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Zusammenfassung

Ein zentrales Problem der digitalen Kommunikation ist die Absicherung der
Authentizität und Integrität digitaler Dokumente, wie etwa Webseiten, E-Mails
oder Programmen. So soll beispielsweise für den Empfänger einer E-Mail nachvoll-
ziehbar sein, dass die empfangene E-Mail tatsächlich vom angegebenen Absender
stammt (Authentizität) und nicht durch Dritte verändert wurde (Integrität).
Digitale Signaturen sind ein Hauptwerkzeug der Kryptographie und IT-Sicherheit,
um diese Eigenschaften zu gewährleisten.

Hierzu wird vom Absender ein geheimer Schlüssel verwendet, um für das
zu sichernde Dokument eine Signatur zu erstellen, die mithilfe eines öffentlich
bekannten Verifikationsschlüssels jederzeit überprüft werden kann. Die Sicher-
heitseigenschaften solcher digitaler Signaturverfahren garantieren sowohl, dass
jede Änderung am Dokument dazu führt, dass diese Überprüfung fehlschlägt, als
auch dass eine Fälschung einer Signatur praktisch unmöglich ist, d.h. ohne den
geheimen Schlüssel kann keine gültige Signatur berechnet werden. Somit kann
bei einer erfolgreichen Verifikation davon ausgegangen werden, dass das Doku-
ment tatsächlich vom angegebenen Absender erstellt und seit der Berechnung
der Signatur nicht verändert wurde, da nur der Absender über den geheimen
Schlüssel verfügt.

Aggregierbare Signaturen bieten zusätzlich die Möglichkeit Signaturen mehrerer
Dokumente zu einer einzigen Signatur zusammenzuführen bzw. zu aggregieren.
Diese Aggregation ist dabei jederzeit möglich. Eine aggregierte Signatur bezeugt
weiterhin sicher die Integrität und Authentizität aller ursprünglichen Doku-
mente, benötigt dabei aber nur so viel Speicherplatz wie eine einzelne Signatur.
Außerdem ist die Verifikation einer solchen aggregierten Signatur üblichrweise
schneller möglich als die sukzessive Überprüfung aller Einzelsignaturen. Somit
kann die Verwendung eines aggregierbaren Signaturverfahrens anstelle eines
gewöhnlichen Verfahrens zu erheblichen Verbesserungen der Performanz und des
Speicherverbrauchs bei Anwendungen von Signaturen führen.

In dieser Dissertation werden zwei zusätzliche Eigenschaften von aggregier-
baren Signaturverfahren namens Fehlertoleranz und Deaggregationssicherheit
untersucht. Fehlertoleranz bietet eine Absicherung des Verfahrens gegen fehler-
hafte Signier- und Aggregationsvorgänge und Deaggregationssicherheit schützt
vor ungewollten Löschungen. Beide Eigenschaften werden im Folgenden erläutert.

Fehlertoleranz: Durch System- und Programmfehler, sowie inkorrektes oder
auch bösartiges Nutzerverhalten ist es möglich, dass fehlerhafte Einzelsignaturen
zu einer bestehenden aggregierten Signatur hinzugefügt werden. Alle bisherige
aggregierbaren Signaturverfahren haben jedoch den Nachteil, dass bereits das
Aggregieren einer einzigen fehlerhaften Einzelsignatur dazu führt, dass auch die
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aggregierte Signatur fehlerhaft und somit unbrauchbar wird. Die aggregierte
Signatur kann danach nicht mehr korrekt verifiziert werden. Insbesondere
kann aus ihr nun keinerlei Aussage mehr über die Integrität und Authentizität
der Dokumente abgeleitet werden, die vor dem Hinzufügen der fehlerhaften
Einzelsignatur korrekt signiert wurden. Dies hat zur Folge, dass alle gegebenen
Sicherheitsgarantien verloren gehen und es wird ein aufwändiges Neusignieren
aller Dokumente notwendig, welches unter Umständen und je nach Anwendung
nur schwer bis überhaupt nicht möglich ist.

In dieser Dissertation wird das erste fehlertolerante aggregierbare Signaturver-
fahren vorgestellt, bei dem das Hinzufügen einzelner falscher Signaturen bis zu
einer gewissen Grenze keine schädlichen Auswirkungen hat. Eine aggregierte Sig-
natur wird erst dann ungültig und unbrauchbar, sobald die Anzahl hinzugefügter
fehlerhafter Signaturen diese Grenze überschreitet und behält davor weiterhin
seine Gültigkeit für die korrekt signierten Dokumente. Dazu wird ein Verfahren
vorgestellt, mit dem jedes beliebige aggregierbare Signaturverfahren in ein fehler-
tolerantes Verfahren transformiert werden kann. Das zugrundeliegende Verfahren
wird dabei nur als Black-Box verwendet und der Schutz gegen Fälschungsangriffe
übertragt sich beweisbar und ohne Einschränkung auf das neue fehlertolerante
Verfahren. Des Weiteren wird als Anwendung von fehlertoleranten Verfahren
gezeigt, wie aus ihnen ein sicheres Log-Verfahren konstruiert werden kann.

Deaggregationssicherheit: Erlangt ein Angreifer Zugriff auf eine aggregierte
Signatur für einen bestimmten Datensatz, so sollte es ihm nicht möglich sein aus
diesem Aggregat eine gültige Signatur für einen Teil der geschützten Dokumente
abzuleiten, indem er einzelne Signaturen entfernt oder deaggregiert. Solche
Angriffe können für viele Anwendungsfälle problematisch sein, da so Signaturen
für Mengen von Dokumenten berechnet werden könnten, die nicht von den
eigentlichen Erstellern beabsichtigt waren und nie von ihnen selbst signiert
wurden. Wird ein aggregierbares Signaturverfahren etwa verwendet um eine
Datenbank abzusichern, so sollte es Angreifern nicht möglich sein einzelne
Einträge daraus zu entfernen.

In dieser Dissertation werden mehrere Deaggregationssicherheitsbegriffe ent-
wickelt, vorgestellt und untersucht. Dazu wird eine Hierarchie von verschieden
starken Sicherheitsbegriffen entwickelt und die Zusammenhänge zwischen den
einzelnen Begriffen werden formal untersucht. Dabei wird auch gezeigt, dass der
von aggregierbaren Signaturverfahren garantierte Schutz gegen Fälschungen kein-
erlei Sicherheit gegen Deaggregationsangriffe gewährleistet. Des Weiteren wird
die Deaggregationssicherheit einer Reihe von bekannten und wichtigen aggregier-
baren Signaturverfahren näher betrachtet. Die von diesen Verfahren gebotene
Sicherheit wird exakt klassifiziert, indem entweder Angriffsmöglichkeiten demon-
striert werden oder formal bewiesen wird, welcher Sicherheitsbegriff der Hierarchie
vom Verfahren erfüllt wird.

Außerdem wird die Verbindung von Fehlertoleranz und Deaggregationssicher-
heit untersucht. Dabei stellt sich heraus, dass beide Begriffe nicht zueinander
kompatibel sind, indem bewiesen wird, dass fehlertolerante aggregierbare Sig-
naturverfahren keinerlei Sicherheit gegen Deaggregationsangriffe bieten können.
Somit muss bei Anwendungen von aggregierbaren Verfahren genau abgewogen
werden, welche der beiden Eigenschaften notwendig ist und ob zusätzliche Sicher-
heitsmaßnahmen angewendet werden müssen, um dieses Problem für die konkrete
Anwendung zu beheben.



Abstract

A prominent problem of digital communication is the protection of the authen-
ticity and integrity of digital documents, like websites, emails or programs. For
example, the receiver of an email must be able to verify that the email was
actually sent by the alleged sender (authenticity) and that it was not changed
by a third party during transmission (integrity). Digital signature schemes are a
central tool of cryptography and IT security used to achieve these properties.

For this, the sender uses a secret key to compute a signature for the document
that is to be protected. This signature can then be verified at any time using a
publicly known verification key. The security guarantees of such digital signature
schemes ensure both that every change of the document results in a failed
verification and that forging signatures is practically impossible, i.e. it is not
possible to compute valid signatures without the secret key. This way, if the
verification of a signature succeeds, one can be sure that the document was
created by the alleged sender and was not modified since the signature was
computed, because only the sender knows the secret key.

Aggregate signature schemes offer the additional functionality that existing
signatures of multiple documents can be compressed or aggregated into one single
signature. This aggregate signature still securely attests to the authenticity and
integrity of all documents, but only uses as much memory space as one individual
signature of a single document. Moreover, an aggregate signature can usually be
verified faster than successively verifying each individual signature. Hence, using
an aggregate signature scheme instead of a regular signature scheme can result
in substantial improvements in the necessary memory space and performance of
the application that uses the signature scheme.

In this thesis, two additional properties of aggregate signature schemes called
fault-tolerance and deaggregation security are discussed. Fault-tolerance secures
the scheme against incorrect signing and aggregation operations and deaggrega-
tion security offers protection against unwanted deletions. Both properties are
explained in the following paragraphs.

Fault-Tolerance: Through system and program errors, as well as incorrect or
malicious user behavior, it is possible that invalid or faulty signatures get added
to an already aggregated signature. However, all known aggregate signature
schemes have one disadvantage in common: the aggregation of a faulty signature
renders the whole aggregate invalid and therefore unusable. After the faulty
signature was added, the aggregate signature can no longer be correctly verified.
In particular, no information whatsoever about the authenticity and integrity of
the previously correctly signed documents can be inferred. As a consequence, all
given security guarantees are lost and all documents need to be signed again,
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which can be very costly or even impossible, depending on the circumstances
and application.

In this thesis, we present the first fault-tolerant aggregate signature scheme
for which the aggregation of faulty signatures up to a specific limit has no
negative effect. An aggregate signature only then becomes invalid if the number
of added faulty signatures exceeds this limit and otherwise stays valid for all
previously correctly signed documents. We present a construction that can
be used to transform any aggregate signature scheme into a fault-tolerant one.
Here, the underlying scheme is only used as a black-box and we prove that the
security against forgery attacks is transferred without restrictions to the resulting
fault-tolerant scheme. Furthermore, as an application of fault-tolerant aggregate
signatures, we show how a secure and robust logging scheme can be constructed
from such a scheme.

Deaggregation Security: If an attacker gets a hold of an aggregate signature
for a specific set of documents, then he should not be able to compute a valid
signature for a subset of the documents by removing or deaggregating individual
signatures. Such attacks can be problematic in many applications, since this
way signatures could be created that validate sets of documents that were never
intended by the document owners and were never properly and intentionally
signed by them. For example, suppose that an aggregate signature scheme is
used to protect a database. Here, an attacker should not be able to selectively
remove individual entries.

In this thesis, we present and discuss several definitions of deaggregation
security. We present a hierarchy of deaggregation security definitions of varying
strength and discuss their relationships formally. We also show that the secu-
rity against forgery attacks offered by aggregate signature schemes implies no
protection whatsoever against deaggregation attacks. Furthermore, we investi-
gate the deaggregation security of a number of known and important aggregate
signature schemes. We exactly classify the security provided by them by either
demonstrating attack possibilities or by formally proving which definition of the
deaggregation security hierarchy is fulfilled by them.

Moreover, we discuss the connection between fault-tolerance and deaggre-
gation security. As it turns out, fault-tolerance and deaggregation security are
incompatible, which we show by proving that no fault-tolerant scheme can offer
any form of deaggregation security. Therefore, if an aggregate signature scheme
is used in an application, great care needs to be taken in deciding which of
the two properties is necessary and if additional security measures need to be
implemented to solve this problem for the specific application.
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Chapter 1

Introduction

1.1 Background and Motivation

Providing a secure way of ensuring authenticity and integrity of digital data
and documents is a problem that has long been recognized as central in the
cryptography and IT security community [DH76]. Given a digital document like
an email, how can the receiver be sure that it was actually created or sent by
the alleged creator (authenticity) and that it was not changed since its creation
(integrity), for example by a third party during transmission?

These security properties are crucial for many types of data and applications.
Consider, for example, the case of operating system updates. It must be enforced
that the operating system only accepts legitimate updates of the developer of
the system, otherwise attackers could easily install malicious code like viruses
and key loggers through fraudulent updates. This could have disastrous effects,
especially if the computer in question is used to control the security and safety
of critical infrastructures like power plants, train stations, airports and so on.
But also in more mundane scenarios, like online shopping and banking, the user
wants to be sure that she is actually connected to the website of the store or
bank in question and is not entering her private data on a fake website run by
criminals.

To this end, Diffie and Hellman [DH76] introduced the concept of digital
signature schemes. Like hand-written signatures in the analog world, these
schemes are used to sign digital documents and data. A digital signature scheme
provides three algorithms for key generation, signing and verifying. The key
generation algorithm computes a key pair consisting of a secret key and a
verification key. The secret key is used together with the signing algorithm to
compute signatures for messages1 and must be kept secret, as the name already
suggests. The verification key is used to then verify such signatures using the
verification algorithm. This algorithm will either reject or accept the signature
for the given message by outputting “valid signature for this message” or “invalid
signature for this message”, respectively. The verification key can safely (and
should be) made public to ensure that everyone is able to verify the validity of

1In the context of digital signatures, digital data and documents are usually referred to as
“messages”.
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2 CHAPTER 1. INTRODUCTION

signatures, which is why it is also often simply called public key. The security
properties of a digital signature scheme then guarantee the following:

1. It is practically impossible to compute signatures without the secret key,
i.e. signatures cannot be forged.

2. The verification algorithm will reject any message-signature pair where the
signature was not explicitly computed for this message.

3. Modifying either the message or its signature in any way will result in a
rejection by the verification algorithm.

Now, given these properties, if one receives a message together with a digital
signature and this signature withstands the verification process, i.e. the veri-
fication algorithm outputs “valid signature for this message”, one can be sure
that the message was actually signed by the alleged sender and was not changed
since the signature was computed. Furthermore, since the verification key and
the algorithms of the scheme are publicly available, everybody is able to verify
signatures.

This way, digital signature schemes provide the sought after properties of
integrity and authenticity. They have become an integral part of cryptography
and are used in a myriad of applications (like, for example, secure communication
on the internet or electronic payment systems) and as building blocks for more
complex constructions and protocols ([Lys+99; Lys02; Gol04; Bon+07; Nak09;
HJ12; Res18; CL19], to mention only a handful of publications in these areas).

However, using digital signature schemes also comes at a cost: For each
protected document, an additional file, namely the signature, must be computed,
sent and stored. While the size of a signature is typically far smaller then the
signed data itself, if many documents need to be signed, this can drastically
increase the necessary memory space and bandwidth use of the application. The
performance is also negatively affected, since the signatures need to be created
and regularly verified. Verification needs to be done more or less every time the
data is accessed and is usually a computationally expensive operation.

In [Bon+03] Boneh, Gentry, Lynn and Shacham introduce a new type of
digital signature scheme called aggregate signature schemes that seeks to alleviate
some these disadvantages. Such a scheme provides an additional aggregation
algorithm that can be used to compress a set of signatures into a single aggregate
signature, even if the individual signatures were created by separate signers using
different secret keys.

Aggregation is a public operation, so no secret information is necessary
to aggregate, and additional signatures can always be added to an already
aggregated signature. Considering signature size, an aggregate signature has
the same size as an individual signature for a single message, no matter how
many signatures are aggregated. Furthermore, the verification of an aggregate
signature for a given set of messages is often faster than verifying individual
signatures for all messages. For example, in the scheme of Boneh, Gentry, Lynn
and Shacham, verifying an aggregate is twice as fast as individual verification.
These properties are beneficial in a multitude of applications ranging from sensor
networks, secure logging and secure routing to software authentication [Ken+00;
Bon+03; MT08; AGH10; BGR14; Har+16]. Let us shortly outline how aggregate
signature schemes can be used in some of these scenarios.
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A well-known application of aggregate signatures are sensor networks [Bon+03;
BNN07; AGH10]. Here, small sensors measure some aspect of their physical
surroundings and send the measurements to a central base station for process-
ing. Such sensor networks are, for example, used as early warning systems for
tsunamis2 and other natural catastrophes. Using an aggregate signature can
save bandwidth consumption and increase the performance of the system that
evaluates the findings.

Another possible application is secure logging [MT08; Har+17a]. Log files are
used to monitor events happening to a digital system, like user actions, failed
log-in attempts, system errors and other general information. They play an
important role in computer security and are, for example, used for intrusion
detection. It is therefore necessary that the log is stored securely, which usually
involves the application of a digital signature scheme. Since these logs need to
be kept for long times and potentially need to store millions of entries, using
an aggregate signature scheme can have drastic positive effects on the memory
usage and performance of the system.3

The authentication of software is another field in which aggregate signatures
could be used to great effect [AGH10; Har+16]. In mobile and embedded devices
like smart phones, it has become common to sign software to ensure the validity
of their code. Very often, vendors also only allow the installation and execution
of programs from official app stores. Especially mobile operating systems might
only allow signed programs to run. Aggregate signature schemes could be used
to improve download bandwidth and decrease the verification overhead.

This thesis discusses two additional properties of aggregate signatures, namely
fault-tolerance and deaggregation security. Fault-tolerance protects the scheme
against the aggregation of invalid signatures and deaggregation security ensures
that attackers cannot remove individual signatures from an aggregate. Both
concepts are explained and motivated in detail in the following paragraphs.

1.1.1 Fault-Tolerance
Unfortunately, aggregate signature schemes also have a big disadvantage. Since
now only one signature is being stored, it is also a single point of failure. It
is critical that this signature remains valid, especially when new signatures
get aggregated, since it can happen that users and systems aggregate faulty
signatures by mistake, as the result of some system error or even with malicious
intent.

However, all known aggregate signature schemes have one problem in common:
once the aggregate contains even one single faulty message-signature pair, the
whole aggregate becomes invalid, i.e. they are not fault-tolerant. Whether this
pair itself was already invalid during aggregation (i.e. the individual signature
was not valid for the message) or a “wrong” message is included during verification
is insignificant and verification will completely fail in both cases.

All security guarantees for integrity and authenticity are now lost, even if
all other messages were correctly and validly signed. Once an invalid message-
signature pair is contained in the aggregate, the aggregate signature can no
longer be used to infer any information about the integrity and authenticity

2See http://www.ioc-tsunami.org/. Last accessed February 5, 2020.
3See [Har20] for an extensive discussion on secure logging schemes.

http://www.ioc-tsunami.org/


4 CHAPTER 1. INTRODUCTION

of the messages. If such an invalidation of an aggregate signature occurs, the
only solution seems to be to sign all data once more. However, this approach
has problems of its own. First, this process takes time and in the interim, the
security of the data is not guaranteed. Second, depending on the circumstances
and applications, signers might no longer be available or even unwilling to sign
the same message again. Even worse, this gives signers the opportunity to retract
their signature. Suppose, for example, that the scheme is used to sign legally
binding documents like contracts. If the aggregate signature becomes invalid,
this gives signers the opportunity to not sign their contracts again. Since the old
signature was lost, there is now no formal way left of proving that the specific
party once signed the document.

Many aggregate signature schemes (for example [Lys+04; Nev08; LLY13a;
LLY13b]) include the verification step in their aggregation algorithm and only
aggregate valid signatures. While this is undesirable, since it introduces additional
computational overhead, it intuitively seems to solve this problem.4 However,
this is not the case. This approach only protects against the case of aggregating
invalid message-signature pairs. But the same problem occurs if a message is
modified after its corresponding signature was aggregated. For instance, the
message might get changed by an error of the storage medium or transmission
errors. Now, the signature of the message becomes invalid “after the fact”, so to
speak, and the aggregate signature becomes invalid as well.

Let us shortly discuss the implications for some applications of aggregate
signature schemes. For sensor networks, if one invalid signature gets included,
all findings of the other sensors can no longer be trusted and are therefore lost.
For secure logging, if one log entry is not correctly signed, changed or lost (for
example through hard disk errors or crashes), the signature for the log becomes
invalid. Ma and Tsudik [MT08] actually name this as one of the reasons why
they need to store individual signatures for all entries, although they are using
an aggregate signature to protect the complete log file. This is undesirable,
since it drastically increases the necessary memory space and nullifies one of the
advantages offered by aggregate signatures. For software authentication, suppose
for example that specific software suites are verified upon the start of the device
and only validly signed apps are allowed to run. Now, if one of these signatures
becomes faulty, no program can be correctly verified. In the worst case, this
could mean that the operating system now blocks the execution of all programs.

1.1.2 Deaggregation Security
Like all types of digital signatures, the security properties of aggregate signature
schemes guarantee that forgeries are practically impossible. However, another
type of attack is of concern for these schemes: Suppose an attacker gets a hold
of an aggregate signature for a set of messages, for example by eavesdropping or
actively infiltrating a system. Then the question is whether he can compute a
valid signature for a subset of the signed messages without forging a signature
by removing or deaggregating already aggregated message-signatures pairs from
the known aggregate. For example, the attacker might try to selectively remove
unwanted entries from a database. One might assume that aggregate signature

4It should also be noted that, unfortunately, some schemes critically rely on this verification
step while aggregating for their security and can be broken if it is removed [Lys+04; Nev08;
BGR14].
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schemes are already secure against these types of attacks, since aggregation
seems like a one-way operation at first glance. Unfortunately, this is not the
case. Moreover, the formal security definition to capture security against forgery
attacks also does not imply security against such deaggregation attacks and
many schemes only offer limited or even no protection against them.

Such attacks can have drastic effects on applications of aggregate signature
schemes. In general, this type of attack can be used to remove data. For
example, if an aggregate signature scheme is used to protect a log scheme, an
attacker might be able to remove unwanted entries from the log file, like the
entries that attest to his break-in. This renders the logging scheme useless,
since one of the main reasons to use it is to document attacks. This problem
is usually solved by employing some additional mechanisms [MT08; Har+17a;
Har20], but it would be advantageous if the used aggregate signature scheme
already provides the needed security by itself. For sensor networks, such removal
attacks could be used to delete results of the measurements or to hide specific
activities. For software authentication, this type of attack could potentially
be used to uninstall or remove libraries that are essential to the operation or
security of the device. If the scheme is used to sign contracts, such an attack
could make it possible for an attacker to void undesired contracts by removing
the corresponding message-signature pair from the aggregate.

1.2 Contributions of this Thesis
The contributions of this thesis are as follows:

Fault-Tolerance: To solve the problem that aggregating faulty signatures
renders aggregate signatures unusable, we introduce the notion of fault-tolerance.
A fault-tolerant aggregate signature scheme is able to withstand the inclusion
of faulty signatures up to a certain limit. Here, the verification algorithm no
longer only outputs a binary value for “valid” or “invalid”, but rather a list of
messages. Only validly signed messages are part of the output and the security
properties guarantee that no invalid message is included in the list.

We give a formal framework of rigorous definitions that capture the fault-
tolerance property. If a scheme is fault-tolerant according to our definitions,
invalid signatures can be included in an aggregate signature up to a previously
fixed bound before the verification algorithm can no longer correctly verify
the correctly signed messages. We then give the first construction of a fault-
tolerant aggregate signature scheme. Our construction can be used to turn any
aggregate signature scheme into a fault-tolerant one. The main building block
is a so called “cover-free family” [KS64], which is a combinatorial structure
that offers properties that can be elegantly used to achieve fault-tolerance. The
construction is black-box, i.e. we do not need to assume or exploit any special or
additional properties of the underlying aggregate signature scheme or cover-free
family to apply our transformation. We formally prove that our construction
is secure against forgery. This security proof is tight, meaning that applying
our transformation incurs no loss in security and the resulting fault-tolerant
scheme offers the same level of security against forgery attacks as the underlying
aggregate signature scheme.
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Our construction also offers the additional feature that it is selectively verifiable,
meaning it is possible to verify subsets of the signed messages in a manner that
is faster then verifying the complete aggregate signature. Essentially, only the
parts necessary to verify the subset need to be checked. This offers an additional
performance improvement for applications that regularly need to verify subsets.

Our scheme has two restrictions. First, only a fixed number of messages can
be aggregated, we however also show how to enhance the scheme to achieve
unbounded aggregation. Second, it only offers a slightly restricted form of
aggregation. The resulting aggregate signature requires an order among the
messages, but not an order among the aggregation steps. The signers need to
agree upon the “position” of their respective messages in the resulting aggregate,
the signatures themselves can then be aggregated in any order, as long as each
signer used their assigned “position”. The provided form of aggregation is
therefore only slightly restricted compared to usual schemes and still flexible
enough for many practical applications.

We also investigate the connection between signature size and fault-tolerance
and show that, unfortunately, fault-tolerant aggregate signature schemes cannot
offer optimal compression, meaning that aggregate signatures cannot be of a
constant size.

Furthermore, we describe how to concretely instantiate our scheme using
a cover-free family based on polynomials over a finite field [KS64]. Using this
cover-free family, we can construct a scheme that has a compact representation
featuring short aggregate signatures relative to the number of individual signa-
tures. Signatures only grow logarithmically in the number of messages, which
we show to be optimal.

We furthermore adapt this framework to a more restricted form of aggregate
signatures, called sequential aggregate signatures. Here, for technical reasons,
slightly different definitions are needed, but our construction can nevertheless
also be used to construct fault-tolerant sequential schemes.

Deaggregation Security: We give several new security definitions of various
strength to capture deaggregation security and discuss the relationships between
these definitions, to unforgeability and to existing definitions. We show that
there exists a true hierarchy of security definitions, meaning that there exist
several distinct levels of security against deaggregation attacks ranging from only
a basic protection against strongly restricted attackers to definitions that closely
model real-life scenarios and that capture very strong deaggregation attackers.
However, we also show that several levels of this hierarchy collapse for specific
aggregate signature schemes that exhibit three rather natural properties called
extendability, claim-removability and order-independence (these properties might
also be of independent interest). This means that for schemes that fulfill these
properties weak forms of deaggregation security imply stronger definitions.

Furthermore, we discuss the deaggregation (in-) security of a number of
existing and important aggregate signature schemes that so far were not examined
with deaggregation security in mind. We provide new security proofs and attacks
on these schemes and thereby precisely classify their offered deaggregation
security and show which level of security in the hierarchy is provided by the
respective scheme.



1.3. STRUCTURE OF THIS THESIS 7

To conclude, we discuss the connection between fault-tolerance and deaggregation
security. As argued above, both properties are important and necessary for
applications. However, we show that fault-tolerant schemes cannot offer any
form of deaggregation security and do not fulfill even the weakest definition of
our hierarchy. In fact, deaggregation insecurity seems to be a virtually “built-in
feature” of fault-tolerance and no meaningful form of deaggregation security can
be provided by these schemes. This implies that one needs to carefully decide
which of the features should be provided directly by the aggregate signature
scheme and which property needs to be achieved by implementing other and
potentially costly security and safety measures, for example a strong and secure
back-up mechanism to protect the application against deletion attacks.

1.3 Structure of this Thesis
Each main chapter contains a summary of the contributions presented in it, as
well as a discussion of the related work. This thesis is structured as follows:

• Chapter 2 introduces notation and the basics of cryptography. Note that
we only give a brief overview over modern cryptography and only present
the topics that are fundamental for understanding this thesis. For further
reading, we recommend [Gol01; AB09; Kat10; KL14].

• Chapter 3 gives a detailed introduction to aggregate signature schemes.
Fully flexible, sequential and synchronized aggregate signature schemes
are introduced and discussed in detail. For each type of aggregation, an
overview over the currently known schemes and current state of research
is given.

• Fault-Tolerance, the first contribution of this thesis, is discussed in Chap-
ter 4. All results concerning fault-tolerance, like the formal framework
and the black-box construction that can be used to turn any aggregate
signature scheme into a fault-tolerant one, are presented in this chapter.
Note that this chapter is taken almost entirely from publications of the
author [Har+16; Har+17a; Har+17b] that were published at the conferences
Public Key Cryptography 2016 and Provable Security 2017.

• The second contribution of this thesis, deaggregation security, is discussed in
Chapter 5. All results concerning deaggregation security, like the hierarchy
of security definitions and the survey of deaggregation security of existing
schemes, are presented here. Note that this chapter is in minor parts based
on work done together with Roland Gröll [Grö16].

• To conclude, Chapter 6 summarizes the main contributions of this work
and discusses future research directions related to this thesis.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

In this chapter we introduce and define basic cryptographic concepts, primitives,
definitions and notations used throughout this thesis. The aim of this chapter
is to give a brief overview, for more detailed discussions of the foundations of
modern cryptography, we recommend [Gol01; AB09; Kat10; KL14].

2.1 Notation
For n ∈ N, we write the set {1, . . . , n} as [n], i.e. [n] := {1, . . . , n}. If M is a
set, then m←M denotes that m is an element in M , which was uniformly and
randomly sampled. For a probabilistic algorithm A, y ← A(x) means that y is a
possible output of A executed on input x. For k ∈ N, the notation 1k denotes
the unary string of length k, i.e.

1k = 1 . . . 1︸ ︷︷ ︸
k occurrences of 1

.

If M is a multiset and m ∈ M , then we call the number of occurrences
of m in M its multiplicity. For two multisets M1,M2, the union M1 ∪M2 is
defined as the multiset where the multiplicity of each element is the sum of the
multiplicities in M1 and M2. For example, if M1 := {1, 1, 2} and M2 := {1, 2, 3},
then M1 ∪M2 = {1, 1, 1, 2, 2, 3, 3}.

If b is a bit string, then |b| denotes its size, i.e. the number of bits needed to
represent b. If v is a vector or a tuple and i ∈ N, v[i] refers to the i-th entry of v.
For matrices M , rows(M) and cols(M) denote the number of rows and columns
of M , respectively. For i ∈ [rows(M)], j ∈ [cols(M)], M [i, j] is the entry in the
i-th row and j-th column of M .

In this thesis we write groups in multiplicative notation, so if G is a group,
then its group operation is denoted by the common multiplication symbols “·”
and “

∏
”. If G is cyclic, then we usually use g to denote a generator of G.

Furthermore, σ usually refers to signatures of standard (aggregate) signature
schemes, whereas τ mostly refers to signatures of fault-tolerant aggregate sig-
nature schemes (signatures, aggregate signatures and fault-tolerant aggregate
signatures are discussed in later chapters, see Section 2.2.2, Chapter 3 and
Chapter 4). The symbol ⊥ is used as an error symbol (e.g. if an algorithm needs
to abort) or denotes a claim placeholder (see Section 3.1) and λ represents the
empty signature (see Definition 3.1.5).

9
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2.2 Basics of Cryptography
As is usual in modern cryptography, we model attackers and cryptographic
algorithms as PPT algorithms.

Definition 2.2.1 (PPT Algorithm). An algorithm A is a probabilistic poly-
nomial time algorithm (abbreviated as PPT algorithm) if the run time of A is
polynomial in its input and A is a (possibly) probabilistic algorithm.

We follow the common asymptotic way of defining security by providing
every algorithm with the security parameter κ ∈ N (or more precisely 1κ) in its
input, so that the runtime of each PPT algorithm can be polynomial in this
parameter.1 Throughout this thesis, the symbol κ is used to denote the security
parameter. For convenience, we often omit writing the security parameter in the
input of an algorithm. If this is the case, it is still assumed that the algorithm
implicitly receives 1κ as part of its input.

The goal of modern cryptographic research is to construct secure schemes and
protocols, so that efficient attackers (i.e. PPT algorithms) only have negligible
success probability in breaking the scheme. For each cryptographic primitive, we
need to formally define what “breaking the scheme” exactly means. This is done
by capturing the needed security in security definitions and then proving that
the scheme in question fulfills this definition by showing that no PPT algorithm
has more than negligible success probability in breaking the scheme. We discuss
this in more detail for signature schemes in the following sections. The term
“negligible” is also precisely defined:

Definition 2.2.2 (Negligible Function). A function f : N→ [0, 1] is negligible,
if

∀c ∈ N ∃k0 ∈ N ∀k > k0 : |f(k)| ≤ 1
kc
.

It is often colloquially said that a negligible function “asymptotically dis-
appears faster than any polynomial”. For example, 2−κ is negligible, whereas
κ−100,000 is not. In this thesis, we usually denote negligible functions by negl.

2.2.1 Computational Hardness Assumptions & Reductions
Today, the security of cryptographic primitives like encryption schemes or digital
signatures is usually based on the assumed hardness of well-understood and thor-
oughly researched complexity theoretical problems like factoring large numbers
or calculating the discrete logarithm in a finite algebraic group.

Almost any cryptographic security proof that does not rely on such assump-
tions would imply P 6= NP. Since the P versus NP problem is one of the most
important, but also most difficult and elusive open questions in computer science,
using such assumptions is the only way of proving security considering the current
state of research, apart from restrictive and impractical information theoretical
constructions.2

1Algorithms receive 1k as their input, so that their runtime can actually be polynomial in
κ. If the input would be κ instead, their runtimes would only be allowed to be polynomial in
log(κ), since κ can represented by log(κ) bits.

2See [AB09] for more details on the connection between cryptography, computational
complexity and the P versus NP problem.
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The security of the cryptographic primitive in question is then reduced to the
assumed hardness of a computational problem. More concretely, let P be such
a problem. It is then assumed that no PPT algorithm can solve P with more
than negligible probability. Then the strategy to prove security is usually as
follows: Suppose A is an attacker on the cryptographic primitive. The proof then
constructs a new algorithm B (often called a simulator), which simulates the
environment that A needs to run its attack, i.e. B provides A with all necessary
cryptographic parameters, like public keys, signatures, the used algebraic group
and so on. B does this in such a way that it can “translate” the result of a
successful attack of A into a valid solution for the problem P . By contradiction,
it follows that no such attack is possible with more than negligible probability,
as long as the assumption that P is difficult to solve holds. Such proofs are
usually called reductions. See Figure 2.1 below for a schematic representation of
how cryptographic reductions work in general.

P B A

Hard Problem Cryptographic Security

Problem Instance Cryptographic Parameters

Simulate Environment for A

Successful Attack

“Translate” Attack to Problem Solution

Problem Solution

Figure 2.1: Schematic representation of cryptographic reductions.

A very common assumption is the Computational Diffie-Hellman assumption,
which is based on the groundbreaking work of Diffie and Hellman [DH76].
Definition 2.2.3 (Computational Diffie-Hellman Assumption). Let G be a
cyclic group of order p depended on the security parameter κ and g a random
generator of G. Let x, y ← Zp. The Computational Diffie-Hellman Assumption
states that for all PPT algorithms A given g, gx, gy it is difficult to calculate gxy,
i.e. it holds that

Pr[A(g, gx, gy) = gz : gz = gxy, x, y ← Zp] ≤ negl(κ)
for a function negl, which is negligible in the security parameter κ.
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The Computational Diffie-Hellman assumption can also be represented as a
security experiment between an attacker A and a challenger CCDH, where the
challenger asks the attacker to solve a random instance of the Computational
Diffie-Hellman problem, see Figure 2.2 below.

CCDH A
x, y ← Zp,

g ← G with 〈g〉 = G
g, gx, gy

gz

gz = gxy?

Figure 2.2: The security experiment corresponding to the Computational Diffie-
Hellman assumption.

2.2.2 Digital Signatures
Digital signature schemes are a general cryptographic tool used to preserve
the integrity and authenticity of digital documents. Their applications are
numerous, ranging from online communication to securing operation system
updates. Digital signatures were first proposed by Diffie and Hellman [DH76]
and then studied by, for example, [RSA78; Lam79; Rab79; Mer89; Rom90]. The
main part of this thesis focuses on a specific type of digital signature, namely so
called aggregate signature schemes, which are discussed in Chapter 3.

In their seminal work, Goldwasser, Micali, and Rivest [GMR88] gave the first
rigorous and formal treatment of digital signatures. They provided a formal
definition of digital signatures and their security and also constructed the first
scheme satisfying these definitions.

Digital signature schemes work as follows: using their secret key sk, a user is
able to create signatures σ for messages m (which can be any type of document,
like an email, a file, a database etc.), such that it is possible to publicly verify the
authenticity of the signature by using a public key pk.3 The goal is to provide
users with digital signature schemes for which it is computationally unfeasible
to forge signatures without knowing the secret key sk. We now define these
concepts formally.
Definition 2.2.4 (Digital Signature Scheme). A digital signature scheme or
digital signature Σ is a triple Σ = (Gen,Sign,Vfy) of three PPT algorithms as
follows:

• The key generation algorithm Gen(1κ) receives the security parameter κ in
unary notation 1κ as its input and outputs a tuple (pk, sk) consisting of
the public key pk (sometimes also called verification key) and the secret
key sk.

3Digital signatures are always public key schemes. There is a secret key equivalent, where
only one secret key is being used for both computing and verifying signatures. These schemes
are usually called message authentication codes (MAC). However, we do not discuss these
schemes further in this thesis.



2.2. BASICS OF CRYPTOGRAPHY 13

• The signature generation algorithm Sign(sk,m) receives the secret key sk
and a message m as its input and outputs a signature σ.

• The verification algorithm Vfy(pk,m, σ) receives the public key pk, a mes-
sage m and a signature σ as its input and outputs 0 or 1. The output
0 indicates that the signature σ was not correct for the given message m
and therefore could not be verified, whereas 1 signifies that σ is a correct
signature for m. If the output is 1, we call σ valid for the message m.
Given the same input, the Vfy algorithm will always output the same value,
i.e. its output is deterministic.4 If Vfy(pk,m, σ) = 1, we say that the
signature σ is valid for the message m under the public key pk.

For digital signature schemes, we require correctness, i.e. if a signature for a
message is generated by correctly using the Sign algorithm, the Vfy algorithm
should output 1.

Definition 2.2.5 (Correctness of Digital Signature Schemes). A digital signature
Σ = (Gen,Sign,Vfy) is correct, if for all security parameters κ ∈ N, all (pk, sk)←
Gen(1κ) and all messages m it holds that

Vfy(pk,m,Sign(sk,m)) = 1.

So far, we have not specified what types of messages can be signed by a digital
signature scheme. Throughout this work, if not stated otherwise, we assume
that messages are bit strings from a set {0, 1}p(κ), where p is a polynomial in the
security parameter κ. The concrete polynomial p is dependent on the respective
digital signature scheme. Specific schemes might require messages to be elements
of a more precisely defined message space, for example an element of a cyclic
group. Note that this is only a superficial restriction, since there usually is a
direct mapping between bit strings and these types of elements.

The next step is to define what it means for a digital signature scheme to
be secure. In a security definition, it is of utmost importance to clearly and
precisely define the goal of the attack and which means are available to the
attacker. The goal of an attack against a digital signature scheme is to forge a
valid signature without knowledge of the secret key sk. The attacker is modeled
as a PPT algorithm and can therefore compute any operation with probabilistic
means in polynomial runtime (in the security parameter κ). The attacker might
also receive restricted access to the secret key in form of some type of oracle.
The de facto standard security definition for digital signatures is Existential
Unforgeability under Chosen Message Attacks, abbreviated as EUF-CMA. Here,
the attacker has access to an oracle that provides her with correctly computed
signatures on any message of her choosing, modeling the fact that an attacker
might observe and influence signatures, for example by eavesdropping on a
network or through social engineering. The attack is seen as successful if the
attacker can forge a correct signature for an arbitrary message, as long as she
did not request a signature on this message from the oracle. While there are
weaker, as well as stronger, security definitions available for digital signatures,

4In most schemes, the Vfy algorithm is completely deterministic. Still, there are some
schemes, like [LLY13b], that use randomness in the computation of the Vfy algorithm, which
is why we allow it to be a PPT algorithm. However, we require its output to be deterministic,
as per the definition above, so that the concept of signatures being valid is well defined.
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these are usually only interesting from a theoretical viewpoint and EUF-CMA is
sufficient and necessary to provide security in many real-life scenarios.

Security definitions then model security as a security experiment or game
between an attacker A and a challenger C, which represents the attacked scheme
and provides A with all necessary public information and oracle accesses.

Definition 2.2.6 (EUF-CMA Security Experiment). The EUF-CMA security
experiment between an attacker A, a challenger C and a digital signature scheme
Σ = (Gen,Sign,Vfy) consists of three phases as follows:

Setup Phase. The challenger C generates a key pair (pk, sk) ← Gen(1κ) and
gives the public key pk to the attacker A.

Query Phase. The attacker A may request signatures for any message from
the challenger. If A sends a message mi (i ∈ N) to the challenger, it
responds by computing σi ← Sign(sk,mi) and sending σi to A. A may
repeat this step at will. The amount q ∈ N of message requests is only
limited in the runtime of A. For PPT algorithms this means that q will be
a polynomial q(κ) in the security parameter κ.

Forgery Phase. At the end of the experiment, A sends a tuple (m∗, σ∗) con-
sisting of a message m∗ and a signature σ∗ to the challenger C. A is
successful, if

Vfy(pk,m∗, σ∗) = 1 and m∗ /∈ {m1, . . . ,mq}.

According to the definition, an attacker A is successful, if she is able to
forge a correct signature σ∗ for any message m∗. The second restriction ensures
that trivial forgeries are not interpreted as successful, i.e. the attacker does
not win if she outputs a signature for a message she requested a signature on
from the challenger. See Figure 2.3 for a visualization of the EUF-CMA security
experiment.

CEUF-CMA A

(pk, sk)← Gen(1κ) pk

mi

σi ← Sign(sk,mi) σi

up to polynomial
many requests

m∗ , σ
∗

Vfy(pk,m∗, σ∗) = 1?
∧

m∗ /∈ {m1, . . . ,mq}?

Figure 2.3: The EUF-CMA security experiment.
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Definition 2.2.7 (EUF-CMA Security for Digital Signature Schemes). A digital
signature scheme Σ = (Gen,Sign,Vfy) is EUF-CMA secure, if all PPT algorithms
A only have negligible success probability in the EUF-CMA security experiment,
meaning it holds that

Pr
[
ACEUF-CMA(pk) = (m∗, σ∗) : Vfy(pk,m∗, σ∗) = 1

∧m∗ /∈ {m1, . . . ,mq}

]
≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

Another common and more precise way of defining security is as follows:

Definition 2.2.8 (EUF-CMA Security – Concrete Formulation). A digital sig-
nature scheme Σ = (Gen,Sign,Vfy) is (t, q, ε)-EUF-CMA secure, if there exists no
attacker A running in time at most t, making at most q queries to the signature
oracle and that wins the EUF-CMA security experiment with success probability
at least ε.

