9 research outputs found

    Kryptowährungen- Ein Problem für die Geldpolitik?

    Get PDF
    Cryptocurrencies such as Bitcoins may revolutionize the financial system by at least partially replacing intermediaries such as central banks and commercial banks. The blockchain technology enables users to transact on a peer-to-peer basis. This imposes a serious threat on the financial intermediaries as well as on monetary policy authorities. In this paper, we examine how well cryptocurrencies fulfill the functions of a fiat money and discuss the comparative advantages of cryptocurrencies. We proceed by exploring the implications of digital currencies for the concept and conduct of monetary polic

    Socially Optimal Mining Pools

    Full text link
    Mining for Bitcoins is a high-risk high-reward activity. Miners, seeking to reduce their variance and earn steadier rewards, collaborate in pooling strategies where they jointly mine for Bitcoins. Whenever some pool participant is successful, the earned rewards are appropriately split among all pool participants. Currently a dozen of different pooling strategies (i.e., methods for distributing the rewards) are in use for Bitcoin mining. We here propose a formal model of utility and social welfare for Bitcoin mining (and analogous mining systems) based on the theory of discounted expected utility, and next study pooling strategies that maximize the social welfare of miners. Our main result shows that one of the pooling strategies actually employed in practice--the so-called geometric pay pool--achieves the optimal steady-state utility for miners when its parameters are set appropriately. Our results apply not only to Bitcoin mining pools, but any other form of pooled mining or crowdsourcing computations where the participants engage in repeated random trials towards a common goal, and where "partial" solutions can be efficiently verified

    Evaluation of Large Integer Multiplication Methods on Hardware

    Get PDF

    European consumer law and blockchain based financial services: A functional approach against the rhetoric of regulatory uncertainty

    Get PDF
    A decade after the financial market started experimenting with blockchain, the prevailing view of EU regulators has been that blockchain based transactions do not fit into the current regulatory regime. This was illustrated by the European Banking Authority’s warning to the consumers issued in 2013 of the absence of specific legal regime designed to protect the consumers dealing with exchange platforms. A similar position was adopted by the European Securities and Market Authority in its 2017 investor alert indicating that ICO operating in unregulated spaces pose several risks the consumers should be aware of. By Examining developments until December 2018, this article argues that the extent of regulatory uncertainty is overstated and recommends a functional approach to regulation. It posits that although blockchain and cryptocurrencies are new technologies, the legal transactions they enable are not entirely novel and could largely be regulated under the existing legal rules without the need for sweeping refor

    Blockchain-based model for tracking software requirement compliance in industrial control systems with secure software development lifecycle

    Get PDF
    Disertacija se bavi istraživanjem je primena Hyperledger Fabric blokčejn rešenja za praćenje usklađenosti softvera sa bezbednosnim zahtevima u industrijskim upravljačkim sistemima. Definisan je model koji obuhvata učesnike, slučajeve korišćenja i princip bezbednosti podataka. Validacija modela sprovedena je kroz analizu bezbednosne prakse Upravljanje bezbednošću, deo standarda IEC 62443-4-1, koji obuhvata 13 zahteva. Model omogućava transparentnost, neporeljivost, sledljivost i dostupnost informacija, bitne osobine za industrijske upravljačke sisteme u kritičnim infrastrukturama. Poverljivost informacija obezbeđena je upotrebom privatne blokčejn mreže poput Hyperledger Fabric. Dalje, definisani su dijagrami slučajeva korišćenja i organizacije neophodni za funkcionalnost sistema. Korišćen je IPFS za skladištenje dokumenata, a zatim je postavljeno rešenje za Hyperledger Fabric blokčejnu mrežu. Ovaj pristup pruža uvid u usklađenost softvera, posebno u kritičnim sektorima, obezbeđujući sigurnost podataka i efikasnu implementaciju rešenja.This thesis investigates the application of the Hyperledger Fabric blockchain solution for monitoring software compliance with security requirements in industrial control systems. A model is defined that includes participants, use cases and the principle of data security. Validation of the model was carried out through the analysis of the safety practice Security management, part of the standard IEC 62443-4-1, which includes 13 requirements. The model enables transparency, non-repudiation, traceability and availability of information, essential features for industrial management systems in critical infrastructures. Information confidentiality is ensured by using a private blockchain network like Hyperledger Fabric. Furthermore, use case diagrams and organization necessary for system functionality are defined. IPFS was used to store documents, and then the solution was deployed on the Hyperledger Fabric blockchain network. This comprehensive approach provides insight into software compliance, particularly in critical sectors, ensuring data security and effective solution implementation

