchings, and a Maximum Flow in One-Crossing-Minor-Free Graphs. In
Proceedings of the Thirty-First ACM Symposium on Parallelism in Algorithms and Architec-
tures, 2019.

ITCS 2020

http://arxiv.org/abs/1204.1616
http://arxiv.org/abs/1204.1616

54:24 Matching Is as Easy as the Decision Problem, in the NC Model

8 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
NC. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 754–763. ACM, 2016.

9 Eran Gat and Shafi Goldwasser. Probabilistic Search Algorithms with Unique Answers and
Their Cryptographic Applications. In Electronic Colloquium on Computational Complexity
(ECCC), volume 18, page 136, 2011.

10 Shafi Goldwasser and Ofer Grossman. Perfect Bipartite Matching in Pseudo-Deterministic
RNC. In Electronic Colloquium on Computational Complexity (ECCC), volume 22, page 208,
2015.

11 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-NC. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 821–830. ACM,
2017.

12 Rohit Gurjar, Thomas Thierauf, and Nisheeth K Vishnoi. Isolating a vertex via lattices:
Polytopes with totally unimodular faces. arXiv preprint, 2017. arXiv:1708.02222.

13 John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

14 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM),
51(4):671–697, 2004.

15 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

16 Donald B Johnson. Parallel algorithms for minimum cuts and maximum flows in planar
networks. Journal of the ACM (JACM), 34(4):950–967, 1987.

17 Richard M Karp, Eli Upfal, and Avi Wigderson. Are search and decision programs computa-
tionally equivalent? In Proceedings of the seventeenth annual ACM symposium on Theory of
computing, pages 464–475. ACM, 1985.

18 Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6(1):35–48, 1986.

19 Alexander V Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo vida
i nekotorykh prilozheniyakh; title translation: On finding maximum flows in networks with
special structure and some applications. Mathematicheskie Voprosy Upravleniya Proizvodstvom,
1973.

20 László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79,
pages 565–574, 1979.

21 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

22 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036–1053, 1986.

23 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 253–262. IEEE, 2013.

24 Meena Mahajan and Kasturi R Varadarajan. A new NC-algorithm for finding a perfect
matching in bipartite planar and small genus graphs. In Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pages 351–357. ACM, 2000.

25 Silvio Micali and Vijay V Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching
in general graphs. In Foundations of Computer Science, 1980., 21st Annual Symposium on,
pages 17–27, 1980.

26 Gary L Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 112–117. IEEE,
1989.

http://arxiv.org/abs/1708.02222

N. Anari and V. V. Vazirani 54:25

27 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354. ACM, 1987.

28 Manfred W Padberg and M Ram Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, 7(1):67–80, 1982.

29 Christos H Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM (JACM), 29(2):285–309, 1982.

30 Michael O Rabin and Vijay V Vazirani. Maximum matchings in general graphs through
randomization. Journal of Algorithms, 10(4):557–567, 1989.

31 Piotr Sankowski. NC Algorithms for Weighted Planar Perfect Matching and Related Problems.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

32 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-NC.
In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages
696–707, 2017.

33 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,
8(2):189–201, 1979.

34 Vijay V Vazirani. NC algorithms for computing the number of perfect matchings in K3, 3-free
graphs and related problems. Information and computation, 80(2):152–164, 1989.

35 Vijay V Vazirani. A theory of alternating paths and blossoms for proving correctness of the
O(
√

|V ||E|) general graph maximum matching algorithm. Combinatorica, 14(1):71–109, 1994.

ITCS 2020

	Introduction
	Related work and a brief history of parallel matching algorithms
	What is the ``right'' decision problem?
	Bipartite vs non-bipartite matching: An intriguing phenomenon

	Overview and Technical Ideas
	The bipartite case
	Extension to general graphs
	Component based on the structure of the perfect matching polytope
	Component based on graph-theoretic facts
	Component based on facts from matching theory

	The final idea: balanced viable set

	Preliminaries
	The perfect matching polytope
	Finding a description of a face
	Contraction of tight odd sets, matching minors, and triads
	Even walks and weight vectors
	Maximal independent sets

	The Decision Oracle
	Structural Facts
	The Oracle-Based Algorithm
	Finding a minimum weight perfect matching
	Minor-closed families of graphs

	Analysis of the algorithm
	Correctness
	Running time

	Discussion