This type of definitions is sometimes called “concrete security”, since the
theorems and definitions explicitly state the runtime and success probability
of the attacker, instead of using more abstract terms like “negligible” and
“polynomial”.

The advantage of this type of definition is that it gives a measure of the
quality of cryptographic security reductions. It allows to clearly show the
dependencies between the runtime and success probability of the constructed
simulator B of the reduction and the assumed attacker A. Ideally, the runtime
and success probability of A and B are almost identical. If this is the case, the
reduction is called tight. However, the runtime of B might be significantly higher
than the runtime of A, while still being polynomial. The same applies for the
success probability of B, which might be significantly lower than the success
probability of A. This has a direct influence on the choice of the size of the
security parameter. The farther apart the runtimes and success probabilities
are, the larger the security parameter needs to be for the scheme to provide
security in practical applications, which directly influences the size of the keys
and runtimes of the algorithms of the scheme and therefore its efficiency. See,
for example, [Bad+16] for a discussion on cryptographic tightness.

Note however that the difference between these two types of definitions is
only the presentation and concreteness of their statements. Conceptually there
is no difference: for a scheme to be considered secure, it is always required that
the success probability of all PPT attackers must be negligible.

For ease of presentation, and since most proofs in this thesis do not profit
from this type of notation, we have chosen to present almost all theorems and
definitions in the more abstract way as in Definition 2.2.7. The exception is
Chapter 4, were we present our constructions to achieve fault-tolerance. Here,
we use the concrete type to be consistent with the original publication of the
construction [Har+16; Har+17a].
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2.2.3 Hash Functions and the Random Oracle Model
Hash functions are an important cryptographic tool for computing short and fixed-
length “fingerprints” for inputs of any length and are often used in conjunction
with digital signature schemes.

Definition 2.2.9 (Hash Function). A hash function H is a tuple of two PPT
algorithms H = (Gen,Eval) as follows:

• Gen(1κ) receives as input the security parameter κ and outputs a key t
which describes a function

Ht : {0, 1}∗ →Mt,

where Mt is a finite set, which is also defined by t.

• Eval(1κ, t,m) receives as input the security parameter κ, a key t and a
message m and computes Ht(m) ∈Mt.

For convenience, we usually omit the key t and write H(m) as shorthand
for Ht(m), where t was generated by Gen(1κ). Furthermore, it is common to
write H(a, b, . . . , z) to denote H(a‖b‖ . . . ‖z), i.e. to specify multiple inputs to
the hash function, although formally only one input is defined.

We usually require hash functions to be collision resistant, meaning that it
should be difficult to compute values x 6= x′ which evaluate to the same hash
value, i.e. H(x) = H(x′).

Definition 2.2.10 (Collision Resistance). A hash function H = (Gen,Eval) is
collision resistant, if for all t← Gen(1κ) and for all PPT algorithms A it holds,
that

Pr[A(1κ, t) = (x, x′) : Ht(x) = Ht(x′) ∧ x 6= x′] ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

See Figure 2.4 for a visualization of the security experiment implicitly given
in the definition of collision resistance.

C A

t← Gen(1κ) t

x, x
′

H(x) = H(x′)?
∧

x 6= x′?

Figure 2.4: The collision resistance security experiment.
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A common technique is to combine digital signatures and hash functions by
signing the hash value of the message instead of the message itself, i.e. computing
Sign(sk, H(m)) instead of Sign(sk,m). This makes it possible to sign messages
which are longer then the messages in the message space {0, 1}p(κ) of the signature
scheme in a secure manner. It can also have a positive effect on the performance of
the application using the signature scheme. If the signature scheme is EUF-CMA
secure and the hash function is collision resistant, then this combination is also
EUF-CMA secure. This technique is often called the “Hash-then-Sign paradigm”.

The random oracle model [BR93] is an idealization of hash functions. Here,
the hash function has no source code and users (attackers, algorithms etc.) cannot
evaluate the hash function themselves, i.e. there is no program or algorithm
available which can be used to compute H(x). Instead, all participants have
oracle access to a random oracle, which works as follows: If a hash value H(x)
for input x is to be computed, the user sends x to the random oracle. The oracle
then checks whether it already output a value H(x) for x at a previous time and
if so, it outputs this stored value. If not, a truly random string from the output
space of the hash function is chosen, saved as H(x) and returned to the caller of
the oracle.

Cryptographic schemes which are proven secure by using random oracles are
said to be secure in the random oracle model. In contrast, proofs in the standard
model of cryptography do not use or rely on random oracles.

The random oracle model enables simple, elegant and very efficient crypto-
graphic constructions, for example [BR94; BR96; Bon+03; BLS04]. Nonetheless,
the random oracle model is controversial, since there exists no such oracle and
schemes using a random oracle need to be instantiated with “normal” hash
functions, if they are to be used in real-world applications. It is therefore unclear
how results proven in the random oracle model transfer to the real world and
what security guarantees can be inferred from random oracle model proofs.
Furthermore, there are constructions which can be proven secure in the random
oracle model, but are also proven to be insecure if any real hash function is used
to instantiate them [CGH04]. However, these constructions are purpose-built to
break down like this, which is why some researchers argue that they are only
pathological and contrived. Moreover, there also exists cryptographic primitives
that can only be constructed in the random oracle model, see for example [Nie02].
Koblitz and Menezes [KM15] offer a detailed survey and discussion of the random
oracle model and its applications and problems.

2.2.4 Pairings

A pairing e : G1 ×G2 → GT is a bilinear map from two cyclic groups G1 and
G2 to a so-called target group GT . Because of their bilinearity, they allow a
restricted form of multiplication in the exponent, since e(gx, gy) = e(g, g)xy,
which is not possible in groups without pairings. This seemingly simple operation
is a powerful tool with many cryptographic applications. A small selection of
examples can be found in [MOV93; Bon+03; BLS04; Coh+05; Wat05; GPS08].
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Definition 2.2.11 (Pairing). Let G1,G2 and GT be cyclic groups of order p.5
A pairing is a map

e : G1 ×G2 → GT

which satisfies the following properties:

Bilinearity. For all g1, g
′
1 ∈ G1 and all g2, g

′
2 ∈ G2 it holds that

e(g1 · g′1, g2) = e(g1, g2) · e(g′1, g2),
e(g1, g2 · g′2) = e(g1, g2) · e(g1, g

′
2).

Non-Degenerate. For all generators g1 of G1 and g2 of G2, it holds that
e(g1, g2) is a generator in GT . Note that if p is prime, this is equivalent
to requiring that e(g1, g2) 6= 1.

Efficiency. The map e can be computed efficiently, i.e. in polynomial time in
the security parameter κ.

If G1 = G2, then the pairing is called symmetric, otherwise it is called
asymmetric. For asymmetric pairings, it is also important to know whether there
exists a non-trivial and efficiently computable homomorphism between G2 and
G1. See [GPS08] for an overview of the different types of pairings.

Remark. For simplicity’s sake, we present all schemes using pairings in this
thesis in the symmetric setting, although many of the schemes can also be
instantiated in the more general asymmetric setting. We refer the interested
reader to the original publications cited for each scheme for details.

In security proofs for schemes using pairings, the following lemma can be useful:

Lemma 2.2.12. Let e : G×G→ GT be a pairing and g ∈ G be a generator of
G. Then the functions

f1 : G→ GT , x 7→ e(g, x)
f2 : G→ GT , x 7→ e(x, g)

are bijective.

Proof. We only prove the lemma for f1, the proof for f2 is analogous. Since
|G| = |GT |, it suffices to show that f1 is injective. Let x, y ∈ G. Since g is a
generator, there exists a, b ∈ Zp such that x = ga and y = gb. Suppose that we
have f1(x) = f1(y). Then it follows that

e(g, g)a = e(g, ga) = f1(x) = f1(y) = e(g, gb) = e(g, g)b,

which implies that a = b, since e(g, g) is a generator of GT , according to the
definition of pairings. It follows that x and y must be equal, which implies the
injectivity and therefore the bijectivity of f1.

5There are also constructions using pairings over groups of composite order, see for example
[BGN05; Gui13]. However, in this thesis, we only use pairings over groups with prime order.
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2.3 Cover-Free Families
Cover-free families are combinatorial structures that were first introduced by
Kautz and Singleton [KS64] and have various applications in cryptography, for
example in traitor tracing, signatures and encryption [SW99; LVY01; TS06;
Cra+07; HJK11]. We use cover-free families for our construction of a fault-
tolerant aggregate signature scheme in Section 4.5. Using a d-cover-free family
allows us to detect and tolerate the aggregation of up to d invalid signatures.

Definition 2.3.1 (Cover-Free Family). For d ∈ N, a d-cover-free family F =
(S,Blocks) (abbreviated as d-CFF) consists of a set S (called universe) of m ∈ N
elements and a set Blocks of n ∈ N subsets of S, where d < m < n, such that:
For any d subsets B1, . . . , Bd ∈ Blocks and all distinct B ∈ Blocks\{B1, . . . , Bd},
it holds that ∣∣∣∣∣B \

d⋃
k=1

Bk

∣∣∣∣∣ ≥ 1.

So, for a d-cover-free family it is not possible to completely “cover” all
elements of a single subset with at most d different subsets of the family. This
feature is instrumental in our construction of fault-tolerant aggregate signatures.

Incidence matrices simplify the handling and representation of cover-free
families:

Definition 2.3.2 (Incidence Matrix of a Cover-Free Family). For a d-CFF
F = (S,Blocks), where the elements of S and Blocks have a well-defined order,
such that we can write S = {s1, . . . , sm}, Blocks = {B1, . . . , Bn}, we define its
incidence matrix M as follows:

M[i, j] =
{

1, if si ∈ Bj ,
0, otherwise.

The i-th row ofM is denoted byMi ∈ {0, 1}n, for i ∈ [m].

Each si ∈ S corresponds to row i and each Bj ∈ Blocks corresponds to
column j, i.e. M has m rows and n columns.

Example 2.3.3. Let S = {a, b, c, d} and Blocks = {{a, b}, {a, c}, {a, d}, {b, c},
{c, d}}. Then F = (S,Blocks) is a 1-cover-free family, since no set completely
covers any other set. However, it is not a 2-cover-free family, because the set
{a, b} ∪ {c, d} covers all other sets in Blocks. Its incidence matrixM is

M =


1 1 1 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

.



20 CHAPTER 2. PRELIMINARIES



Chapter 3

Aggregate Signatures

In this chapter, we introduce the type of digital signature which this thesis
focuses on, namely aggregate signatures. Aggregate signature schemes were first
proposed and constructed by Boneh, Gentry, Lynn and Shacham [Bon+03] and
offer the additional functionality of compressing or aggregating several signatures
into one short signature.

Suppose there are n different users with n key pairs (pk1, sk1), . . . , (pkn, skn)
of the same aggregate signature scheme and each user has computed a signature
σi for a message mi. Then it is possible to aggregate the signatures σ1, . . . , σn
into one single and short aggregate signature σAgg, which has the same size as
an individual signature for a single message, i.e. |σAgg| = |σi|.

This aggregate signature σAgg, together with the respective messages and
public keys, is sufficient to convince a verifier that the n users actually signed the
n messages. Since the size of σAgg is smaller then the sum of all sizes of σ1, . . . , σn
and verifying it is often faster than verifying n individual signatures, using an
aggregate signature scheme can have drastic improvements on performance,
bandwidth and memory use in many applications.

Since the seminal work of Boneh, Gentry, Lynn and Shacham [Bon+03], this
type of digital signature has gathered much interest and several different types
of aggregation have been proposed, most importantly fully flexible, sequential
and synchronized aggregate signature schemes, which we discuss in detail in the
following sections.

3.1 Claims and Claim Sequences
As a notational convenience and to be able to present our concepts in a clear
manner, we use claims and claim sequences as introduced in our publication
[Har+16]. A claim (pk,m) conveys the meaning that the owner of pk has signed
the message m. A signature σ for m under pk can therefore be interpreted as
a proof of the claim. Claims allow for a more compact representation of the
algorithms of an aggregate signature scheme, since here we have to deal with
multiple signers, public keys and messages.

Definition 3.1.1 (Claim). A claim is a tuple (pk,m) consisting of a public key
pk of a signature scheme and a message m.

21
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Definition 3.1.2 (Claim Sequences). A claim sequence is a tuple C = (c1, . . . , cn)
of claims ci and the placeholder symbol ⊥, used to denote an empty claim. We use
the following notation for claim sequences C = (c1, . . . , cn) and C ′ = (c′1, . . . , c′m):
• elem(C) denotes the multiset of elements of C excluding ⊥.

• C \C ′ denotes the claim sequence where all claims of C ′ are removed from
C, i.e. C \C ′ is the sequence containing the claims of elem(C) \ elem(C ′).

• C‖C ′ denotes the claim sequence (c1, . . . , cn, c′1, . . . , c′m).

• |C| denotes the number of claims in the sequence, i.e. here |C| = n and
|C ′| = m.

The placeholder symbol ⊥ is allowed in claim sequences for technical reasons,
which are made clear in Chapter 4. However, for the most part, verification
algorithms can simply ignore the placeholders in a claim sequence C and verify
the signature on the elements in elem(C). An important concept for our fault-
tolerant construction in Section 4.5 is the mergeability of claim sequences.
Definition 3.1.3 (Mergeability and Complements of Claim Sequences). Two
claim sequences C1 and C2 are mergeable, if for all i ∈ [min(|C1|, |C2|)] it holds
that C1[i] = ⊥ or C2[i] = ⊥ or C1[i] = C2[i]. C1 and C2 are called exclusively
mergeable, if for all such i it holds that C1[i] = ⊥ or C2[i] = ⊥. In particular,
two exclusively mergeable sequences are mergeable.

We denote the merging of two claim sequences C1 and C2 with the symbol t.
Let C1 and C2 be two mergeable claim sequences of length k and l, respectively.
Without loss of generality, let k ≥ l. Then the merged claim sequence C1 tC2 is
(c1, . . . , ck), where

ci :=
{
C1[i], if C2[i] = ⊥, C2[i] = C1[i] or i > l,

C2[i], otherwise.

Example 3.1.4. Let c1, c2, and c3 be three distinct claims and let C1 =
(⊥, c2, c3), C2 = (c1,⊥,⊥), C3 = (c1, c2,⊥) and C4 = (c1, c3, c2) be four claim
sequences. Then C1, C2 are exclusively mergeable, C1, C3 are mergeable, but
not exclusively mergeable, and C1, C4 are not mergeable.

Also for technical reasons made clear in Chapter 4, we define the empty
signature:
Definition 3.1.5 (Empty Signature). The empty signature λ is a signature
valid for exactly the claim sequences containing only ⊥ and the empty claim
sequence.1

Definition 3.1.6 (Subsequences of Claim Sequences). Let C = (c1, . . . , cn)
be a tuple and b ∈ {0, 1}n be a bit sequence specifying a selection of indices.
Then C[b] is the subsequence of C containing exactly the elements cj where
b[j] = 1, replacing all other claims by ⊥. In particular, if M is a bit matrix
(for example an incidence matrix of a cover-free family), then C[Mi] is the
subsequence containing all cj whereM[i, j] = 1 and ⊥ at all other positions.
Example 3.1.7. Let C = (c1, c2, c3) be a claim sequence. Then C[(1, 0, 0)] is
equal to (c1,⊥,⊥) and C[(0, 1, 1)] is equal to (⊥, c2, c3).

1To exclude trivial attacks, throughout this thesis all unforgeability definitions do not
interpret (⊥, . . . ,⊥), λ as a successful forgery and we don’t explicitly state this in the definitions.
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3.2 Fully Flexible Aggregate Signatures
Fully flexible aggregate signature schemes were introduced in the seminal work
of Boneh, Gentry, Lynn and Shacham [Bon+03]. These schemes offer the most
flexible type of aggregation: aggregation is a public operation, so no secret
key or other secret information is needed to aggregate signatures, it is possible
to aggregate signatures in any order and already aggregated signatures can
always be aggregated further with other aggregate or individual signatures.
Unfortunately, this big degree of flexibility in aggregation has also made it
difficult to find suitable and efficient schemes, especially in the standard model.
Section 3.2.2 gives an overview of the state of research.

Definition 3.2.1 (Aggregate Signature Scheme). A fully flexible aggregate
signature scheme, or simply aggregate signature scheme2, is a tuple Σ = (Gen,
Sign, Agg, Vfy) of four PPT algorithms as follows:

• The key generation algorithm Gen(1κ) receives the security parameter κ as
its input and outputs a tuple (pk, sk) consisting of the public key pk and
the secret key sk.

• The signature generation algorithm Sign(sk,m) receives the secret key sk
and a message m as its input and outputs a signature σ.

• The aggregation algorithm Agg(C1, C2, σ1, σ2) takes as input two claim
sequences C1 and C2, as well as corresponding signatures σ1 and σ2 (note
that if |Ci| > 1, then σi will be an aggregated signature) and creates an
aggregate signature σAgg, certifying the validity of all claims in C1 and C2.

• The verification algorithm Vfy(C, σ) receives a claim sequence C and a
signature σ as input. It outputs 1 if the signature σ is valid for C and 0
otherwise.

Like for digital signature schemes (see Definition 2.2.4) we again allow the
Vfy algorithm to use randomness, but expect its output given a fixed input
to be deterministic.

Note that according to our syntax, the Agg algorithm takes two claim
sequences as input. So, if a single claim c is to be aggregated, it first needs
to be converted to a claim sequence C = (⊥, . . . ,⊥, c), with some or no claim
placeholders ⊥ in front of c, depending on the scheme. Since this conversion
is usually rather straightforward, we do not pay much attention to it, unless
necessary, like for our fault-tolerant construction in Chapter 4.

Furthermore, the order of the claims in a claim sequence C is of no importance
for most schemes, i.e. a signature that is valid for a claim sequence C is also
valid for all reorderings of the sequence. In this thesis, we usually assume that
this is the case for fully flexible schemes, but point out if definitions or theorems
need to be adjusted for schemes where the order of claims is actually significant.
We require correctness as follows.

2We use the terms fully flexible aggregate signature scheme and aggregate signature scheme
interchangeably in this thesis.
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Definition 3.2.2 (Correctness of Aggregate Signature Schemes). An aggregate
signature scheme Σ = (Gen,Sign,Agg,Vfy) is correct, if for all security param-
eters κ ∈ N, all claim sequences C consisting of claims ci = (pki,mi) where
pki was output by (pki, ski)← Gen(1κ), and all signatures σ that were created
by correct applications of the Sign and Agg algorithms to create an aggregate
signature on all claims of C, it holds that Vfy(C, σ) = 1.

Remark. The definitions above make no mention of the size of aggregate
signatures and therefore technically do not exclude trivial constructions like
simply adding individual signatures to a list. However, it usually is expected
that the size of an aggregate signature is equal to the size of a single individual
signature [Bon+03; HSW13]. The same is true for the performance of the Vfy
algorithm. It is expected that verifying an aggregate signature is at least as fast
as verifying all individual signatures for all messages, although the definitions
also do not formally require this.

The security definition for aggregate signatures given by Boneh et al. [Bon+03]
is very similar to EUF-CMA. The main change is that the attacker may also
output an aggregate signature as his forgery for a claim sequence of his choosing,
which however must contain at least one new claim using the public key issued
by the challenger. All other keys of the claim sequence may be freely chosen by
the attacker. See Figure 3.1 for a visualization of the security experiment.

Definition 3.2.3 (AS-EUF-CMA Security Experiment). The AS-EUF-CMA se-
curity experiment3 between an attacker A, a challenger C and an aggregate
signature scheme Σ = (Gen,Sign,Agg,Vfy) consists of three phases as follows:

Setup Phase. The challenger C generates a key pair (pk, sk) ← Gen(1κ) and
gives the public key pk to the attacker A.

Query Phase. The attacker A may request signatures for messages of his
choosing from the challenger. If A sends a message mi (i ∈ N) to the
challenger, he responds by computing σi ← Sign(sk,mi) and sending σi to
A. This step may be repeated at will by A.

Forgery Phase. At the end of the experiment, A sends a tuple (C∗, σ∗) con-
sisting of a claim sequence C∗ and a signature σ∗ to the challenger. Let
q ∈ N be the number of messages A queried a signature for in the Query
Phase. Then A is successful, if

Vfy(C∗, σ∗) = 1 and ∃(pk,m∗) ∈ C∗ with m∗ /∈ {m1, . . . ,mq}.

Some schemes impose specific restrictions on their use to be secure, for
example that all messages in the claim sequence of an aggregate signature must
be distinct or that each user may only aggregate one signature, i.e. all public
keys in the claim sequence must be distinct.

These restrictions are usually only minor, only have small effects on their
applications and can very often be circumvented by additional steps, for example
by signing pki‖mi instead of mi if all message must be distinct.

For convenience and simplicity’s sake, we do not define different security
definitions or versions of aggregate signature schemes to reflect these restrictions,

3The AS in AS-EUF-CMA stands for “Aggregate Signature”.
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CAS-EUF-CMA A

(pk, sk)← Gen(1κ) pk

mi

σi ← Sign(sk,mi) σi

up to polynomial
many requests

C∗ , σ
∗

Vfy(C∗, σ∗) = 1?
∧

∃(pk,m∗) ∈ C∗?
∧

m∗ /∈ {m1, . . . ,mq}?

Figure 3.1: The AS-EUF-CMA security experiment.

but rather interpret them as a restriction of the scheme in question and not of the
security definition. If necessary, we state these restrictions in the description of
the schemes and security theorems. Bellare, Namprempre, and Neven [BNN07]
discuss such restrictions, their implications and how to overcome them in detail.

Definition 3.2.4 (AS-EUF-CMA Security for Aggregate Signature Schemes). An
aggregate signature scheme Σ = (Gen,Sign,Agg,Vfy) is AS-EUF-CMA secure, if
all PPT algorithms A only have negligible success probability in the AS-EUF-CMA
security experiment, meaning it holds that

Pr

ACAS-EUF-CMA(pk) = (C∗, σ∗) :
Vfy(C∗, σ∗) = 1
∧∃(pk,m∗) ∈ C∗
∧m∗ /∈ {m1, . . . ,mq}

 ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

3.2.1 The BGLS Aggregate Signature Scheme
We now give a brief overview of the aggregate signature scheme of Boneh, Gentry,
Lynn and Shacham [Bon+03]. The scheme is elegant and relatively simple, which
is why we use it in the following chapters to illustrate different concepts and
examples. We present it using a symmetric pairing, although the scheme also
works with asymmetric pairings and is presented in the asymmetric setting in
the original publication.

Definition 3.2.5 (BGLS Aggregate Signature Scheme). Let G,GT be cyclic
groups of prime order p ∈ N, g a random generator of G, e : G × G → GT a
pairing and H : {0, 1}∗ → G a hash function. The BGLS aggregate signature
scheme ΣBGLS = (GenBGLS,SignBGLS,AggBGLS,VfyBGLS) consists of four PPT
algorithms as follows:
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GenBGLS(1κ). Pick a random x← Zp and compute gx. Return (pk, sk) := (gx, x).

SignBGLS(sk,m). Return σ := H(m)sk = H(m)x ∈ G.

AggBGLS(C1, C2, σ1, σ2). Return σAgg = σ1 · σ2.

VfyBGLS(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)). Ensure that all messages
mi are distinct. If not, output 0. If it holds that

e(σ, g) =
n∏
i=1

e(H(mi), pki)

return 1, otherwise return 0.

Remark. The BGLS aggregate signature scheme is only AS-EUF-CMA secure
if all messages for a given aggregate signature are distinct. This additional
requirement is enforced by the VfyBGLS algorithm. As already discussed in the
remark below Definition 3.2.3, this is only a slight restriction, since this problem
can be solved by signing pki‖mi instead of mi. Strictly speaking, the VfyBGLS
algorithms would still need to check that all pki‖mi are distinct for the security
proof of [Bon+03] to go through, but Bellare, Namprempre, and Neven [BNN07]
formally prove that this check can safely be removed.

All signatures are group elements in G and therefore have the same size,
namely the size needed to encode one element of the group G as a bit string.
Aggregation is done by simply multiplying group elements. Note that even
though the Agg algorithm is only stated for two signatures, it is possible to
aggregate more than two signatures at the same time by simply multiplying
all signatures that are to be aggregated. Observe furthermore that the Agg
algorithm neither verifies the signatures nor uses the claim sequences in any way.
So, in practice, the parties that aggregate signatures, like sensors in a sensor
network, would not even need to be given the respective claim sequences, which
can further improve bandwidth usage and performance.

Theorem 3.2.6. If the Computational Diffie-Hellman assumption holds and
H is modeled as a random oracle, then the BGLS aggregate signature scheme is
AS-EUF-CMA secure in the random oracle model.

Proof. A proof of this theorem can be found in [Bon+03].

3.2.2 Overview of Known Fully Flexible Schemes
The first aggregate signature scheme was proposed by Boneh, Gentry, Lynn and
Shacham [Bon+03] (see the previous Section 3.2.1), which can be proven secure
under the Computational Diffie-Hellman assumption in the random oracle model.
Bellare, Namprempre, and Neven [BNN07] improve on [Bon+03] by formally
showing how the restriction that only signatures of distinct messages can be
aggregated can be securely removed.

Unfortunately, constructing efficient aggregate signature schemes that are
fully flexible and secure in the standard model has turned out to be a difficult
endeavor and to the best of our knowledge no such scheme is known at the time
of publication of this thesis.
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Rückert and Schröder [RS13] give a secure construction using multilinear
maps in the certified-key model without random oracles, where the attacker needs
to prove knowledge of the secret keys corresponding to the public keys used in
his oracle queries. They also need to use an interactive assumption to prove their
scheme secure. Hohenberger, Sahai, and Waters [HSW13] give a construction of
an aggregate signature scheme in the standard model using the graded multilinear
maps of Garg, Gentry, and Halevi [GGH12]. Hohenberger, Koppula, and Waters
[HKW15] propose so-called universal signature aggregators, which can aggregate
signatures of different signature schemes. They give constructions in both models
based on very strong cryptographic primitives like indistinguishable obfuscation.

Several restrictions of aggregation have been proposed. The most prominent
are sequential and synchronized aggregate signature schemes, which are discussed
in detail in Section 3.3 and Section 3.4.

3.3 Sequential Aggregate Signatures
Sequential aggregate signatures were first proposed by [Lys+04] and are a
variation of aggregate signatures that only offer restricted aggregation capabilities.
As the name implies, it is only possible to aggregate in a sequential order.

The first party creates the first signature σ1 for its message using its own
secret and public keys. After σ1 was created, it then passes on this signature to
the next party, who can then aggregate its message to this signature and so on,
i.e. signing and aggregating describes a chain of different parties adding their
message to the signature one after another.

In particular, it is not possible to aggregate different signatures themselves,
but only to “add” new messages in a sequential order to an existing signature.
Observe that this also implies that aggregation is no longer a fully public
operation, since the signing and aggregation operations are closely entwined and
are represented by one single algorithm AggSign. Despite these restrictions, the
functionality provided by sequential schemes is sufficient for many real-world
problems [Lys+04]. So far, they are also more efficient and easier to construct
than more flexible schemes.

The definitions and security experiments for sequential aggregate signatures
are very similar to those for aggregate signature schemes, with the exception
that there is only one single algorithm AggSign used for signing and aggregating
and slight changes to reflect the sequential nature of aggregation.

Definition 3.3.1 (Sequential Aggregate Signature Scheme). A sequential aggre-
gate signature scheme is a tuple Σ = (Gen,AggSign,Vfy) of three PPT algorithms
as follows:

• The key generation algorithm Gen(1κ) receives the security parameter κ as
its input and outputs a tuple (pk, sk) consisting of the public key pk and
the secret key sk.

• The signature generation and aggregation algorithm AggSign(sk, C, σ,m)
receives the secret key sk, a claim sequence C, a corresponding signature
σ and a message m as its input and outputs a signature σ∗ for the new
claim sequence C∗ := C‖(pk,m). Note that if C = ⊥ and σ = λ, it signals
that a new signature for m is to be created from scratch.
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• The verification algorithm Vfy(C, σ) receives a claim sequence C and a
signature σ as input. It outputs 1 if the signature σ is valid for C and
0 otherwise. Like for digital signature schemes (see Definition 2.2.4) we
again allow the Vfy algorithm to use randomness, but expect its output
given a fixed input to be deterministic.

We require correctness as follows.

Definition 3.3.2 (Correctness of Sequential Aggregate Signature Schemes).
A sequential aggregate signature scheme Σ = (Gen,AggSign,Vfy) is correct, if
for all security parameters κ ∈ N, all claim sequences C consisting of claims
ci = (pki,mi) where pki was output by Gen(1κ), i.e. by computing (pki, ski)←
Gen(1κ), and all signatures σ that were created by correct applications of the
AggSign algorithm to create an aggregated signature on all claims of C, it holds
that Vfy(C, σ) = 1.

Lysyanskaya et al. [Lys+04] define security for sequential aggregate signature
schemes as follows. See Figure 3.2 for a visualization of the security experiment.

Definition 3.3.3 (SAS-EUF-CMA Security Experiment). The SAS-EUF-CMA
security experiment4 between an attacker A, a challenger C and a sequential
aggregate signature scheme Σ = (Gen,AggSign,Vfy) consists of three phases as
follows:

Setup Phase. The challenger C generates a key pair (pk, sk) ← Gen(1κ) and
gives the public key pk to the attacker A.

Query Phase. The attacker A may request signatures for messages of his choos-
ing from the challenger. If A sends a claim sequence Ci, a corresponding
signature σi and a message mi (i ∈ N) to the challenger, he responds by
computing σAgg,i ← AggSign(sk, C, σi,mi) and sending σAgg to A. This
step may be repeated at will by A.

Forgery Phase. At the end of the experiment, A sends a tuple (C∗, σ∗) con-
sisting of a claim sequence C∗ and a signature σ∗ to the challenger. Let
q ∈ N be the number of messages A queried a signature for in the Query
Phase. A is successful, if Vfy(C∗, σ∗) = 1 and C∗ is non-trivial, meaning
that C∗ contains at least one claim C∗[j] = (pk,m∗) using pk as its public
key, such that for all i ∈ [q] it holds that

Ci‖(pk,mi) 6= (C∗[1], . . . , C∗[j]),

i.e. A has not called the AggSign oracle on the prefix of C∗ up to the
supposed forgery (pk,m∗).

Lysyanskaya et al. [Lys+04] also require for each signing query and in the forgery
that no public key may be used more than once. As discussed in Section 3.2 (see
the remark below Definition 3.2.3), we interpret such restrictions as a restriction
of the scheme in question, rather then as a general rule. We have therefore
removed this restriction from their security definition. Furthermore, Bellare,
Namprempre, and Neven [BNN07] show that this restriction can be dropped
and the scheme of Lysyanskaya et al. [Lys+04] still remains secure.

4The SAS in SAS-EUF-CMA stands for “Sequential Aggregate Signature”.
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CSAS-EUF-CMA A

(pk, sk)← Gen(1κ) pk

Ci, σi,mi

σAgg,i ← AggSign(sk, Ci, σ′i,mi)
σAgg,i

up to polynomial
many requests

C∗ , σ
∗

Vfy(C∗, σ∗) = 1?
∧

C∗ is non-trivial?

Figure 3.2: The SAS-EUF-CMA security experiment.

Observe that this security experiment, in contrast to other security experiments
so far, allows the attacker A to reuse a message mi in its forgery, that he
requested a signature on during the Query Phase. The only restriction is that
A never requested a sequential aggregate signature for a claim sequence that is
equal to the “prefix” claim sequence up to (pk,m∗) in C∗. This way, for example,
even a signature for a “simple” reordering of one of the queried claim sequences
is seen as a successful forgery.

Not all publications on sequential aggregate signatures define security in
this way. For example, Lu et al. [Lu+06] define the success requirement more
like in the definition of AS-EUF-CMA by [Bon+03], i.e. attackers may not reuse
messages that they already queried a signature for in the Query Phase. To be
precise, in their definition, the attacker A only wins if there is a claim (pk,m∗)
in C∗ such that A never asked for a signature on m∗ during the Query Phase.
Observe that the security definition of [Lys+04] is stronger than and implies the
one of [Lu+06].

This also implies that reorderings of the sequence, changes to the prefix
and so on that are seen as successful forgeries in the model of [Lys+04] are not
interpreted as successful in the definition of [Lu+06].

For the rest of this thesis, we use the unforgeability definition of [Lys+04] for
sequential schemes and explicitly mention if results are dependent on the used
security definition.

Definition 3.3.4 (SAS-EUF-CMA Security for Sequential Aggregate Signature
Schemes). A sequential aggregate signature scheme Σ = (Gen,AggSign,Vfy) is
SAS-EUF-CMA secure, if all PPT algorithms A only have negligible success
probability in the SAS-EUF-CMA security experiment, meaning it holds that

Pr
[
ACSAS-EUF-CMA(pk) = (C∗, σ∗) : Vfy(C∗, σ∗) = 1

∧C∗ is non-trivial

]
≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.
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3.3.1 Overview of Known Sequential Schemes
Several constructions for sequential aggregate signature schemes have been
proposed. The first scheme was presented by Lysyanskava, Micali, Reyzin and
Shacham [Lys+04]. They propose a construction based on trapdoor permutations
in the random oracle model, where no public key can be used more than once
per aggregate signature. Bellare, Namprempre, and Neven [BNN07] improve on
the results of [Lys+04] by showing that this restriction on the use of public keys
can safely be dropped from the scheme.

In [Lu+06] Lu et al. propose the first sequential aggregate scheme without
random oracles, which is based on bilinear groups and the Computational Diffie-
Hellman assumption. They introduce and employ a “certified-key model” in
which the attacker has to prove that the public keys used in the forgery and
in the signature queries were correctly generated, for example by sending the
corresponding secret keys or using non-interactive zero knowledge proofs.

In [Sch11] Schröder gives a sequential aggregate signature scheme based on
the signature scheme of [CL04], which has very short public keys (only two
elements), but is also only secure in the certified-key model and relies on an
interactive computational assumption.

[LLY13b; LLY13a] give two sequential schemes with short public keys of
only a constant number of group elements. Their schemes are secure in the
standard model, use pairings and are based on various non-interactive standard
assumptions in the certified-key model.

Neven [Nev08] generalizes sequential aggregate signatures to the concept
of sequential aggregated signed data. Here, the AggSign and Vfy algorithms
no longer receive the public keys and messages as input, but only the current
message and secret key (for the AggSign algorithm) and the aggregate so far
(for both algorithms), which results in even bigger improvements in efficiency
an bandwidth use. Neven gives a construction based on claw-free trapdoor
permutations in the random oracle model. Unfortunately, as in many sequential
aggregate signatures schemes ([Lys+04; Nev08; LLY13a; LLY13b], for example),
the aggregation algorithm needs to verify the aggregate so far before further
aggregation. Brogle, Goldberg, and Reyzin [BGR14] (originally published as
an extended abstract [BGR12]) give a scheme in the random oracle model that
does not need this verification step in the aggregation algorithm (they call
this lazy verification) and also offers the same advantages that messages and
public keys do not need to be passed to the AggSign algorithm as input, but has
the disadvantage that signatures slightly grow in size. Concurrently, Fischlin,
Lehmann, and Schröder [FLS12] also discuss the idea that the AggSign algorithm
does not receive the public keys and messages so far. Their scheme is based on
the scheme of [Bon+03], is secure in the random oracle model and signature
do not grow in size. Bansarkhani, Mohamed, and Petzoldt [BMP16] give a
sequential aggregate signature based on multivariate quadratic polynomials.

3.4 Synchronized Aggregate Signatures
To bridge the gap between fully flexible aggregation, which so far seems hard
to achieve in the standard model, and the much more restricted sequential
schemes, another form of restricted aggregation called synchronized aggregation
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was proposed by Gentry and Ramzan [GR06]. Although the name suggests that
signing and aggregation needs to be synchronized and done at the same time,
this is not the case. Instead, the signing algorithm additionally takes a “time
stamp” or “time period” in its input, which can usually be any integer or bit
string and does not necessarily have to represent a real point in time.

All signatures that were created using the same time stamp can be aggregated
in any order, no matter their actual time of creation and aggregation is a public
operation, but signatures that were computed using different time stamps cannot
be aggregated at all. So, for a fixed time stamp, aggregation is fully flexible.
Unfortunately, in all known efficient synchronized schemes, signers may only
create one signature per period.

The requirement that time stamps must be used is quite natural for many
applications, but adds additional communication and planning overhead, since
the signers must agree on some signing schedule. However, many applications
like secure logging or collection of sensor data use regular reporting periods
anyway. For other applications were such synchronization is not possible or
feasible, sequential aggregation might actually be the more flexible approach,
although aggregation itself is more restricted compared to synchronized schemes.

All currently known synchronized schemes also use a Setup algorithm, which
takes as input the security parameter 1κ and computes a set of public parameters,
which every party needs to be able to compute its keys and signatures. It is
assumed that this algorithm is honestly executed by a trusted party beforehand
and all parties know the public parameters. In security experiments, the Setup
algorithm is executed by the challenger.

Definition 3.4.1 (Synchronized Aggregate Signature Scheme). A synchronized
aggregate signature scheme is a tuple Σ = (Setup, Gen, Sign, Agg, Vfy) of five
PPT algorithms as follows:

• The setup algorithm Setup(1κ) receives the security parameter κ as its
input and outputs a set of public parameters pp.

• The key generation algorithm Gen(1κ, pp) receives the security parameter κ
and public parameters pp as its input and outputs a tuple (pk, sk) consisting
of the public key pk and the secret key sk.

• The signature generation algorithm Sign(sk,m, s) receives the secret key sk,
a message m and a time stamp s as its input and outputs a signature σ.

• The aggregation algorithm Agg(C1, C2, σ1, σ2) takes as input two claim
sequences C1 and C2, as well as corresponding signatures σ1 and σ2 and
outputs an aggregate signature σAgg for all claims in C1 and C2 or ⊥, if
the signatures σ1 and σ2 were not created using the same time stamp.

• The verification algorithm Vfy(C, σ) receives a claim sequence C and a
signature σ as input. It outputs 1 if the signature σ is valid for C and 0
otherwise. The Vfy algorithm may use randomness, but its output given a
fixed input must be deterministic.

We now state the security definition for synchronized aggregate signature
schemes by [AGH10], which is also based on the security definition of [Bon+03]
for fully flexible aggregate signature schemes. See Figure 3.3 for a visualization
of the security experiment.
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Definition 3.4.2 (SyncAS-EUF-CMASecurity Experiment). The SyncAS-EUF-
CMA security experiment5 between an attacker A, a challenger C and a syn-
chronized aggregate signature scheme Σ = (Setup,Gen,Sign,Agg,Vfy) consists of
three phases as follows:

Setup Phase. The attacker A sends a number n ∈ N of its choosing to the
challenger C. The challenger then runs Setup(1κ) to obtain the public
parameters pp, generates n key pairs (pki, ski) ← Gen(1κ, pp) and gives
(pp, pk1, (pk2, sk2), . . . , (pkn, skn)) to the attacker A.

Query Phase. For each time period, the attacker A may request one signature
valid under pk1 for a message of his choosing from the challenger. If A
sends a message mi (i ∈ N) in time period si to the challenger, he responds
by computing σi ← Sign(sk1,mi, si) and sending σi to A.

Forgery Phase. At the end of the experiment, A sends a tuple (C∗, σ∗) consist-
ing of a claim sequence C∗ = ((pk1,m

∗
1), . . . , (pkn,m∗n)) and a signature

σ∗ to the challenger C. Note that the public keys in C∗ must be equal to
the public keys given to A by the challenger. Let mi be the message A
queried a signature for in time period si and let q ∈ N be the number of
time periods used. A is successful, if

Vfy(C∗, σ∗) = 1 and m∗1 /∈ {m1, . . . ,mq}.

The security experiment has several restrictions:

1. The attacker is only successful if he never asks for a signature on the
message m∗1 in any time period. A seemingly stronger security notion
might not restrict the attacker in this way, since signatures of different
time periods are not “compatible” to one another. However, as [AGH10]
already note, this stronger notion can be achieved by any scheme that
satisfies the above notion by incorporating the current time period into
each message during signing.

2. All non-challenge public keys are honestly chosen by the challenger, in
contrast to the the definitions for fully and sequentially aggregate signature
schemes, where the attacker has full control over these keys and may chose
them maliciously. Alternatively, a Knowledge of Secret Key model [Bar+04;
AGH10] could also be used, where the attacker needs to prove that he
knows the corresponding secret key to the public key that he wants to
use. This restriction is necessary for the security of all known synchronized
schemes [AGH10; HW18], except for the identity-based scheme of [GR06].

3. The attacker may only query one signature per time period. This restriction
is necessary for the security of all known synchronized schemes [GR06;
AGH10; HW18], but might not be necessary in general. In fact, [GR06;
AGH10] also propose variants of their schemes in which parties can sign
a fixed number of messages per time period. However, these variants are
less efficient, since their public keys grow linearly in the number of allowed
messages per time period: if each signer should be able to sign n messages,
they basically create n different key pairs.

5The SyncAS in SyncAS-EUF-CMA stands for “Synchronized Aggregate Signature”.
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Figure 3.3: The SyncAS-EUF-CMA security experiment.

