786 research outputs found

    How do atria affect navigation in multi-level museum environments?

    Get PDF
    How do people explore multiplex environments? What role do atria play in spatial navigation? These are critical questions for architectural design. However, few studies have examined the role atria play in visitors’ exploration of museums. Consequently, the relationship between free exploration and the design of atria in museums is not well understood. A pilot study in the Ashmolean Museum indicated that atria influence navigation. The Museum, therefore, lends itself as a case study to assess the impact of visual connections upon exploration and orientation. We present an experimental study with two conditions: a highly-detailed realistic virtual model of the building and a modified virtual model of the same building, eliminating the views crossing through the atria. Two hypotheses are tested: first, that visitors’ paths will be different depending on the amount of visual information they receive inside each experimental condition; second, that visitors’ ease of exploring and viewing the environment will also differ. Analysis confirmed that participants followed different paths in the two experimental conditions. Users visiting the exact model turned their heads around fewer times than users visiting the modified model. These findings suggest that atria play a significant role in nudging movement and affect the ease of navigation

    Spatial learning in virtual environments by children and adults after active or passive experience

    Get PDF
    Theories of spatial learning, such as those of Siegal and White (1975) and Piaget and Inhelder (1967) have considered active exploration of environments to be beneficial or essential for the development of specific spatial knowledge. Real world empirical research in the form of both laboratory experimental and broader environmental studies tends to support this suggestion, demonstrating that active exploration of an environment, in both children and adults, gives better spatial learning than passive experience. Based on these findings, the working hypothesis adopted in this thesis is that active exploration of a virtual environment (VE) would also result in better spatial learning than passive experience of the same VE. Also considered is the equivalence of real and virtual world experiences, and the degree of transfer of spatial learning between VEs and real equivalent environments. Seven experiments were undertaken, all utilising a yoked active passive paired-subjects design. A range of VEs was employed across the experiments, including a room, a corridor, and both complex and simple small towns. Three studies used children as participants and five, adults, all having both males and females. The key finding was that the experimental hypothesis was supported for children but not for adults. Active child participants (when using a familiar input device) demonstrated superior spatial learning to that of their passive counterparts, but active adult participants did not show superior spatial learning to that of passive counterparts. Underestimation of distances was a universal feature, but was greater in female than male participants. Otherwise, the general equivalence of real and virtual world experiences was confirmed, with transfer of spatial learning occurring from virtual environments to real world equivalent environments for both adults and children

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Decision in space

    Get PDF
    Human navigation is generally believed to rely on two types of strategy adoption, route- based and map-based strategies. Both types of navigation require making spatial decisions along the traversed way. Nevertheless, formal computational and neural links between navigational strategies and mechanisms of value based decision making have so far been underexplored in humans. Here, we employed functional magnetic resonance imaging (fMRI) while subjects located different target objects in a virtual environment. We then modelled their paths using reinforcement learning (RL) algorithms, which successfully explain decision behaviour and its neural correlates. Our results show that subjects used a mixture of route and map-based navigation, and their paths could be well explained by the model-free and model-based RL algorithms. Furthermore, the value signals of model-free choices during route-based navigation modulated the BOLD signals in the ventro-medial prefrontal cortex (vmPFC). On the contrary, the BOLD signals in parahippocampal and medial temporal lobe (MTL) regions pertained to model- based value signals during map-based navigation. Our findings suggest that the brain might share computational mechanisms and neural substrates for navigation and value- based decisions, such that model-free choice guides route-based navigation and model- based choice directs map-based navigation. These findings open new avenues for computational modelling of wayfinding by directing attention to value-based decision, differing from common direction and distances approaches. The ability to find one’s way in a complex environment is crucial to everyday functioning. This navigational ability relies on the integrity of several cognitive functions and different strategies, route and map-based navigation, that individuals may adopt while navigating in the environment. As the integrity of these cognitive functions often decline with age, navigational abilities show marked changes in both normal aging and dementia. Combining a wayfinding task in a virtual reality (VR) environment and modeling technique based on reinforcement learning (RL) algorithms, we investigated the effects of cognitive aging on the selection and adoption of navigation strategies in human. The older participants performed the wayfinding task while undergoing functional Magnetic Resonance Imaging (fMRI), and the younger participants performed the same task outside the MRI machine. Compared with younger participants, older participants traversed a longer distance. They also exhibited a higher tendency to repeat previously established routes to locate the target objects. Despite these differences, the traversed paths in both groups could be well explained by the model-free and model-based RL algorithms. Furthermore, neuroimaging results from the older participants show that BOLD signal in the ventromedial prefrontal cortex (vmPFC) pertained to model-free value signals. This result provide evidence on the utility of the RL algorithms to explain how the aging brain computationally prefer to rely more on the route-based navigation

    On the relation between body and movement space representation: an experimental investigation on spinal cord injured people

    Get PDF
    Body Representation (BR) and Movement Space Perception (MSP) are fundamental for human beings in order to move in space and interact with object s and other people. Both BR and space representation change after spinal cord injuries in complete paraplegic individuals (CPP), who suffer from lower limbs paralysis and anesthesia. To date, the interaction between BR and MSP in paraplegic individuals rem ains unexplored. In two consecutive experiments, we tested I ) if the individual\u2019s wheelchair is embodied in BR; and ii) if the embodied wheelchair modifies the MSP. For the first question a speeded detection task was used. Participants had to respond to v isual stimuli flashing on their trunk, legs or wheelchair. In three counterbalanced conditions across participant, they took part to the experiment while: 1) sitting in their wheelchair, 2) in another wheelchair, or 3) with the LEDs on a wooden bar. To in dicate the embodiment, there was no difference in the CPP\u2019s responses for LEDs on the body and personal wheelchair while these were slower in other conditions After this, while sitting in their or another wheelchair, CPPs were asked to judge the slope of a ramp rendered in immersive virtual reality and to estimate the distance of a flag positioned over the ramp. When on their own wheelchair, CPPs perceived the flag closer than in the other wheelchair. These results indicate that the continuous use of a too l induces embodiment and that this i mpact on the perception of MSP

    Gender differences in spatial ability within virtual reality

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computer detection of spatial visualization in a location-based task

    Get PDF
    An untapped area of productivity gains hinges on automatic detection of user cognitive characteristics. One such characteristic, spatial visualization ability, relates to users’ computer performance. In this dissertation, we describe a novel, behavior-based, spatial visualization detection technique. The technique does not depend on sensors or knowledge of the environment and can be adopted on generic computers. In a Census Bureau location-based address verification task, detection rates exceeded 80% and approached 90%
    • …
    corecore