    Understanding and Hardening Blockchain Network Security Against Denial of Service Attacks

    Get PDF
    This thesis aims to examine the security of a blockchain\u27s communication network. A blockchain relies on a communication network to deliver transactions. Understanding and hardening the security of the communication network against Denial-of-Service (DoS) attacks are thus critical to the well-being of blockchain participants. Existing research has examined blockchain system security in various system components, including mining incentives, consensus protocols, and applications such as smart contracts. However, the security of a blockchain\u27s communication network remains understudied. In practice, a blockchain\u27s communication network typically consists of three services: RPC service, P2P network, and mempool. This thesis examines each service\u27s designs and implementations, discovers vulnerabilities that lead to DoS attacks, and uncovers the P2P network topology. Through systematic evaluations and measurements, the thesis confirms that real-world network services in Ethereum are vulnerable to DoS attacks, leading to a potential collapse of the Ethereum ecosystem. Besides, the uncovered P2P network topology in Ethereum mainnet suggests that critical nodes adopt a biased neighbor selection strategy in the mainnet. Finally, to fix the discovered vulnerabilities, practical mitigation solutions are proposed in this thesis to harden the security of Ethereum\u27s communication network

    Fault-Tolerance and Deaggregation Security of Aggregate Signatures

    Get PDF
    Ein zentrales Problem der digitalen Kommunikation ist die Absicherung der Authentizität und Integrität digitaler Dokumente, wie etwa Webseiten, E-Mails oder Programmen. So soll beispielsweise für den Empfänger einer E-Mail nachvollziehbar sein, dass die empfangene E-Mail tatsächlich vom angegebenen Absender stammt (Authentizität) und nicht durch Dritte verändert wurde (Integrität). Digitale Signaturen sind ein Hauptwerkzeug der Kryptographie und IT-Sicherheit, um diese Eigenschaften zu gewährleisten. Hierzu wird vom Absender ein geheimer Schlüssel verwendet, um für das zu sichernde Dokument eine Signatur zu erstellen, die mithilfe eines öffentlich bekannten Verifikationsschlüssels jederzeit überprüft werden kann. Die Sicherheitseigenschaften solcher digitaler Signaturverfahren garantieren sowohl, dass jede Änderung am Dokument dazu führt, dass diese Überprüfung fehlschlägt, als auch dass eine Fälschung einer Signatur praktisch unmöglich ist, d.h. ohne den geheimen Schlüssel kann keine gültige Signatur berechnet werden. Somit kann bei einer erfolgreichen Verifikation davon ausgegangen werden, dass das Dokument tatsächlich vom angegebenen Absender erstellt und seit der Berechnung der Signatur nicht verändert wurde, da nur der Absender über den geheimen Schlüssel verfügt. Aggregierbare Signaturen bieten zusätzlich die Möglichkeit Signaturen mehrerer Dokumente zu einer einzigen Signatur zusammenzuführen bzw. zu aggregieren. Diese Aggregation ist dabei jederzeit möglich. Eine aggregierte Signatur bezeugt weiterhin sicher die Integrität und Authentizität aller ursprünglichen Dokumente, benötigt dabei aber nur so viel Speicherplatz wie eine einzelne Signatur. Außerdem ist die Verifikation einer solchen aggregierten Signatur üblichrweise schneller möglich als die sukzessive Überprüfung aller Einzelsignaturen. Somit kann die Verwendung eines aggregierbaren Signaturverfahrens anstelle eines gewöhnlichen Verfahrens zu erheblichen Verbesserungen der Performanz und des Speicherverbrauchs bei Anwendungen von Signaturen führen. In dieser Dissertation werden zwei zusätzliche Eigenschaften von aggregierbaren Signaturverfahren namens Fehlertoleranz und Deaggregationssicherheit untersucht. Fehlertoleranz bietet eine Absicherung des Verfahrens gegen fehlerhafte Signier- und Aggregationsvorgänge und Deaggregationssicherheit schützt vor ungewollten Löschungen. Beide Eigenschaften werden im