Definition 3.4.3 (SyncAS-EUF-CMA Security for Synchronized Aggregate Sig-
nature Schemes). A synchronized aggregate signature scheme Σ = (Setup, Gen,
Sign, Agg, Vfy) is SyncAS-EUF-CMA secure, if all PPT algorithms A only have
negligible success probability in the SyncAS-EUF-CMA security experiment, mean-
ing it holds that

Pr[ACSyncAS-EUF-CMA(pp, pk1, (pk2, sk2), . . . , (pkn, skn)) = (C∗, σ∗) :
Vfy(C∗, σ∗) = 1 ∧ m∗1 /∈ {m1, . . . ,mq}] ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

3.4.1 Overview of Known Synchronized Schemes
At the time of publication of this thesis and to the best of our knowledge, only
three synchronized aggregate signature schemes are known.

Gentry and Ramzan [GR06] initially proposed the idea of synchronized
aggregation. They gave an identity-based scheme based on the Computational
Diffie-Hellman assumption in the random oracle model, where only signatures
can be aggregated that share a specific random value.

Ahn, Green, and Hohenberger [AGH10] then generalized the concept and
construct a synchronized aggregate signature scheme using bilinear groups secure
in the standard model under the Computational Diffie-Hellman assumption.
They also give a more efficient variant of their scheme in the random oracle
model. See Section 5.3.7 and Section 5.3.8 for detailed discussions of their
schemes in the context of deaggregation security.
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In 2018, Hohenberger and Waters [HW18] proposed a scheme based on
the RSA assumption in the standard model. Their scheme is also the first
synchronized aggregate signature scheme which does not use bilinear groups, but
has the additional restriction that it only works for a previously fixed bounded
number of time periods.

3.5 Identity-Based Aggregate Signatures
Additionally to the regular types of aggregate signatures schemes discussed
above, there also exist several schemes that follow the well known approach of
identity-based cryptography [Sha84]. In an identity-based scheme, instead of
public keys, some form of unique and easy to remember identifier, like the e-mail
address of the signer, is used to verify signatures, i.e. this identity has the same
function as a normal public key, but does not need to be computed by a Gen
algorithm.

This approach offers the advantage that public keys do not need to be
securely stored in a public key infrastructure and users can easily get a hold of
the necessary information to verify signatures or to encrypt data in the case of
identity-based encryption.

However, a trusted authority is needed that uses a master secret key to
compute fitting secret keys corresponding to these identifiers, so identity-based
schemes are only suitable for applications where such a trusted authority can be
established, for example within a company network. Identity-based constructions
can be found in the following publications:

Fully Flexible Aggregation: [XZF05; CLW05; Che+06] give several construc-
tions of identity-based aggregate signatures in the random oracle model
using bilinear maps.

Bagherzandi and Jarecki [BJ10] give an identity-based aggregate signature
scheme based on the RSA assumption in the random oracle model. Their
scheme needs to use two rounds of communication between the signers
before they can sign messages and aggregate signatures.

Hohenberger, Sahai, and Waters [HSW13] give a construction using the
graded multilinear maps of Garg, Gentry, and Halevi [GGH12].

Sequential Aggregation: Boldyreva et al. [Bol+07] introduce the concept of
identity-based sequential aggregate signature schemes and give a construc-
tion which is secure in the random oracle model. Their scheme is based on
a novel interactive complexity assumption, which was subsequently shown
to not hold by Hwang, Lee, and Yung [HLY09]. They also prove that the
scheme is not secure and in fact universally forgeable.

Dou et al. [Dou+09] propose a non-interactive and an interactive identity-
based sequential aggregate signature based on the RSA assumption (in the
interactive version, signers first need to exchange random values before
they can sign and aggregate).

Tsai, Lo, and Wu [TLW13] however show that the non-interactive scheme of
[Dou+09] is not secure and propose a scheme based on the RSA assumption.
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Synchronized Aggregation: Gentry and Ramzan [GR06] introduce the con-
cept of synchronized aggregation and give an identity-based construction
using bilinear maps which is secure in the random oracle model under the
Computational Diffie-Hellman assumption. A synchronized identity-based
scheme based on the RSA assumption is given by Hohenberger and Waters
[HW18].

Partial Aggregation: Identity-based aggregate signatures with a restricted
form of aggregation, called partial aggregation, are discussed in [Her06;
Sel+12]. Here, only some parts of the signatures are aggregated and other
parts (usually random strings) need to be propagated, i.e. the signatures
grow linearly in size in the number of claims.

We do not discuss the identity-based setting further in this thesis, but the results
presented here (especially the results for fault-tolerance) should be transferable
to this setting as well.
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Chapter 4

Fault-Tolerance

4.1 Introduction
In this chapter, we discuss the first main contribution of this thesis, which is
fault-tolerance of aggregate signatures. One problem that all known aggregate
signature schemes so far have in common is that they cannot tolerate the
aggregation of invalid signatures. If even one single invalid signature gets
aggregated to an already aggregated signature σAgg, the complete aggregate
will become invalid. This is also the case if a “wrong” message is included for
verification, i.e. a claim that is not valid for the aggregate signature was added
to the claim sequence. In both cases, the verification algorithm can give no
information about which message-signature pair is the reason for the failure and
if other message-signature pairs are valid. The aggregate signature can therefore
no longer be used to convince a verifier of the authenticity and integrity of the
previously signed messages, since the Vfy algorithm will output 0, even though
all other messages might have been correctly signed before the error occurred.
This essentially renders the aggregate signature useless after an invalid signature
is added.

This is very undesirable, because it would be necessary to re-sign all data
after an error like this occurred, which is cost-intensive and could also lead to
security problems, since it can no longer be securely inferred which messages were
actually signed beforehand. In some applications it might even be impossible to
re-sign the data, especially if multiple parties are involved in the computation of
the signatures.

The inclusion of invalid signatures can not only occur by adversarial behavior,
but also because of simple programming errors, system failures, storage problems
and so on and is therefore not only a concern from a security perspective, but also
from an availability perspective. One single bit flip in the message or signature
is enough to unintentionally turn an individual signature invalid (if this would
not be the case, it would be easy to forge a signature) and therefore render σAgg
useless. For example, let C := (c1 := (pk1 = gx1 ,m1), c2 := (pk2 := gx2 ,m2)) be
a claim sequence for the BGLS aggregate signature scheme (for a brief overview,
see Section 3.2.1) with a valid aggregate signature σAgg. Since σAgg is valid, it
must be of the form

σAgg = H(m1)x1 ·H(m2)x2 .

37
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Let c3 := (pk3 := gx3 ,m3) be a third claim and suppose that an invalid signature
σinvalid 6= H(m3)x3 is aggregated to σAgg by computing σ′Agg := σAgg · σinvalid.
Then σ′Agg will be invalid for the claim sequence C ′ = (c1, c2, c3), because

e(σ′Agg, g) = e(H(m1)x1 ·H(m2)x2 · σinvalid, g)
= e(H(m1), gx1) · e(H(m2), gx2) · e(σinvalid, g)
6= e(H(m1), gx1) · e(H(m2), gx2) · e(H(m3)x3 , g)

=
3∏
i=1

e(H(mi), pki)

and the Vfy algorithm would therefore return 0. Although σAgg was initially
correctly computed, all information it stored is now lost.

A seemingly natural approach to solve this problem seems to be to verify
each signature before aggregating it, as is actually done in some (but not
all) schemes ([Lys+04; Nev08; LLY13a; LLY13b], for example). While this is
generally undesirable, because it adds an additional and potentially big unwanted
computational overhead to each aggregation step1, it seems like this might already
provide fault-tolerance. Unfortunately, this is not the case, since such faults
can also happen after the signatures were computed and aggregated, even if
all steps were done correctly. If a message gets changed for any reason (for
example by some error of the storage medium), this will also mean that the
already aggregated signature for this message becomes faulty, since it will not
be valid for the modified message. Therefore, the complete aggregate signature
becomes invalid in this case as well.

For standard digital signatures this behavior is actually advantageous and
desired, since it ensures the integrity of each stored message. However, for
aggregate signatures, a potentially large set of messages can be influenced. For
example, a secure logging scheme that signs its entries by using an aggregate
signature might store thousands, if not millions of log entries. If the complete
aggregate becomes invalid and unusable, no information whatsoever about which
message was changed can be inferred from the now invalid aggregate. The stored
aggregate signature therefore is a single point of failure: If it becomes invalid,
the application using it looses all security provided by the signature.

To solve this problem, we introduce the concept of fault-tolerant aggregate
signature schemes, which are able to tolerate the inclusion of a specific number
of invalid (or faulty) signatures. In such a scheme, the verification algorithm
does not output boolean values like 1 for “valid” and 0 for “invalid” but instead
outputs a list of validly signed messages and will leave out all messages that are
not validly signed.

1Verifying signatures is almost always a computationally expensive operation. For example,
several pairings need to be evaluated in the Vfy algorithm of the BGLS scheme. However,
if such a verification step is present in the Agg algorithm of a scheme, it cannot necessarily
be removed after adding fault-tolerance to the scheme, since its unforgeability security proof
might critically rely on this step. For example, the schemes of [Lys+04; Nev08] become
breakable if this step is removed [BGR14]. So, before removing this step, one needs to check
the unforgeability security proof of the scheme carefully to see if it would still go through after
its removal.
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4.1.1 Contribution
We provide a formal framework of definitions for fault-tolerant aggregate signa-
tures and present a generic black-box construction which can be used to turn any
aggregate signature scheme into a fault-tolerant one. This construction is also the
first construction of a fault-tolerant scheme. It combines a standard aggregate
signature scheme with a cover-free family [KS64] to provide fault-tolerance and
has a tight security reduction to the underlying signature scheme. The basic
construction has the shortcoming that only a fixed number of messages can be
aggregated, but we also show how to achieve unbounded aggregation.

We also investigate the relationship between fault-tolerance and signature
size and show that signatures of fault-tolerant aggregate signature schemes
necessarily need to grow in size.

Furthermore, we also adapt the formal framework to the case of fault-tolerant
sequential aggregate signatures. Here, slightly different definitions are needed,
since no individual signatures exists and the concept of a “faulty signature” needs
to be defined differently. However, the construction to achieve this different
definition is essentially the same as the construction for aggregate signatures.

For concreteness, we explicitly describe how to instantiate our scheme with
a cover-free family based on polynomials over a finite field [KRS99], which
has a compact representation. This leads to an instantiation featuring short
aggregate signatures relative to the number n of individual signatures that are
aggregated (provided that the maximal number of faults the scheme should
tolerate is relatively small compared to n). To be more precise, signatures
only grow logarithmically in the number of aggregated messages. Our scheme
therefore achieves the optimal compression ratio for fault-tolerant aggregate
signature schemes.

As an additional feature, our construction allows the verification of individual
claims in a fashion that is more efficient than verifying the complete aggregate.
This provides an additional level of flexibility to the signature scheme as de-
manded by certain applications such as secure logging [MT09]. Our construction
has two restrictions:

• We need to assume that aggregates may only contain invalid individual
signatures up to a previously fixed upper bound d, which is smaller than the
actual number of signed messages. If for some reason this bound is exceeded,
the faulty signatures may influence the verifiability of other messages, as
is the case for common aggregate signatures. This is also comparable to
error-correction codes (which are related to cover-free families), where only
a specific number of errors can be located. In our scheme, the concrete
relationship between the upper bound d and the total amount n of messages
is dependent on the used cover-free family.

• Our scheme only supports a slightly restricted form of aggregation, which
is not fully flexible, but more flexible than sequential and synchronized
aggregation. We discuss this further in Section 4.5.

Remark. The main contents of this chapter are taken almost entirely from
[Har+16], which was published at Public Key Cryptography 2016, and [Har+17a],
which was published at Provable Security 2017, and the corresponding full version
[Har+17b]. Significant parts of these publications are reproduced here without
or with only minor modifications, and without specific designation.
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4.1.2 Related Work
Independently from us, Idalino et al. [Ida+15] and Idalino [Ida15] also devel-
oped concepts (modification location signature schemes and level-d signature
aggregation) very similar to fault-tolerance and give constructions based on
cover-free families to achieve them that are also similar to our construction of
fault-tolerance.

Idalino and Moura [IM18] improve the efficiency of our unbounded construc-
tion by using nested cover-free families and offer a better compression ratio
than our unbounded construction using a monotone cover-free family, where
signatures unfortunately grow linearly in size.

Apart from the mentioned publications and to the best of our knowledge, no
other work directly related to fault-tolerance exists. A general overview over
publications related to aggregate signatures can be found in the overview sections
of Chapter 3.

4.1.3 Overview
In Section 4.2 we first give an overview of the basic idea of our construction
to achieve fault-tolerance. Section 4.3 then gives a formal framework for fault-
tolerance by formally defining it and all necessary prerequisites. Section 4.4
discusses the connection between signature size and fault-tolerance and in Sec-
tion 4.5 we present our black-box construction using cover-free families that can
be used to turn any aggregate signature scheme into a fault-tolerant one. We
also discuss how to generalize this construction to allow unbounded aggrega-
tion in Section 4.5.1 and discuss the additional selective verification feature in
Section 4.5.2. In Section 4.5.3 we then show an instantiation using a concrete
cover-free family based on polynomials over a finite field. Section 4.6 then
discusses how to apply and translate these concepts to the case of sequential
aggregate signature schemes. To conclude, Section 4.7 shows how fault-tolerance
can be applied to construct a secure and robust logging scheme.

4.2 Basic Idea of Our Construction
To get a glimpse of our generic construction of a fault-tolerant aggregate signature
scheme, we now informally illustrate the basic idea.

Let an ordinary aggregate signature scheme (e.g., the BGLS scheme) and
n individual signatures σ1, . . . , σn generated using this scheme be given. Our
goal for this example is to tolerate d = 1 faulty individual signatures. To achieve
this, our approach is to choose m subsets

T1, . . . , Tm ⊂ {σ1, . . . , σn}

of individual signatures and aggregate the signatures of each subset, thereby
yielding aggregate signatures τ1, . . . , τm, such that

1. m is (significantly) smaller than n and

2. even if one of the individual signatures is faulty and the corresponding
aggregate signatures τi will be invalid, all other individual signatures σj
are aggregated into at least one different, valid signature τk, that can then
be used to deduce the validity of σj .
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For example, consider the following binary 4× 6 matrix

A := (ai,j) :=


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1


for which n = 6 and m = 4.

A describes a solution to the above mentioned problem as follows: The
1-entries in column j indicate in which Ti the individual signature σj is contained.
Consequently, the 1-entries in row i indicate the σj contained in Ti. More
precisely, Ti := {σj : ai,j = 1} and τi is the aggregate of all σj ∈ Ti.

For the matrix above, an aggregate signature τ = (τ1, τ2, τ3, τ4) for individual
signatures σ1, . . . , σ6 would therefore be computed in the following manner:

τ =


τ1
τ2
τ3
τ4

 =


Agg(σ1, σ4, σ6)
Agg(σ1, σ2, σ5)
Agg(σ2, σ3, σ4)
Agg(σ3, σ5, σ6)

=̂


σ1 σ4 σ6
σ1 σ2 σ5

σ2 σ3 σ4
σ3 σ5 σ6

,
where Agg informally denotes the aggregation algorithm of the underlying
aggregate signature scheme.

Let us assume that only one signature σj is faulty. Then all τi are faulty
where ai,j = 1. However, because all other σk were also aggregated into at least
one different τi, we can still derive the validity of σk.

For a concrete example, suppose σ1 is faulty. Then τ1 and τ2 will be faulty,
whereas τ3 and τ4 remain valid. We see that σ2, σ3 and σ4 occur in τ3, and
σ5, σ6 occur in τ4. So we can still infer that m2,m3,m4,m5 and m6 were validly
signed from τ3 and τ4, although the verification of τ1 and τ2 will fail, which in
turn implies that m1 was not validly signed.

The matrix A defined above has the property that it can tolerate one faulty
signature, i.e. if just one signature is faulty, then all other messages can still
be verified. This is not possible if two or more faulty signatures are aggregated.
Suppose that σ1 and σ2 are faulty. In this case, τ1, τ2 and τ3 become invalid and
τ4 is the only valid signature. We could still derive the validity of σ3, σ5 and σ6,
because τ4 is valid. However, the validity of σ4 can no longer be verified, since it
was never aggregated to τ4. So, although σ4 was valid when it was aggregated,
the aggregation of only two invalid signatures now implies that we can no longer
derive any information about its validity. For an even stronger example, suppose
σ1 and σ3 would be invalid – then all verification steps will fail and we cannot
deduce the validity of any message.

Our construction basically works as described in the example above. Note
that therefore our scheme does not support fully flexible aggregation: Each
column of A can only be used to hold one individual signature, so two aggregate
signatures where the same column is used cannot be aggregated further without
losing the guarantee of fault-tolerance. However, this only slightly restricts
aggregation: Individual signatures can always be aggregated and two aggregate
signatures can be aggregated if no column is used in both. As long as this
requirement is met, signatures can be aggregated in any order. Signatures of
our scheme will only be valid for one specific claim sequence, since we use the
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position of each claim in the sequence to decide which column of the matrix was
used to aggregate its individual signature. Still, the order of aggregation can be
arbitrary. Signers simply need to agree on the “position” of their claim in the
sequence and adhere to it when aggregating. This notion is sufficient for many
use cases, we discuss this further in Section 4.5.

The construction of matrices that can tolerate d > 1 faulty signatures is
more intricate, but incidence matrices belonging to d-cover-free families imply
the desired property. Informally speaking, in such a matrix the “superposition”
~s of up to d arbitrary column vectors ~a1, . . . , ~ad, i.e., the vector ~s which has a
1 at position ` if at least one of the vectors ~a1, . . . , ~ad has a 1 at this position,
does not “cover” any other distinct column vector ~aj (j 6∈ {1, . . . , d}). In other
words, there is at least one position ` such that ~aj has a 1 at this position but ~s
shows a 0. This implies that if at most d individual signatures (each belonging
to one column) are invalid, then each distinct individual signature is contained
in at least one valid aggregate signature, and the corresponding message can
therefore be securely verified. Hence, applying such a matrix, as sketched above,
implies that any subset of faulty individual signatures of size up to d will not
compromise the trustworthiness of any other message.

4.3 Framework for Fault-Tolerance
Before we can introduce the formal definition of fault-tolerance for aggregate
signature schemes, we first have to define and discuss a few preliminaries.

Remark. We focus on the case of aggregate signatures for the most part of
this chapter. The results presented can however also be applied to synchronized
aggregate signature schemes, with the usual restriction that only signatures
created using the same time stamp can be aggregated. For sequential aggregate
signature schemes, slightly different definitions are needed, as discussed in
Section 4.6.

The intuitive difference between a fault-tolerant and an ordinary aggregate
signature scheme is that its verification algorithm does not only output a boolean
value 1 or 0, but instead outputs the set of valid claims. If the signature contains
more errors than the scheme can cope with, Vfy may output just a subset of the
valid claims. Other claims may be clearly false or just not certainly true, since
the verification algorithm ought to be conservative and reject a claim in case of
uncertainty.

We update the definition of aggregate signatures to reflect these changes
by defining aggregate signature schemes with list verification. The name “list
verification” is chosen to indicate the changes in syntax, in particular that the
verification algorithm outputs a multiset or list, instead of just 1 or 0.

In this chapter, σ will usually be used to denote signatures of standard
aggregate signature schemes, whereas τ will mostly refer to signatures of aggregate
signature schemes with list verification and fault-tolerant aggregate signature
schemes. As usual, the aggregation algorithm is called with two claim sequences,
hence, before aggregating, a single claim c must be converted to a claim sequence
C = (⊥, . . . ,⊥, c). We emphasize once more that for our scheme, the positions
of the claims in the sequence are important, so this conversion of a single claim
c to a claim sequence should also be used to assign a position to c.
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Definition 4.3.1 (Aggregate Signature Scheme with List Verification). An ag-
gregate signature scheme with list verification is a tuple Σ = (Gen,Sign,Agg,Vfy)
of four PPT algorithms as follows:

• The key generation algorithm Gen(1κ) receives the security parameter κ as
its input and outputs a tuple (pk, sk) consisting of the public key pk and
the secret key sk.

• The signature generation algorithm Sign(sk,m) receives the secret key sk
and a message m as its input and outputs a signature τ .

• The aggregation algorithm Agg(C1, C2, τ1, τ2) takes as input two exclusively
mergeable claim sequences C1 and C2, as well as corresponding signatures
τ1 and τ2 and creates an aggregate signature τAgg, certifying the validity of
the claim sequence C1 tC2.

• The verification algorithm Vfy(C, τ) takes as input a claim sequence C
and an aggregate signature τ for C. It outputs a multiset of claims
Cvalid ⊆ elem(C) specifying the valid claims in τ . Note that this may
be a proper subset of elem(C), or even empty, if none of the claims can be
derived from τ for certain. Again, C may contain ⊥ as a claim placeholder.

Σ is required to be correct as defined in Definition 4.3.10 and the following
paragraphs.

Remark. Since we’re almost exclusively interested in aggregate signature
schemes with list verification for the rest of this chapter, we often leave out “with
list verification” for brevity.

The security experiment and security definition for aggregate signatures
with list verification is a direct adaption of the standard security experiment of
[Bon+03] as also presented in Definition 3.2.3 and Definition 3.2.4. We present
the definitions in the concrete form (see the end of Section 2.2.2 for a discussion
of concrete security definitions) to be consistent with our original publication on
fault-tolerance [Har+16].

Definition 4.3.2 (AS-EUF-CMA Security Experiment for Aggregate Signature
Schemes with List Verification). The AS-EUF-CMA security experiment between
an attacker A, a challenger C and an aggregate signature scheme Σ = (Gen,
Sign, Agg, Vfy) with list verification consists of three phases as follows:

Setup Phase. The challenger C generates a key pair (pk, sk) ← Gen(1κ) and
gives the public key pk to the attacker A.

Query Phase. The attacker A may request signatures for messages of his
choosing from the challenger. If A sends a message mi (i ∈ N) to the
challenger, he responds by computing τi ← Sign(sk,mi) and sending τi to
A. This step may be repeated at will by A.

Forgery Phase. At the end of the experiment, A sends a tuple (C∗, τ∗) con-
sisting of a claim sequence C∗ and a signature τ∗ to the challenger C. Let
q ∈ N be the number of messages A queried a signature for in the Query
Phase. Then A is successful, if

∃c∗ = (pk,m∗) ∈ C∗ such that c∗ ∈ Vfy(C∗, τ∗) and m∗ /∈ {m1, . . . ,mq}.
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CAS-EUF-CMA A

(pk, sk)← Gen(1κ) pk

mi

τi ← Sign(sk,mi) τi

up to polynomial
many requests

C∗, τ
∗

∃c∗ = (pk,m∗) ∈ C∗ :

c∗ ∈ Vfy(C∗, τ∗)
∧

m∗ /∈ {m1, . . . ,mq}?

Figure 4.1: The AS-EUF-CMA security experiment for aggregate signature
schemes with list verification.

Definition 4.3.3 (AS-EUF-CMA Security for Aggregate Signature Schemes
with List Verification). An aggregate signature scheme with list verification is
(t, q, ε)-AS-EUF-CMA secure if there is no attacker A running in time at most t,
making at most q queries to the signature oracle and winning in the AS-EUF-CMA
security experiment for schemes with list verification with probability at least ε.

To be able to define fault-tolerance, we need to clearly define when signatures
are to be interpreted as “faulty”. For this, we propose the concept of regular
signatures. Informally, a signature is regular if it is created by correctly running
the algorithms of a signature scheme Σ.

Definition 4.3.4 (Regular Signatures). Let C be a claim sequence, Σ =
(Gen,Sign, Agg,Vfy) an aggregate signature scheme with list verification2 and τ
be a signature of Σ. Regularity is defined recursively as follows:

• If (pk, sk) is in the image of Gen(1κ) and C = ((pk,m)) for a message m,
and if τ is in the image of Sign(sk,m), then τ is said to be regular for C
and for any claim sequence obtained by prepending any number of claim
placeholders ⊥ to C.

• If τ1 is regular for a claim sequence C1, τ2 is regular for another claim
sequence C2, and C1, C2 are exclusively mergeable, then τ is regular for
C1 tC2 if τ is in the image of Agg(C1, C2, τ1, τ2).

• The empty signature λ is regular for the claim sequences containing only
⊥ and the empty claim sequence (). No other signature than λ is regular
for these claim sequences.

If a signature τ is not regular for a claim sequence C, it is called irregular for C.
2Regularity can easily be adapted to standard aggregate signatures without list verification,

synchronized aggregate signatures and digital signatures, as well. For sequential aggregate
signatures this concept needs be defined differently, see Section 4.6.
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Definition 4.3.5 (Amount of Errors). Let M = {(c1, τ1), . . . , (cn, τn)} be a
multiset of claim and signature pairs, which is partitioned into two multisets
Mirreg and Mreg, containing the pairs for which τi is irregular for C = (ci) and
regular for C, respectively. Then the multiset M contains d errors, if |Mirreg| = d.

We view irregular signatures as erroneous and all our fault-tolerance guaran-
tees do only concern regular signatures. This way we obtain a very clear and
precise definition of what should be seen as an “error” or as a “faulty signature”.
Furthermore, this way, the following definition of fault-tolerance can also be
interpreted as a generalization of correctness. However, note that it is technically
possible that for a given signature scheme there may be irregular signatures,
which still are valid (i.e. the Vfy algorithm outputs 1, even though they are
irregular). Although this might seem counter-intuitive at first, we argue that
this definition nevertheless correctly captures the meaning of “faulty” for all
practical cases.

If valid, but irregular, signatures exist for a given scheme, then in most cases
it should be possible to reformulate the scheme so that these signatures are also
regular. The Sign algorithm (and maybe also the Gen algorithm) simply needs
to be redefined, so that these irregular signatures are also in the image of Sign
and we can assume that all schemes are formulated in this way.

If such a redefinition is not (efficiently) possible, than this implies that it is
difficult to compute these signatures even if the secret key is known. Therefore
it is not possible for a PPT attacker to somehow advantageously use these
signatures with more than negligible probability.

Example 4.3.6. Most schemes do not have valid but irregular signatures. For
example, the schemes of [Bon+03; Lu+06; AGH10] have no such signatures (see
the Lemmas 5.3.1, 5.3.28 and 5.3.37).

Still, it is easy to see that such schemes exist: suppose Σ = (Gen,Sign,Vfy)
is a digital signature scheme that has no irregular and valid signatures. We
construct a scheme Σ′ = (Gen,Sign′,Vfy′) from it that does have valid signatures
that are irregular. The Sign′ algorithm runs Sign and appends a 0-bit to the
end of the computed signature, i.e. Sign′(sk,m) = Sign(sk,m)‖0. The new Vfy′
algorithm simply removes the last bit of the given signature and verifies it by
running Vfy, i.e. it computes Vfy′(pk,m, σ‖b) = Vfy(pk,m, σ). If Σ is EUF-CMA
secure, then so is Σ′, but now for every message there exists at least one irregular
but valid signature, namely the signature output by Sign, but with an appended
1-bit. However, it would also be easy to fix this problem here by reformulating
the Sign′ algorithm, so that it appends a random bit b ← {0, 1} or by simply
removing this bit altogether.

Definition 4.3.7 (Fault-Tolerance for Aggregate Signature Schemes). An aggre-
gate signature scheme Σ = (Gen,Sign,Agg,Vfy) with list verification is tolerant
against d errors, if for any multiset M = {(c1, τ1), . . . , (cn, τn)} of claim and
signature pairs containing at most d errors, for any signature τ that was aggre-
gated from the signatures in M in arbitrary order and the corresponding claim
sequence C, which may additionally contain any number of claim placeholders ⊥,
we have

R ⊆ Vfy(C, τ),
where R is the multiset of all the claims ci of the pairs (ci, τi) ∈Mreg. In other
words, Vfy outputs at least all claims of regular signatures.
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Intuitively, one would expect R = Vfy(C, τ). Unfortunately, this is not achievable
in general, as the aggregation of multiple irregular signatures might actually
“cancel out” the irregularity and result in a regular and valid aggregate signature.
See the following example using the BGLS aggregate signature scheme:

Example 4.3.8. Let σ1 = H(m1)x1 and σ2 = H(m2)x2 be two valid and regular
BGLS signatures for two claims c1 = (pk1,m1) and c2 = (pk2,m2) with pk1 = gx1

and pk2 = gx2 . Set
σ′1 := g · σ1 and σ′2 := g−1 · σ2.

The signatures σ′1 and σ′2 are clearly not valid and therefore also not regular for
the claim sequences (c1) and (c2). But if we aggregate them, it holds that

Agg((c1), (c2), σ′1, σ′2) = g · g−1 · σ1 · σ2 = σ1 · σ2,

which is a regular and valid aggregate signature for the claim sequence (c1, c2),
even though the individual signatures were irregular.

However, this does not contradict security, as crafting such signatures that
“cancel out” their irregularity is hard if one does not know fitting regular
signatures σi, otherwise the scheme would not be unforgeable. Suppose an
attacker A never queries a signature for a message m∗ under his challenge public
key pk∗. Suppose further that A is able to create an aggregate signature τ , such
that

R ( Vfy(C, τ) and c∗ := (pk∗,m∗) ∈ Vfy(C, τ) \R,

i.e. τ was created by aggregating a signature that is irregular for c∗, but c∗
nonetheless appears in the output of Vfy. Then τ would clearly be a forgery,
since the AS-EUF-CMA security definition does not require that the attacker
outputs a regular signature. The validity of c∗ under τ and the “freshness” of
m∗ (i.e. A never asked for a signature on m∗) are the only requirements for
τ to be counted as a winning forgery, which both would be fulfilled here. So,
attackers cannot use this “canceling out” property to forge signatures.

Still, the attacker might be able to easily output an aggregate signature
where R ( Vfy(C, τ), since he can freely choose additional secret keys and
could aggregate irregular signatures under these keys which “cancel out” their
irregularity, like in Example 4.3.8 for the BGLS scheme. While this would not
be a valid forgery (since the attacker chose the keys himself), this shows that
unforgeability does not imply the direction R ⊇ Vfy(C, τ).

While this means that Vfy might output “false positives”, we can still be
sure that these claims must have been validly signed at some point.3 Observe
furthermore that by definition of aggregate signature schemes with list verification,
Vfy will never output any claim that was not part of its input. Even if we would
not explicitly require this in Definition 4.3.1, any Vfy algorithm can easily be
changed so that it never outputs any such claim. One could simply define a Vfy′
algorithm that only outputs the claims returned by Vfy that were also part of
the input. A change like this to the scheme in question has no influence on its
fault-tolerance, correctness or security.

3In fact, it could be interesting to investigate whether this property of “canceling out”
irregularity could be used to “repair” partially invalid aggregate signatures of a fault-tolerant
scheme. However, we leave this question open for now.
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Definition 4.3.9 (Fault-Tolerant Aggregate Signature Scheme). A d-fault-
tolerant aggregate signature scheme is an aggregate signature scheme with list
verification that is tolerant against d errors. A fault-tolerant aggregate signature
scheme is a scheme that is d-fault-tolerant for some d > 0.

Note that fault-tolerance is an unconditional property and that we do not
need to resort to complexity theoretic hardness assumptions to prove it. Note
furthermore that 0-fault-tolerance means that if M = {(c1, τ1), . . . , (cn, τn)}
contains only regularly created signatures, then Vfy must output all claims in
M (or the corresponding claim sequence C, respectively). This is analogous to
the common definition of correctness for aggregate signature schemes, which
motivates the following definition of correctness:

Definition 4.3.10 (Correctness for Aggregate Signatures with List Verification).
An aggregate signature scheme with list verification is correct, if it is tolerant
against 0 errors.

Remark. Our definitions above assume that aggregation is always done correctly.
This is a necessary assumption, since it is impossible to give guarantees for all
arbitrary errors that might happen during aggregation. Consider for example a
faulty implementation of the Agg algorithm that sometimes outputs a random
string or a malicious signer that ignores the aggregate-so-far and outputs a
random signature. It is an interesting open question to find a fault-tolerant
signature scheme that can tolerate certain types of aggregation errors, too.

4.4 Fault-Tolerance and Signature Size
A typical and desired requirement for aggregate signature schemes is that the
size of an aggregate signature is constant and as close as possible to the size of
individual signatures, no matter how many signatures are aggregated. Ideally,
aggregate and individual signatures should have the same size. Also, the number
of signatures that can be aggregated into a single signature should be unbounded.

These requirements are fulfilled by almost all known sequential, synchronized
and fully flexible schemes, but unfortunately, it is not possible for fault-tolerant
schemes to fulfill them. They cannot offer a signature size which is independent
of the number of individual signatures. In other words, we cannot hope to
aggregate an unbounded number of individual signatures in a way that tolerates
a constant number of errors and still receive a constant-size aggregate.

This follows from an information-theoretic argument: Assume the size of an
aggregate signature is fixed to a constant number of l bits. This l-bit string then
needs to be used by the verification algorithm as the only “source of information”
to determine which of its input claims are valid. Hence, based on the l-bit
string, the algorithm can distinguish at most 2l different outputs. However,
considering n claims and corresponding individual signatures, d of which are
irregular, there are

(
n
n−d
)
possible different subsets (and thus outputs) which

should be distinguishable by the verification algorithm by considering this string.
So n is upper bounded by

(
n
n−d
)
≤ 2l. Therefore, if the number n of claims that

can be aggregated should be unbounded, then the size of aggregate signatures
necessarily needs to grow. Next, we show this formally for “ideal” fault-tolerant
aggregate signature schemes, where Vfy always outputs exactly all claims that
were signed by regular signatures.



48 CHAPTER 4. FAULT-TOLERANCE

Theorem 4.4.1. Let n, d ∈ N and Σ = (Gen,Sign,Agg,Vfy) be a d-fault-
tolerant signature scheme. Assume that Vfy(C, τ) = R for all claim sequences
C and corresponding signatures τ constructed from an arbitrary multiset M =
{(c1, τ1), . . . , (cn, τn)} of n claim–signature pairs that contains at most d ≤ n
errors and where R is the multiset of all claims ci accompanied by a regular
signature τi in M .

Then it holds that |τ | ∈ Ω(log2 n) as a function of n, where d is considered
constant and |τ | is the size of the signature τ in bits.

Proof. Call an output O of Vfy in accordance with C, if O is a sub-multiset of
elem(C) and |O| ≥ |elem(C)| − d.

Clearly, since we assumed that Vfy always outputs R, the output of Vfy must
be in accordance with C. For a fixed number of errors i ∈ {0, . . . , d}, there are(
n
i

)
distinct outputs in accordance with C. Thus, for up to d errors, there are

up to

s(n) :=
d∑
i=0

(
n

i

)
≥
(
n

d

)
≥ (n− d)d

d!

distinct outputs in accordance with C. Vfy must use τ to determine the correct
output R among the set of outputs in accordance with C. If the signature size
|τ | is at most l ∈ N bits, then Vfy can distinguish at most 2l cases based on τ .
Thus, we must have 2l ≥ s(n), or, equivalently,

l ≥ log2 s(n) ≥ log2
(n− d)d

d! = d log2(n− d)− log2(d!) ∈ Ω(log2 n).

Note again that the assumption that Vfy(C, τ) = R is somewhat artificial. On
the one hand, R ⊆ Vfy(C, τ) is required by the definition of fault-tolerance.
Intuitively, one would expect the other direction R ⊇ Vfy(C, τ) to follow from
the unforgeability of Σ. However, this is not the case.

As already discussed, the aggregation of multiple irregular signatures can
“cancel out” their irregularity and it can be easy for an attacker to compute such
signatures, since he can choose almost all secret keys himself (see the paragraphs
below the Definitions 4.3.5 and 4.3.7). Furthermore, security is only required
against attackers that have polynomial run time in the security parameter κ, i.e.
attackers that can create at most a polynomial number of claims.

Still, the arguments presented also apply to “non-ideal” schemes where d is set
to the number of claims accompanied by irregular signatures which irregularity
does not get canceled out by aggregating them with the other signatures.

Furthermore, it is unclear how “non-ideality” could help to improve this lower
bound, since the output of the verification algorithm must always be meaningful,
i.e. it must at least output all claims accompanied by a regular signature, but
cannot simply output all claims or some arbitrary set of claims if the scheme is
supposed to be unforgeable.

Since the size of an aggregate signature cannot be constant for fault-tolerant
schemes, it is important to analyze the compression ratio of such schemes,
which captures how an aggregate signature may grow in size. The higher the
compression ratio, the smaller the resulting aggregate. Therefore the compression
ratio is a measure of quality of a fault-tolerant aggregate signature scheme.
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Definition 4.4.2 (Compression Ratio). Denote by size(σ) the size of a signature
σ. Let C be a claim sequence of length n and σ∗ an aggregate signature of
maximum size4 which is regular for C. We say that an aggregate signature
scheme has compression ratio ρ(n) if for all C and σ∗ it holds that

n

size(σ∗) ∈ Θ(ρ(n)).

Example 4.4.3. If the size of all aggregate signatures is upper bounded by
a constant (e.g. if all aggregates have the same size as individual signatures),
then the compression ratio is ρ(n) = n, which is optimal for common aggregate
signature schemes, but not possible for fault-tolerant aggregate signatures, as
argued above. If the size of all aggregate signatures grows linear in the number
of aggregated signatures (e.g. if the Agg algorithm simply stores the individual
signatures in a list), then no compression occurs and ρ(n) = 1.

4.5 A Construction from Cover-Free Families
We now present our generic construction of fault-tolerant aggregate signature
schemes. It is based on an arbitrary aggregate signature scheme, which is used
in a black-box way, and a cover-free family. Our scheme inherits its security
from the used aggregate signature scheme, has a tight security proof and can
tolerate d faults if a d-cover-free family is used.

Before we present the construction, we want to elaborate on the restrictions
of the scheme that were already briefly mentioned in Section 4.1.1:

Bounded Aggregation. Our basic scheme can only be used to aggregate
a bounded number of signatures. The bound is dependent on the cover-free
family: The maximum number of signatures that can be aggregated is equal to
the number of columns of the incidence matrix of the used cover-free family. In
Section 4.5.1 we discuss how to remove this restriction.

Flexibility of Aggregation. Our scheme does not support fully flexible
aggregation, but rather a slightly restricted form, which requires an order among
the claims in the claim sequence, i.e. each claim is assigned to a fixed position in
the sequence. The order of aggregation itself can be completely arbitrary, but the
positions of the claims must be maintained by the aggregation and verification
algorithms. Signatures can be aggregated in any order, as long as the claims are
assigned to the correct positions in the claim sequence.

More precisely, when an individual signature τ ′ for a claim c is first aggregated
into an aggregate signature τ , one must assign a unique “position” j to c. If one
wishes to verify τ , one must call Vfy with a sequence of claims C that has c at
its j-th position, i.e. C[j] = c. Two aggregate signatures τ1, τ2 for two claim
sequences C1, C2 cannot be aggregated if for some index j both C1[j] and C2[j]
are not empty, even if C1[j] = C2[j].

However, if the signers agree in advance on distinct positions j of their claims,
they can always aggregate their signatures into a single combined signature τ .

4The size of aggregate signatures might vary. For example, it might depend on the order of
aggregation.
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Furthermore, the signers do not need to uphold a fixed order of aggregation,
the only requirement is that each signer uses his assigned position in the claim
sequence and no other position. The resulting (aggregate) signatures themselves
can then be aggregated in any order.

This requirement can easily be fulfilled in many applications, especially if
the application itself requires some form of order or architecture between the
signing parties, like in wireless sensor networks. Here, each sensor simply needs
to be configured to use a different position j. If such an order is possible, than
aggregation is (almost) as flexible as in a fully flexible scheme.

Moreover, it is always possible to use our scheme as a sequential aggregate
signature scheme, since the position j of a claim needs only be determined when
it is first aggregated. Our scheme is therefore suitable for all applications where
sequential aggregate signatures are sufficient, too, such as secure logging [MT09].
Still, we would like to stress that our construction offers a much more flexible
type of aggregation than just sequential aggregation.

Our form of aggregation cannot be directly compared with synchronized
aggregation. Synchronized aggregation allows for fully flexible aggregation of
signatures created using the same synchronizing information, but other signatures
cannot be aggregated at all. In contrast, in our scheme only signatures that
already have claims at the same position of their claim sequences cannot be
aggregated. Synchronized schemes are however suitable for our construction,
since if the parties are able to agree on some form of synchronization, they should
also be able to agree on the positions of their claims.

For the above mentioned reasons, we have to deal with “incomplete” claim
sequences, i.e. claim sequences that do not yet contain claims at all positions.
When aggregating the signatures of two such incomplete claim sequences C1, C2,
the claim sequences will be merged, meaning that claim placeholders in C1 are
replaced by actual claims from C2, for each position j where C1[j] = ⊥ and
C2[j] 6= ⊥, and vice versa (see Definition 3.1.3).

For technical reasons, we also require that there is no position where C1 and
C2 both contain a claim, even if the claims are identical. As a consequence, if an
individual signature τ is aggregated into two different aggregate signatures τ1, τ2
using the same position j, τ1 and τ2 cannot be aggregated later. Note, however,
that τ could be aggregated with τ1 and τ2 at different positions, which would
then also enable the aggregation of τ1 and τ2 at a later point.

Our Black-Box Construction. For the rest of this chapter, let Σ′ = (Gen′,
Sign′, Agg′, Vfy′) be an ordinary aggregate signature scheme and letM be the
incidence matrix of a d-cover-free family F = (S,Blocks), as defined in Section 2.3.
Let ΣFT = (GenFT,SignFT,AggFT,VfyFT) be the fault-tolerant aggregate signature
scheme that we construct from Σ′ and F .

In our scheme ΣFT, signatures for just one claim are simply signatures of
the underlying scheme Σ′, whereas aggregate signatures are short vectors of
signatures of Σ′. Our construction uses the incidence matrixM of F to build
these vectors. We identify each element of the universe S with a position in this
vector and each subset B ∈ Blocks with an individual signature of the underlying
scheme Σ′. To assign a position i to a claim c, we transform it to a claim
sequence C = (⊥, . . . ,⊥, c,⊥, . . . ,⊥) of length cols(M), such that C[i] = c. We
therefore require that the underlying scheme Σ′ supports claim placeholders as
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an input to Agg′ and Vfy′. However, this is not an essential restriction, as any
normal aggregate scheme may be easily adapted to a scheme of the modified
syntax, for example by ignoring any order and claim placeholders by applying
elem(C) on the input claim sequences C before it is passed on to the Agg′ and
Vfy′ algorithms.

We assume that AggFT and VfyFT have access to the incidence matrix M.
This can be realized by storingM as a “public parameter”, so that all parties
can access it. Alternatively, the algorithms could also construct the matrix (or
only the needed parts of it) “on they fly”, dependent on which option is better
suited to the intended application of ΣFT, which presents a trade-off between
memory usage and performance.5 Note that M could also be stored in the
public keys, but this is the most wasteful option, since it would greatly and
unnecessarily increase the size of all public keys. We further assume that all
claim sequences have length cols(M). Next, we describe the algorithms of our
fault-tolerant aggregate signature ΣFT = (GenFT,SignFT,AggFT,VfyFT).

• GenFT(1κ) creates and outputs a key pair (pk, sk)← Gen′(1κ).

• SignFT(sk,m) computes σ ← Sign′(sk,m) and returns σ.

• AggFT(C1, C2, τ1, τ2) takes as input two claim sequences C1 and C2 and
corresponding signatures τ1 and τ2. Then, it proceeds as follows:

1. If C1 and C2 are not exclusively mergeable it aborts.
2. If one or both of the claim sequences Ck (k ∈ {1, 2}) contains only

one non-empty claim c = Ck[j] 6= ⊥ (j ∈ [rows(M)]), i.e. τk is an
individual signature, then it sets σk := τk and expands τk to a vector
of length rows(M), by setting

τk[i] :=
{
σk, ifM[i, j] = 1,
λ, otherwise,

for i = 1, . . . , rows(M),

where j is the index of c in the claim sequence Ck.
3. Then the signatures τ1, τ2, which are both vectors now, are aggregated

component-wise using Agg′, i.e. it initializes a new vector τ and sets

τ [i]← Agg′(C1[Mi], C2[Mi], τ1[i], τ2[i]).

for i ∈ [rows(M)].6

Finally, AggFT outputs τ .

• VfyFT(C, τ) takes as input a claim sequence C and an aggregate signature
τ for C. For each component τ [i] of τ it computes bi := Vfy′(C[Mi], τ [i])
and outputs the multiset of valid claims

Cvalid := elem

 ⊔
i∈[rows(M)],bi=1

C[Mi]

.
5In the instantiation of our construction using polynomials over a finite field, it is easy to

compute the whole matrix M or just parts of it (see Section 4.5.3).
6Note that here it can happen that one or both claim sequences Ck[Mi] only contain ⊥ and

that τk[i] = λ. In this case, we assume that Agg′ returns the signature of the claim sequence
that contains at least one non-empty claim c 6= ⊥ or the empty signature λ if both sequences
contain only ⊥ and both signatures are equal to λ.
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Example 4.5.1. LetM be the incidence matrix used to instantiate our con-
struction:

M :=


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1


Let c1, c2, c′2, c3, c4 be five distinct claims with:

• τ1, τ2, τ ′2, τ3 are individual regular signatures for c1, c2, c′2, c3, respectively.

• τ4 is an individual invalid (and therefore irregular) signature for c4.

• Each claim gets associated with the position in the claim sequence equal
to its index, i.e. c1 with position 1, c′2 with position 2 etc.

• Let Ci be the corresponding claim sequences of length cols(M) = 6 with
the claim ci at its correct position, i.e. C1 = (c1,⊥,⊥,⊥,⊥,⊥), C ′2 =
(⊥, c′2,⊥,⊥,⊥) and so on.

For ease of exposition, let “τi · τj” denote Agg′(Ci, Cj , τi, τj). Now, τ1 and τ2 can
be aggregated, since C1 and C2 are exclusively mergeable. AggFT(C1, C2, τ1, τ2)
will output an aggregate signature τ1,2 for the claim sequence C1,2 = C1 tC2
= (c1, c2, ⊥,⊥,⊥,⊥) with

τ1,2 =


τ1

τ1 · τ2
τ2
λ

.
VfyFT(C1,2, τ1,2) would do the following for each component of the vector τ1,2:

Component 1: Check that Vfy′((c1,⊥,⊥,⊥,⊥,⊥), τ1) = 1.

Component 2: Check that Vfy′((c1, c2,⊥,⊥,⊥,⊥), τ1 · τ2) = 1.

Component 3: Check that Vfy′((⊥, c2,⊥,⊥,⊥,⊥), τ2) = 1.

Component 4: Check that Vfy′((⊥,⊥,⊥,⊥,⊥,⊥), λ) = 1.

VfyFT would then return c1 and c2, since all checks would succeed. The aggregate
signature τ1,2 could further be aggregated with τ3, resulting in a signature τ1,2,3
valid for C1,2,3 = (c1, c2, c3,⊥,⊥,⊥) with

τ1,2,3 =


τ1

τ1 · τ2
τ2 · τ3
τ3

.
Since C1,2,3[2] 6= ⊥ 6= C ′2[2], the two claim sequences C1,2,3 and C ′2 are not
exclusively mergeable and cannot be aggregated. However, c′2 could be associated
with another, still empty, position like position 4 and then be aggregated to
C1,2,3.
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C1,2,3 and C4 could be aggregated, resulting in τ1,2,3,4 for C1,2,3,4 = (c1, c2,
c3, c4, ⊥, ⊥) with one error:

τ1,2,3,4 =


τ1 · τ4
τ1 · τ2

τ2 · τ3 · τ4
τ3

.
VfyFT(C1,2,3,4, τ1,2,3,4) would do the following:

Component 1: Check that Vfy′((c1,⊥,⊥, c4,⊥,⊥), τ1 · τ4) = 1, which would
fail, since τ4 is invalid.

Component 2: Check that Vfy′((c1, c2,⊥,⊥,⊥,⊥), τ1 · τ2) = 1.

Component 3: Check that Vfy′((⊥, c2, c3, c4,⊥,⊥), τ2 · τ4) = 1, which would
fail, since τ4 is invalid.

Component 4: Check that Vfy′((⊥,⊥, c3,⊥,⊥,⊥), τ3 = 1.

Now, all checks containing c4 fail and VfyFT would therefore not output it.
However, the second and fourth checks still succeed and Vfy would therefore suc-
cessfully output c1, c2 and c3, even though one faulty signature was aggregated.

The next two theorems show that if Σ′ is unforgeable, then so is ΣFT and
that ΣFT is d-fault-tolerant if F is a d-cover-free family.

Theorem 4.5.2. If Σ′ is a (t′, q, ε)-AS-EUF-CMA secure aggregate signature
scheme, then the scheme ΣFT defined above is a (t, q, ε)-AS-EUF-CMA secure
aggregate signature scheme with list verification, where t is approximately the
same as t′.

Proof. Assume that A is an attacker breaking the (t, q, ε)-AS-EUF-CMA security
of ΣFT. We construct a simulator B that uses A to break the (t′, q, ε)-AS-
EUF-CMA security of Σ′.

In the Setup Phase, B receives a public key pk from its challenger, which
it passes on to A. Whenever A makes a signature query for a message m, B
obtains a signature σ by forwarding m to the challenger. B then sends σ to
A and continues the simulation. Since individual signatures of ΣFT are simply
signatures of Σ′, this is a valid answer to the query. At some point, A outputs
a claim sequence C∗ and a signature τ∗ as its forgery. B now checks that C∗
contains a claim c∗ = (pk,m∗) for a message m∗ that A never asked a signature
for in the Query Phase and that c∗ is in the output of VfyFT(C∗,m∗).

If this is not the case, then the attack of A was not successful and B terminates
by outputting ⊥. Otherwise, by definition of VfyFT, there must be an index i
such that

c∗ ∈ elem(C∗[Mi]) and Vfy′(C∗[Mi], τ∗[i]) = 1.

Note that the queries of B are exactly the same as those of A, so if A did not
query m∗, then neither did B. Therefore, B can output C∗[Mi] and τ∗[i] to win
the experiment.

Thus, B wins exactly if and only if A wins. Therefore B also has success
probability ε. We also see that B makes at most q queries. Furthermore, the
run time of B is approximately the same as the run time of A.
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Theorem 4.5.3. If F = (S,Blocks) is a d-cover-free family, then the aggregate
signature scheme ΣFT defined above is tolerant against d errors, and in particular,
it is correct.

Proof. Let M = {(c1, τ1), . . . , (cn, τn)} be a multiset of claim-signature pairs,
which is partitioned into two multisets Mirreg and Mreg, containing the pairs
(ci, τi) for which τi is irregular or regular for ci, respectively. Let M contain
at most d errors, i.e. |Mirreg| ≤ d. Moreover, let τ be a signature that was
aggregated from the signatures in M in arbitrary order and C the corresponding
claim sequence.

To simplify the proof and without loss of generality, we assume that C =
(c1, . . . , cn) contains no claim placeholders and that the order in the claim
sequence is the same as in the indexing of the signatures in M . Finally, let
F = (S,Blocks) be the d-cover-free family used by ΣFT, where S = {s1, . . . , sm}
and Blocks = {B1, . . . , Bn}.

We need to show that R ⊆ VfyFT(C, τ) =: V , where R is the multiset of
all the claims in Mreg. Recall that rows(M) and cols(M) denote the number
of rows and columns of M, respectively. Let bi := Vfy′(C[Mi], τ [i]) for all
i ∈ [rows(M)].

Assume for a contradiction that there is a claim c∗ that is contained strictly
more often in R than in V . Then there must exist an index j∗ such that
C[j∗] = c∗ and bi = 0 for all indices i ∈ [rows(M)] with M[i, j∗] = 1. In the
following, let

I := {i ∈ [rows(M)] : M[i, j∗] = 1}

be the set of these indices. Observe that these are the indices of all rows where
the individual signature τ∗ for c∗ is aggregated into τ [i].

We now show that this implies that the set Bj∗ , which corresponds to the
column j∗ ofM, is covered by the sets Bk, corresponding to the columns of the
claims with irregular signatures, which is a contradiction to the d-cover-freeness
of F , since |Mirreg| ≤ d.

For each i ∈ I, since bi = 0 and using the correctness of Σ′, there must be
some k ∈ [n] such that (ck, σk) ∈Mirreg andM[i, k] = 1. Let K denote the set
of these indices. Since M contains at most d errors, there are at most d such
indices k in total, i.e. we have |K| ≤ d. Note furthermore that j∗ /∈ K, since
(c∗, τ∗) ∈Mreg, according to our assumption.

We now have established that for each i ∈ I, there exists a k with (ck, σk) ∈
Mirreg andM[i, k] = 1. We have also shown that |K| ≤ d and j∗ /∈ K. Recall
that by definition of the incidence matrixM, we have for all i ∈ [rows(M)] and
j ∈ [cols(M)]:

M[i, j] = 1 ⇐⇒ si ∈ Bj .

Restating the facts from the above paragraph using this equivalence yields that
for all i with si ∈ Bj∗ , there exists a k 6= j∗ with si ∈ Bk, where there are at
most d distinct indices k ∈ K in total. But this means that Bj∗ ⊆

⋃
k∈K Bk,

where the union is over at most d different subsets Bk 6= Bj∗ of S. This is a
direct contradiction to the d-cover-freeness of F .

So our assumption must be false and there cannot exist a claim c∗ which is
contained strictly more often in R than in V . We therefore have R ⊆ V , which
concludes the proof.
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Compression Ratio. Let C be a claim sequence of length n ∈ N and τ be an
aggregate signature of ΣFT regular for C. We assume in the following that the
size of all signatures of the underlying scheme Σ′ is bounded by a constant s and
is at least 1. Then the compression ratio of our scheme is ρ(n) = n

rows(M) , since

n

size(τ) ≤
n

rows(M) · s ∈ O(ρ(n)) and

n

size(τ) ≥
n

rows(M) ∈ Ω(ρ(n)).
(4.1)

Clearly, the compression ratio ρ(n) of ΣFT is less than 1 if n < rows(M),
so aggregate signatures are actually larger than the sum of the sizes of the
individual signature when only a few signatures have been aggregated so far (i.e.
less then rows(M) individual signatures). The scheme can be easily adapted
to fix this behavior by simply storing the first rows(M) individual signatures
τ1, . . . , τrows(M) in a list, instead of immediately aggregating them. As soon as
the signature τrows(M)+1 is added, the individual signatures are aggregated using
the aggregation algorithm defined above. When further signatures are added,
the size of the aggregate signature remains bounded by rows(M) · s.

4.5.1 Achieving Unbounded Aggregation
In order to achieve unbounded aggregation, we do not need just one cover-free
family, but a sequence of cover-free families increasing in size, such that we can
jump to the next larger one as soon as we exceed the capacity for the bound of
signatures that can be aggregated. This sequence needs to exhibit a monotonicity
property, in order to work with our scheme:

Definition 4.5.4 (Monotone Cover-Free Family). Let (M(l))l be a family of
incidence matrices of corresponding d-cover-free families (Fl)l := (Sl,Blocksl)l,
where rows(l) denotes the number of rows and cols(l) denotes the number of
columns of M(l). (M(l))l is a monotone family of incidence matrices of (Fl)l,
if for l ≥ 1 we have Sl ⊆ Sl+1, Blocksl ⊆ Blocksl+1, such that

Sl+1 = {s1, . . . , srows(l), srows(l)+1, . . . , srows(l+1)} and
Blocksl+1 = {B1, . . . , Bcols(l), Bcols(l)+1, . . . , Bcols(l+1)},

where Sl = {s1, . . . , srows(l)} and Blocksl = {B1, . . . , Bcols(l)}. If this is the case,
we also call (Fl)l a monotone cover-free family.

Note that Definition 4.5.4 implies for monotone cover-free families, that

M(l+1) =
(
M(l) A

0 B

)
where for i = 1, . . . , rows(l), j = cols(l) + 1, . . . , cols(l + 1)

A[i, j] =
{

1, if si ∈ Bj ,
0, otherwise

and for i = rows(l), . . . , rows(l + 1), j = cols(l) + 1, . . . , cols(l + 1)

B[i, j] =
{

1, if si ∈ Bj ,
0, otherwise.
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So, eachM(l) contains all previousM(1), . . . ,M(l−1). Now, we can achieve un-
bounded aggregation by replacing the fixed incidence matrixM of a d-cover-free
family in our construction with a monotone cover-free family with incidence ma-
trices (M(l))l. For this, the aggregation algorithm AggFT on inputs C1, C2, τ1, τ2
first has to determine the smallest l, such that cols(l) ≥ max(|C1|, |C2|) and
then proceeds with the corresponding incidence matrixM(l). Analogously, the
verification algorithm VfyFT on inputs C, τ first determines the smallest l such
that cols(l) ≥ |C|.

Compression Ratio. The compression ratio of our unbounded scheme is
ρ(n) = n/rows(l), where l is the minimum index such that cols(l) ≥ n.

Remark. Idalino and Moura [IM18] improved on our unbounded construction
by using nested cover-free families that offer better compression ratios (dependent
on the number d of faults that can be tolerated).

4.5.2 Additional Feature: Selective Verification
Let τ be a signature which is regular for the claim sequence C = (c1, . . . , cn) of
our fault-tolerant aggregate signature scheme. Assume we would want to know
whether a signature for a specific claim c∗ is valid under τ , but we want to avoid
verifying all the claims in C to save verification time, especially if C is large. To
solve this problem, an additional algorithm SelectiveVfyFT(C, τ, c∗) can be added
to our construction that outputs the number of occurrences7 of c∗ in VfyFT(C, τ)
and which is faster to compute than actually computing VfyFT(C, τ) itself.

Let ΣFT be the scheme defined by our construction to achieve fault-tolerance,
Σ′ the underlying aggregate signature scheme and F the cover-free family with
incidence matrix M used to instantiate ΣFT. Then SelectiveVfyFT works as
follows:

1. Determine the set J of indices j where c∗ occurs in C, i.e. cj = c∗.

2. Determine the set I := {i ∈ rows(M) : M[i, j] = 1 for a j ∈ J}, containing
the indices of all rows where an individual signature for c∗ should have
been aggregated. Initialize M := ().

3. Iterate over all i ∈ I. If bi := Vfy′(C[Mi], τ [i]) = 1 for an index i, set
M := M tC[Mi]. As soon as M contains |J | occurrences of c∗, skip all
remaining i ∈ I.8

4. After the loop is done, output the number of occurrences of c∗ in M .

Since VfyFT returns all claims that are contained in a subsequence C[Mi]
with bi = 1, the output of SelectiveVfyFT is exactly the number of occurrences
of c∗ in VfyFT. SelectiveVfyFT therefore inherits the fault-tolerance and security
properties already proven for VfyFT.

7It outputs the number of occurrences, since the claim could be signed multiple times in
the aggregate signature. If one is not interested in this number, then it is easy to reformulate
the algorithm so that it stops once it finds a valid signature for the given claim and returns 1.

8The remaining i can safely be skipped, because the signature(s) of c∗ might have been
aggregated in more rows than we need to check. Suppose, for example, that c∗ occurs only
once in C. Then one valid signature τ [i] suffices to see that c∗ was correctly signed.
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In the best case, SelectiveVfyFT requires only one call to the underlying verification
algorithm Vfy′. In the worst case, it still only requires |I| ≤

∑
j∈J |Bj | calls to

Vfy′, where Bj is the set from the cover-free family corresponding to column j
ofM.

Furthermore, it is even possible to create a “subsignature” for c∗ that allows
everyone to check that c∗ has a valid signature without requiring the complete
claim sequence C and the complete signature τ : It is sufficient to give C ′ :=⊔
i∈I C[Mi] and the signatures τ [i] for i ∈ I to the verifier.

4.5.3 Instantiation using a Cover-Free Family based on
Polynomials over a Finite Field

There exist several constructions of d-cover-free families in the literature, for in-
stance, constructions based on concatenated codes [LVY01; DMR00a; DMR00b],
polynomials, algebraic-geometric Goppa codes, as well as randomized construc-
tions [KRS99]. For concreteness, we show an instantiation of our construction
using a cover-free family based on polynomials over a finite field.

Remark. This section is only a brief overview. This instantiation is discussed
in more detail in the PhD thesis of Jessica Koch [Koc19] and in [Har+16].

We use a deterministic construction of a d-cover-free family based on polynomials
like in [KRS99]. For that, let q, k ∈ N. The numbers q and k are parameters of
the cover-free family, but do not reflect a property of our construction.

For our d-cover-free family F = (S,Blocks) let Fq = {x1, . . . , xq} be a finite
field and

S := F2
q = {(xi, xj) : i, j = 1, . . . , q}, with |S| = q2.

For ease of presentation, we assume that q is a prime (as opposed to a prime
power), so we may write Fq = {0, . . . , q−1}. We consider the set of all univariate
polynomials f ∈ Fq[X] of degree at most k, denoted by Fq[X]≤k, i.e.

Fq[X]≤k :=
{
akX

k + . . .+ a1X + a0 : ai ∈ Fq, i = 0, . . . , k
}

with |Fq[X]≤k| = qk+1. Now, for every f ∈ Fq[X]≤k, we consider the subsets

Bf = {(x1, f(x1)), . . . , (xq, f(xq))} ⊂ S of size q,

consisting of all tuples (x, y) ∈ S which lie on the graph of f ∈ Fq[X]≤k, i.e. for
which f(x) = y. From this we obtain

Blocks := {Bf : f ∈ Fq[X]≤k},

which is of size qk+1. For any distinct Bf , Bf1 , . . . , Bfd
∈ Blocks it holds that

|Bf ∩Bfi | ≤ k,

since the degree of each polynomial gi := f − fi is at most k and hence each gi
has at most k zeros. Thus, we have∣∣∣∣∣Bf \

d⋃
i=1

Bfi

∣∣∣∣∣ ≥ q − d · k.
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Therefore, to achieve a d-cover-free family with this construction, q ≥ d · k + 1
must be fulfilled.

Now, we consider the incidence matrixM of the d-cover-free family, which
consists of |S| rows and |Blocks| columns. Each row corresponds to an element
of S and each column to an element of Blocks. In the construction above each
row corresponds to a tuple (x, y) ∈ F2

q, where the order is (0, 0), (0, 1), . . . , (q −
1, q − 1). In the following, let (xi, yi) denote the corresponding tuple for row i,
i = 0, . . . , q2 − 1. We start counting from 0 for simplicity, hence,

(x0, y0) = (0, 0), . . . , (xq−1, yq−1) = (0, q − 1),
(xq, yq) = (1, 0), . . . , (x2q−1, y2q−1) = (1, q − 1),

. . .
(xq2−q, yq2−q) = (q − 1, 0), . . . , (xq2−1, yq2−1) = (q − 1, q − 1).

Each column of the incidence matrix M corresponds to a polynomial of
degree at most k, where we decide to start with constant polynomials and end
with polynomials of degree k, i.e.

f0 := 0, f1 := 1, . . . , fq := X,

fq+1 := X + 1, fq+2 := X + 2, . . . , f2q := 2X,

f2q+1 := 2X + 1, f2q+2 := 2X + 2, . . . ,
...

...
...

. . .
...

. . . . . . . . . fqk+1−1 :=
k∑
i=0

(q − 1)Xi.

By fj we denote the corresponding polynomial for column j, for j =
0, . . . , qk+1 − 1, again starting from 0. Now, the incidence matrix is built
as

M[i, j] =
{

1, if fj(xi) = yi,

0, otherwise.

Remark. With this univariate polynomial-based construction of a d-cover-free
family it is very easy to generate the incidence matrix or only some parts of it, so
instead of storingM, the algorithms of ΣFT can construct it “on the fly”. This is
also helpful if we want to check some information separately (see Section 4.5.2).
If, for example, one is interested in verifying the validity of only one single
claim–signature pair (cj , σj) in an aggregate signature, it is not necessary to
generate the whole matrix but only the rows where the related column j has
1-entries. One simply needs to compute the polynomial that corresponds to
column j. For more details on how this can be done efficiently, see [Har+16;
Koc19].

Compression Ratio of Our Bounded Scheme. If our bounded scheme is
instantiated with this cover-free family and we assume that the size of signatures
of the underlying scheme Σ′ is bounded by a constant s, then, as shown for ΣFT
(see equation (4.1) in Section 4.5), the compression ratio is

ρ(n) = n

rows(M) = n

|S|
= n

q2 .
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For n = |Blocks|, we therefore have

ρ(n) = |Blocks|
|S|

= qk+1

q2 .

Since q ≥ d · k + 1, we have that |Blocks| grows exponentially in k, whereas
|S| grows only quadratically in k. Hence, |Blocks| is exponential in |S|, or, stated
differently, |S| is logarithmic in |Blocks|. This means that the size of an aggregate
signature is logarithmic in the number of aggregated individual signatures, once
more than rows(M) signatures have been aggregated.

Compression Ratio of Our Unbounded Scheme. To instantiate our un-
bounded construction, we first need to construct a monotone cover-free family.
The next lemma by [LVW06] shows how such a family can be generically con-
structed from any cover-free family:

Lemma 4.5.5. If F = (S,Blocks) and F ′ = (S ′,Blocks′) are d-cover-free
families, then there exist a d-cover-free family F∗ = (S∗,Blocks∗) with |S∗| =
|S|+ |S ′| and |Blocks∗| = |Blocks|+ |Blocks′|.

Proof. SupposeM andM′ are the incidence matrices of d-cover-free-families
F = (S,Blocks) and F ′ = (S ′,Blocks′), respectively. Then

M∗ =
(
M 0
0 M′

)
is an incidence matrix for a d-cover-free family F∗ = (S∗,Blocks∗) with |S∗| =
|S|+ |S ′| and |Blocks∗| = |Blocks|+ |Blocks′|.

If we now instantiate our unbounded scheme with the monotone family of
cover-free families obtained by fixing an incidence matrix M and repeatedly
using Lemma 4.5.5 onM, then the asymptotic compression ratio is ρ(n) = 1,
since

n

rows(l) ≤
cols(l)
rows(l) = l cols(M)

l rows(M) = cols(M)
rows(M) for all l,

which is constant. Therefore, the size of an aggregate signature is linear in the
length of the claim sequence.

However, if we assume that all signatures of the underlying scheme Σ′ have
a size bounded by s, then the concrete size of an aggregate signature is at most

rows(l)s ≤ l rows(M)s
≤ (n/cols(M) + 1) rows(M)s

=
(

rows(M)
cols(M) n+ rows(M)

)
s.

Since rows(l) = l rows(M) for the construction of the monotone family of
incidence matrices and l = dn/cols(M)e ≤ n/cols(M) + 1.

Therefore we see that the size of the aggregate signature is linear in n, but
the factor rows(M)/cols(M) can be made arbitrarily small by choosing a proper
cover-free family, such as the one described above based on polynomials over a
finite field.
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Example Instantiations. Table 4.1 shows parameters of several cover-free
families based on the construction described in this section. For each of the
rows, there is an instance of our construction that can compress signatures for
up to n claims to a vector of m signatures of Σ′, while tolerating up to d errors.
The numbers q and k are needed for the instantiation of the cover-free family,
but do not reflect a property of our construction. Of course, our scheme can be
instantiated with different parameters and completely different constructions of
cover-free families as well.

q k d m = |S| n = |Blocks|
5 2 2 25 125
11 2 5 121 1331
17 2 8 289 4913
17 4 4 289 ≈ 1.42 · 106

29 2 14 841 24389
53 2 26 2809 148877
101 2 50 10201 ≈ 1.03 · 106

251 3 83 63001 ≈ 3.97 · 109

1021 2 510 1042441 ≈ 1.06 · 109

Table 4.1: Example parameters for cover-free families.

4.6 Fault-Tolerance for Sequential Schemes

In Section 4.3, a multiset of claim–signature pairs (ci, τi) is said to contain d
errors, if d individual signatures τi are not regular for their respective claim ci
(see Definition 4.3.5). This definition is not applicable to sequential aggregate
signatures due to the lack of individual signatures τi. Hence, we need to find a
different definition to capture fault-tolerance for sequential aggregate signature
schemes.

A seemingly natural approach that might come to mind is to define the
number of errors via “intermediate” claim sequences Ci = (c1, . . . , ci) and their
respective signatures τi (this might not be well-defined, but let us ignore this
problem for the moment). Following this approach, one might say that a claim
sequence C contains d errors if d of the signatures τi are not regular outputs
of AggSign(skt, Ci−1, τi−1,mi). This approach fails, however, as it does not
distinguish between signatures τi, which are damaged but sufficiently intact to
authenticate some of the claims, and signatures that are completely destroyed.
For example, consider the claim sequence C = (c1, . . . , cn) and the signatures
τ1, . . . , τn, where all τi for i < n are regular for the respective intermediate claim
sequence Ci = (c1, . . . , ci), but τn is completely random. Then there was only
one irregular step, and hence only one error with regard to this definition, but
Vfy(C, τn) will output (⊥, . . . ,⊥). Thus, no scheme could even be 1-fault-tolerant,
if we would define fault-tolerance in this way.
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An alternative way to look at this is to observe that in the definitions for fully
flexible aggregate signatures, we assume that the aggregation step is always done
correctly, while errors only occur during signing. However, in the sequential
aggregate case, these two operations are inseparable, since there is only one
algorithm AggSign for both signing and aggregating and we therefore cannot
assume that aggregation did not introduce additional errors.

We therefore restrict our attention to specific changes to the claim sequence C,
namely replacements of individual claims as well as the addition or removal of
claims at the end of the sequence, which we do not consider for fault-tolerant
aggregate signatures, since here there is no firmly defined order of aggregation.9

For sequential aggregate schemes, however, it seems advantageous to capture
these types of “errors” as well, since it more closely follows the SAS-EUF-CMA
definition of unforgeability for sequential aggregate signature schemes, which also
captures these cases, in contrast to the AS-EUF-CMA definition for aggregate
signatures (see Definition 3.2.4 and Definition 3.3.4).

Furthermore, these changes closely model the needed requirements of appli-
cations of sequential aggregate signatures like secure logging, as they capture
events where an attacker edits log entries or removes tail-end log messages. A
more detailed discussion can be found in [Har+17a; Har20].

Definition 4.6.1 (Sequential Aggregate Signature Scheme with List Verifica-
tion). A sequential aggregate signature scheme with list verification is a tuple
Σ = (Gen,AggSign,Vfy) of three PPT algorithms as follows:

• The key generation algorithm Gen(1κ) receives the security parameter κ as
its input and outputs a tuple (pk, sk) consisting of the public key pk and
the secret key sk.

• The signature generation and aggregation algorithm AggSign(sk, C, σ,m)
receives the secret key sk, a claim sequence C, a corresponding signature
σ and a message m as its input and outputs a signature σ∗ for the new
claim sequence C∗ := C‖(pk,m).

• The verification algorithm Vfy(C, σ) receives a claim sequence C of length
n ∈ N0 and a signature σ as input. It outputs a sequence V (of length
n) of claims and error symbols ⊥. We require that for each i ∈ [n], we
have that either V [i] = C[i] or V [i] = ⊥, i.e. V can be obtained from C by
replacing claims with ⊥. Claims output by Vfy are taken to be valid.

The definition of list verification for sequential schemes differs slightly from the
one for fully flexible or synchronized schemes. The Vfy algorithm outputs a
sequence with error symbols, since the position of the respective claim in the
sequence is important for sequential schemes. For example, the same claim might
appear at multiple positions, but might only be valid for some of them. Since no
fixed aggregation order exists for fully flexible and synchronized aggregation, the
output of their Vfy algorithms is defined more generally, i.e. the output order
does not necessarily coincide with the input order, since it might not be possible
to deduce the order of aggregation from the aggregate.

9Note however that removals of claims without also somehow removing their respective
“subsignature” from the aggregate signature also results in an error in the definitions for fully
flexible aggregate signatures, see Section 5.4 for more details on this.
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To capture what we mean by errors for the case of sequential aggregate signatures,
we focus on differences of claim sequences. For the following definitions, let
C = (c1, . . . , cn) and C ′ = (c′1, . . . , c′k) be two claim sequences.

Definition 4.6.2 (Difference of Claim Sequences). C and C ′ differ on ` positions
(0 ≤ ` ≤ min(n, k)) if ci 6= c′i for ` indices 1 ≤ i ≤ min(n, k) and ci = c′i for the
rest.

Definition 4.6.3 (Errors in Claim Sequences). C ′ contains d errors with respect
to C if they differ on ` positions and d = |n− k|+ `.

Example 4.6.4. Let c1, c2, c3, c4 be four distinct claims and let C,C ′, C∗ be
three claim sequences with C = (c1, c2, c3), C ′ = (c1, c2) and C∗ = (c1, c2, c4).

Then C and C ′ differ in 0 positions, but C ′ contains 1 error with respect to
C, since |C| = |C ′|+ 1. Analogously, C contains one error with respect to C ′.
C and C∗ differ in one position and C∗ contains one error with respect to C.

We can now define fault-tolerance for sequential aggregate signature schemes:

Definition 4.6.5 (Fault-Tolerance for Sequential Aggregate Signature Schemes).
A sequential aggregate signature scheme Σ = (Gen,AggSign,Vfy) with list veri-
fication is tolerant against d errors, if for all claim sequences C and C ′, such
that C ′ contains at most d errors with respect to C and for all signatures τ that
are regular for C, we have

Vfy(C ′, τ)[i] = ci for all 1 ≤ i ≤ min(n, k) where ci = c′i.

In other words, Vfy outputs at least all claims ci from C that C ′ did not modify.

Definition 4.6.6 (Fault-Tolerant Sequential Aggregate Signature Scheme). A
d-fault-tolerant sequential aggregate signature scheme is a sequential aggregate
signature scheme with list verification that is tolerant against d errors. A scheme
is fault-tolerant, if it is d-fault-tolerant for some d > 0.

The generic construction to achieve fault-tolerance for aggregate signatures
by using an incidence matrix of a cover-free family from Section 4.5 can also
be used to achieve fault-tolerance for sequential aggregate signature schemes by
applying it to a sequential scheme. The construction is almost identical to the
construction for fully flexible and synchronized schemes, but the AggSign and
Vfy algorithms need to be slightly adapted, so that they respect the sequential
nature of aggregation and the modified definition of list verification.

Let Σ′ = (Gen′,AggSign′,Vfy′) be a sequential aggregate signature scheme
with list verification and F = (S,Blocks) a d-cover-free family. Again, signatures
of the fault-tolerant scheme ΣSeqFT = (GenSeqFT,AggSignSeqFT,VfySeqFT) are vec-
tors of signatures of Σ′ and are constructed according to the incidence matrix
M of F . For this purpose, let C0 := () and τ0[i] := λ for each i ∈ [rows(M)].
Furthermore, if v is a vector, then let v|` denote the vector v, truncated to the
first ` elements. Then the construction is as follows:

• GenSeqFT(1κ) creates and outputs a key pair (pk, sk)← Gen′(1κ).

• AggSignSeqFT(sk, Cj−1, τj−1,mj) takes as input a secret key sk, a claim
sequence Cj−1 = (c1, . . . , cj−1), its corresponding signature τj−1 (which is
a vector of signatures of Σ′) and a message mj to sign and aggregate.
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The sequential aggregate signature τj−1 is updated component-wise, ac-
cording to the entries ofM: the entries of column j determine in which
components of τj−1 the new message mj gets signed and aggregated.
More precisely, for all i ∈ [rows(M)] we set

τj [i] :=
{

AggSign′(sk, Cj−1[Mi], τj−1[i],mj), whereM[i, j] = 1,
τj−1[i], whereM[i, j] = 0.

The output is τj .

• VfySeqFT(C, τ) takes as input a claim sequence C of length n ∈ N0 and
an aggregate signature τ for C. First, VfySeqFT computes a bit vector
b ∈ {0, 1}n that specifies for each claim if it can safely be considered valid.
VfySeqFT initializes b to 0n and iterates over all entries τ [i] of τ , letting

b← b ∨Mi|n if Vfy′(C[Mi], τ [i]) = 1

in each iteration. Here, ∨ denotes the bitwise logical OR of two bit strings.
Finally, VfySeqFT builds the output sequence V component-wise, by letting

V [j] =
{
C[j], if b[j] = 1,
⊥, otherwise,

for all j ∈ [n]

and then outputs V .

Since the proofs for security and fault-tolerance are mostly identical to the proofs
for aggregate signature schemes, we only state the following theorems without
proving them. Proofs can be found in the full version [Har+17b] of [Har+17a].

Theorem 4.6.7. If Σ′ is a (t′, q, ε)-SAS-EUF-CMA secure aggregate signature
scheme, then the scheme ΣSeqFT defined above is a (t, q, ε)-SAS-EUF-CMA secure
aggregate signature scheme with list verification, where t is approximately the
same as t′.

Theorem 4.6.8. If F = (S,Blocks) is a d-cover-free family, then the sequential
aggregate signature scheme ΣSeqFT defined above is tolerant against d errors, and
in particular, it is correct.

Remark. Not all sequential aggregate signature schemes respect the sequential
order of aggregation when verifying signatures. For example, the scheme of Lu
et al. [Lu+06] does not and here, a signature for a claim sequence C is also
valid for any reordering of C (see Section 5.3.6 for a discussion of this scheme).
Furthermore, they also use a different definition of SAS-EUF-CMA security than
the one given by Lysyanskaya et al. [Lys+04] (also see the discussion below
Definition 3.3.4). The Definitions 4.6.2 and 4.6.3 of differences and errors of
claim sequences therefore are not very meaningful for these schemes.
One could modify these schemes, so that AggSign(sk, C, σ,m) aggregates a
signature for the message (|C| + 1)‖>‖m, i.e. it now also incorporates the
index of m in the current claim sequence into the signature. Here, “>” is some
unique symbol that can be used to clearly distinguish the index bit string from
the message bit string, so that attackers cannot “move” bits of the index to
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the message and vice-versa by clever reorderings and changes to the claims,
which could be used to find different claim sequences that are valid for the
same signature. When verifying a claim sequence C ′ with signature σ, the Vfy
algorithm will consequentially also need to prepend the indices and > to the
messages. This way, one can enforce that these schemes also need to respect the
order of aggregation. Alternatively, for two claim sequences C and C ′ where,
without loss of generality, |C| ≥ |C ′|, we could also say that C contains d errors
with respect to C ′, if d = |C \ C ′|.

For both options, the presented results transfer and in any case, claim
sequences in our fault-tolerant construction may not be reordered, since each
claim needs to be assigned to a specific and fixed position.

4.7 Application: Robust Secure Logging
In this section we discuss a practical application of fault-tolerance and show how
a secure and robust logging scheme can be constructed from a fault-tolerant
sequential aggregate scheme.

Remark. This section is taken almost entirely from [Har+17a]. We only give
a brief sketch of the results and leave out formal proofs. More details can be
found in [Har+17a] and in the PhD thesis of Gunnar Hartung [Har20].

4.7.1 Introduction to Secure Logging
Log files are an indispensable source of information for administrators investigat-
ing incidents in a computer system. They provide fine-grained information on
actions and events that happened within the system, such as business transac-
tions, errors or security violations. Attackers frequently modify log files to cover
their traces, so being able to distinguish real and faked information is crucial.

Therefore, the need to detect modifications to log files is widely recognized
among security professionals and much effort has been devoted to finding solutions
that unveil such modifications. Cryptographic solutions must be resilient to
attackers that gain full control of the log server which holds the secret key. A
logging scheme must stay secure even if the attacker obtains the secret key at
some point in time and it must continue to enable the discovery of illicit log
changes which occurred before the secret key was stolen to protect old log entries
from unnoticed modification.

Since this is impossible with standard schemes, Anderson [And97] proposed
forward secure schemes (later formalized in [BM99a], as remarked in [Boy+06]).
Here, time is divided into intervals, called epochs. For each epoch t, a new secret
key is computed from the key of the previous epoch t − 1. There is only one
single public key, that can be used to verify signatures created in any epoch,
but Vfy also receives an epoch t as its input and signatures are only valid for
the epoch t they were created in. By securely erasing old secret keys when they
expire, one ensures that an attacker cannot forge signatures for previous epochs.

Detecting log truncations (i.e. the removal of log entries at the end) is a
surprisingly hard problem, because any authentication information computed
by the log server can only authenticate past entries, so there is nothing that
authenticates the end of such a chain. Ma and Tsudik [MT09] were the first to
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present a mechanism to detect truncations of log files. Their solution is based
on forward secure sequential aggregate signatures.

The core property of their solution lies in the fact that unforgeability for
sequential aggregate signature schemes implies that removing a message from
a given sequential aggregate signature is intractable in a restricted sense (we
discuss this topic of deaggregation further in Chapter 5). Ma and Tsudik [MT09]
then use this property by storing only a single signature for the entire log file,
which is an aggregate of the signatures for each individual message. The supposed
hardness of removing an individual signature then guarantees that no attacker
can remove any message from the log file without notice, as in truncation attacks.
However, their approach is not robust, i.e. a single erroneous log entry renders
the signature invalid, without any information on where the error is located. In
a following investigation, distinguishing between real and faked information is
no longer possible.

Only two solutions proposed so far are robust and truncation-secure at the
same time, namely the second immutable scheme in [MT09], and the scheme of
Hartung [Har16]. Unfortunately, this robustness property is “bought” by falling
back to individual signatures for each log entry, resulting in a very large log
signature that is linear in the log size. Moreover, the truncation security of the
scheme of [MT09] is only argued informally without a rigorous proof.

By combining fault-tolerance for sequential aggregate signature schemes and
forward security, we can construct a provably secure and robust logging scheme
that is publicly-verifiable (as defined in [Hol06]), and features short signatures,
robustness and truncation resistance. The security reduction is tight and the
scheme does not require public ledgers (e.g. blockchains) or any other third party
that needs to vouch for the integrity of the log file.

4.7.2 Forward Security
A forward secure digital signature scheme [BM99a] uses distinct secret keys for
signing for different time intervals called epochs. The main idea is to provide
security for previous epochs, even when the secret key of the current epoch
gets compromised in some way (for example even if an attacker would gain full
knowledge of the secret key).

Throughout this section we assume without loss of generality that the current
epoch number can be efficiently derived from the current secret key. The
verification algorithm also receives the epoch number as input and a signature
computed for a specific epoch t is only valid for this epoch number. Therefore,
claims now also store the respective epoch number.

All secret keys offer the same functionality, i.e. all signatures computed under
any of theses keys are valid for the same public key. Forward secure schemes
then offer an additional algorithm Update, which given the secret key of epoch t,
efficiently computes a key of the next epoch t+ 1. We call schemes that offer this
functionality key-evolving. Furthermore, it should be computational infeasible to
compute any secret key of any previous epoch or to forge any signature valid for
a previous epoch, even if the secret key of the current epoch is known. This way,
all signatures for epochs before the one in which the secret key was compromised
remain functional and still securely authenticate their respective messages. These
properties are then captured by the security definitions for key-evolving schemes.
As an example, we now formally define these concepts for digital signatures.
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Definition 4.7.1 (Key-Evolving Digital Signature). A key-evolving digital
signature signature scheme is a tuple of PPT algorithms Σ = (Gen, Update,
Sign, Vfy), where

• Gen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.

• Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 its
output is not defined. If t < T − 1 it computes the secret key skt+1 for the
following period t+ 1 and securely erases the old secret key skt.

• Sign(skt,m) takes as input a secret key skt and a message m ∈ {0, 1}∗ and
outputs a signature σ for claim (pk, t,m), where t is the epoch of skt.

• Vfy((pk, t,m), σ) outputs 1 if σ is a valid signature for the message m in
epoch t under public key pk, and 0 otherwise.