Folgenden erläutert. Fehlertoleranz: Durch System- und Programmfehler, sowie inkorrektes oder auch bösartiges Nutzerverhalten ist es möglich, dass fehlerhafte Einzelsignaturen zu einer bestehenden aggregierten Signatur hinzugefügt werden. Alle bisherige aggregierbaren Signaturverfahren haben jedoch den Nachteil, dass bereits das Aggregieren einer einzigen fehlerhaften Einzelsignatur dazu führt, dass auch die aggregierte Signatur fehlerhaft und somit unbrauchbar wird. Die aggregierte Signatur kann danach nicht mehr korrekt verifiziert werden. Insbesondere kann aus ihr nun keinerlei Aussage mehr über die Integrität und Authentizität der Dokumente abgeleitet werden, die vor dem Hinzufügen der fehlerhaften Einzelsignatur korrekt signiert wurden. Dies hat zur Folge, dass alle gegebenen Sicherheitsgarantien verloren gehen und es wird ein aufwändiges Neusignieren aller Dokumente notwendig, welches unter Umständen und je nach Anwendung nur schwer bis überhaupt nicht möglich ist. In dieser Dissertation wird das erste fehlertolerante aggregierbare Signaturverfahren vorgestellt, bei dem das Hinzufügen einzelner falscher Signaturen bis zu einer gewissen Grenze keine schädlichen Auswirkungen hat. Eine aggregierte Signatur wird erst dann ungültig und unbrauchbar, sobald die Anzahl hinzugefügter fehlerhafter Signaturen diese Grenze überschreitet und behält davor weiterhin seine Gültigkeit für die korrekt signierten Dokumente. Dazu wird ein Verfahren vorgestellt, mit dem jedes beliebige aggregierbare Signaturverfahren in ein fehlertolerantes Verfahren transformiert werden kann. Das zugrundeliegende Verfahren wird dabei nur als Black-Box verwendet und der Schutz gegen Fälschungsangriffe übertragt sich beweisbar und ohne Einschränkung auf das neue fehlertolerante Verfahren. Des Weiteren wird als Anwendung von fehlertoleranten Verfahren gezeigt, wie aus ihnen ein sicheres Log-Verfahren konstruiert werden kann. Deaggregationssicherheit: Erlangt ein Angreifer Zugriff auf eine aggregierte Signatur für einen bestimmten Datensatz, so sollte es ihm nicht möglich sein aus diesem Aggregat eine gültige Signatur für einen Teil der geschützten Dokumente abzuleiten, indem er einzelne Signaturen entfernt oder deaggregiert. Solche Angriffe können für viele Anwendungsfälle problematisch sein, da so Signaturen für Mengen von Dokumenten berechnet werden könnten, die nicht von den eigentlichen Erstellern beabsichtigt waren und nie von ihnen selbst signiert wurden. Wird ein aggregierbares Signaturverfahren etwa verwendet um eine Datenbank abzusichern, so sollte es Angreifern nicht möglich sein einzelne Einträge daraus zu entfernen. In dieser Dissertation werden mehrere Deaggregationssicherheitsbegriffe entwickelt, vorgestellt und untersucht. Dazu wird eine Hierarchie von verschieden starken Sicherheitsbegriffen entwickelt und die Zusammenhänge zwischen den einzelnen Begriffen werden formal untersucht. Dabei wird auch gezeigt, dass der von aggregierbaren Signaturverfahren garantierte Schutz gegen Fälschungen keinerlei Sicherheit gegen Deaggregationsangriffe gewährleistet. Des Weiteren wird die Deaggregationssicherheit einer Reihe von bekannten und wichtigen aggregierbaren Signaturverfahren näher betrachtet. Die von diesen Verfahren gebotene Sicherheit wird exakt klassifiziert, indem entweder Angriffsmöglichkeiten demonstriert werden oder formal bewiesen wird, welcher Sicherheitsbegriff der Hierarchie vom Verfahren erfüllt wird. Außerdem wird die Verbindung von Fehlertoleranz und Deaggregationssicherheit untersucht. Dabei stellt sich heraus, dass beide Begriffe nicht zueinander kompatibel sind, indem bewiesen wird, dass fehlertolerante aggregierbare Signaturverfahren keinerlei Sicherheit gegen Deaggregationsangriffe bieten können. Somit muss bei Anwendungen von aggregierbaren Verfahren genau abgewogen werden, welche der beiden Eigenschaften notwendig ist und ob zusätzliche Sicherheitsmaßnahmen angewendet werden müssen, um dieses Problem für die konkrete Anwendung zu beheben
    corecore