Definition 4.7.2 (Correctness for Key-Evolving Digital Signature Schemes). A
key-evolving digital signature scheme is correct if for all epoch bounds T =
poly(κ), all indices t ∈ {0, . . . , T − 1}, all messages m ∈ {0, 1}∗ and all
(pk, sk0) ← Gen(1κ, 1T ) and skt+1 = Update(skt) for t = {0, . . . , T − 2}, it
holds that

Vfy((pk, t,m),Sign(skt,m)) = 1.

Definition 4.7.3 (FS-EUF-CMA Security for Key-Evolving Digital Signature
Schemes). The security experiment for key-evolving digital signatures schemes
consists of four phases and is based on [BM99a]. The general idea is that an
attacker should not be able to forge a signature for any earlier epoch, even if he
knows the secret key of the current epoch.

Setup Phase. The challenger C generates a key pair (pk∗, sk∗0)← Gen(1κ, 1T )
(where T is the maximal number of epochs) and gives the public key pk∗
and T to the attacker. It sets t := 0.

Query Phase. The attacker A has access to an Update and a Sign oracle.
When A calls the Update oracle, C computes sk∗t+1 := Update(sk∗t ), sets
t := t+1, and returns “ok”. A may only make T−1 Update queries. A may
(adaptively) issue signature queries to the Sign oracle for messages m of
his choosing. For these queries, the challenger responds with a signature
σ ← Sign(sk∗t ,m).

Break In Phase. A may send a break in request to obtain the current secret
key. C sets tBreakIn := t and sends skt to A. Afterwards, A is denied any
further access to the oracles. We set tBreakIn :=∞ if A does not break in.

Forgery Phase. Finally, A outputs a claim (pk∗, t∗,m∗) and a corresponding
signature σ∗.

The attacker A wins the experiment if σ∗ is a valid signature for the claim
(pk∗, t∗,m∗), m∗ was not queried to the Sign oracle during period t∗, and t∗ <
tBreakIn.
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A key-evolving digital signature scheme is FS-EUF-CMA secure10 if for each
T = poly(κ) the success probability in winning the above experiment is negligible
in the security parameter κ for all PPT attackers A.

The definitions of fully flexible, sequential and synchronized aggregate schemes
can be easily reformulated in the same way to also encompass forward-security.
Since these reformulations are straightforward, we do not formally define them
here. Formal definitions for sequential schemes can be found in [Har+17a]. The
prefix “FS” (standing for “Forward Secure”) is used to distinguish the forward
secure definitions from the common definitions.

4.7.3 Formal Definition of Robust Secure Logging
We now present the formal definition of robust and secure logging from [Har+17a].

Definition 4.7.4 (Logging Scheme with List Verification). A logging scheme
with list verification Λ = (Gen, Append, Update, ValidEntries, VfyLog) is a tuple
of five PPT algorithms, where

• Gen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.

• Append(skt, Ci−1, σi−1,mi) takes as input a secret key skt for epoch t, a
claim sequence Ci−1, a corresponding signature σi−1 and a message mi. It
outputs a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi),
thereby adding mi to the log.11

• Update(skt, C, σ) takes as input the secret key skt of period t. If t ≥ T − 1
the output is undefined. If t < T − 1 it computes the secret key skt+1 for
period t+ 1 and securely erases the old key skt. The claim sequence C and
signature σ may be modified, e.g. to add epoch markers [BY97].

• ValidEntries(C, σ) takes as input a claim sequence C of length n ∈ N0 and
a signature σ for C and outputs a sequence V (also of length n) of claims
and error symbols ⊥. We require that for each i ∈ [n], either V [i] = C[i]
or V [i] = ⊥ (i.e. V can be obtained from C by replacing claims with ⊥).
Claims output by Vfy are taken to be valid.

• VfyLog(C, σ) outputs either ∅, if the signature is without errors, or a subset
of a set of error symbols E, otherwise. We set E := {⊥sig,⊥len,⊥em},
with the interpretation that ⊥sig ∈ VfyLog(C, σ) if the signature is not
valid, i.e. ValidEntries(C, τ) 6= C. Moreover, if ⊥len ∈ VfyLog(C, σ), the
signature may have been truncated. Finally, ⊥em ∈ VfyLog(C, σ) if some
problem with epoch markers has been detected.

Fault-tolerance is defined analogously to the definition for sequential aggre-
gate signature schemes (see Section 4.6), substituting Append for AggSign, and

10FS-EUF-CMA stands for Forward Secure Existentially Unforgeable Under Chosen Message
Attacks.

11For efficiency, if the log-file is used with only one public key, it suffices to add it once,
instead of adding it to each log entry.
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ValidEntries for Vfy. A logging scheme with list verification is robust if it is fault-
tolerant and we have that regular log files, meaning log files created by correctly
using the algorithms of the log scheme, are error-free (i.e. VfyLog(C, σ) = ∅)
and error-free log files are valid (i.e. ValidEntries(C, τ) = C). Note that if the
signature is valid in the sense that all claims are returned by ValidEntries, it is
still possible that an attacker might have truncated the log. In this case an error
symbol returned by VfyLog points towards this possibility.

The following security notion for logging schemes originally presented in
[Har+17a] is similar to unforgeability for forward secure sequential aggregate
signature schemes, but models the real-world setting of secure logging more
closely: The log server maintains a state which the attacker influences only
through his oracles. In more detail, a log append oracle appends an entry to the
internal log file and an attacker can never add messages to any earlier state of
the log file. Moreover, the internal signatures remain hidden from the attacker
by default, as these usually stay on the server.

To strengthen the notion, attackers have access to an additional oracle
returning the current signature, which models a public verification of the log file
by a third party. To exclude trivial attacks, attackers are not allowed to truncate
the log file to a state they queried a signature for. However, attackers may try to,
for example, use these signatures to truncate the log file to a different previous
state.

At the end of the experiment, the attacker outputs a forgery. Furthermore,
error-freeness is required, i.e. VfyLog(C∗, σ∗) = ∅, as otherwise the attacker might
use a combination of faults and truncations of the claim sequence to obtain a valid
signature (i.e. verification of the forged signature and claim sequence outputs
the full forged claim sequence) that violates other anti-truncation mechanisms.

Definition 4.7.5 (FS-EUF-CLMA Security for Logging Schemes with List Ver-
ification). For a log scheme with list verification Λ = (Gen,Append,Update,
ValidEntries,VfyLog), a PPT attacker A, the number of epochs T and the secu-
rity parameter κ ∈ N0, the FS-EUF-CLMA12 security experiment is defined as
follows:

Setup Phase. The experiment generates a key pair (pk, sk0) ← Gen(1κ, 1T ),
the log file C0 := () and signature σ0 := λ. It initializes the epoch counter
t := 0, and starts A with inputs pk, T .

Query Phase. A may adaptively issue queries to the following oracles:

LogAppend Oracle. The experiment appends the specified message m to
the log and updates the signature via σi ← Append(skt, Ci−1, σi−1,m),
where σi−1 denotes the previous signature, and returns “ok”.

NextEpoch Oracle. The oracle updates the secret key, the log and its
signature via Update(skt, Ci−1, σi−1), increments the epoch counter
t := t+ 1 and returns “ok”. It may be queried at most T − 1 times.

GetSignature Oracle. Whenever A calls the GetSignature oracle, the
challenger responds with the current signature σi of the log.

12FS-EUF-CLMA stands for Forward Secure Existentially Unforgeable Under Chosen Log
Message Attacks.
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Break In Phase. The attacker may break in to obtain the current secret key skt.
If A does, the experiment sets tBreakIn := t. Otherwise, let tBreakIn :=∞.

Forgery Phase. A outputs a log file C∗, and a forged signature σ∗ for C∗.

A wins the experiment, if the following conditions hold:

• The signature σ∗ is error-free, i.e. VfyLog(C∗, σ∗) = ∅, which also implies
that the signature is valid.

• The signature is non-trivial, meaning the following: Let C ′ be the subse-
quence of C∗ that is obtained by deleting all claims c = (pk, t,m) from C∗,
where t ≥ tBreakIn. The forgery is non-trivial, if and only if |C ′| 6= 0 and
C ′ does not equal the content of the log file during any GetSignature query.

A logging scheme with list verification Λ is said to be FS-EUF-CLMA secure, if
and only if for all T = T (κ) ∈ poly(κ) and all PPT attackers A the probability
for A winning the above experiment is negligible in the security parameter κ.

4.7.4 Construction of a Robust Secure Logging Scheme
We now present our generic construction of a secure and robust log scheme
Λ = (Gen,Append,Update,ValidEntries,VfyLog) using a fault-tolerant sequential
aggregate signature.

Let SAS = (GenSAS,UpdateSAS,AggSignSAS,VfySAS) be a key-evolving sequen-
tial aggregate scheme with list verification and FS = (GenFS,UpdateFS, SignFS,
VfyFS) a key-evolving digital signature scheme.

• Gen(1κ, 1T ) creates key pairs of SAS and FS as

(pkSAS, skSAS)← GenSAS(1κ, 1T ),
(pkFS, skFS)← GenFS(1κ, 1T )

and returns pk = (pkSAS, pkFS) and sk0 = (skSAS, skFS).

• Append(skt, Ci−1, τi−1,mi) takes as input a secret key skt = (skSAS, skFS)
for period t, a claim sequence Ci−1 = (c1, . . . , ci−1), its corresponding
signature τi−1 = (σi−1, si−1) and a message mi to sign. It uses the signing
algorithms of SAS and FS to compute a signature on the entries of the log
and a signature on the length of the log via

σi ← AggSignSAS(skSAS, Ci−1, σi−1,mi ‖ i), and
si ← SignFS(skFS, i).

Append securely erases the old length signature si−1 and the old log
signature σi−1, so that they cannot be used in case of a later break in. The
resulting signature τi = (σi, si) is returned.

• Update(skt, Ci−1, τi−1) takes as input the secret key skt = (skSAS, skFS), a
claim sequence Ci−1 and a corresponding signature τi−1. It appends an
epoch marker to the log file that is valid for the current epoch t via

τi ← Append(skt, Ci−1, τi−1, "End of epoch:" ‖ t).



70 CHAPTER 4. FAULT-TOLERANCE

It then updates the components of skt via sk′SAS ← UpdateSAS(skSAS) and
sk′FS ← UpdateFS(skFS). These algorithms also erase the old keys securely.
The new secret key is skt+1 = (sk′SAS, sk

′
FS), the new claim sequence is

Ci = Ci−1 ‖(pk, t, "End of epoch:" ‖ t), and the new signature is τi.

• ValidEntries(C, τ) takes as input a claim sequence C and a signature τ =
(σ, s) for C. It outputs VfySAS(C ′, σ), where C ′ is the claim sequence
generated from C by appending the message number i to mi for all claims
in C.

• VfyLog(C, τ) takes as input a claim sequence C and a signature τ = (σ, s)
for C. It maintains an error set E initialized to ∅.
First, it verifies the FS signature s by computing b = VfyFS((pkFS, t, |C|), s).
If b = 0, it adds ⊥len to E.
Then it proceeds with checking the epoch markers: For all claims ci =
(pk, ti,mi) and ci+1 = (pk, ti+1,mi+1) in C, where ti+1 6= ti, it considers
two cases. If ti+1 6= ti + 1 then it adds ⊥em to E, else it check ifs

mi = "End of epoch:" ‖ ti.

If not, it adds ⊥em to E.
Next, it checks whether the signature is valid, i.e. ValidEntries(C, τ) = C,
and adds ⊥sig to E, if this is not the case. Finally, it outputs the set of
errors E.

The construction fulfills the desired definitions of security and fault-tolerance
and has a tight security proof:

Theorem 4.7.6. The log scheme Λ described above is d-fault-tolerant, if the
used key-evolving sequential aggregate signature scheme SAS is d-fault-tolerant.

Proof. A proof of this theorem can be found in the full version [Har+17b] of
[Har+17a].

Theorem 4.7.7. The log scheme Λ described above is FS-EUF-CLMA secure, if
SAS is FS-SAS-EUF-CMA secure and FS is FS-EUF-CMA secure.

More precisely, for any PPT adversary A who breaks the FS-EUF-CLMA
security with success probability εA, there exists a PPT adversary B who either
breaks the FS-SAS-EUF-CMA security of SAS or the FS-EUF-CMA security of FS
with success probability at least εSAS

B ≥ εA
2 and εFS

B ≥
εA
2 , respectively.

Proof. A proof of this theorem can be found in [Har+17a].

Practical instantiations of the construction can be obtained by using the schemes
of [BM99a; MT07; Ma08].13 See Section 5 of [Har+17a] for a detailed discussion
of its performance.

13Note that several of the forward secure sequential aggregate schemes proposed by Ma
[Ma08] were later shown to be insecure by Hartung [Har17].



Chapter 5

Deaggregation Security

5.1 Introduction

In this chapter we discuss the second main contribution of this thesis, which
is deaggregation security of aggregate signature schemes. The question is if
attackers can remove claims from a given aggregate signature and through this
compute signatures for claim sequences that were never honestly signed. This
would enable the attacker to selectively remove unwanted messages and this type
of attack could, for example, be used to remove entries of a database that is
protected by an aggregate signature scheme.

To illustrate this, suppose σ is an aggregate signature for three distinct claims
c1, c2 and c3 of three different signers s1, s2 and s3. Then an attacker that knows
σAgg might be able compute new signatures that are valid for some subset of
these claims, by removing or deaggregating individual signatures that were used
to compute σ. In the example, the attacker might be able to compute a signature
valid for c1 and c2 from σAgg, even if no such signature was ever computed or
made public by the signers.

While aggregation generally is a public operation and no secret information
is needed to aggregate, signers are not required to publicly release individual
signatures for their messages. So, the signers could have cooperated to secretly
compute σAgg and then may have released it without revealing any of the
intermediate signatures. Another scenario could be that s1 and s3 released
individual signatures for c1 and c3, which s2 then aggregated together with a
signature σ2 for c2 to compute σAgg, without ever publicly revealing σ2. In both
cases, it should not be possible for an attacker to compute a signature that is
valid for c1 and c2 from σAgg.

At first glance, one might assume that aggregation is an irreversible com-
mitment step and therefore such attacks should not be possible. If this would
be true, aggregate signatures would also provide protection against unwanted
deletion of data and the retraction of signatures, which could have a wide
range of applications, from secure logging [MT09], securely storing databases,
constructing other cryptographic primitives like verifably encrypted signatures
[Bon+03] to improving cryptocurrencies [SMD14]. Unfortunately, this intuition
turns out to be false and aggregation is often a reversible operation.

71
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Many schemes operate in groups, signatures are group elements and aggre-
gation is done by simply multiplying these elements. Therefore, if an attacker
knows a signature σ for a claim sequence C and another signature σ′ for a
subsequence C ′ ( C, she can simply invert σ′ and deaggregate the corresponding
claims by computing σ · σ′−1, thereby creating a signature for the claims C \ C ′.
For example, the schemes of Boneh et al. [Bon+03] and Ahn et al. [AGH10]
can be exploited this way (see Section 5.3.1 and Section 5.3.7 for a detailed
discussion of their deaggregation security).

Furthermore, unforgeability also does not imply deaggregation security, since
the signature resulting from such a deaggregation attack might not contain a
forgery in the sense of unforgeability. Suppose an attacker observed a signature
σAgg for three distinct claims c1, c2, c3 and an individual signature σ2 for c2,
these are all signatures that were ever computed by the signers and the attacker
knows none of the secret keys. Now, we would expect that the attacker cannot
compute a signature σ′ valid for the claims c1 and c3 by somehow modifying
σAgg and σ2, since the signers never issued such a signature. However, since this
signature contains no new claims for any of the keys, it does not represent a
valid forgery. Therefore this type of attack is not ruled out by unforgeability
definitions. In fact, many schemes are susceptible to such attacks (again, for
example the schemes of [Bon+03; AGH10]), although their unforgeability was
formally proven and it would be possible to compute a signature for c1 and c3
from σAgg and σ2 in the example above. We discuss the relationship between
unforgeability and deaggregation security in more detail in Section 5.2.4.

The goal of this chapter is to clearly define and discuss deaggregation security,
as well as to analyze the potential deaggregation security of several existing
schemes.

5.1.1 Contribution
We formally define several definitions that capture security against deaggregation
attacks in various strengths. We discuss the relationships between these security
definitions, the definition of Saxena et al. [SMD14] and unforgeability and
thereby show that there exists a formal hierarchy of deaggregation security
definitions. For aggregate signature schemes that exhibit three rather natural
properties, we also show that several levels of this hierarchy collapse (i.e. basic
definitions imply stronger ones). Furthermore, we discuss the deaggregation (in-)
security of a range of aggregate signature schemes published in recent years and
precisely classify their offered deaggregation security by giving new deaggregation
security proofs and attacks and thereby formally show which definition of the
hierarchy they fulfill. Surprisingly, almost all schemes discussed offer at least a
basic protection against deaggregation attacks. Unfortunately, no scheme fulfills
the strong definition of Saxena et al., except for their own scheme, which is a
variant of the scheme of Boneh et al. [Bon+03], is only secure in the random
oracle model and impractical for many applications, since the signature size
grows linearly in the number of claims.

We also investigate the connection between fault-tolerance and deaggregation
security. Unfortunately, we can show that it is impossible for aggregate signature
schemes to be fault-tolerant and deaggregation secure at the same time. In fact,
the argumentation is surprisingly straightforward: Let σAgg be an aggregate
signature for a claim sequence C of a scheme that can at least tolerate one error.
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For simplicity, assume that σAgg contains no errors yet. A deaggregation attacker
then only needs to remove a claim c∗ from C without modifying σAgg. Now,
according to the definitions of fault-tolerant schemes, the Vfy algorithm will
output C \ (c∗), i.e. the attacker has successfully removed a claim by introducing
one fault. We argue this more formally in Section 5.4.

This unfortunately implies that for applications of aggregate signatures, a
trade-off between fault-tolerance and deaggregation security needs to be made.
One needs to carefully decide which of the two properties should be provided
directly by the aggregation scheme itself and which property needs to be protected
by additional security measures such as added back-up mechanisms or other
cryptographic primitives added on top of the aggregate signature scheme.

Remark. Minor parts of this chapter are based on work done together with
Roland Gröll and were already published in his diploma thesis [Grö16] that was
supervised by the author of this thesis. However, all parts that also appear in
[Grö16] are greatly improved, expanded and generalized and most of the results
presented here do not appear in [Grö16].

5.1.2 Related Work
Boneh, Gentry, Lynn and Shacham already discussed a very basic notion of
deaggregation security in their seminal work that introduced the concept of
aggregate signatures [Bon+03] and show that it has interesting applications.
Their notion basically states that given one single aggregate signature (and
no other signatures or access to a signing oracle), it is hard to remove one
of the aggregated claims. Interestingly, they do not formulate their notion as
a formal security definition for aggregate signature schemes, but rather as a
computational problem on groups (since their signatures are group elements)
and also do not give formal justifications why they assume that this problem is
computationally hard. They then use this assumption to construct a verifiably
encrypted signature scheme from their aggregate signature scheme. Fortunately,
Coron and Naccache [CN03] later showed that this computational problem is
equivalent to the Computational Diffie-Hellman problem. This problem, called
the k-Element Aggregate Extraction Problem, is also discussed in Section 5.2.1.

The research on aggregate signatures that followed the work of Boneh et al.
was mostly focused on constructing new aggregate signature schemes and did
not pay much attention to deaggregation security. To the best of our knowledge,
most of the aggregate signature schemes published after the work of Boneh et
al. were not constructed with deaggregation security in mind and were never
analyzed from this viewpoint.

However, sequential aggregate signatures are a special case. Here, the defi-
nition of unforgeability of Lysyanskaya et al. [Lys+04] for sequential schemes
(called SAS-EUF-CMA security in this thesis, see Definition 3.3.4) already implies
a very restricted form of deaggregation security. In unforgeability definitions, the
forgery of the attacker usually must contain at least one message signed under
the challenge public key pk∗ that the attacker never queried a signature for.
SAS-EUF-CMA security softens this restriction: Suppose the attacker sends a sig-
nature σ′ for a claim sequence C and asks the challenger to aggregate a signature
for m∗ to σ′. The challenger will then answer with a signature σAgg on the claim
sequence C‖(pk∗,m∗). Now, the attacker would also win the SAS-EUF-CMA
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experiment if he could output a signature valid for a claim sequence C ′‖(pk∗,m∗)
with C ′ 6= C, even if C ′ contains no new claim using pk∗. Therefore, the attacker
would win the experiment, if he could change the “prefix” C of his query. Such
a change can be a reordering of the claims in the prefix C, a modification of one
of the messages, inserting a new claim or, in fact, a deaggregation of a claim
of the prefix. Surprisingly, this type of unforgeability still does not imply any
form of general deaggregation security, as we discuss in Section 5.2.4. In fact,
the scheme of Lysyanskaya et al. [Lys+04] itself is susceptible to deaggregation
attacks (see and Section 5.3.4). Still, Ma and Tsudik [MT09] state that they
use this property of sequential schemes to construct a secure logging scheme.
However, they do not provide a rigorous proof for their construction and also do
not formally define which type of deaggregation security they exactly assume.
Furthermore, not all sequential schemes fulfill this definition of unforgeability,
for example the schemes of Lu et al. [Lu+06] and Lee, Lee, and Yung [LLY13b;
LLY13a] use a different definition where such forgeries are not seen as valid.

Mykletun, Narasimha, and Tsudik [MNT04] consider the concept of immutable
aggregate signatures in the context of database outsourcing. Here, the idea
is that aggregate signatures cannot be modified at all without some secret
knowledge (meaning aggregation is no longer a public operation), which also
seems to imply deaggregation security. Unfortunately, like [MT09] they also give
no formal definition of immutability and do not formally prove the security of
their schemes. Furthermore, they assume the existence of a trusted server, which
is also the only party able to aggregate.

Fischlin, Lehmann, and Schröder [FLS12] discuss history-freeness of sequential
aggregate signatures. Here, the AggSign algorithm does not receive the messages
and public keys so far as input to improve performance. The attacker might now
use partial signatures in its signature queries that are invalid or for which he does
not know the corresponding messages. Because the AggSign algorithm no longer
receives the necessary information to verify the signature, this might give the
attacker an advantage in breaking the scheme. In fact, most sequential schemes
critically rely on this verification step in the AggSign algorithm for their security
[BGR14]. Therefore, security needs to be defined differently and they give two
new definitions that also encompass a strong form of deaggregation security.
However, as already stated by Fischlin et al. themselves, it is unclear whether
their strong notion can be fulfilled. For their relaxed notion, they present a
scheme based on [Bon+03], which is secure in the random oracle model. However,
their definitions do not transfer to fully flexible or synchronized aggregation,
since they can only be achieved by schemes where aggregation is not a publicly
computable operation.

Saxena, Misra, and Dhar [SMD14] present a very strong notion of deaggrega-
tion security and show how it can be applied to increase the anonymity of the
Bitcoin cryptocurrency [Nak09]. They also construct a scheme that fulfills their
definition. Their construction is a variant of the scheme of Boneh et al. and
has the serious drawback that the size of aggregate signatures grows linearly in
the number of claims. Furthermore, their notion is tailor-made for their scheme
and several aspects of it need to be generalized so that it can also be applied to
other schemes as well (see Section 5.2.7).
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5.1.3 Overview
Section 5.2 presents and discusses a hierarchy of different security definitions that
capture security against deaggregation attacks. Section 5.2.2 and Section 5.2.3
present basic definitions called nDEAGG and nDEAGG+ security, that only offer
limited protection, but are nonetheless interesting from both a theoretical and
practical standpoint. Here, the attacker may query only one single aggregate
signature for a claim sequence of n claims (and has no access to a general signing
oracle) and then needs to deaggregate at least one claim to win.

Section 5.2.4 discusses the connection between deaggregation security and
unforgeability and shows that unforgeability does not imply any form of deaggre-
gation security. Section 5.2.5 discusses the relationship between different levels
of nDEAGG and nDEAGG+ security for different n. The main result is that
for schemes that exhibit three natural properties (called extendability, claim-
removability and order-independence) 2DEAGG, respectively 2DEAGG+, security
implies nDEAGG, respectively nDEAGG+ security, for n ≥ 2. Section 5.2.6 then
discusses these security definitions in detail.

In Section 5.2.7 a very strong definition capturing a high level of deaggregation
security given by [SMD14], which we call ADEAGG security, is introduced,
generalized and discussed. To conclude this section of security definitions for
deaggregation security, Section 5.2.9 gives an overview over the different security
definitions and their relationships.

Section 5.3 then discusses the deaggregation (in-) security of several known
aggregate signature schemes, namely the schemes of [Bon+03; Lys+04; Lu+06;
BNN07; Nev08; AGH10; SMD14] and presents formal deaggregation security
proofs and new attacks on these schemes.

Finally, in Section 5.4 we discuss the connection between deaggregation
security and fault-tolerance and show that no fault-tolerant scheme can be
deaggregation secure.

5.2 Definitions of Deaggregation Security
In this section, we introduce several security definitions that capture deaggrega-
tion security. We present a hierarchy of different definitions that successively
capture stronger forms of deaggregation security. The first definitions (nDEAGG
and nDEAGG+ security) are inspired by the k-Element Aggregate Extraction as-
sumption of [Bon+03]. They only capture a basic level of deaggregation security
and only provide very limited protection, since they allow the attacker only one
signature query for a claim sequence of length n.

However, they are still interesting from both a theoretical and practical
standpoint (see Section 5.2.6 for a detailed discussion). Also, most known schemes
fulfill only these basic definitions and are susceptible to stronger deaggregation
attacks, as we show in Section 5.3.

The strongest definition presented in this thesis, called ADEAGG security, is
a generalized form of the definition given by [SMD14] that succinctly captures a
high level of security and allows the attacker to adaptively ask for signatures.
Unfortunately, there exists no practical scheme that fulfills it. This section also
discusses the relationships between these definitions and their connection to
unforgeability.
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5.2.1 The k-Element Aggregate Extraction Assumption
As already mentioned in the section on related work, Boneh et al. [Bon+03]
already introduced the k-Element Aggregate Extraction Problem and the associ-
ated k-Element Aggregate Extraction Assumption, which captures a weak form of
deaggregation security for their scheme. The assumption is not formulated as a
security property of aggregate signatures, but rather as a computational problem
on algebraic groups. It is introduced in a general form for an unspecified value
of k, but since we only use the assumption for the special case of k = 2 in this
thesis, we only present it for this case:

Definition 5.2.1 (2-Element Aggregate Extraction Assumption). Let G be a
cyclic group of prime order p and g a random generator of G depended on the
security parameter κ. Let a, b, u, v ← Zp. The 2-Element Aggregate Extraction
Assumption (abbreviated as 2EAE) states that for all PPT algorithms A given
g, ga, gb, gu, gv and gau+bv it is difficult to calculate gau, i.e. it holds that

Pr
[
A(g, ga, gb, gu, gv, gau+bv) = gau : a, b, u, v ← Zp

]
≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

The connection to the BGLS aggregate signature scheme is as follows (see
Section 3.2.1 for an overview of the scheme):

• ga and gb can be interpreted as public keys of two different parties using
the BGLS aggregate signature scheme.

• gu and gv can be interpreted as the hash values of two distinct messages
m1 and m2, i.e. H(m1) = gu and H(m2) = gv.

• This implies that H(m1)a = gau and H(m2) = gbv are valid signatures
for m1 and m2, therefore gau+bv is an aggregate signature of m1 and m2
under the public keys of the two parties.

• The goal of the attacker is to extract gau from gau+bv, i.e. the attacker
needs to deaggregate one of the individual signatures from the given
aggregate signature, without knowledge of any individual signature.

Boneh et al. only state this assumption, but give no explicit justification to
assume that this problem is hard. Fortunately, in [CN03] Coron and Naccache
prove that the k-Element Aggregate Extraction assumption is equivalent to the
well-known Computational Diffie-Hellman assumption (for all k ≥ 2).

Theorem 5.2.2. The 2EAE assumption holds in G if and only if the Computa-
tional Diffie-Hellman Assumption also holds in G.

Proof. A proof of this theorem can be found in [CN03].

This assumption is also sufficient for Boneh et al. [Bon+03] to be able to
construct a verifiably encrypted signature scheme from their aggregate signature
scheme. This motivates our basic form of deaggregation security defined in the
following section.
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5.2.2 nDEAGG Security
We first present a definition that is strongly motivated by the 2EAE assumption
of Boneh et al. [Bon+03]. The attacker can send n messages to the challenger,
for which he computes n individual signatures, aggregates them and hands the
resulting aggregate signature over to the attacker. The goal of the attacker
is then to output an aggregate signature for a subset of these messages. As
it turns out, for many “natural” schemes, security for the special case of two
messages also implies security for any number of messages (see Section 5.2.5).
We formulate individual security definitions for each n instead of a more general
definition, since schemes might only be deaggregation secure for specific numbers
of claims, which is also further discussed in Section 5.2.5.

Remark. For the main part of this chapter, we focus on the case of fully flexible
aggregate signatures. We discuss how to adapt the definitions to sequential and
synchronized aggregate signature schemes in Section 5.2.8.

Unlike in the definitions for unforgeability, we need to strongly restrict the
knowledge of the attacker concerning the secret keys, i.e. he is not allowed to
choose any of the secret keys. This rules out trivial attacks, since if even one secret
key would be known to the attacker, he could trivially “deaggregate” by simply
signing a message under this key and outputting this newly computed signature.
However, in Section 5.2.3 we also present a definition in which attackers are
allowed to use keys and claims of their choosing additionally to the keys given
by the challenger.

For this definition, we have to take into account that the order in which
the claims are aggregated might influence the resulting aggregate signature.
Aggregating the same set of claims in different orders could potentially produce
different signatures, which for example is the case in the scheme of Lysyanskaya
et al. [Lys+04]. Here, the order of aggregation decides the order in which
several trapdoor permutations are evaluated on the messages. Therefore, the
resulting aggregate signature is strongly influenced by the order of aggregation1

(see Section 5.3.4 for details of the scheme). Theoretically, it could therefore be
possible that certain orders of aggregation result in aggregate signatures which
are “easier to deaggregate” than others. To reflect this, we allow the attacker
to specify the order in which the signatures are to be aggregated by sending an
order-tree as defined next:

Definition 5.2.3 (Order-Tree). An order-tree T for a claim sequence C with
|C| = n, i.e. containing n claims, is a binary tree with n leaves, where the edges
and leaves are marked as follows:

• The two outgoing edges of each inner node are marked with 1 and 2.

• The leaves are marked with pairwise distinct numbers in {1, . . . , n}.

An order-tree T implies a fully specified order of aggregation by applying the
following algorithm OrderAgg to the tree T , the corresponding claim sequence C
and list of secret keys.

1Recall that permutations in general do not commutate.
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Algorithm 1. OrderAgg(sk, C, T )
input :A list of secret keys sk = (sk1, . . . , skn), a claim sequence

C = (C1, . . . , Cn) with Ci = (pki,mi) and an order-tree T
output :An aggregate signature σAgg valid for C

for i = 1, . . . , n do
σi ← Sign(ski,mi)
Ci := (Ci)

k := n+ 1
while T has more than one node do

Choose a pair of leaves a and b with a common successor c.
W.l.o.g. let a be connected to c by the edge marked with 1.
i := marking of a
j := marking of b
σk ← Agg(Ci, Cj , σi, σj)
Delete a and b from T
Mark node c with k
Ck = Ci‖Cj
k := k + 1

return σAgg := σk−1

Example 5.2.4. Let C = (C1, C2, C3) = ((pk1,m1), (pk2,m2), (pk3,m3)). Let
T be the order-tree depicted in Figure 5.1.

1 3 2

2 1

1

2

Figure 5.1: An example order-tree for three claims.

Then, according to T , the algorithm OrderAgg would sign and aggregate the
claims in the following order:

1. Create individual signatures σi ← Sign(ski,mi) for i ∈ {1, 2, 3}.

2. Aggregate σ1 and σ3 by computing σ4 ← Agg((c3), (c1), σ3, σ1). Observe
that the order of the claims and signatures in the input of Agg follows the
order depicted in the tree.

3. Aggregate σ4 and σ2 by computing σ5 ← Agg((c3, c1), (c2), σ4, σ2).

4. Output the resulting aggregate signature σAgg := σ5.
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Using order-trees, we can easily define the nDEAGG security experiment. A
schematic overview of the experiment can be found in Figure 5.2. Note that we
fix the number n of messages and thereby build a hierarchy of security definitions
instead of giving the attacker the option to choose n. We define security in
this way, since the relationship between the levels of different n is surprisingly
complex, as we discuss in Section 5.2.5.
Definition 5.2.5 (nDEAGG Security Experiment). The nDEAGG security exper-
iment for n ∈ N, n ≥ 2, between an attacker A, a challenger C and an aggregate
signature scheme Σ = (Gen,Sign,Agg,Vfy) consists of three phases as follows:
Setup Phase. The challenger C generates n key pairs (pki, ski) ← Gen(1κ),

gives the public keys pki to the attacker A and stores the secret keys
sk := (sk1, . . . , skn).

Challenge Phase. The attacker A sends a list of exactly n messages M =
(m1, . . . ,mn) and an order-tree T to the challenger. The challenger then
sets C := ((pk1,m1), . . . , (pkn,mn)), computes

σAgg ← OrderAgg(sk, C, T )
and sends σAgg to A. This step may only be executed once by the attacker.

Deaggregation Phase. At the end of the experiment, A sends a tuple (C∗, σ∗)
consisting of a claim sequence C∗ and a signature σ∗ to the challenger C.
A is successful, if

Vfy(C∗, σ∗) = 1 and 0 < |C∗| ≤ n− 1 and ∀ci ∈ C∗ : ci ∈ C.

The last two parts of the success requirement enforce that
1. A must at least deaggregate one signature from σAgg.

2. A may not add new claims to win the experiment. The reason for this
restriction is that there are schemes which are nDEAGG secure according to
this definition, but not secure if we allow the attacker to add such additional
claims (see Section 5.3 for a discussion of several of such schemes, like the
scheme of [Bon+03] discussed in Section 5.3.1). It is therefore advantageous
to be able distinguish these two cases. In the following Section 5.2.3 we
introduce a variation of this definition without this restriction.

Definition 5.2.6 (nDEAGG Security for Aggregate Signature Schemes). An
aggregate signature scheme Σ = (Gen,Sign,AggVfy) is nDEAGG secure, if all
PPT algorithms A only have negligible success probability in the nDEAGG security
experiment, meaning it holds that

Pr

ACnDEAGG(pk1, . . . , pkn) = (C∗, σ∗) :
Vfy(C∗, σ∗) = 1
∧ 0 < |C∗| ≤ n− 1
∧∀ci ∈ C∗ : ci ∈ C

 ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

Remark. Note that in the definition of nDEAGG security, the attacker does not
have access to a general signing oracle. The only way for the attacker to receive
signatures is by issuing the single challenge query. In Section 5.2.6 we discuss
the reasons and motivations for this restriction and in Section 5.2.7 a stronger
notion is presented that allows adaptive queries.
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CnDEAGG A
(pki, ski)← Gen(1κ)

for i ∈ {1, . . . , n}
sk := {sk1, . . . , skn}

pk1, . . . , pkn

M = (m1, . . . ,mn), T

C := ((pk1,m1), . . . , (pkn,mn))
σAgg ← OrderAgg(sk, C, T )

σAgg

only 1
request

C∗ , σ
∗

Vfy(C∗, σ∗) = 1?
∧

0 < |C∗| ≤ n− 1
∧

∀ci ∈ C∗ : ci ∈ C?

Figure 5.2: The nDEAGG security experiment.

5.2.3 nDEAGG+ Security: Attacks using Additional Claims

The definition of nDEAGG security rules out attackers that might try to deag-
gregate by aggregating additional claims of their own choosing to the challenge
signature, since the definitions requires the claim sequence C∗ returned by the
attacker to be a subset of the original claim sequence. In particular, this implies
that the attacker may not use any freely chosen keys for the attack. For many
applications, requiring that no additional keys are used seems like a reasonable
restriction, since the set of admissible public keys might be fixed. For example, in
a sensor network, the public keys of all sensors should be known to its operators.
For more general applications, it might be required that all keys need to be
registered in a public key infrastructure. Then, being able to manipulate an
aggregate signature so that it is also valid for a new claim under such a registered
key is equivalent to breaking the unforgeability of the signature scheme, as long
as the attacker has no knowledge of its secret key.

But even in these scenarios where the set of keys is fixed and controlled, the
attacker could still try to use other public keys to deaggregate. Although this
would be noticeable and covert attacks using this approach are not possible, they
might still pose a serious risk. While it would be clear which claims were added
maliciously, it might not be obvious if other claims where deaggregated during
the attack and if so, which ones were deaggregated.

For example, suppose there exists a signature σ for a claim sequence C =
(c1, c2) with c1 = (pk1,m1), c2 = (pk2,m2) and pk1, pk2 are the only admissible
public keys. If the attacker can manipulate σ so that it becomes valid for the
claim sequence ((pk1,m1), (pk3,m3)) for a new public key pk3 and (possibly)
new message m3, the system would easily recognize that pk3 is not among
the admissible keys. However, it is no longer clear if the signature should be
interpreted as a valid signature of m1 and if m2 was ever signed or not. Also,
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if the attacker knows the secret key to pk3, he might even be able to legally
register it before he mounts his attack.

At first glance, it might also seem paradoxical that aggregating new claims
could help the attacker to deaggregate. But, for example, the signatures of many
schemes are elements of algebraic groups and they are aggregated by multiplying
them in the group. Here, aggregating a new claim can clearly influence the
already aggregated ones and, in fact, many schemes are vulnerable to such
attacks, as we show in Section 5.3.

We therefore extend our definition of nDEAGG security to nDEAGG+ security,
which allows the attacker to use additional claims and public keys of his choosing.
However, so that the notion captures a reasonable definition of deaggregation
security, at least one of the original claims must be present in the claim sequence
output by the attacker.

Another justification for this additional notion is that several schemes can
be shown to be nDEAGG secure, but are vulnerable to attacks using additional
claims and keys, as is also shown in Section 5.3. The notion of nDEAGG+

security therefore seems to be strictly stronger then nDEAGG security. The
security experiment for nDEAGG+ security is almost identical to the nDEAGG
security experiment, only the winning condition is changed:

Definition 5.2.7 (nDEAGG+ Security Experiment). The nDEAGG+ security
experiment for n ∈ N, n ≥ 2 between an attacker A, a challenger C and an
aggregate signature scheme Σ = (Gen,Sign,Agg,Vfy) consists of three phases as
follows:

Setup Phase. The challenger C generates n key pairs (pki, ski) ← Gen(1κ),
gives the public keys pki to the attacker A and stores the secret keys
sk := (sk1, . . . , skn).

Challenge Phase. The attacker A sends a list of exactly n messages M =
(m1, . . . ,mn) and an order-tree T to the challenger. The challenger then
sets C := ((pk1,m1), . . . , (pkn,mn)), computes

σAgg ← OrderAgg(sk, C, T )

and sends σAgg to A. This step may only be executed once by the attacker.

Deaggregation Phase. At the end of the experiment, A sends a tuple (C∗, σ∗)
consisting of a claim sequence C∗ and a signature σ∗ to the challenger C.
A is successful, if

Vfy(C∗, σ∗) = 1 and ∃c ∈ C : c /∈ C∗ and ∃c ∈ C∗ : c ∈ C.

Definition 5.2.8 (nDEAGG+ Security for Aggregate Signature Schemes). An
aggregate signature scheme Σ = (Gen,Sign,AggVfy) is nDEAGG+ secure, if
all PPT algorithms A only have negligible success probability in the nDEAGG+

security experiment, meaning it holds that

Pr

ACnDEAGG+ (pk1, . . . , pkn) = (C∗, σ∗) :
Vfy(C∗, σ∗) = 1
∧∃ci ∈ C : c /∈ C∗
∧∃ci ∈ C∗ : c ∈ C

 ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.
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Note the differences in the success requirement compared to the definition of
nDEAGG security (see definitions 5.2.5 and 5.2.6). Instead of requiring that
each claim in C∗ has to be equal to one of the claims of the original claim
sequence C, we now only require that there exists at least one such claim. This
allows the attacker to add additional claims, as desired, while ensuring that the
deaggregation is not trivial (i.e. the attacker simply outputs a completely new
claim sequence). We further require that there is at least one claim in C which is
not in C∗ to enforce that at least one claim was actually deaggregated. Observe
also that C∗ may now contain more than n− 1 claims.

Since nDEAGG+ security is a straightforward extension of nDEAGG security
and a successful nDEAGG attack also breaks nDEAGG+ security, we state the
following theorem without formally proving it:

Theorem 5.2.9. If an aggregate signature scheme Σ = (Gen,Sign,Agg,Vfy) is
nDEAGG+ secure for n ∈ N, then it is also nDEAGG secure.

5.2.4 Deaggregation Security & Unforgeability

A natural question is to ask whether there is a relationship between the un-
forgeability of a given aggregate signature scheme and its deaggregation security,
especially if the scheme also achieves optimal compression (i.e. aggregate signa-
tures do not grow in size and have the same size as individual signatures). First,
note that neither nDEAGG nor nDEAGG+ security imply any of the general
unforgeability definitions presented in this thesis, since these definitions allow
only one single Sign query.

Second, the answer to the question if unforgeability implies nDEAGG or
nDEAGG+ security is unfortunately also negative, as we show in this section.
This is especially surprising for the case of sequential aggregate signatures
that are secure in the sense of the SAS-EUF-CMA unforgeability definition of
Lysyanskaya et al. [Lys+04]. Here, the attacker does not necessarily need to
output a signature for a new message. If he asks for a signature on C‖(pk∗,m∗)
from the challenger and then is able to modify it, so that it is valid for another
“prefix” C ′ 6= C (i.e. he can compute a signature valid for C ′‖(pk∗,m∗)), then
he would also win the experiment, although he would reuse the message m∗.
One such manipulation of the prefix C could of course be the deaggregation of
a claim from C. Even though this seems to imply that SAS-EUF-CMA security
already encompasses some restricted form of deaggregation security, we can show
that it does not imply nDEAGG security. See Definition 3.3.4 and the discussion
below it for more details on SAS-EUF-CMA security.

We now first show that unforgeability does not imply deaggregation se-
curity for fully flexible aggregate signature schemes. For this purpose, let
Σ = (Gen,Sign,Agg,Vfy) be an AS-EUF-CMA secure aggregate signature scheme
with optimal compression. We use it to construct a new aggregate signature
scheme Σ′ = (Gen′,Sign′,Agg′,Vfy′), which also achieves optimal compression
and is AS-EUF-CMA secure, but is not nDEAGG secure for any n.

The main idea is that signatures of Σ′ simply are tuples σAgg = (σ1, σ2),
where σ1 and σ2 are signatures of the scheme Σ. The entry σ1 will be an
aggregate signature over the whole claim sequence, whereas σ2 is an aggregate
signature of one of the two claim sequences that were aggregated to create σAgg.
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This scheme also achieves optimal compression, since none of the elements grow in
size during aggregation. However, it is not deaggregation secure, since the second
entry σ2 of σAgg can be used to construct a valid signature for a subsequence.
We explain this in more detail in Lemma 5.2.11, but first, we formally define the
algorithms of Σ′ and prove its unforgeability:

Gen′(1κ) : Compute (pk, sk)← Gen(1κ) and return (pk, sk).

Sign′(sk,m) : Compute σ ← Sign(sk,m) and return (σ, σ).

Agg′(C1, C2, σ1, σ2) : Parse σi = (σi,1, σi,2). Return

σAgg = (Agg(C1, C2, σ1,1, σ2,1), σ1,1).2

Vfy′(C, σ) : Parse σ = (σ1, σ2). Ignore σ2 and output Vfy(C, σ1).

If Σ achieves optimal compression, then so does Σ′, since signatures of Σ′
are just tuples of Σ and no other elements are added. So Σ′ signatures are twice
the size of Σ, but their size never grows. The correctness of Σ′ follows directly
from the correctness of Σ.

Observe that the structure of the algorithms, if they are applied correctly,
ensures that there never exist multiple individual signatures for different messages
of Σ under the same key. While this is not important for most fully flexible
schemes, it is crucial for synchronized schemes, were signers are only allowed to
sign once per time period. For example, the synchronized scheme of Ahn, Green,
and Hohenberger [AGH10] (see Section 5.3.7 for details) becomes insecure if
more than one signature under the same public key exists per time period.

Lemma 5.2.10. If Σ is AS-EUF-CMA secure, then so is Σ′.

Proof. The proof of this theorem is a straightforward reduction, see Figure 5.3
for an overview. Let CAS-EUF-CMA be the AS-EUF-CMA challenger for Σ and A a
PPT attacker on the AS-EUF-CMA security of Σ′. We construct a simulator B
which uses A to break Σ.
CAS-EUF-CMA creates a key pair (pk, sk)← Gen(1k) and sends pk to B, who in

turn forwards pk to A. If A sends a query for a message mi, B sends mi to the
challenger, receives a Σ signature σ for mi and sends σ′ := (σ, σ) to A. Since σ
is a valid Σ signature for mi, it follows that σ′ is a valid Σ′ signature for mi.

At some point, A sends its forgery (C∗, σ∗) with σ∗ = (σ∗1 , σ∗2). If A is
successful, then we have Vfy′(C∗, σ∗) = 1, which implies Vfy(C∗, σ∗1) = 1.
Furthermore, there exists a claim (pk,m∗) ∈ C∗, such that m∗ was never
sent in a signature query by A and therefore B also never sent it to the challenger
CAS-EUF-CMA. B then outputs C∗, σ∗1 to win the AS-EUF-CMA experiment.
B simulates the AS-EUF-CMA experiment perfectly for A and the success

probability of B is at least the same as the success probability of A. Their
runtimes are roughly the same (B only has a small polynomial overhead compared
to A), therefore B is also a PPT algorithm. It follows that the success probability
of A must be negligible, since we assumed Σ to be AS-EUF-CMA secure, which
proves the theorem.

2Observe that for honest computations, the second entry of an aggregate signature now
always contains a valid aggregate signature for the claim sequence C1 used to compute the
signature.
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CAS-EUF-CMA B A

AS-EUF-CMA AS-EUF-CMA

pk
pk

mi

mi

σi
(σi, σi)

C∗, σ∗

parse σ∗ = (σ∗1 , σ∗2)

C∗, σ∗1

Figure 5.3: Overview of the proof strategy for Lemma 5.2.10.

Lemma 5.2.11. Σ′ is not nDEAGG secure for any n.

Proof. Consider the following PPT attacker A on the nDEAGG experiment.
First, A receives a list of public keys pk1, . . . , pkn from the challenger CnDEAGG.
A then chooses n messages m1, . . . ,mn at random and sends (m1, . . . ,mn), T
to CnDEAGG, where T is some fitting order-tree for the n messages (for example
the order-tree which describes a sequential aggregation). Next, A receives a
valid Σ′ aggregate signature σAgg = (σAgg,1, σAgg,2). Since σAgg is valid, we have
that Vfy(C, σAgg,1) = 1. Furthermore, since σAgg was honestly computed, we also
have that Vfy(C ′, σAgg,2) = 1, where C ′ is a claim sequence containing only (but
not all) claims of C, i.e. |C ′| < |C| = n.

To be precise, C ′ is one of the two claim sequences used in the last aggregation
step of the challenger to compute σAgg. Since A chose the order-tree T himself, he
also knows these two claim sequences and therefore also knows C ′, even though it
might not be possible to deduce it from σAgg.3 A now sends C ′, σ∗ := (σAgg,2,⊥)
as its answer to the challenger

Note that since all claims of C ′ are also in C and we have |C ′| < |C| = n,
this is a valid deaggregation. Furthermore, while σ∗ is not a regular signature
for C ′, it is still valid, since the Vfy′ algorithm simply ignores the second entry
of the tuple and we therefore have Vfy′(C ′, σ∗) = 1, since Vfy(C ′, σAgg,2) = 1.
All in all, we see that A wins the experiment.

Furthermore, the runtime of A is polynomial and its success probability is
equal to 1, which proves that the scheme is not nDEAGG secure.

3While in some schemes it is possible to efficiently extract the signed claims from the
signature (for example [Lam79; Nev08]), this is not the case in general.



5.2. DEFINITIONS OF DEAGGREGATION SECURITY 85

Theorem 5.2.12. AS-EUF-CMA security does not imply nDEAGG or nDEAGG+

security.

Proof. The theorem follows directly from Theorem 5.2.9 and the Lemmas 5.2.10
and 5.2.11 above.

While one could argue that this counter-example is pathological, since the
scheme was clearly designed to be vulnerable to deaggregation attacks, it unmis-
takably proves that nDEAGG security does not follow directly from AS-EUF-CMA
security. Similar counter-examples can be given for sequential and synchronized
aggregate signatures as well. In fact, for synchronized schemes, no change in the
counter-example is necessary.

For sequential aggregation, the counter-example needs to be minimally
modified, because of the different syntax of the algorithms. To be precise,
let ΣSAS = (GenSAS,AggSignSAS,VfySAS) be a sequential aggregate signature
scheme with optimal compression. Then the algorithms for the counter-example
Σ′SAS = (Gen′SAS,AggSign′SAS,Vfy′SAS) are as follows:

Gen′SAS(1κ) : Compute (pk, sk)← GenSAS(1κ) and return (pk, sk).

AggSign′SAS(sk, C, σ,m) : Parse σ = (σ1, σ2). Compute

• σAgg,1 ← AggSignSAS(sk, C, σ1,m),
• σAgg,2 := σ1,

and output σAgg = (σAgg,1, σAgg,2).

Vfy′SAS(C, σ) : Parse σ = (σ1, σ2). Ignore σ2 and return VfySAS(C, σ1).

Σ′ has optimal compression and is SAS-EUF-CMA secure, but is not nDEAGG
secure for any n. The proofs are largely analogous to the proofs of the fully
flexible counter-example.

Lemma 5.2.13. If ΣSAS is SAS-EUF-CMA secure, then so is Σ′SAS.

Proof. Let CSAS-EUF-CMA be the SAS-EUF-CMA challenger for ΣSAS and A a PPT
attacker on the SAS-EUF-CMA security of Σ′. We construct a simulator B which
uses A to break ΣSAS.
CSAS-EUF-CMA creates a key pair (pk, sk)← Gen(1k) and sends pk to B, who in

turn forwards pk to A. If A sends a signature query for Ci, σi,mi, B forwards it
to the challenger. B then receives a ΣSAS signature σ for Ci‖(pk,mi) and sends
σ′ := (σ, σi) to A. Since σ is a valid ΣSAS signature for mi, it follows that σ′ is
a valid Σ′SAS signature for mi.

At some point, A sends its forgery (C∗, σ∗) with σ∗ = (σ∗1 , σ∗2). If A is
successful, then Vfy′SAS(C∗, σ∗) = 1, which implies that VfySAS(C∗, σ∗1) = 1, and
C∗ is non-trivial. Since the signature queries of B are equal to the queries of
A, it is also non-trivial for B. Therefore, B simply outputs C∗, σ∗1 to win the
experiment.
B simulates the SAS-EUF-CMA experiment perfectly for A and the success

probability of B is at least the same as the success probability of A. Their
runtimes are roughly the same (B only has a small polynomial overhead compared
to A), therefore B is also a PPT algorithm. It follows that the success probability
of A must be negligible, since we assumed ΣSAS to be SAS-EUF-CMA secure,
which proves the theorem.
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Lemma 5.2.14. Σ′SAS is not nDEAGG secure for all n ≥ 2 polynomial in the
security parameter κ.

Proof. Consider the following PPT attacker A on the nDEAGG experiment.
First, A receives a list of public keys pk1, . . . , pkn from the challenger CnDEAGG.
A then chooses n messages m1, . . . ,mn at random and sends (m1, . . . ,mn), T to
CnDEAGG, where T describes the sequential aggregation in ascending order of m1
to mn. Next, A receives a valid Σ′SAS aggregate signature σAgg = (σAgg,1, σAgg,2).

Let C := (c1, . . . , cn) := ((pk1,m1), . . . , (pkn,mn)). Since σAgg is valid, we
have that VfySAS(C, σAgg,1) = 1. Furthermore, since σAgg was honestly computed,
we also have VfySAS(C \ (cn), σAgg,2) = 1.
A now sends C∗ := C \ (cn) and σ∗Agg := (σAgg,2,⊥) as its answer to the

challenger.
Vfy′SAS(C∗, σ∗) = 1 follows from VfySAS(C∗, σAgg,2) = 1 and since cn was

removed from C, but all other claims of C are still present in C∗, it is also a
valid deaggregation. The runtime of A is polynomial and its success probability
is equal to 1.

Note that while σ∗ is not a regular signature for the claim sequence C∗,
it is still valid, since Vfy′SAS does not verify the second entry of the signature
tuple.

All in all, the following theorem follows:

Theorem 5.2.15. SAS-EUF-CMA security and SyncAS-EUF-CMA do not imply
nDEAGG or nDEAGG+ security.

Additionally, for sequential aggregate signatures, “real-life counter-examples”,
albeit only in the random oracle model, are also given by the schemes of Lysyan-
skaya et al. [Lys+04] and Neven [Nev08], which we discuss in Sections 5.3.4
and 5.3.5.

5.2.5 Relationships between nDEAGG and nDEAGG+

In this section we discuss the relationships between different levels of nDEAGG
and nDEAGG+ security. As it turns out, for certain aggregate signature schemes
that fulfill three rather natural requirements, which we call extendability, claim-
removability and order-independence, we can show that 2DEAGG security implies
nDEAGG security for all n polynomial in the security parameter κ. So, for these
schemes analyzing the simplest form of nDEAGG security suffices. The proof
strategy can also be applied to show that nDEAGG security implies n′DEAGG
security for n′ > n for these schemes. Moreover, we also show that in general
nDEAGG security does not imply n′DEAGG security for n′ 6= n if these require-
ments are not met. All of these implications can also be shown for nDEAGG+

security.

Remark. All definitions, theorems and lemmas can be adapted to sequential and
synchronized aggregate schemes. We focus on fully flexible aggregate signatures
for sake of brevity. Section 5.2.8 explains the necessary adaptations. However,
some theorems do not apply to sequential schemes which are SAS-EUF-CMA
secure as defined by [Lys+04], since these schemes cannot be claim-removable
and order-independent (see below for details).
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We first discuss in which cases 2DEAGG implies nDEAGG security. The require-
ments for this implication to hold are:

Extendability. It must always be possible to further aggregate claims into an
already aggregated signature. This requirement is fulfilled by almost all
aggregate signature schemes and stands in direct connection to the ability
to aggregate. However, some schemes might restrict aggregation in some
way, for example by imposing an upper bound on the number of signatures
which can be aggregated (like our fault-tolerant scheme from Chapter 4)
and are therefore not extendable.

Claim-Removability. It must be possible for the owner of the secret key to
efficiently deaggregate their signature from an aggregate.

This might seem counter-intuitive, since we want to proof security against
deaggregation attacks. The crucial difference here is the knowledge of the
secret key. Deaggregation should only be possible if the secret key is known
and hard otherwise. Several schemes like [Bon+03; Lu+06; AGH10] fulfill
this property. [Lu+06] actually mention it as a feature: In their scheme,
each signer may only aggregate one individual signature into an aggregated
signature. They explicitly point out that this is not a substantial restriction,
since if a signer wants to add a signature for a second message, they can
deaggregate their current signature and then aggregate a new signature
for both the first and second message.

Order-Indepence. The order in which signatures are aggregated is not conse-
quential and cannot be inferred from an aggregate signature.

Note that these properties might also be of independent interest. For example,
some applications might require claim-removability to be able to efficiently make
use of an aggregate signature scheme. Consider the case of software validation
on a mobile device, where only signed apps are allowed to run. If an aggregate
signature scheme is used to sign and verify apps, there must be some way to
securely remove the signature of an app if the user wants to de-install it. On the
other hand, other applications might require that deaggregation even is hard for
the signers, for example if the scheme is used to sign contracts. If signers could
simply remove their signatures, this would imply that they can void contracts at
any point in time.

All three properties seem to be essential for the proof of Theorem 5.2.21
that shows that 2DEAGG implies nDEAGG security for schemes that fulfill all
three properties. As we show at the end of this section, Theorem 5.2.27 implies
that order-independence is a necessary requirement. The same is not known for
extendability and claim-removability. Although we cannot rule out that it might
be possible to show the implication without these properties, we are also not
aware of any such proofs and this problem remains open for now.

We now formally define the described properties in regard to aggregate
signature schemes. For the following definitions, let Σ = (Gen,Sign,Agg,Vfy) be
an aggregate signature scheme.
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Definition 5.2.16 (Extendability). Let σAgg be an aggregate signature for a
claim sequence C = (c1, . . . , cn) and c a claim with a corresponding individual
signature σ. Σ is extendable, if given σAgg, C, c and σ it is possible to create an
aggregate signature σ′Agg for the claim sequence C ′ = C‖(c) in polynomial time
in the security parameter κ.

For schemes that only allow distinct public keys during aggregation (like the
scheme of [Lu+06], see Section 5.3.6), the definition is slightly changed, so that
we only require that claims c that contain a public key which is not yet present
in C can be aggregated.

Definition 5.2.17 (Claim-Removability). Let σAgg be an aggregate signature
for a claim sequence C = (c1, . . . , cn) and let ski be the secret key corresponding
to claim ci. Σ is claim-removable, if given σAgg, C and ski it is possible to
compute a valid aggregate signature σ′Agg for the claim sequence C ′ = C \ (ci) in
polynomial time in the security parameter κ.

We define order-independence by using a fitting security experiment.

Definition 5.2.18 (Order-Independence Experiment). The order-independence
experiment between an attacker A, a challenger C and Σ consists of three phases
as follows:

Setup Phase. A sends a number n ∈ N to C. C then generates n key pairs
(pki, ski) ← Gen(1κ) and gives all public keys pki to the attacker A and
stores all secret keys sk = (sk1, . . . , skn).

Challenge Phase. The attacker A sends a claim sequence of exactly n claims
C = ((pk1,m1), . . . , (pkn,mn)) and two order-trees T0, T1 to the chal-
lenger. The challenger then chooses b ← {0, 1} randomly, computes
σAgg ← OrderAgg(sk, C, Tb) and sends σAgg to A. This step may only
be executed once by the attacker.

Answer Phase. At the end of the experiment, A sends a bit b′. A is successful,
if b = b′.

Definition 5.2.19 (Order-Independence). Σ is order-independent, if for all
PPT algorithms A it holds that

|Pr[ACOrdInd((pk1, . . . pkn) = 0 : b = 0]
− Pr[ACOrdInd((pk1, . . . , pkn) = 0 : b = 1]| ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

Note that order-independence does not imply that it is completely impossible
for an attacker to infer some information of the order of the aggregation. It
only implies that the structure of an aggregate signature does not reveal any
information of the order in which the claims were aggregated.

However, in many applications of aggregate signatures, an attacker might be
able to observe partial aggregates, which provide information about the order of
aggregation of aggregates at a later point in time.

Furthermore, in practice an attacker could possibly distinguish two order-
trees by observing the application and measuring the time it takes to compute
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COrdInd A
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(pki, ski)← Gen(1κ)
for i ∈ {1, . . . , n}

sk := {sk1, . . . , skn}
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C = ((pk1,m1), . . .), T0, T1

b← {0, 1}
σAgg ← OrderAgg(sk, C, Tb)
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only 1
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Figure 5.4: The order-independence experiment.

OrderAgg(sk, C, Tb), since two different order-trees for the same claim sequence
can result in vastly different runtimes. Consider, for example, the trees describing
a sequential aggregation and a completely balanced binary tree. Such runtime
behavior is usually not modeled in security experiments, since it is assumed that
the challenger answers instantly.

Remark. Sequential aggregate signature schemes that satisfy the SAS-EUF-CMA
unforgeability definition of [Lys+04] (which we also use as the definition of un-
forgeability for sequential schemes in this thesis) cannot be order-independent or
claim-removable. This definition of unforgeability takes the order of aggregation
into account and a reordering of claims is seen as a valid forgery, i.e. the Vfy
algorithm needs to be able distinguish different orders of aggregation. Further-
more, if such a scheme would be claim-removable, then the attacker could easily
modify prefixes of signatures by removing claims for which he knows the secret
keys, which is also interpreted as a valid forgery.

However, other security definitions for sequential schemes that do not preclude
claim-removability and order-independence exist, for example the definition of
[Lu+06]. See also Section 3.3 for more details on these different definitions.

Example 5.2.20. To illustrate these properties, we now consider the BGLS
scheme ([Bon+03], see Section 3.2.1 for a brief overview). Recall that signatures
of the BGLS schemes are elements of a cyclic group.

Extandability: Signatures are aggregated by simply multiplying them. BGLS
imposes no restriction on aggregation and offers fully flexible aggregation,
so every signature can be aggregated with any other and it is always
possible to add additional claims. BGLS is therefore extendable.

Claim-Removability: The Sign algorithm is deterministic and for a fixed
message m and fixed secret key sk, the returned signature will always
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be equal to H(m)sk. Also, aggregate signatures will always be of the
form

∏
j H(mj)skj . Suppose σAgg is an aggregate signature for messages

m1, . . . ,mn signed under the secret keys sk1, . . . , skn. Then the owner of
ski can deaggregate their signature for message mi by computing

σAgg
Sign(ski,mi)

=
∏n
j=1H(mj)skj

H(mi)ski

=
n∏

j=1,j 6=i
H(mj)skj ,

which is a valid aggregate signature for all messages mj 6= mi. The BGLS
scheme is therefore claim-removable.

Order-Independence: Order-independence follows directly from the fact that
aggregation is equal to the group operation. Since the group is cyclic, it
is also commutative. Furthermore, the scheme is deterministic and the
challenger executes all algorithms honestly, so he will always compute
the same signature for a given claim (in fact, there even exists only one
valid signature for each claim, see Lemma 5.3.1 for a formal proof of this).
Therefore, if signatures for the same claims are aggregated, the resulting
aggregate signature will always be the same group element, no matter the
order.

It follows that the BGLS aggregate signature scheme fulfills all three properties.

Next, we turn our attention to proving that 2DEAGG security implies nDEAGG
security for schemes that fulfill these requirements.

Theorem 5.2.21. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature
scheme. If Σ is extendable, claim-removable, order-independent and 2DEAGG
secure, then it is also nDEAGG secure for all n ≥ 2 polynomial in the security
parameter κ.

Proof. LetA be a nDEAGG attacker on Σ and C2DEAGG be the 2DEAGG challenger.
We construct a simulator B which simulates the nDEAGG security experiment
using C2DEAGG for A, so that B has a non-negligible success probability to
win against C2DEAGG if A has non-negligible success probability in winning the
nDEAGG security experiment. Since we assumed Σ to be 2DEAGG secure, this
is a direct contradiction and it therefore follows that it is also nDEAGG secure.

The strategy of the simulator B is as follow (see Figure 5.5 for a schematic
overview of the proof). First, it receives two honestly generated public keys
pk′ and pk′′ from C2DEAGG. It chooses two distinct indices v, w ← {1, . . . , n}
randomly and sets pkv := pk′ and pkw := pk′′. Next, it generates additional
n− 2 key pairs (pki, ski)← Gen(1k) for all i ∈ {1, . . . , n} \ {v, w} and sends all
public keys pk1, . . . , pkn to A. For schemes that only allow the use of distinct
keys during aggregation (like [Lu+06], see Section 5.3.6), B ensures that all keys
are distinct.

At some point, A will continue with the Challenge Phase and send n claims in
a claim sequence C = (c1, . . . , cn) = ((pk1,m1), . . . , (pkn,mn)) and an order-tree
T . B ignores T and sends Cvw := ((pkv,mv), (pkw,mw)) and Tvw to C2DEAGG,
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where Tvw is the order-tree specifying that the individual signature of mw should
be aggregated to the individual signature of mv. The challenger will answer with
an honestly generated aggregate signature σvw for Cvw.

Since B knows all secret keys (except for skv and skw) and Σ is extendable,
it can generate individual signatures σi for all remaining claims (pki,mi) using
ski and aggregate them successively to σvw. The resulting aggregate signature
σAgg is a valid signature for the claim sequence C and B will send it to A.
Observe that B has completely ignored the order-tree T sent by A, but since
Σ is order-independent, A cannot distinguish this signature from one that was
generated by adhering to T , which we discuss further in the probability analysis.

After having received σAgg, A will answer with a claim sequence C∗ and
corresponding signature σ∗. B will abort if (C∗, σ∗) is not a successful deag-
gregation answer. If A successfully deaggregated at least one claim, we have
that

Vfy(C∗, σ∗) = 1 ∧ |C∗| ≤ n− 1 ∧ ∀ci ∈ C∗ : ci ∈ C.

We now have that there must be at least two distinct claims c 6= c′ in C, such
that c ∈ C∗, but c′ /∈ C∗. If c, c′ /∈ {cv, cw}, then B aborts. Otherwise, without
loss of generality let c = cv and c′ = cw. This implies that σ∗ contains a valid
signature for cv, but cw was deaggregated.

Σ is claim-removable and B knows all secret keys except for skv and skw,
hence B is able to remove all other claims ci 6= cv from σ∗ to compute a valid
signature σv for cv. B will send (pkv,mv), σv to C2DEAGG to win the experiment.

Next, we analyze the success probability of B, which is dependent on the
success probability of A and its output. First, we argue that the success
probability of A in the simulation of B is only negligibly changed, although the
simulation is not perfect, since B did not adhere to the order-tree T sent by A.

If this would not be the case, we could construct an algorithm D which
would break the order-independence of Σ. D outputs n and then simulates the
nDEAGG experiment for A using the keys provided by the order-independence
challenger. D sends the claims of A, the order-tree T of A and the order-tree TB,
which is implicitly defined by the aggregation steps of B in the above described
simulation (i.e. first aggregating two randomly chosen claims/signatures and
then aggregating the rest successively) to the order-independence challenger.
D outputs 0 if A successfully deaggregates and 1 otherwise. If the order-
independence challenger chooses T , then D will simulate the normal nDEAGG
experiment. If it chooses TB, then the simulation of D is equivalent to the
simulation of B. Since Σ is order-independent, it follows that the difference in
the success probability of D for both cases is only negligible. Therefore, the
success probability of A in the simulation of B is only negligibly smaller then in
the correct nDEAGG experiment.

For B to be successful, the claim sequence C∗ output by A must either
contain cv and not cw or the other way around. Since C∗ must at least contain
one claim, the probability that cv is contained in C∗ is at least 1/n, since the
index v was chosen randomly from {1, . . . , n}. Moreover, A has to deaggregate
at least one claim, so the probability that cw is not contained in C∗ is also at
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C2DEAGG B A

2DEAGG nDEAGG

pk′, pk′′

v, w ← {1, . . . , n}
pkv := pk′, pkw := pk′′
(pki, ski)← Gen(1k)

pk1, . . . , pkn

((pk1,m1), . . . (pkn,mn)), T
((pkv,mv), (pkw,mw)), Tvw

σvw

compute σAgg by computing and aggregating
σi to σvw ∀i ∈ {1, . . . , n} \ {v, w}

σAgg

C∗, σ∗

use ski to deaggregate σi
from σ∗ to compute σv

mv, σv

Figure 5.5: Overview of the proof strategy for Theorem 5.2.21.

least 1/n, because w was also chosen randomly from {1, . . . , n}. The situation is
analogous for the case that cv is deaggregated, but cw is not. All in all we have

Pr[B is successful] ≥ 1
n2 · Pr[A is successful in the simulation of B]

≥ 1
n2 · (Pr[A is successful in the nDEAGG exp.]− negl(κ)),

where negl is a function negligible in the security parameter κ. Now, if the success
probability of A in the nDEAGG security experiment would be non-negligible,
then the success probability of B in the 2DEAGG security experiment would be
non-negligible as well. This is a contradiction to the assumed 2DEAGG security
of Σ, which concludes the proof.

Theorem 5.2.22. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature
scheme. If Σ is extendable, claim-removable, order-independent and nDEAGG
secure, then it is also n′DEAGG secure for all n, n′ ≥ 2 polynomial in the security
parameter κ with n′ ≥ n.

Proof. The proof is analogous to the proof of Theorem 5.2.21. The only difference
is that the strategy of B needs to be adapted, so that it only creates n′ − n
key pairs and only removes the signatures and claims corresponding to these
keys.
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Theorem 5.2.23. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature
scheme. If Σ is extendable, order-independent and nDEAGG+ secure, then it is
also n′DEAGG+ secure for for all n, n′ ≥ 2 polynomial in the security parameter
κ with n′ ≥ n.

Proof. The proof is analogous to the proofs of Theorem 5.2.21 and Theo-
rem 5.2.22. Note that in contrast to nDEAGG security, the scheme does not
need to be claim-removable. Since nDEAGG+ security allows the attacker to use
additional claims in its output, B does not need to deaggregate the signatures
signed under the keys chosen by him from the answer of A before passing on the
answer to the challenger.

Note that Theorem 5.2.21, Theorem 5.2.22 and Theorem 5.2.23 imply that the
hierarchies of nDEAGG and nDEAGG+ security definitions collapse for schemes
that are extendable, claim-removable and order-independent, i.e. if n is the
smallest number such that the scheme is nDEAGG, respectively nDEAGG+,
secure, then n′DEAGG, respectively n′DEAGG+ security automatically follows
for n′ ≥ n.

Next, we discuss the general relationship between different “levels” of nDEAGG
security, i.e. the question whether nDEAGG security for some n also implies
n′DEAGG security for some n 6= n′. We show that, unfortunately, this is not the
case in general, neither for n′ > n, nor n < n′.

To show this, we construct an aggregate signature scheme Σ′ = (Gen′,
Sign′, Agg′, Vfy′) as a counter-example which is almost identical to the one of
Section 5.2.4. Again, signatures are tuples, but if the number of claims is even,
the second entry will simply be set to ⊥4, i.e. a signature for an even number of
claims is of the form

σAgg = (σAgg,1,⊥),

whereas for an uneven number of claims, the tuple again stores a valid
signature for one of the claim sequences used to construct the aggregate signature,
i.e. the signature is of the form

σAgg = (σAgg,1, σAgg,2).

This way, if the base scheme Σ is nDEAGG secure for all n, then Σ′ is nDEAGG
secure for even n, but provably not nDEAGG secure for uneven n. We now define
this scheme formally.

Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature scheme. Then the
aggregate signature scheme Σ′ is defined as follows:

Gen′(1κ) : Compute (pk, sk)← Gen(1κ) and return (pk, sk).

Sign′(sk,m) : Compute σ ← Sign(sk,m) and return (σ, σ).
4Note that we can easily extend our argumentation to the case of schemes with optimal

compression. Instead of using ⊥ for an even number of claims, the Agg′ algorithm simply
needs to choose a random string that has the same bit length as one signature of Σ. Now,
if Σ has optimal compression, so does Σ′. For ease of presentation, we have decided against
defining the scheme this way. Strictly speaking, the presented scheme is therefore not an
aggregate signature scheme, since the signature size is not constant. However, there is a clear
upper bound and the signatures are not increasing in size, but rather fluctuating between two
different sizes. Furthermore, this problem can easily be fixed, as described.
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Agg′(C1, C2, σ1, σ2) : Parse σi = (σi,1, σi,2). Compute

σAgg,1 ← Agg(C1, C2, σ1,1, σ2,1)

σAgg,2 :=
{
σ1,1, if |C1|+ |C2| is uneven,
⊥, otherwise,

and return σAgg = (σAgg,1, σAgg,2).

Vfy′(C, σ) : Parse σ = (σ1, σ2). Ignore σ2 and return Vfy(C, σ1).

Lemma 5.2.24. Σ′ is AS-EUF-CMA secure, if Σ is AS-EUF-CMA secure.

Proof. The proof is analogous to the proof of Lemma 5.2.10.

Remark. Note that Σ′ is not order-independent and the following lemmas
and theorems therefore do not violate Theorem 5.2.21, Theorem 5.2.22 or
Theorem 5.2.23. To see that Σ′ is not order-independent, suppose for example
that we have three distinct claims ci with individual signatures σi = (σi,1, σi,2).

• If we compute Agg′((c1), (c2), σ1, σ2) = (Agg((c1), (c2), σ1,1, σ2,1),⊥) =:
σ1-2 and then aggregate σ3, the resulting signature is

σ1-2-3 := Agg′((c1, c2), (c3), σ1-2, σ3) = (Agg((c1, c2), (c3), σ1-2,1, σ3,1), σ1-2,1).

• If we compute Agg′((c2), (c3), σ2, σ3) = (Agg((c2), (c3), σ2,1, σ3,1),⊥) =:
σ2-3 and then aggregate σ1, the resulting signature is

σ2-3-1 = Agg′((c2, c3), (c1), σ2-3, σ1) = (Agg((c2, c3), (c1), σ2-3,1, σ1,1), σ2-3,1).

Now, an order-independence attacker simply needs to check if the second signature
in the tuple is valid for the claim sequence (c1, c2) to decide which of the two
orders were used to compute the aggregate signature.

Lemma 5.2.25. Let n > 2 and n = 1 mod 2. Then Σ′ is not nDEAGG secure.

Proof. The proof is analogous to the proof of Lemma 5.2.11. If n is uneven,
then the signature given by the challenger in the nDEAGG experiment is a tuple
(σ1, σ2), such that Vfy(C ′, σ2) = 1 for a claim sequence C ′, that is known to A
and that is a true subsequence of C. The deaggregation attacker can therefore
simply output C ′ and (σ2,⊥) to win the experiment.

Lemma 5.2.26. Let n ≥ 2 be polynomial in the security parameter κ and
n = 0 mod 2. Then Σ′ is nDEAGG secure, if Σ is nDEAGG secure.

Proof. The proof is a straightforward reduction. Let CnDEAGG be the nDEAGG
challenger for Σ and A a PPT attacker on the nDEAGG security of Σ′. We
construct a simulator B that uses A to break the nDEAGG security of Σ.

First, B receives n public keys from CnDEAGG, which it passes on to A. Once
A sends its claim sequence C and order-tree T to B, it forwards these to CnDEAGG.
The challenger will then answer with a Σ signature σ for C computed by adhering
to the order-tree T . B now sends σ′ = (σ,⊥) to A, which is a valid and correctly
computed Σ′ signature for the claim sequence C and order-tree T , because σ
was computed correctly and n is even. Once A outputs its deaggregation C∗, σ∗,
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B parses σ∗ as (σ∗1 , σ∗2). If A outputs a successful deaggregation, then we have
that all claims in C∗ must also be in C and at least one claim of C must have
been deaggregated and not be present in C∗. Furthermore, σ∗ must be a valid
Σ′ signature for C∗, i.e. it holds that Vfy′(C∗, σ∗) = 1, which implies that
Vfy(C∗, σ∗1) = 1.

Therefore, B outputs C∗, σ∗1 as its deaggregation to CnDEAGG and wins the
experiment.

The simulation of B for A is perfect and the success probability of B is equal
to the success probability of A. Its runtime is essentially the same as the runtime
of A. It follows that the success probability of A must be negligible, which
concludes the proof.

All in all, we have that Σ′ is nDEAGG secure for all even n, if Σ is nDEAGG
secure, but nDEAGG insecure for all uneven n.

Theorem 5.2.27. Let Σ′ = (Gen′,Sign′,Agg′,Vfy′) be an AS-EUF-CMA secure
aggregate signature scheme and let n, n′ ≥ 2 with n 6= n′. Then it holds that
if Σ′ is nDEAGG or nDEAGG+ secure, then this does not imply that it is also
n′DEAGG secure or n′DEAGG+ secure, respectively.

Proof. The theorem follows from Theorem 5.2.9 and the Lemmas 5.2.24, 5.2.25
and 5.2.26 above.

As already said, the counter-example works because it is not order-indepen-
dent. However, if the base scheme Σ is both claim-removable and extendable,
then so is Σ′. This shows that order-independence is a necessary requirement to
prove the Theorems 5.2.21, 5.2.22 and 5.2.23 (i.e. lower levels of deaggregation
security imply higher levels), whereas extendability might be optional for all
three theorems and claim-removability might also be optional for Theorem 5.2.21
and Theorem 5.2.22. Still, it is unclear how to adapt our proof strategy to
schemes which are not claim-removable and extendable.

Remark. The counter-example can easily be adapted to synchronized and
sequential aggregate schemes and Theorem 5.2.27 therefore also applies for
these two types of aggregation. For synchronized schemes, the same counter-
example can be used. For sequential schemes, it needs to be adapted like the
counter-example for sequential schemes in Section 5.2.4. However, every time
the aggregation of a new claim results in an even number of claims, the second
part of the tuple is set to ⊥. To be precise, the scheme works as follows:

Gen′SAS(1κ) : Compute (pk, sk)← GenSAS(1κ) and return (pk, sk).

AggSign′SAS(sk, C, σ,m) : Parse σ = (σ1, σ2). Compute

• σAgg,1 ← AggSignSAS(sk, C, σ1,m),

• σAgg,2 :=
{
σ1, if |C|+ 1 is uneven
⊥, otherwise

and output σAgg = (σAgg,1, σAgg,2).

Vfy′SAS(C, σ) : Parse σ = (σ1, σ2). Ignore σ2 and return VfySAS(C, σ1).
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This scheme is unforgeable in the sense of SAS-EUF-CMA security, but for an
uneven number of claims, deaggregation attacks are trivial. Furthermore it is
not order-independent, even if the base scheme is, since for uneven numbers of
claims, σ2 can be used to deduce the claim that was aggregated last. Moreover,
if the base scheme is extendable and claim-removable5, then so is Σ′SAS.

It is an open questions whether nDEAGG security can imply n′DEAGG security
for n′ < n in certain cases (in general, it does not, see Theorem 5.2.27). It is
unclear how one could prove this statement, since a simulator could only use
the nDEAGG challenger to answer the query of a n′DEAGG attacker. However,
since n′ < n, the simulator would need to remove some claims from the answer
before it could pass it on to the n′DEAGG attacker, who expects a signature on
a claim sequence of length n′. This suggests that the simulator would need to
break nDEAGG security, which seems paradoxical.

5.2.6 Discussion of nDEAGG and nDEAGG+ Security
All security definitions for deaggregation security presented by us so far, i.e.
nDEAGG and nDEAGG+ security, have a shared flaw: The attacker may only
send one query to the challenger and has no access to a general Sign oracle. Of
course, this is not satisfactory, since in most applications attackers can easily
observe signatures or might be able to implement some form of signing oracle by
abusing implementation errors, social engineering or by other adversarial means.
Our motivations for this restriction are as follows:

Interesting Applications: Although the definitions are comparatively weak,
they suffice to construct interesting cryptographic primitives and applica-
tions. Already in their seminal paper on aggregate signatures, Boneh et al.
[Bon+03] also present a construction of a verifiably encrypted signature
scheme. To be able to prove its security, they introduce the k-Element
Aggregate Extraction Problem and the associated k-Element Aggregate Ex-
traction Assumption. The problem and assumption are almost identical to
our 2DEAGG security definition, but directly tailored towards the algebraic
setting of their aggregate signature scheme. In fact, our definitions can
be seen as generalizations of their computational assumption. See Sec-
tion 5.2.1 for a detailed discussion of the k-Element Aggregate Extraction
assumption.

Building a Hierarchy of Definitions: In the research of other cryptographic
primitives, building a hierarchy of security definitions of varying strengths
has been a successful approach to understanding the needed level of se-
curity and then in achieving it. For example, in the case of encryption,
researching weaker notions like OW-CPA or IND-CPA has led to successful
constructions of IND-CCA secure schemes and a better understanding of
security for encryption schemes [NY90; CS98]. Similarly, studying notions
like EUF-naCMA for digital signatures and weaker primitives like one-time
signatures led to the first fast EUF-CMA secure construction [EGM96]. We
are of the opinion that a similar hierarchy for deaggregation security is

5We stress once more that schemes that are SAS-EUF-CMA secure in the sense of [Lys+04]
can never be order-independent and claim-removable, but other sequential schemes using a
different definition of unforgeability like [Lu+06] can be. See also Section 5.3.6.
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beneficial as well. For example, Section 5.3 discusses the deaggregation
security of several known schemes and this hierarchy allows us to precisely
classify the deaggregation security offered by these schemes.

Complexity: Constructing efficient aggregate signature schemes already is a
hard problem even without trying to provide a strong form of deaggregation
security, as can be seen from the fact that after years of research still no
efficient fully flexible scheme is known in the standard model. If we
add the additional requirement of deaggregation security on top, the
problem becomes even more complex. Furthermore, adding deaggregation
security to a scheme will most likely negatively influence its efficiency.
It therefore seems advantageous to be able to exactly state which kind
of deaggregation security is needed for a given application, just like in
the case of security for signatures or encryption, where weaker definitions
like one-time signatures, EUF-naCMA or IND-CPA are sufficient for some
applications and constructions.

Little Research so far: Up to now, very little research has been done on the
deaggregation security of aggregate signature schemes. While technically
Boneh et al. [Bon+03] already introduced the problem, research mostly
focused on finding new constructions and put little regard on deaggregation
security. It seems beneficial to analyze the deaggregation security of existing
schemes, although it seems unrealistic to expect that they will fulfill a
strong type of security definition, since they were not designed with it
in mind. As we discuss in Section 5.3, this speculation turns out to be
true and most known schemes only offer limited deaggregation security
(nDEAGG security in most cases). Our definitions therefore enable us to
clearly state which level of security is offered by these schemes.

Looking at the points made above, we argue that it is worthwhile to study
the presented security definitions, even though they do not adequately capture
many real-life scenarios. In [FLS12] Fischlin et al. and in [SMD14] Saxena et al.
introduce strong security notions for (sequential) aggregate signature schemes
that also encompass deaggregation security. The main goal of the definition of
Fischlin et al. is history-freeness, meaning that the AggSign algorithm no longer
receives the previous messages and public keys in its input, but it also implies
a strong form of deaggregation security for sequential schemes. However, their
definitions only apply to sequential schemes, since they assume that aggregation
is a private operation. Furthermore, as Fischlin et al. note themselves, it is
unclear if their strong notion can be fulfilled, which is also why they state a
relaxation of their notion. For these reasons, we focus on the definition of Saxena
et al. in the following Section 5.2.7.

5.2.7 ADEAGG Security: Security against Adaptive Attacks
One problem that arises once multiple Sign queries are allowed is that the
attacker can now aggregate and combine the signatures, which might also give
him an advantage in deaggregating. For example, the attacker could simply
request individual signatures and aggregate them to compute a “deaggregation”
of a signature of a larger claim sequence containing these claims. Furthermore,
many known aggregate signature schemes are based on algebraic groups (for
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example [Bon+03; AGH10]), signatures are group elements and are aggregated
by multiplying them in the group. In these schemes, deaggregation can be as
easy as inverting group elements if several signatures are known to the attacker.
Consider, for example, the BGLS aggregate signature scheme (see Section 3.2.1
for an overview of the scheme):

Example 5.2.28. Let m1,m2 and m3 be three different messages and pk1 =
gx1 , pk2 = gx2 and pk3 = gx3 three different public keys. Then σ = H(m1)x1 ·
H(m2)x2 ·H(m3)x3 is a valid signature for the claim sequence C = ((pk1,m1),
(pk2,m2), (pk3,m3)). Suppose an attacker gets a hold of a valid signature
σ′ = H(m2)x2 for m2 under pk2. Then he can easily compute a valid signature
for the claim sequence C ′ = ((pk1,m1), (pk3,m3)) by computing

σ · σ′−1 = H(m1)x1 ·H(m2)x2 ·H(m3)x3

H(m2)x2
= H(m1)x1 ·H(m3)x3 .

So, definitions allowing multiple Sign queries need to keep track of all the
signatures the attacker requested and somehow quantify whether he computed
a meaningful deaggregation or simply output a trivial aggregation from these
signatures. Furthermore, we can no longer speak of a single deaggregation
challenge. Instead, any meaningful and non-trivial output of the attacker should
be interpreted as a successful deaggregation. To be precise, a signature for
any claim sequence that he never requested a signature for should be accepted
by the experiment. This captures deaggregation attacks, where the attacker
asks for several signatures, computes “subsignatures” of them by deaggregating
individual claims and then aggregates them to compute his answer. It also means
that such a deaggregation definition will imply unforgeability, in contrast to the
definitions so far, where this was provably not the case.

While these requirements seem to be quite complex, Saxena, Misra, and Dhar
[SMD14] present a clever definition in which they classify claim sequences into
signable, weakly signable and not signable claim sequences by identifying claims
with prime numbers. Each claim sequence now also has a corresponding integer
that is computed by multiplying the prime numbers associated to the claims
contained in the sequence. The prime factorization of the integer of a claim
sequence can therefore be used to identify which signatures can be aggregated
to construct a signature for this sequence.

Intuitively speaking, signable claim sequences are those for which the attacker
can compute a signature by simply aggregating signatures he received from the
challenger. Claim sequences are called weakly signable if a signature for them can
be computed by first aggregating and then removing claims from the aggregate
by “inverting” some other signatures the attacker received from the challenger,
like shown in Example 5.2.28 above. Since not all aggregate signature schemes
necessarily allow this “inversion” of the aggregation process, these claim sequences
are called weakly signable.

Example 5.2.29. Identify the claims (pki,mi) of Example 5.2.28 above with
the prime numbers 2, 3 and 5. Let σ be a signature for C = ((pk1,m1), (pk2,m2),
(pk3,m3)) and σ′ be a signature for C ′ = ((pk2,m2)). The integer associated to
C is 2 · 3 · 5 = 30 and the integer for C ′ is 3. Let C ′′ = ((pk1,m1), (pk2,m2)).
The integer corresponding to C ′′ is 2 ·5 = 10. Suppose σ and σ′ are all signatures
that the attacker received from the challenger.
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Then we say that C ′ is not signable, since there is no way of aggregating σ and
σ′ to compute a signature for C ′′. This can also be inferred from the fact that
there exist no positive a, b ∈ Z such that 10 = 30a · 3b. However, if we allow
negative a, b, then we have 10 = 301 · 3−1, which means that a signature for C ′′
is given by aggregating σ1 and σ′−1. C ′′ is therefore weakly signable.

We now present a generalized version6 of the definition of Saxena et al.
[SMD14], which we call adaptive deaggregation security (abbreviated as ADEAGG).
Signable and weakly signable claim sequences are defined formally in Defini-
tion 5.2.31 after the definition of the ADEAGG security experiment, since the
formal definition of these concepts needs to reference parts of the experiment.

We also use a slightly modified OrderAgg algorithm that now also supports
the input of an additional list of claim sequences with corresponding signatures.
The order-tree then also specifies when these signatures are supposed to be
aggregated to the rest. So,

OrderAgg((sk1, . . . , skn), C, ((C1, σ1), . . . , (Ck, σk)), T )

computes signatures for the claims in C and then aggregates them and the
signatures σj for the claim sequences Cj according to T . See Figure 5.6 for a
schematic overview of the ADEAGG security experiment.

Definition 5.2.30 (ADEAGG Security Experiment). The ADEAGG security
experiment between an attacker A, a challenger C and an aggregate signature
scheme Σ = (Gen,Sign,Agg,Vfy) consists of three phases as follows:

Setup Phase. A outputs a number n ∈ N. The challenger C generates n key
pairs (pki, ski)← Gen(1κ) and gives PK := (pk1, . . . , pkk) to the attacker
A. The challenger furthermore initializes a set CS := ∅, which is used to
store the claim sequences for which the attacker asks signatures for.

Query Phase. If A sends a claim sequence C, a list of claim sequences and
signatures ((C1, σ1), . . . , (Ck, σk)) (k ∈ N), where ski is a signature7 for
Ci, and an order-tree T , then C first checks that each public key of C is in
PK.8 If not, C answers with ⊥. Next, C computes an aggregate signature
σAgg for the claims in C and claim sequences Ci according to the given
order-tree by executing

σAgg ← OrderAgg((sk′1, . . . , sk
′
k), C, ((C1, σ1), . . . , (Ck, σk)), T ),

where sk′i is the secret key corresponding to the public key of claim i in C.
Finally, the challenger adds C to CS. A may repeat this step at will.

6The original definition of [SMD14] is strongly tailored towards their scheme and does not
take order-trees and other details into account, that are important for other schemes. See the
discussion below Definition 5.2.33 for details on the changes.

7Note that σi must not necessarily be valid for Ci, which also models attackers that might
try to deaggregate by using invalid signatures. However, σi of course needs to be in the
signature space.

8The keys of C1, . . . , Ck must not necessarily be in PK, since A provides the signatures on
these sequences. For the same reason, they are also not added to CS.
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Output Phase. At the end of the experiment, A sends a tuple (C∗, σ∗) to the
challenger C. The claim sequence C∗ = ((pk∗1,m1), . . . , (pk∗n,mn)) may
contain public keys not in PK. Let PKA = (pk∗1, . . . , pk∗n). Then A is
successful, if

1. Vfy(C∗, σ∗) = 1,
2. The intersection PK ∩ PKA is not empty and
3. C∗ is not signable (see Definition 5.2.31 below).

Note that the the security experiment requires that the claim sequence output
by the attacker is not signable, but weakly signable claim sequences can be used
to win the experiment. Therefore, schemes were the inversion of the aggregation
process is easy given a signature for a subsequence of claims of another signature,
like the BGLS scheme, cannot be ADEAGG secure.9

CADEAGG A

n

(pki, ski)← Gen(1κ)
CS = ∅

PK := (pk1, . . . , pkn)

Ci, (Ci,j, σi,j)j,
Ti

∀(pk′i,mi) ∈ Ci : pk′i ∈ PK?:
σi ← OrderAgg((sk′1, . . . , sk

′
k),

Ci, (Ci,j , σi,j)j , Ti)
CS = CS ∪ Ci

σi

up to polynomial
many requests

C∗ , σ
∗

Vfy(C∗, σ∗) = 1? ∧ PK ∩ PKA 6= ∅
∧

C∗ not signable?

Figure 5.6: The ADEAGG security experiment.

Definition 5.2.31 (Signable and Weakly Signable Claim Sequences). Let
PK, CS and C∗ be as in the ADEAGG security experiment above. Let C ′ =
{(pk,m) : (pk,m) ∈ C∗ ∧ pk ∈ PK}. Assign a unique prime number to each
element of the set

{(pk,m) : ((pk,m) ∈ C ∧ C ∈ CS) ∨ (pk,m) ∈ C ′},

i.e. the set of all claims which contain a public key chosen by the challenger
and which were part of one of the queries of A or which were used in the

9To further classify schemes like this, a weaker security definition could be defined that
requires that the claim sequence is not weakly signable (and therefore also not signable).
However, we will not do so in this thesis.
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forgery of A. Then each C ∈ CS corresponds to a unique integer denoted by
integer(C) and obtained by multiplying the primes corresponding to its claims.
Let Z = {integer(C) : C ∈ CS} and z∗ = integer(C∗).

Then the claim sequence C∗ is signable if and only if there exists a solution
in non-negative integers xi to the equation

z∗ =
∏
zi∈Z

zxi
i .

If there exists a solution allowing negative integers, we call C∗ weakly
signable.

Example 5.2.32. Let m1,m2 and m3 be three different messages. Let PK =
{pk1, pk2, pk3, pk4} and CS = {C1, C2, C3} with C1 = ((pk1,m1), (pk2,m2)),
C2 = ((pk2,m2), (pk3,m3)), C3 = ((pk3,m3), (pk4,m4)). Let σi be a signature
for the claim sequence Ci. Let C∗ = ((pk1,m1), (pk4,m4), (pk5,m5)), where
pk5 /∈ PK is a public key chosen by the attacker. Assign primes as follows:

(pk1,m1)→ 2, (pk2,m2)→ 3, (pk3,m3)→ 5, (pk4,m4)→ 7.

Then we have

Z = {integer(C1), integer(C2), integer(C3)}
= {2 · 3, 3 · 5, 5 · 7}
= {6, 15, 35} and

z∗ = integer(C∗) = 2 · 7 = 14.

Note that the claim (pk5,m5) is ignored when assigning primes to the claims
and when computing integer(C∗), since pk5 is not in PK. A therefore potentially
knows its secret key and can trivially aggregate any claims using this key. We
now have that C∗ is weakly signable, because

14 = 61 · 15−1 · 351.

However, it is not signable, since there are no solutions in non-negative integers
to

14 = 6x1 · 15x2 · 35x3 .

This implies that a signature σ∗ for C∗ cannot be computed by simply aggregating
a signature for (pk5,m5) and the signatures σi. However, if it is possible to
“invert” the signatures and the aggregation process (like in the BGLS aggregate
signature scheme, see Example 5.2.28), then σ∗ could be computed by first
aggregating σ1 to σ3, removing σ2 by “aggregating σ−1

2 ” and then aggregating a
signature σ5 for (pk5,m2), i.e. σ∗ = “Agg(σ1, σ

−1
2 , σ3, σ5)”.

Definition 5.2.33 (ADEAGG Security for Aggregate Signature Schemes). An
aggregate signature scheme Σ = (Gen,Sign,Agg,Vfy) is ADEAGG secure, if all
PPT algorithms A only have negligible success probability in the ADEAGG security
experiment, meaning it holds that

Pr

ACADEAGG(pk) = (C∗, σ∗) :
Vfy(C∗, σ∗) = 1
∧PK ∩ PKA 6= ∅
∧C∗is not signable

 ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.
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Discussion of the Changes to the Original Definition. The original
definition of ADEAGG security from [SMD14] is slightly different to the definition
given here. We have taken the liberty to adapt and generalize it, so that it fits
better to the rest of this thesis and to other aggregate signature schemes than
just the original BGLS scheme and the variant of Saxena et al. The changes are
as follows:

1. In their work, Saxena et al. do not use claims or claim sequences, but
an almost identical concept, which they call message-descriptor, the only
difference being that a message-descriptor is a set of claims.

2. Their definition is geared towards aggregate signature schemes that do
not allow to sign the same claim multiple times. We have removed this
restriction.

3. Moreover, we have added the possibility for the attacker to specify order-
trees in the signing queries. We also allow the attacker to send multiple
claim sequences together with corresponding signatures in the queries, so
that he can further aggregate claims to signatures that he received from the
challenger. Both changes, for example, are necessary to capture security
for schemes that are not order-independent or where aggregating the same
claims can result in different signatures, even if they are aggregated in the
same order.

Although we modified the definition of Saxena et al., these changes do not
influence the results presented in [SMD14]. Let ADEAGGSMD denote the original
definition and let SMD denote their scheme. SMD is based on the the BGLS
aggregate signature scheme, which is order-independent (see Example 5.2.20).
In fact, aggregating the same individual BGLS signatures will always result in
the same aggregate signature. A signature of their scheme then is a tuple (σ,R),
where R is a list of random strings ri and σ is a BGLS aggregate signature on
the messages mi‖ri‖pk, i.e. a random string and the public key get appended to
the message before signing.

Because of the order-independence of the BGLS scheme, σ cannot be used
to infer the order of aggregation. However, the order of the random strings in
the list R is equal to the order of aggregation, so the SMD scheme is not order-
independent. But the random strings in R can simply be reordered to create a
signature on the same claims in a different order and attackers cannot distinguish
such a reordered signature from one that was actually computed following this
order. In the original definition, it is assumed that the signatures are aggregated
in ascending order given by the keys pki chosen by the challenger. So if an
attacker on the SMD scheme using our definition would request a signature using
a different order, we could simply request a signature in ascending order from
CADEAGGSMD and then reorder it accordingly. Therefore, including the possibility
that the attacker can specify different order-trees has no repercussions.

Furthermore, for the same reason, the addition that attackers can now also
specify claim sequences Ci with signatures σi to be aggregated in their queries
has no influence either. If an attacker on their scheme would need access to
such queries, they could simply be simulated by first requesting a signature
for the claims in C from the challenger CADEAGGSMD , then aggregating each σi
successively, then reordering the random strings according to the given order-tree
T and sending this signature to the attacker.
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The restriction that the same claim does not appear multiple times still needs
to be enforced. But this is already done by the original SignSMD and VfySMD
algorithms anyway. They explicitly check that no claim appears multiple times
and abort or output 0 if one does. So, the security experiment does not also
need to enforce this restriction.

Therefore, their theorems and statements remain true even for this adapted
and generalized definition. For more details on the SMD scheme, see Section 5.3.3.

Remark. Instead of naming their security definition, Saxena et al. call aggregate
signature schemes which fulfill it composite signatures. However, since we
generalized the definition and to better fit the terminology of this thesis, we
have chosen to not adapt this term and instead use the name ADEAGG security.

The ADEAGG security definition is strong and captures the possibilities of
a real-life adaptive deaggregation attacker quite well, but to the best of our
knowledge, there unfortunately exists no ADEAGG secure scheme, except for the
SMD scheme. However, the SMD scheme is only secure in the random oracle
model and the signature size grows linearly in the number of aggregated claims,
because for each claim a new random string needs to be added to the signature.

Notice that, in contrast to nDEAGG and nDEAGG+ security (see Section 5.2.4),
ADEAGG security implies unforgeability. Furthermore, it also implies nDEAGG+

and therefore nDEAGG security:

Theorem 5.2.34. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature
scheme. If Σ is ADEAGG secure, then it is also nDEAGG+ secure for all n ≥ 2
polynomial in the security parameter κ.

Proof. The proof is straightforward. Let CADEAGG be the ADEAGG challenger
and A be a PPT attacker on the nDEAGG+ security of Σ. We construct a
simulator B that uses A to win against the challenger CADEAGG.

First, B outputs the number n to CADEAGG, who in turn creates n key pairs
(pki, ski) and sends PK := (pk1, . . . , pkn) to B, which B forwards to A. Once
A outputs its messages M = (m1, . . . ,mn) and order-tree T , B sets C =
((pk1,m1), . . . , (pkn,mn)) and sends C together with T to CADEAGG. Since all
public keys in C are also in PK, the challenger will now correctly compute an
aggregate signature σ for C and set CS := {C}. The simulator B passes on the
signature σ to A. Once A outputs its deaggregation (C∗, σ∗), the simulator B
simply forwards this tuple to CADEAGG. Let PKA be the set of public keys in C∗.
If the deaggregation attack of A was successful, we have that

Vfy(C∗, σ∗) = 1 and ∃c ∈ C : c /∈ C∗ and ∃c ∈ C∗ : c ∈ C.

This in turn implies that PK ∩ PKA 6= ∅, since there exists at least one claim
that is both in C and C∗. Furthermore, since C is the only claim sequence in
CS and C 6= C∗, it also follows that C∗ is not signable.

So, if A sends a valid deaggregation, B also wins its game against CADEAGG.
The success probability of B and its runtime are equal to the success probability
and runtime of A. Since we assumed the scheme to be ADEAGG secure, it
follows that the success probability of A must be negligible, which concludes the
proof.

The theorem above also directly implies the following corollary:
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Corollary 5.2.35. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature
scheme. If Σ is ADEAGG secure, then it is also nDEAGG secure for all n ≥ 2
polynomial in the security parameter κ.

Limits of ADEAGG Security. Note that ADEAGG security as defined here is not
suitable for schemes were signatures are only valid for the exact claim sequence
that was used when creating the signature, i.e. were for example a signature
for the claim sequence C = (c1, c2) is not also valid for the claim sequence
C ′ = (c2, c1). The reason is that the multiplication of primes is commutative
and therefore we would have integer(C) = integer(C ′). So, if the attacker queries
a signature for C, then C ′ would also wrongly be classified as signable.

Therefore, for these kind of schemes, a more complex way of classifying
claim sequences into signable, weakly signable and not signable sequences is
needed. However, the definition presented here suffices for all known fully flexible
and synchronized aggregate signature schemes, since none of them exhibit the
property that the order of claims is critical for verification. The only exception is
our fault-tolerant construction from Chapter 4, but since fault-tolerant schemes
cannot even be nDEAGG secure (see Section 5.4), no form of ADEAGG security
could apply to this construction.

For similar reasons, ADEAGG security only fits fully flexible and synchronized
schemes. Since sequential aggregate signatures cannot be aggregated, the concept
of signable claim sequences is problematic. For example, suppose an attacker
on a sequential scheme asks for signatures σ and σ′ for two claim sequences
C = (c1, c2) and C ′ = (c3, c4). Then the claim sequence C ′′ = (c1, c2, c3, c4)
would be classified as signable by the experiment, although there is no trivial
way for the attacker to compute such a signature, since σ and σ′ cannot simply
be aggregated in a sequential scheme.

A better definition for sequential schemes is given by Fischlin, Lehmann, and
Schröder [FLS12]. Their definition is conceptually close to ADEAGG security, but
tailor-made for sequential schemes. Their main goal is history-freeness, which
means that the AggSign algorithm does not receive the public keys and messages
so far in its input. This also implies that the AggSign algorithm can no longer
verify the aggregate-so-far, as is done in many sequential schemes. Security
needs to be defined differently, since an attacker might request signatures on
sequences “starting in the middle” (i.e. where the attacker does not know the
corresponding previous messages) or where the given aggregate-so-far is not valid.
As a “side effect”, these definitions also imply a strong form of deaggregation
security for sequential aggregate schemes that is comparable to ADEAGG security.
However, Fischlin et al. themselves note that it is unclear whether this definition
can be achieved. They also present a relaxed definition and give a scheme
based on [Bon+03] that fulfills the relaxed notion in the random oracle model.
Furthermore, their definitions do not transfer to fully flexible and synchronized
schemes, which they also discuss in detail. For example, the definitions assume
that aggregation is a private operation and the aggregation of two signatures is
seen as a valid attack. While this is makes sense for sequential schemes, it does
not translate to fully flexible and synchronized schemes, where aggregation is
supposed to be a publicly computable operation. For these reasons, and also
because their scheme is the only known scheme to fulfill their relaxed notion, we
do not discuss their definitions in more detail in this thesis.
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5.2.8 Adapting the Definitions to Sequential and Synchro-
nized Aggregation

Adapting the definitions presented in the previous chapters to sequential and
synchronized aggregate signature schemes is for the most part fairly straightfor-
ward. We discuss the details in the following paragraphs.

Sequential Aggregation: Instead of signing each message individually in the
experiments and then aggregating the signatures, the messages are sequentially
signed and aggregated in the order specified by the attacker. For the nDEAGG and
nDEAGG+ experiments we no longer need to deal with full order-trees. Instead,
sequences of aggregation specified by the attacker suffice. This essentially does
not change the definitions. Observe that the attacker has full control over the
order in which the messages get signed and aggregated.

The definitions of extendability and claim-removability do not need to be
changed. The definition of order-independence in Definition 5.2.19 is changed to
work with sequences instead of trees.

Synchronized Aggregation: In the security definitions, if the scheme employs
a Setup algorithm, it is executed by the challenger and the attacker is given the
public parameters pp at the same time as the public keys. The algorithms of the
scheme also receive the synchronizing parameter as additional input during the
experiment as needed. The synchronizing parameter is provided by the attacker
per query and the same parameter is used for all claims of the query, since
only signatures which were created using the same parameter can be aggregated.
Concerning the time stamp for nDEAGG and nDEAGG+ security, it could be
worthwhile to differentiate between definitions that either allow the attacker to
use any time stamp in its deaggregation attack or that require him to use the
same time stamp as in its query (for the rest of this thesis, we allow the attacker
to use any time stamp in his deaggregation answer). For ADEAGG security, the
attacker should be allowed use any time stamp, so that the definition remains as
general as possible and to still imply unforgeability.

Furthermore, to be in line with the definition of SyncAS-EUF-CMA, only one
query per time stamp per public key is allowed. Additionally, for all definitions,
if the scheme only allows one signature per signer during each time period (like
the scheme of Ahn, Green, and Hohenberger [AGH10], see Section 5.3.7), then
the challenger ensures that all key pairs chosen in the Setup Phase and given
in each query are unique. For ADEAGG security it is additionally necessary
that the challenger stores all individual signatures created per query, signer and
time period. If the attacker sends another query in the same time period, the
challenger needs to check for every claim of the query that it either contains a
public key the attacker hasn’t used before during this time period or otherwise
that the claim is equal to the one stored for this public key in the given time
period. If neither is true, then the challenger computes no signature and outputs
⊥. If it is equal to a previous claim, the challenger needs to use the stored
individual signature to compute the aggregate signature for the current query.
This way it is ensured that no signer issues more than one signature per time
period in the ADEAGG security experiment. Notice that these changes also do
not essentially change the definitions and that the attacker still has full control
over aggregation.
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Since only claims and signatures using the same time stamp can be aggregated,
the definition of extendability in Definition 5.2.16 needs to changed so that
the claim and signature that are to be added need to be under the same time
stamp as the give claim sequence. The definition of order-independence in
Definition 5.2.19 also needs to be changed so that all claims use the same time
stamp.
All theorems presented in this chapter on deaggregation security also apply to
these changed definitions for sequential and synchronized aggregate signature
schemes, unless otherwise noted.

5.2.9 Overview of the Deaggregation Security Definitions

To conclude this section about the different deaggregation security definitions,
Figure 5.7 gives an overview over the relationships between the definitions.
Unforgeability stands representatively for the different definitions of unforgeability
for fully flexible, sequential and synchronized aggregate signature schemes,
i.e. AS-EUF-CMA, SAS-EUF-CMA and SyncAS-EUF-CMA security. “nDEAGG”
and “nDEAGG+” stands representatively for the different levels of nDEAGG,
respectively nDEAGG+, security. See the part of the diagram to the right
concerning the relationships between these levels.

Unforgeability

“nDEAGG”

2DEAGG

3DEAGG

...

nDEAGG

“nDEAGG+”

2DEAGG+

3DEAGG+

...

nDEAGG+

ADEAGG

\ \

~\
~\

~\

\

⊗\
⊗\

⊗\

\

\

\\

~ : Holds for schemes that are order-independent,
claim-removable and extendable.

⊗ : Holds for schemes that are order-independent
and extendable.

Figure 5.7: Overview of the deaggregation security definitions.

Note that we did not generally prove “nDEAGG ; nDEAGG+” and “nDEAGG+ ;
ADEAGG”. However, in Section 5.3 several schemes are discussed that are
nDEAGG, but not nDEAGG+ or nDEAGG+, but not ADEAGG secure (see Theo-
rem 5.3.5 and Theorem 5.3.13, for example).
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5.3 Deaggregation Security of Known Schemes
In this section, we discuss the deaggregation security of several known and
important fully flexible, sequential and synchronized aggregate signature schemes
in detail. Unfortunately, due to the large number of proposed schemes (see the
respective overview sections of Chapter 3), we can only discuss the deaggregation
security of a limited number of schemes in this thesis.

5.3.1 The BGLS Aggregate Signature Scheme
In this chapter, we discuss the deaggregation security of the BGLS aggregate sig-
nature scheme of Boneh, Gentry, Lynn and Shacham [Bon+03] (see Section 3.2.1
for a description of the scheme).

Since the 2EAE assumption is tailor-made for the scheme, it is fairly straight-
forward to show the 2DEAGG security of BGLS using this assumption. To show
this, we also use the following lemma:

Lemma 5.3.1. Let (pk, sk) = (gsk, sk)← GenBGLS(1k) be BGLS key pair (where
g is a generator of the used group), m be a message and σ a valid BGLS signature
for m under pk. Then σ is of the form

σ = H(m)sk,

i.e. for each message, there exists only one corresponding valid signature.

Proof. Since σ is valid for m under pk, we have VfyBGLS((pk,m), σ) = 1. This
implies

e(σ, g) = e(H(m), pk) = e(H(m), gsk) = e(H(m)sk, g).

Since e(·, g) is injective (see Lemma 2.2.12), it follows that σ = H(m)sk.

Remark. Note that Lemma 5.3.1 also implies that there exist no irregular but
valid signatures for the BGLS scheme.

Theorem 5.3.2. If the 2EAE assumption holds, then the BGLS aggregate sig-
nature scheme is 2DEAGG secure in the random oracle model.

Proof. Let A be a 2DEAGG attacker on the BGLS scheme and C2EAE the 2EAE
challenger. We construct a simulator B which simulates the 2DEAGG security
experiment using C2EAE for A (see Figure 5.8 for a schematic overview of the
proof). B will also control the random oracle and answer all random oracle
queries of A. Without loss of generality, we can assume that A will only send
unique random oracle queries.

At the start of the experiment, B receives g, ga, gb, gu, gv and gau+bv from
the challenger C2EAE. B will then pass on pk1 := ga and pk2 := gb to A. Observe
that these keys are distributed like honestly created keys, since ga and gb were
randomly chosen by C2EAE.

The attacker A may send a number of random oracle queries before he sends
his challenge messages m1 and m2 (that we do not know yet at this point in the
simulation). We can also assume without loss of generality that A sends random
oracle queries for m1 and m2 before he sends the signature query, since m1 and
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C2EAE B A

2EAE 2DEAGG

g, ga, gb, gu, gv, gau+bv

pk1 := ga, pk2 := gb

s, t← [q] pk1, pk2

H(m′i)?

hi := gu if i = s
else hi := gv if i = t

else hi := gz for random z
hi

m1,m2, T

abort if m1 6= m′s and m2 6= m′t
σAgg := gau+bv

(c∗, σ∗)

extract gau from (c∗, σ∗)
gau

Figure 5.8: Overview of the proof strategy for Theorem 5.3.2.

m2 will both be signed after A has sent them, which entails that their random
oracle values will be fixed at this point at the latest.

Let q ∈ N be the amount of random oracle queries before A sends his
challenge messages. B chooses two distinct indices s, t randomly from [q]. Let
m′i be the i-th of these queries. If i = s or i = t, then B will answer with gu
or gv, respectively. Otherwise B will pick a random z ← Zp and answer with
gz. Observe that all of these answers are honest answers to the random oracle
queries, since gu and gv were chosen randomly by C2EAE.

Once A sends its two challenge messages m1 and m2 with order-tree T ,
B continues as follows: First, it checks whether m1 = m′s and m2 = m′t. If
this is not the case, B aborts. Otherwise, B answers this challenge query by
sending σAgg := gau+bv. This is a valid aggregate signature for m1 and m2,
since individual signature for m1 and m2 are equal to H(m1)a = gau and
H(m2)b = gbv, according to Lemma 5.3.1, and aggregating them would result
in gau+bv. This is also independent of T , since aggregating the same individual
signatures will always result in the same group element, no matter in which
order they are aggregated.

All random oracle queries that A sends after the challenge are answered by
B by picking a random z ← Zp and answering with gz.
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If A is successful, then it sends a claim c∗ together with a signature σ∗, such that
Vfy(c∗, σ∗) = 1 and c∗ = (pk1,m1) or c∗ = (pk2,m2). If c∗ = (pk1,m1), then,
according to Lemma 5.3.1, it follows that σ∗ = gau and B sends σ∗ as his answer
to C2EAE. Otherwise, it holds that σ∗ = gbv and B outputs gau+bv · (σ∗)−1 = gau.

Since the probability that B guessed s and t correctly is at least 1/q for both
indices, it follows that

Pr[B is successful] ≥ 1
q2 · Pr[A is successful],

which implies that the success probability of A must be negligible in the security
parameter, because we assumed that the 2EAE problem is hard.

Theorem 5.3.3. The BGLS aggregate signature scheme is nDEAGG secure in
the random oracle model under the 2EAE assumption for all n ≥ 2 polynomial
in the security parameter κ.

Proof. In Example 5.2.20 we have already argued that the BGLS aggregate sig-
nature scheme is extendable, claim-removable and order-independent. Therefore,
the theorem follows directly from Theorem 5.2.21 and Theorem 5.3.2.

Corollary 5.3.4. The BGLS aggregate signature scheme is nDEAGG secure in
the random oracle model under the Computational Diffie-Hellman assumption
for all n ≥ 2 polynomial in the security parameter κ.

Proof. This follows directly from Theorem 5.2.2 and Theorem 5.3.3.

Remark. It should also be possible to directly prove the nDEAGG security of
the BGLS scheme under the Computational Diffie-Hellman assumption using
techniques similar the ones used by [CN03] to show that the 2EAE and CDH
assumptions are equivalent. However, to be consistent with the original publi-
cation and formulations of Boneh et al. [Bon+03], we decided to rather prove
security under the 2EAE assumption instead and then apply the result of Coron
and Naccache [CN03].

Unfortunately, the BGLS aggregate signature scheme does not fulfill the stronger
nDEAGG+ security definition. Despite this, a simple change to the algorithms
suffices to make the scheme nDEAGG+ secure, as we discuss in Section 5.3.2.

Theorem 5.3.5. The BGLS aggregate signature scheme is not nDEAGG+ secure
for any n.

Proof. Consider the following PPT attacker A. After A has received n public
keys pki = gai from its challenger, it picks n random messages mi and sends
them and a fitting order-tree (for example the order-tree describing sequential
aggregation) to the challenger, which computes an aggregate signature σAgg and
sends it to A. A will then send C∗ = ((pk1 · g,m1), (pk2,m2), . . . , (pkn,mn))
and σ∗ = σAgg ·H(m1) as its answer. We now have the following:
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• Vfy(C∗, σ∗) = 1, because

e(σ∗, g) = e(σAgg ·H(m1), g)
= e(H(m1)a1 · . . . ·H(mn)an ·H(m1), g)
= e(H(m1)a1+1, g) · e(H(m2)a2 , g) · . . . · e(H(mn)an , g)
= e(H(m1), pk1 · g) · e(H(m2), pk2) · . . . · e(H(mn), pkn),

so σ∗ is a valid signature for the claims in C∗.

• The claim (pk1,m1) is not in C∗, because pk1 6= pk1 · g, so the claim
(pk1,m1) was successfully deaggregated. All other claims (pki,mi) with
i 6= 1 are however still in C∗.

The requirements for a successful deaggregation according to the nDEAGG+

security definition are therefore fulfilled. Furthermore, the runtime of A is
polynomial and its success probability is equal to 1. It follows that the BGLS
aggregate signature scheme is not nDEAGG+ secure.

Remark. In the above attack, deaggregation is done only by changing the public
key of the claim of the first message m1. This might seem counter-intuitive, since
one might expect that a successful deaggregation should also remove all traces
of the message from the aggregate signature and therefore this deaggregation
attack might seem ineffective. We argue that this is not the case.

Since the public key was changed, the parties using the scheme can no longer
verify that the party using pk1 signed the message m1. Therefore, although m1
remains in the list of claims, the connection to the first party is severed. Observe
that the attacker could also change the claim by multiplying pk1 with gz for a
random z (and the signature with H(m1)z), which would result in a completely
random public key and would information theoretically hide the connection to
pk1. The definition of nDEAGG+ security explicitly allows these kinds of attacks
to represent this fact. Note that this is also reminiscent of key substitution
attacks (see, for example, [MS04; BM99b]).

Theorem 5.3.6. The BGLS scheme is not ADEAGG secure.

Proof. The theorem follows from Theorem 5.2.34 and Theorem 5.3.5 directly
above. It also follows from the fact that aggregation can be inverted and an
attacker can easily output a weakly signable claim sequence together with a
fitting signature, see Example 5.2.28.

5.3.2 The BNN Aggregate Signature Scheme
Boneh et al. [Bon+03] already propose a simple change to their scheme to fix
the problem that only distinct messages can be signed, namely they suggest
to sign H(pk‖m) instead of signing H(m). Still, the VfyBGLS algorithm would
need to check that all pairs pk‖m are distinct, so that their security proof goes
through. However, Bellare, Namprempre, and Neven [BNN07] subsequently
prove that this check can also be safely removed. Fortunately, this simple change
also improves the deaggregation security of the BGLS scheme, since this variant
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can be shown to be nDEAGG+ secure. We call the modified scheme the BNN
aggregate signature scheme10:

Definition 5.3.7 (BNN Aggregate Signature Scheme). Let G,GT be cyclic
groups of prime order p ∈ N, g a random generator of G, e : G×G→ GT a pairing
and H : {0, 1}∗ → G a hash function. The BNN aggregate signature scheme
ΣBNN = (GenBNN,SignBNN,AggBNN,VfyBNN) consists of four PPT algorithms as
follows:

GenBNN(1κ). Pick a random x← Zp and return (pk, sk) := (gx, x).

SignBNN(sk,m). Return σ := H(pk‖m)sk = H(pk‖m)x ∈ G.

AggBNN(C1, C2, σ1, σ2). Return σAgg = σ1 · σ2.

VfyBNN(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)). If it holds that

e(σ, g) =
n∏
i=1

e(H(pki‖mi), pki)

return 1, otherwise return 0.

Bellare et al. base the security of this scheme on the security of the BGLS
aggregate signature scheme (therefore, this scheme is also only proven secure in
the random oracle model):

Theorem 5.3.8. If the BGLS aggregate signature scheme is AS-EUF-CMA secure,
then the BNN aggregate signature scheme is also AS-EUF-CMA secure.

Proof. A proof of this theorem can be found in Bellare, Namprempre, and Neven
[BNN07].

Lemma 5.3.9. The BNN aggregate signature scheme is extendable, claim-
removable and order-independent.

Proof. The proof is analogous to the proof for these properties of the BGLS
scheme, see Example 5.2.20.

Theorem 5.3.10. If the 2EAE assumption holds, then the BNN aggregate sig-
nature scheme is 2DEAGG+ secure in the random oracle model.

Proof. The proof is in large parts analogous to the proof of Theorem 5.3.2, i.e.
the proof that the BGLS scheme is nDEAGG secure. The simulator B works
almost identical and only a few changes are necessary. We therefore omit a few
formal details to keep the proof short.
B receives g, ga, gb, gu, gv and gau+bv from the challenger C2EAE. B will then

pass on pk1 := ga and pk2 := gb to A, the supposed 2DEAGG+ attacker on the
BNN scheme.

10Note that several schemes are discussed in [BNN07]. The one discussed here is called
AS-3 in their publication. They also discuss the BGLS scheme and the variant of it that also
hashes the public key, but keeps the check for distinct messages in the VfyBGLS algorithm
(this variant is also nDEAGG+ secure, the argumentation is identical to the one presented
here). Furthermore, they discuss a slight modification of the LMRS scheme [Lys+04] where
the restriction that no public key can be used more than once is removed and the algorithms
stay unmodified otherwise. However, this change has no influence on the nDEAGG security of
the LMRS scheme (see Section 5.3.4 for details on this scheme).
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B will answer all random oracle queries of A. Without loss of generality, we
can assume that A sends random oracle queries for its messages m1 and m2
before sending the aggregation query. Let q1, q2 ∈ N be the amount of random
oracle queries “pk‖m” with pk = pk1 or pk = pk2, respectively, before A sends
its challenge messages. B then chooses two random indices s ← [q1], t ← [q2].
For the s-th query that is of the form pk1‖ms for some message ms, B answers
with gu. Similarly, B answers the t-th query of the form pk2‖mt with gv. For
all other queries before and after A sends the challenge messages, B chooses
random exponents z ← Zp and answers with gz. All answers are honest answers
to the random oracle queries.

Once A sends its two challenge messages m1 and m2 and order-tree T , B
will check whether m1 = ms and m2 = mt. If this is not the case, B will
abort. Otherwise, B will answer this challenge query by sending σAgg := gau+bv,
which is a valid aggregate signature for (pk1,ms) and (pk2,mt) and all possible
order-trees for two messages.

If A successfully deaggregated, then its output is a claim sequence C∗ =
((gx1 ,m∗1), . . . , (gxk ,m∗k)) of length k ∈ N together with a signature σ∗, such
that VfyBNN(C∗, σ∗) = 1 and ∃c ∈ ((pk1,ms), (pk2,mt)) : c /∈ C∗ and ∃c ∈
C∗ : c ∈ ((pk1,ms), (pk2,mt)). Without loss of generality11, we assume that
(pk1,ms) ∈ C∗ and (pk2,mt) /∈ C∗. Let r be the index of the claim (pk1,ms) in
C∗ and let zi be the random oracle answers to the queries H(gxi‖m∗i ). Then,
since σ∗ is valid for C∗ we have that

σ∗ =
k∏
i=1

H(gxi‖m∗i )xi

= H(pk1‖ms)a ·
k∏

i=1,i6=r
H(gxi‖m∗i )xi

= gau ·
k∏

i=1,i6=r
gxizi .

Since B knows all random oracle values zi and public keys gxi , he can therefore
compute

gau = σ∗ ·

 k∏
i=1,i6=r

(gxi)zi

−1

which B outputs to win the experiment. Since the probabilities that B guessed s
and t correctly are at least 1/q1 and 1/q2, respectively. It follows that

Pr[B is successful] ≥ 1
q1q2

· Pr[A is successful],

which implies that the success probability of A must be negligible in the security
parameter, because we assumed that the 2EAE problem is hard.

11The argumentation for the case that (pk2,m2) ∈ C∗ is almost identical, except that B
then extracts gbv from σ∗ and uses this value to compute gau from gau+bv .
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Remark. The crucial difference between the BGLS and BNN schemes that
enables us to prove 2DEAGG+ security of the BNN scheme is the addition of the
public key in the calculation of the hash values. This ensures that the value
gbv will not be part of the signature of A if (pk2,mt) is deaggregated, even if
pk2 = gb or mt is reused in some other claim, since pk2‖mt is the only string
with the hash value gv.

Theorem 5.3.11. The BNN aggregate signature scheme is nDEAGG secure in
the random oracle model under the 2EAE assumption for all n ≥ 2 polynomial
in the security parameter κ.

Proof. This follows directly from Theorem 5.2.21, Lemma 5.3.9 and Theo-
rem 5.3.10.

Corollary 5.3.12. The BNN aggregate signature scheme is nDEAGG secure in
the random oracle model under the Computational Diffie-Hellman assumption
for all n ≥ 2 polynomial in the security parameter κ.

Proof. This follows directly from Theorem 5.2.2 and Theorem 5.3.11.

However, the scheme does not satisfy the strong ADEAGG security definition.

Theorem 5.3.13. The BNN aggregate signature scheme is not ADEAGG secure.

Proof. This follows from the fact that aggregation can be inverted by inverting
signatures and so an attacker can easily output a weakly signable claim sequence
together with a fitting signature. The argumentation is analogous to the argu-
mentation for the BGLS scheme. For this, observe that the BNN scheme is also
deterministic and there only exists one valid signature for each claim, just like
in the BGLS scheme (see Lemma 5.3.1).

Let m1 and m2 be two different messages and pk1 = gx1 and pk2 = gx2

two different public keys. Then σ = H(pk1‖m1)x1 · H(pk2‖m2)x2 is the only
valid signature for the claim sequence C = ((pk1,m1), (pk2,m2)) and σ′ =
H(pk2‖m2)x2 is the only valid signature for m2 under pk2. Then an ADEAGG
attacker can create a valid signature for C ′ = ((pk1,m1)) by asking the challenger
for these two signatures and computing

σ · σ′−1 = H(pk1‖m1)x1 ·H(pk2‖m2)x2

H(pk2‖m2)x2
= H(pk1‖m1)x1 .

C ′ is a weakly signable, but not signable, claim sequence if the attacker only
requests signatures for C and (pk2,m2). The attacker therefore wins the ADEAGG
experiment with success probability 1.

5.3.3 The SMD Aggregate Signature Scheme
In [SMD14], Saxena et al. not only define ADEAGG security, but also give a
construction of a scheme which is ADEAGG secure in the random oracle model.
The scheme is a simple modification of the BGLS scheme and can also be seen
as an extension of the BNN scheme: Instead of only hashing the message, they
hash the public key, the message and a random value, i.e. they compute a BGLS
signature for the string m‖r‖pk. Furthermore, the random value r ← {0, 1}κ
needs to be stored as a separate value in each individual signature and aggregate
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signatures consequently need to store a list of these values. This means that
aggregate signatures grow linearly in the number of claims. So, the scheme does
not compress signatures and therefore fails to achieve one of the central goals
of aggregate signatures. However, to the best of our knowledge, it is the only
scheme known that fulfills the ADEAGG security definition. The algorithms are
as follows:

Definition 5.3.14 (SMD Aggregate Signature Scheme). The SMD aggregate
signature scheme ΣSMD = (GenSMD,SignSMD,AggSMD,VfySMD) is a variation of
the BGLS aggregate signature scheme and consists of four PPT algorithms as
follows:

GenSMD(1κ). Pick a random x← Zp an return (pk, sk) := (gx, x).

SignSMD(sk,m). Pick a random string r ← {0, 1}κ. Return

σ := (H(m‖r‖pk)sk, r) ∈ G.

AggSMD(C1, C2, σ1, σ2). Check that Vfy(Ci, σi) = 1 and that C1 ∩C2 = ∅. Parse
σi = (σ′i, Ri). Let R′ be the list containing all strings from R1 and R2.
Return

σAgg = (σ1 · σ2, R
′).

VfySMD(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)). Ensure that all claims are
distinct. If not, output 0. Otherwise parse σ = (σ′, (r1, r2, . . . , rn)). If it
holds that

e(σ, g) =
n∏
i=1

e(H(mi‖ri‖pki), pki)

return 1, otherwise return 0.

Unfortunately, the scheme is also only secure in the random oracle model:

Theorem 5.3.15. If the Computational Diffie-Hellman assumption holds and
H is modeled as a random oracle, then the SMD aggregate signature scheme is
AS-EUF-CMA and ADEAGG secure in the random oracle model.

Proof. A proof of this theorem can be found in [SMD14]. Note that they prove
only ADEAGG security, which however implies AS-EUF-CMA security.

Corollary 5.3.16. The SMD aggregate signature scheme is nDEAGG and
nDEAGG+ secure in the random oracle model for all n ≥ 2 polynomial in
the security parameter κ under the Computational Diffie-Hellman assumption.

Proof. This corollary follows directly from Theorem 5.2.9, Theorem 5.2.34 and
Theorem 5.3.15.

5.3.4 The LMRS Sequential Aggregate Signature Scheme
In [Lys+04], Lysyanskaya, Micali, Reyzin and Shacham introduce the concept of
sequential aggregate signatures and present a construction based on trapdoor
permutations. Unfortunately, their construction fulfills no notion of deaggre-
gation security, although their definition of unforgeability encompasses a weak
form of protection against reordering and removal of claims (see Sections 3.3
and 5.2.4 for details). Their scheme is based on trapdoor permutations:
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Definition 5.3.17 (Trapdoor Permutation). Let G be a group. A trapdoor
permutation family is a tuple of three PPT algorithms Π = (Gen,Eval, Invert) as
follows:

• Gen(1κ) receives as input the security parameter and outputs (s, t), where s
is a description of a permutation over G and t the corresponding trapdoor.

• Eval(s, x) takes as input a description s of a permutation over G and a
value x ∈ G. It outputs the image of x under the permutation described by
s, i.e. s(x), which is also in G.

• Invert(s, t, a) takes as input a description s of a permutation over G, a
trapdoor t and a value a ∈ G. It outputs a value x ∈ G, such that s(x) = a
if t is a trapdoor corresponding to s.

Definition 5.3.18 (Correctness of Trapdoor Permutations). A trapdoor per-
mutation family Π = (Gen,Eval, Invert) is correct, if for all κ ∈ N and all
(s, t) ← Gen(1κ), it holds that Eval(s, ·) is a permutation over G and for all
x ∈ G we have Invert(s, t,Eval(s, x)) = x.

Definition 5.3.19 (Security of Trapdoor Permutations). A trapdoor permu-
tation family Π = (Gen,Eval, Invert) is secure, if the advantage of any PPT
algorithm A in inverting the permutation without knowledge of the trapdoor is
negligible, i.e.

Pr[x← A(s,Eval(s, x)) : (s, t)← Gen(1κ), x← G] ≤ negl(κ)

for a function negl, which is negligible in the security parameter κ.

Additionally, Lysyanskaya et al. require the trapdoor permutation family
to be certified, which means that it must be easy to determine if a given s is
actually a permutation. Their sequential aggregate signature scheme works as
follows:

Definition 5.3.20 (LMRS Sequential Aggregate Signature Scheme). Let G be
a group, Π = (GenΠ,EvalΠ, InvertΠ) a certified trapdoor permutation family and
H : {0, 1} → G a hash function. All users of the scheme need to use the same
group, trapdoor permutation family and hash function. The LMRS sequential
aggregate signature scheme ΣLMRS = (GenLMRS, AggSignLMRS, VfyLMRS) consists
of three PPT algorithms as follows:

GenLMRS(1κ). Pick a random (s, t)← GenΠ(1κ). Set pk := s and sk := (s, t) and
return (pk, sk).

AggSignLMRS(sk, C, σ,m). Parse sk = (s, t). If C = ⊥, check that σ = λ, abort
and output ⊥ if not. Otherwise, set σ = 1. Parse C = ((pk1,m1), . . . ,
(pkn,mn)) (n ∈ N) and check that VfyLMRS(C, σ) = 1, abort and output ⊥
if not. Otherwise, compute

h← H(pk1‖ . . . ‖pkn‖pk,m1‖ . . . ‖mn‖m) and
σ∗ ← InvertΠ(s, t, h · σ),

where pk is the public key corresponding to sk. Output σ∗ as the signature.
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VfyLMRS(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)) (n ∈ N) and pki = si. If
any pki appears twice in C or if any si is not a valid permutation12, output
0. Set σn := σ. Then, for j = n, . . . , 1, set

σj−1 ←
EvalΠ(sj , σj)

H(pk1‖ . . . ‖pkj ,m1‖ . . . ‖mj)
.

If σ0 = 1, output 1, otherwise output 0.

Theorem 5.3.21. The LMRS sequential aggregate signature scheme is SAS-
EUF-CMA secure in the random oracle model, if the used certified trapdoor
permutation family is secure.

Proof. A proof of this theorem can be found in [Lys+04]. [BNN07] show that
this theorem also remains true if the check that no public key is used more than
once in the VfyLMRS algorithm is removed.13

If s−1
i is the inverse of the permutation si, then a sequential aggregate

signature of the LMRS scheme is of the form

s−1
n (hn · s−1

n−1(hn−1 · s−1
n−2(· · · s−1

2 (h2 · s−1
1 (h1)) · · · )))),

where hj = H(s1‖ . . . ‖sj ,m1‖ . . . ‖mj). So, to verify a signature, the VfyLMRS
algorithm consecutively evaluates the permutations in the forward direction and
“peels off” all layers until the “center” is reached and only the identity of the
group G remains. This ability to “peel off” signatures is exactly the reason why
the scheme is not nDEAGG secure. Attackers can remove signatures starting
from the end of the sequence at will, since all information needed to “peel off” a
signature is publicly known.

Theorem 5.3.22. The LMRS sequential aggregate signature scheme is not
nDEAGG secure for any n.

Proof. Let Π = (GenΠ,EvalΠ, InvertΠ) be the certified trapdoor family and H be
the hash function used by the LMRS scheme.

Consider the following PPT attacker A on the nDEAGG security of the LMRS
scheme. First, A receives n public keys and descriptions of certified trapdoor
permutations pki = si from the challenger. Let ti be the corresponding trapdoors.
A then chooses n messages mi at random, sends them to the challenger together
with a fitting order sequence describing the sequential aggregation in ascending
order from m1 to mn and receives a sequential aggregate signature σAgg for the
claim sequence C = ((pk1,m1), . . . , (pkn,mn)). According to the definition of
AggSignLMRS, the signature σAgg is of the form

σAgg = s−1
n (hn · s−1

n−1(hn−1 · s−1
n−2(· · · s−1

2 (h2 · s−1
1 (h1)) · · · )))),

12Here, it is essential that the used trapdoor permutation family is certified, so that this
check can be efficiently computed.

13We did not remove this check in our presentation of the scheme to be consistent with the
original publication [Lys+04] of the scheme.
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where hj = H(s1‖ . . . ‖sj ,m1‖ . . . ‖mj) and s−1
i (...) is short for InvertΠ(si, ti, ...)).

A now computes

σ′ := EvalΠ(sn, σAgg)
H(s1‖ . . . ‖sn,m1‖ . . . ‖mn)

=
H(s1‖ . . . ‖sn,m1‖ . . . ‖mn) · s−1

n−1(hn−1 · s−1
n−2(· · · s−1

2 (h2 · s−1
1 (h1)) · · · )))

H(s1‖ . . . ‖sn,m1‖ . . . ‖mn)
= s−1

n−1(hn−1 · s−1
n−2(· · · s−1

2 (h2 · s−1
1 (h1)) · · · ))),

which is a valid signature for the claim sequence C ′ = ((pk1,m1), . . . , (pkn−1,
mn−1)). Note that A can easily compute this step, since all values si, mi, σAgg
and algorithms needed are either known to A or public. Furthermore, note that
this step is equal to a single step of VfyLMRS. A outputs C ′, σ′ as its answer to
the challenger and wins the experiment with probability 1, since σ′ is valid for
C ′ and the claim (pkn,mn) was deaggregated. The runtime of A is polynomial.
All this taken together proves the theorem.

Remark. Note that the concrete instantiation of the trapdoor family is irrelevant
for the proof of Theorem 5.3.22, which shows that it is not possible to achieve
nDEAGG security for the LMRS scheme by using a specific trapdoor permutation.

5.3.5 The NEV Sequential Aggregate Data Scheme
Neven [Nev08] generalized sequential aggregate signature schemes to sequential
aggregate data. Here, the AggSign and Vfy algorithms only receive the current
message, secret key and signature as input. In particular, they do not receive
the previous public keys and messages. The goal of this property is to offer
additional savings concerning bandwidth. Consequently the notation used by
Neven [Nev08] is slightly different and we would therefore also need to adapt the
definitions of deaggregation security to be formally precise. However, since these
changes are rather straightforward, we do not give formal definitions for the sake
of brevity. Note that VfyNEV outputs the used public keys and signed messages
and not just a binary value, i.e. the VfyNEV algorithm is able to reconstruct
these values from the signature.

Prerequisites. The scheme uses several different tools, which we will only
introduce briefly here. First, like the LMRS scheme in the previous Section 5.3.4,
the scheme is based on a family of trapdoor permutations. For security, the family
additionally needs to be claw-free, meaning that given two permutations π1, π2,
it must be computationally hard to find a tuple (x, y) such that π1(x) = π2(y).
The scheme uses two security parameters κ, `, where κ > ` can be chosen
independently by each signer, but ` is fixed system-wide. Furthermore, let π be
a permutation and Dπ its domain. It is assumed that there exists an additive
abelian group Gπ ⊆ Dπ such that |Gπ| ≥ 2κ−1. Also, there must exist an
efficient encoding algorithm encπ : {0, 1}∗ → {0, 1}∗ × Gπ that breaks up a
message m into a (shorter) message ν and an element µ ∈ Gπ. There must also
exist an efficient decoding algorithm decπ : {0, 1}∗ × Gπ → {0, 1}∗, that also
needs to be injective.14 Let H : {0, 1}∗ → {0, 1}` and Gπ : {0, 1}` → Gπ be two

14Neven [Nev08] shows how to instantiate these tools based on the RSA and Factoring
assumptions.
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hash functions, which are modeled as random oracles. Furthermore, let ε be the
empty string and if ~v = (v1, . . . , vn) is a vector, then let ~v|a denote the vector
(v1, . . . , vn, a).

Definition 5.3.23 (NEV Sequential Aggregate Data Scheme). Let G be a
group, Π = (GenΠ,EvalΠ, InvertΠ) a claw-free trapdoor permutation family and
encπ, decπ, H and G as described above. The NEV sequential aggregate data
scheme ΣNEV = (GenNEV, AggSignNEV, VfyNEV) consists of three PPT algorithms
as follows:

GenNEV(1κ). Pick a random (s, t)← GenΠ(1κ). Let π stand for the permutation
defined by EvalΠ(s, ·) and π−1 be the inverse given by InvertΠ(s, t, ·). Set
pk := π and sk := π−1 and return (pk, sk).

AggSignNEV(skn, σn−1,mn). Parse skn = πn. If n = 1, then let σ0 = (ε, ε, ε, 0`).
Otherwise parse σn−1 = (~π, νn−1, Xn−1, hn−1), where ~π is a vector of
n− 1 permutations. If VfyNEV(σn−1) = (⊥,⊥), then abort and return ⊥.
Otherwise, do the following:

(µn, νn) := encπn
(mn‖νn−1‖Xn−1)

hn := hn−1 ⊕H(~π|πn‖mn‖νn−1‖Xn−1)
gn := Gπn

(hn)
Xn := π−1

n (gn + µn)

Return σn := (~π‖πn, νn, Xn, hn).

VfyNEV(σ). Parse σn = (~π‖πn, νn, Xn, hn), where ~π = (π1, . . . , πn).
For i = n, . . . , 1 do

If |Gπi
| < 2`, then return 0.

gi := Gπi
(hi), µi := πi(Xi)− gi

mi‖νi−1‖Xi−1 := decπi
(mi, µi)

hi−1 := hi ⊕H((π1, . . . , πi)‖mi‖νi−1‖Xi−1)
If (m0, X0, h0) = (ε, ε, 0`), then return (~π, (m1, . . . ,mn)), otherwise return
(⊥,⊥).

The unforgeability definition for sequentially aggregate data of Neven [Nev08]
is similar to the definition of SAS-EUF-CMA of Lysyanskaya et al. [Lys+04]. We
do not formally introduce it and denote it by SAS-EUF-CMANEV.

Theorem 5.3.24. The NEV sequential aggregate aggregate data scheme is SAS-
EUF-CMANEV secure, if the hash functions H and Gπ are modeled as random
oracles and the used trapdoor permutation family is claw-free and secure.

Proof. A proof of this theorem can be found in [Nev08].

Just like the LMRS scheme from Section 5.3.4, the NEV scheme is not nDEAGG
secure, since the VfyNEV algorithm already describes a deaggregation attack:
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Theorem 5.3.25. The NEV sequential aggregate data scheme is not nDEAGG
secure for any n.

Proof. Consider the following PPT attacker A on the nDEAGG security of the
NEV scheme. First, A receives n public keys pki = πi from the challenger. A
then chooses n messages mi at random, sends them to the challenger together
with a fitting order sequence describing the sequential aggregation in ascending
order from m1 to mn and receives a sequential aggregate signature σAgg for the
claim sequence C = ((pk1,m1), . . . , (pkn,mn)). According to the definition of
AggSignNEV, the signature σAgg is of the form

σAgg = ((π1, . . . , πn), νn, Xn, hn).

A then computes gn := Gπn(hn) and µn := πn(Xn) − gn. These values are
then used by A to compute mn‖νn−1‖Xn−1 := decπn

(νn, µn) and hn−1 = hn ⊕
H((π1, . . . , πn)‖mn‖νn−1‖Xn−1). Observe that this is essentially the same as
computing one round of the for-loop of VfyNEV.
A then sets σ∗ := ((π1, . . . , πn−1), νn−1, Xn−1, hn−1), which is a valid signa-

ture for the claim sequence C∗ := ((pk1,m1), . . . , (pkn−1,mn−1)). Furthermore,
the claim (pkn,mn) was deaggregated. A then outputs C∗, σ∗ as its answer to
the challenger and wins the experiment with probability 1. Since the runtime of
A is polynomial, this proves the theorem.

5.3.6 The LOSSW Sequential Aggregate Signature Scheme
Lu et al. [Lu+06] proposed the first sequential aggregate signature scheme that is
secure in the standard model. It is based on the digital signature scheme of Waters
[Wat05] and makes use of cyclic groups G,GT with a pairing e : G×G→ GT
and prime order p. We discuss its deaggregation security in this section.

Definition 5.3.26 (LOSSW Sequential Aggregate Signature Scheme). LetM =
{0, 1}k be the message space for a fixed k ∈ N. The LOSSW sequential aggregate
signature scheme ΣLOSSW = (GenLOSSW, AggSignLOSSW, VfyLOSSW) consists of
three PPT algorithms as follows:

GenLOSSW(1κ). Pick random α, y′, y1, . . . , yk from Zp. Compute

u′ := gy
′
,

ui := gyi for i ∈ [k] and
A := e(g, g)α.

Set sk := (α, y′, y1, . . . , yk) and pk := (A, u′, u1, . . . , uk) and output (pk, sk).

AggSignLOSSW(sk, C, σ,m). Parse sk = (α, y′, y1, . . . , yk) andm = (m1, . . . ,mk) ∈
{0, 1}k (i.e. mi is the i-th bit of m). Check that VfyLOSSW(C, σ) = 1 and
abort if this is not the case. Next, check whether the public key pk corre-
sponding to sk already appears in some claim in C and abort if it does.
Otherwise, parse σ = (σ1, σ2) and let ` := |C|. For each (pki,mi) ∈ C,
parse mi = (mi,1, . . . ,mi,k) and pki = (Ai, u′i, ui,1, . . . , ui,k). Compute

w1 := σ1 · gα · σ
y′+
∑k

j=1
yjmj

2 ,

w2 := σ2.
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The values w1 and w2 would already form a valid signature, but need to be
rerandomized, so that the creator of σ cannot extract gα from the signature.
Therefore, choose r ← Zp and compute

σ′1 := w1 ·

u′ k∏
j=1

u
mj

j

r

·
∏̀
i=1

u′i k∏
j=1

u
mi,j

i,j

r

,

σ′2 := w2 · gr.

Output σAgg = (σ′1, σ′2).

VfyLOSSW(C, σ). Check that no public key appears twice in C and output 0 if
one does. Otherwise, parse σ = (σ1, σ2). Set ` = |C|. If ` = 0, output
1 if σ = λ and 0 otherwise. For ` > 0, for each (pki,mi) ∈ C parse
pki = (Ai, u′i, ui,1, . . . , ui,k) and mi = (mi,1, . . . ,mi,k). Then, verify that

e(σ1, g) · e

σ2,
∏̀
i=1

(u′i
k∏
j=1

u
mi,j

i,j )

−1

=
∏̀
i=1

Ai

holds and output 1 if it does and 0 otherwise.
For security, Lu et al. [Lu+06] use a slightly different definition then [Lys+04]

(that we presented as the security definition for sequential aggregate signatures
in Section 3.3). First, they operate in a certified-key model, where the attacker
needs to prove that he knows fitting secret keys to all public keys he is using
in his attack (except for the challenge key). Second, the success requirement
does not count changes of the prefix before the signature under the challenge
public key as valid forgeries and instead is formulated more like the success
requirement of AS-EUF-CMA security. See Section 3.3 for details. We write
SAS-EUF-CMALOSSW to denote their definition of unforgeability.
Theorem 5.3.27. If the Computational Diffie-Hellman assumption holds, then
the LOSSW sequential aggregate signature scheme is SAS-EUF-CMALOSSW secure.
Proof. A proof for this theorem can be found in [Lu+06]. Note that they reduce
the security of the scheme to the security of the digital signature scheme of
Waters [Wat05], which in turn was proven secure under the Computational
Diffie-Hellman assumption.

To prove the nDEAGG security of the scheme, we use the following lemma,
which states that valid signatures follow the form described by the AggSignLOSSW
algorithm. This basically means that no signatures exist that are not in the
image of AggSignLOSSW and that therefore even maliciously created signatures
returned by an attacker need to follow this form to be valid.
Lemma 5.3.28. Let C = ((pk1,m1), . . . , (pkn,mn)) be a claim sequence using
LOSSW public keys pki = (Ai = e(g, g)αi , u′i, ui,1, . . . , ui,k) and let σAgg =
(σ1, σ2) be a valid LOSSW sequential aggregate signature on C. Let ` = |C|.
Then it holds that σ1 and σ2 are of the form:

σ1 =
∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r,

σ2 = gr.
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Proof. Since σ2 needs to be a group element of G and g is a generator of G,
there exists a r ∈ Zp, such that σ2 = gr. Furthermore, we have that σ is valid
for C, so it holds that VfyLOSSW(C, σ) = 1, which implies

e(σ1, g) = e

σ2,
∏̀
i=1

(u′i
k∏
j=1

u
mi,j

i,j )

 · ∏̀
i=1

Ai

= e

∏̀
i=1

(u′i
k∏
j=1

u
mi,j

i,j )r, g

 · ∏̀
i=1

e(gαi , g)

= e

∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r, g


Since e(·, g) is bijective (see Lemma 2.2.12) it follows that

σ1 =
∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r,

which concludes the proof.

Remark. Note that Lemma 5.3.28 also implies that there exist no irregular but
valid signatures for the LOSSW scheme.

Lemma 5.3.29. The LOSSW sequential aggregate signature scheme is order-
independent.

Proof. The AggSignLOSSW algorithm aggregates by multiplying group elements,
that are only dependent on random exponents, the current secret key and
message, to already existing group elements. Since the group is cyclic and
therefore also commutative, the order in which claims get aggregated is of no
consequence and the resulting aggregate signature will always be the same group
element, if the same random exponents r are used. Since these exponents are
always chosen truly at random for every message, they are not influenced by
the order of aggregation. Therefore, the order of aggregation is information
theoretically hidden and no PPT attacker can have more than negligible success
probability in the order-independence experiment.

Lemma 5.3.30. The LOSSW sequential aggregate signature scheme is extend-
able.

Proof. This follows directly from the definition of the algorithms of the LOSSW
scheme. The algorithm AggSignLOSSW simply performs several group operations
and places no restriction on the number of claims that can be aggregated, except
for the restriction that no public key may be used more than once. This restriction
is however allowed by the definition of extendability, see Definition 5.2.16.
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Lemma 5.3.31. The LOSSW sequential aggregate signature scheme is claim-
removable.

Proof. Let C = ((pk1,m1), . . . , (pkn,mn)) be a claim sequence with pki = (Ai =
e(g, g)αi , u′i, ui,1, . . . , ui,k) and let σAgg = (σAgg,1, g

r) be a valid LOSSW aggregate
signature for C. Let skx = (αx, y′x, yx,1, . . . , yx,k) be the corresponding secret
key to pkx for 1 ≤ x ≤ n. Since σAgg is valid, according to Lemma 5.3.28, we
have that

σAgg,1 =
∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r.

Since we know skx and gr, we can compute the value

σx := gαx · (gr)y
′
x+
∑k

j=1
yx,kmx,j

= gαx · (u′x
k∏
j=1

u
mx,j

x,j )r

Now, the signature σ′Agg := (σAgg,1 · σ−1
x , gr) is a valid signature for the claim

sequence C \ ((pkx,mx)), since

σAgg,1 · σ−1
x =

∏̀
i=1,i6=x

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r,

which proves that the LOSSW scheme is claim-removable.

Remark. Lu et al. [Lu+06] actually already mention this property of their
scheme as a means to circumvent the restriction that each signer may only
aggregate one claim. If one signer wants to aggregate a second message, he can
simply remove his current claim and add a signature over both messages.

Next, we show that the scheme is 2DEAGG secure:

Theorem 5.3.32. If the Computational Diffie-Hellman assumption holds, then
the LOSSW sequential aggregate signature scheme is 2DEAGG secure.

Before we prove the theorem, we give a brief overview of the proof strategy.
We construct a simulator B that simulates the 2DEAGG security experiment
for an attacker A on LOSSW and uses its output to solve the Computational
Diffie-Hellman problem. To do this, B sets up the scheme so that an individual
signature must contain gxy by hiding gx and gy in the parameters and public
keys. B needs to do this in such a way that:

• B is able to extract gxy from the individual signature output by A.

• B can compute an aggregate signature for both messages, although indi-
vidual signatures contain gxy.

If both requirements are fulfilled, B can answer all queries of A and use its
output to solve the Computational Diffie-Hellman problem.
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CCDH B A

CDH 2DEAGG

(g, gx, gy)

pk1 = (e(gx, gy), u′1, u1,1, . . . , u1,k)
pk2 = (e(gx, gy)−1 · e(g, g)a, u′2, u2,1, . . . , u2,k)

pk1, pk2

m1,m2, T

Compute σAgg using gx and gy
σAgg

C∗, σ∗

Extract gxy from σ∗

gxy

Figure 5.9: Overview of the proof strategy for Theorem 5.3.32.

Proof. Let CCDH be the Computational Diffie-Hellman challenger and A a PPT
2DEAGG attacker on the LOSSW scheme. We construct a simulator B that uses
A to solve the Computational Diffie-Hellman problem. See Figure 5.9 for a
rough overview of the proof strategy.
First, CCDH sends a CDH challenge tuple (g, gx, gy) to B. Next, B computes two
public keys pk1 and pk2 as follows:

• B picks random y′, z′, y1, . . . , yk, z1, . . . , zk from Zp and for i ∈ [k] sets

u′1 := gy
′
,

u′2 := gz
′
,

u1,i := gyi ,

u2,i := gzi .

• B picks a random a← Zp to compute

A1 := e(gx, gy) = e(g, g)xy

A2 := e(gx, gy)−1 · e(g, g)a = e(g, g)a−xy

and sets pk1 := (A1, u
′
1, u1,1, . . . , u1,k) and pk2 := (A2, u

′
2, u2,1, . . . , u2,k).

Note that B thereby implicitly sets the αi elements of both secret keys to
α1 = xy and α2 = a− xy, which B does not know.

Observe that all elements of both public keys are random group elements, since
all exponents are chosen randomly either by B or by CCDH and g is a generator
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of G. Furthermore, because e(g, g) is a generator of GT and a was also chosen
randomly, A1 and A2 are also independent of one another. The keys are therefore
distributed just like the output of GenLOSSW and A cannot distinguish them from
honestly generated keys. B now passes pk1 and pk2 on to A, who will at some
point answer with two messages m1 and m2 and an order-tree T .

Next, B needs to compute an aggregate signature for these two messages.
According to Lemma 5.3.28, such a signature for the claim sequence C :=
((pk1,m1), (pk2,m2)) is of the form σAgg = (σ1, σ2) with σ2 = gr for a random
r ∈ Zp and

σ1 = gα1 · gα2 · (u′1
k∏
j=1

u
m1,j

1,j · u
′
2

k∏
j=1

u
m2,j

2,j )r,

= gxy · ga−xy · (u′1
k∏
j=1

u
m1,j

1,j · u
′
2

k∏
j=1

u
m2,j

2,j )r

= ga · (u′1
k∏
j=1

u
m1,j

1,j · u
′
2

k∏
j=1

u
m2,j

2,j )r,

which is true for any order-tree T , see also the argumentation in Lemma 5.3.29.
Since B knows a, u′i, ui,1, . . . , ui,k (i ∈ {1, 2}) and can choose a random r,

he can compute such a signature. It is also easy to see that for such a signature
VfyLOSSW(C, σAgg) would return 1. B now computes such a signature and sends
it to A.

At some point, A answers with a claim c∗ and a signature σ∗ = (σ∗1 , σ∗2). If
A is successful, we have that VfyLOSSW(c∗, σ∗) = 1 and without loss of generality
c∗ = (pk1,m1).15 Again, according to Lemma 5.3.28, we have that σ∗2 = gr

∗ for
some random r∗ ∈ Zp and

σ∗1 = gα1 · (u′1
k∏
j=1

u
m1,j

1,j )r
∗

= gxy · (σ∗2)y
′+
∑k

j=1
yjm1,j .

Since B knows y′, y1, . . . , yk, he can therefore compute

gxy = σ∗1 · (σ∗2)−(y′+
∑k

j=1
yjm1,j)

,

which B outputs to win the experiment.
B simulates the 2DEAGG security experiment perfectly for A. The success

probability of B is equal to the success probability of A and their runtimes are
roughly the same (the runtime of B is basically the run time of A plus the time
it takes to compute the public keys and to extract gxy at the end, which is all
polynomial). It follows that the success probability of A must be negligible, since
we assumed that the CDH assumption holds. Therefore the 2DEAGG security of
the LOSSW sequential aggregate signature scheme follows.

15If c∗ = (pk2,m2), then the rest of the proof is analogous. B extracts g−xy from σ∗, inverts
it and then outputs gxy .
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Theorem 5.3.33. The LOSSW sequential aggregate signature scheme is nDEAGG
secure for all n ≥ 2 polynomial in the security parameter κ under the Computa-
tional Diffie-Hellman assumption.

Proof. The theorem follows directly from Theorem 5.2.21, Theorem 5.3.32 and
the Lemmas 5.3.29, 5.3.30 and 5.3.31.

Theorem 5.3.34. The LOSSW sequential aggregate signature scheme is not
nDEAGG+ secure for any n.

Proof. Consider the following PPT attacker A on the nDEAGG+ experiment.
First, A receives n public keys pki = (Ai = e(g, g)αi , u′i, ui,1, . . . , ui,k) from
the challenger. A chooses n random messages mi and sends them and a
fitting order-tree (for example the order-tree describing sequential aggrega-
tion) to the challenger, so that mi gets signed under pki. The challenger
answers with a valid signature σAgg = (σAgg,1, σAgg,2) for the claim sequence
C = ((pk1,m1), . . . , (pkn,mn)), where σAgg,2 = gr for some exponent r ∈ Zp.
A will now manipulate the signature σAgg so that it becomes valid for

a new claim sequence C ′ = (c′1, ((pk2,m2), . . . , (pkn,mn))) for a new claim
c′1 = (pk′,m1) 6= (pk1,m1). To do this, A sets

pk′ = (A1 · e(g, g), u′1, u1,1, . . . , u1,k)
= (e(g, g)α1+1, u′1, u1,1, . . . , u1,k).

Clearly, we have c′1 6= (pk1,m1) and therefore C 6= C ′. Since σAgg is valid,
according to Lemma 5.3.28, it holds that

σAgg,1 =
∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r.

Next, A multiplies σAgg,1 with g to compute

σAgg,1 · g =
∏̀
i=1

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r · g

= gα1+1 · (u′1
k∏
j=1

u
m1,j

1,j )r ·
∏̀
i=2

gαi · (u′i
k∏
j=1

u
mi,j

i,j )r

and sets σ′ = (σAgg,1 · g, σAgg,2), which is a valid signature for the claim sequence
C ′. A outputs C ′ and σ′ and wins the experiment. The success probability of A
is equal to 1 and its runtime is polynomial. It follows that the LOSSW scheme
is not nDEAGG+ secure.

The problem and attack strategy is essentially the same as for the BGLS
scheme: the attacker changes the public key of one of the claims, but leaves
the messages as they were before. Note that, also like in the attack on the
BGLS scheme, the attacker could set pk′ = (e(g, g)α1+r′ , u′1, u1,1, . . . , u1,k) for a
random exponent r′ ∈ Zp \ {0} to completely hide the connection to pk1. This
also implies that the LOSSW scheme does not fulfill the stronger security notions
of [FLS12] for sequential aggregate signature schemes.
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5.3.7 The AGH Synchronized Aggregate Signature Scheme
In this section, we discuss the deaggregation security of the synchronized aggre-
gate signature scheme of Ahn, Green, and Hohenberger [AGH10], which is based
on the digital signature scheme of Hohenberger and Waters [HW09] and was also
the first synchronized scheme to be proven secure in the standard model. The
scheme makes use of cyclic groups G,GT with a pairing e : G×G→ GT , which
are chosen by a Setup algorithm. Furthermore, it is assumed that all parties
have access to a function clock() that returns the current time period (which can
be any unique integer s in [1, T ], where T is some fixed value that is polynomial
in the security parameter κ).

Definition 5.3.35 (AGH Synchronized Aggregate Signature Scheme). The AGH
synchronized aggregate signature scheme ΣAGH = (SetupAGH, GenAGH, SignAGH,
AggAGH, VfyAGH) consists of five PPT algorithms as follows:

SetupAGH(1κ). Select a bilinear group G of prime order p > 2κ. Let Z ∈ O(κ)
be the number of bits in the message space. Let `, k be two additional
parameters16 such that ` · k = Z. These parameters will be used to split
up the messages in k blocks of ` bits each. Choose random elements g, u0,
. . . , uk, w, z, h ∈ G. Output the public parameters

pp = (`, k, p,G, g, u0, . . . , uk, w, z, h).

GenAGH(1κ, pp). Pick a random a ← Zp. Set pk := (pp, ga) and sk := (pp, a),
initialize sprev to zero and return (pk, sk). The parameter sprev will be used
as an internal state denoting the last time period on which this party issued
a signature. Output (pk, sk).

SignAGH(sk,m, s). Abort, if s = sprev or s ≥ 2κ. Otherwise set sprev := s (it is
assumed that the input s is the current time period as output by clock()).
Let m = m1‖m2‖ . . . ‖mk, where each block mi is ` bits long. Select a
random t ∈ Zp, compute

σ1 :=
(
u0

k∏
i=1

umi
i

)a
· (wdlog(s)ezsh)t,

σ2 := gt,

and return σ = (σ1, σ2, s) as the signature.

AggAGH(C1, C2, σ1, σ2). Parse σi as (σi,1, σi,2, si) and check that s1 = s2. If this
check fails, output ⊥. Otherwise compute

σAgg,1 := σ1,1 · σ2,1,

σAgg,2 := σ1,2 · σ2,2,

and output σAgg := (σAgg,1, σAgg,2, s1).
16There is no strict rule on how to choose the parameters ` and k, but they have direct

effects on the security and efficiency of the scheme. For example, the parameter k determines
the size of the public parameters. Ahn, Green, and Hohenberger [AGH10] discuss this in
detail and suggest using a collision-resistant hash function to obtain 160-bit messages and then
setting k = 5 and ` = 32.
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VfyAGH(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)) and σ = (σ1, σ2, s). Check
that 0 < s < 2κ. If this is not the case, abort and output 0. Otherwise let
mi = mi,1‖mi,2‖ . . . ‖mi,k, where each block has ` bits. Extract gai from
each pki and compute

V := e

(
n∏
i=1

gai , u0

)
·
k∏
j=1

e

(
n∏
i=1

gaimi,j , uj

)
.

Then, verify that

e(g, σ1) = V · e(σ2, w
dlog(s)ezsh).

Output 1 if this check is successful, otherwise output 0.

Note that, just like in the BGLS aggregate signature scheme, the Agg algorithm
can easily be extended to aggregate several signatures at the same time. Simply
check that all time stamps are equal and then multiply the respective signature
parts.

The scheme is restricted so that each signer can issue at most one signature
per time period and keeps a state to ensure this (alternatively, additional checks
could be added to the algorithms). Once (possibly already aggregated) signatures
for two different messages are known, an SyncAS-EUF-CMA attacker can use
them to output a valid forgery. Suppose, for example, that signatures σ1, σ2 on
(pk,m) and (pk, 0Z) for pk = (pp, ga) are known. Then we would have

σ1,1 =
(
u0

k∏
i=1

umi
i

)a
· (wdlog(s)ezsh)t1 ,

σ2,1 = ua0 · (wdlog(s)ezsh)t2 .

Set σ′ := σ1,1 · σ−1
2,1 =

(∏k
i=1 u

mi
i

)a
· (wdlog(s)ezsh)t1−t2 . Then

σ∗ = (σ1,1 · σ′, σ2
1,2 · σ−1

2,2)

is a valid signature for the message (m1 +m1)‖ . . . ‖(mk +mk), since

σ1,1 · σ∗ =
(
u0

k∏
i=1

umi+mi
i

)a
· (wdlog(s)ezsh)2t1−t2

σ2
1,2 · σ−1

2,2 = g2t1−t2

Note that in the following Lemma 5.3.40 we show that the scheme is claim-
removable. One could therefore assume that in practice, signers could retract
their signature and simply aggregate a new one, like in the scheme of [Lu+06].
While this is technically possible, great care has to be taken so that the above
mentioned attack cannot be exploited.

Theorem 5.3.36. The AGH synchronized aggregate signature scheme is SyncAS-
EUF-CMA secure under the Computational Diffie-Hellman assumption.

Proof. A proof of this theorem can be found in [AGH10].
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Before we prove the nDEAGG security of the AGH scheme, we first prove the
following technical lemma, which states that all valid AGH signatures follow
the form described by the SignAGH algorithm. This basically means that no
signatures exist that are not in the image of SignAGH and that therefore even
maliciously created signatures returned by an attacker need to follow this form
to be valid.

Lemma 5.3.37. Let pp = (`, k, p,G, g, u0, . . . , uk, w, z, h) ← SetupAGH(1κ) be
public parameters of the AGH scheme and pk = (pp, ga) an AGH public key. Let
m = m1‖m2‖ . . . ‖mk be some message, where each block mi is ` bits long and
let σ = (σ1, σ2, s) be a valid signature for m under pk. Then it holds that σ1 and
σ2 are of the form

σ1 =
(
u0

k∏
i=1

umi
i

)a
· (wdlog(s)ezsh)t,

σ2 = gt,

for some t ∈ Zp.

Proof. Since σ2 needs to be a group element of G and g is a generator of G,
there exists a t ∈ Zp, such that σ2 = gt. Furthermore, we have that σ is valid
for m, so it holds that VfyAGH((pk,m), σ) = 1, which implies that

e(g, σ1) = e(ga, u0) · e
(

k∏
i=1

gami , ui

)
· e(σ2, w

dlog(s)ezsh)

= e

(
g,

(
u0

k∏
i=1

umi
i

)a)
· e(g, (wdlog(s)ezsh)t)

= e

(
g,

(
u0

k∏
i=1

umi
i

)a
· (wdlog(s)ezsh)t

)
.

Since e(g, ·) is bijective (see Lemma 2.2.12) it follows that

σ1 =
(
u0

k∏
i=1

umi
i

)a
· (wdlog(s)ezsh)t,

which concludes the proof.

Remark. Note that Lemma 5.3.37 also implies that there exist no irregular but
valid signatures for the AGH scheme.

Lemma 5.3.38. The AGH scheme is order-independent.

Proof. Let (pk1, sk1), . . . , (pkn, skn) be n AGH key pairs that were honestly gen-
erated by GenAGH(1κ). If σAgg = (σAgg,1, σAgg,2, s) is an honestly generated AGH
aggregate signature for messages m1, . . . ,mn (where each mi is signed under
pki), then σAgg is of the form

σAgg = (
n∏
i=1

σi,1,

n∏
i=1

gti , s),
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where σi = (σi,1, gti , s) is a valid individual signature for mi under pki and
time stamp s. Aggregation is done by multiplying the parts of these individual
signatures. Since the group is cyclic and therefore also commutative, it follows
that the order in which these individual signatures get aggregated is of no
consequence and σAgg,1 and σAgg,2 will always be the same group elements,
if the same random exponents ti are used. Since the exponents are chosen
truly at random when creating the individual signatures, they are not affected
by the order of aggregation. Therefore, the order in which the individual
signatures get aggregated is information theoretically hidden and no PPT attacker
can have more than negligible success probability in the order-independence
experiment.

Lemma 5.3.39. The AGH scheme is extendable.

Proof. This follows directly from the definition of the algorithms of the AGH
scheme. The aggregation algorithm AggAGH simply performs two multiplications
in the group, places no restriction on aggregation (apart from the usual restriction
of synchronized aggregate signature schemes that only signatures using the same
time period may be aggregated, which is also represented in the respective
security definitions) and offers fully flexible aggregation for each time period.

Lemma 5.3.40. The AGH scheme is extractable.

Proof. Let pp = (`, k,G, g, u0, . . . , uk, w, z, h) be the public parameters, C =
((pk1 = (pp, ga1),m1), . . . , (pkn = (pp, gan),mn)) a claim sequence and σAgg =
(σAgg,1, g

t, s) a valid AGH aggregate signature for C. For each i we have that
mi = mi,1‖ . . . ‖mi,k consists of k blocks of ` bits each. Let skx = (pp, ax) be the
corresponding secret key to pkx for 1 ≤ x ≤ n. Since σAgg is valid, we have that

e(g, σAgg,1) = e

(
n∏
i=1

gai , u0

)
·
k∏
j=1

e

(
n∏
i=1

gaimi,j , uj

)
· e(σAgg,2, w

dlog(s)ezsh)

= e

g, n∏
i=1

u0

k∏
j=1

u
mi,j

j

ai
 · e(gt, wdlog(s)ezsh)

= e

g, n∏
i=1

u0

k∏
j=1

u
mi,j

j

ai

· (wdlog(s)ezsh)t


Therefore, since e(g, ·) is bijective (see Lemma 2.2.12), it follows that σAgg,1 is of
the form

σAgg,1 =
n∏
i=1

u0

k∏
j=1

u
mi,j

j

ai

· (wdlog(s)ezsh)t.

Since we know skx, we can compute the value

σx :=

u0

k∏
j=1

u
mx,j

j

ax

.
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Now, the signature σ′Agg := (σAgg,1 · σ−1
x , σAgg,2, s) is a valid signature for the

claim sequence C \ ((pkx,mx)), since

σAgg,1 · σ−1
x =

n∏
i=1,i6=x

u0

k∏
j=1

u
mi,j

j

ai

· (wdlog(s)ezsh)t,

which proves that the AGH synchronized aggregate signature scheme is claim-
removable.

Theorem 5.3.41. If the Computational Diffie-Hellman assumption holds, then
the AGH synchronized aggregate signature scheme is 2DEAGG secure.

Proof. The general proof strategy is similar to the proof of the 2DEAGG security
of the LOSSW scheme in Theorem 5.3.32. The simulator B sets up the parameters
so that an individual signature for m1 or m2 must contain gxy, but does this
in such a way that he can still compute a valid aggregate signature, i.e. the
aggregate signature does not contain gxy.

Let CCDH be the Computational Diffie-Hellman challenger and A a PPT
2DEAGG attacker on the AGH scheme. We construct a simulator B that uses A
to solve the Computational Diffie-Hellman problem. See Figure 5.10 for a rough
overview of the proof strategy.

CCDH B A

CDH 2DEAGG

(g, gx, gy)

Set up pp by using gx, gy
and self-chosen exponents

pk1 = (pp, gx), pk2 = (pp, ga−x)

pp, pk1, pk2

s,m1,m2, T

Compute σAgg using gx and gy
σAgg

C∗, σ∗

Extract gxy from σ∗

gxy

Figure 5.10: Overview of the proof strategy for Theorem 5.3.41.

First, CCDH sends a CDH challenge tuple (g, gx, gy) to B. Next, B will not run
the SetupAGH algorithm, but rather choose the parameters itself in a way that is
indistinguishable from an honest execution of SetupAGH. B proceeds as follows:
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• The group G is the same that is being used by CCDH with prime order p.
As its generator, B chooses g from the CDH challenge tuple.

• ` and k are chosen normally, for example k = 5 and ` = 32 [AGH10].

• Next B chooses random values r1, . . . , rk and q1, q2, q3 from Zp and sets

u0 := gy,

ui := gri for 1 ≤ i ≤ k,
w := gq1 ,

z := gq2 ,

h := gq3 .

All of these elements are uniformly distributed (u0 is randomly distributed,
since y is chosen randomly by CCDH) and are therefore distributed like the
values chosen by the SetupAGH algorithm.

• B now sets
pp := (`, k, p,G, g, u0, . . . , uk, w, z, h),

which A cannot distinguish from public parameters output by SetupAGH.

• For the public keys, B picks a random a← Zp and sets

pk1 := (pp, gx),
pk2 := (pp, ga−x).

Both keys are random and uniformly distributed, since x is chosen randomly
by CCDH. They are also independent from one another, since g is a generator
of G and a was chosen randomly. Therefore, A cannot distinguish them
from keys created by GenAGH.
Note that by setting the public keys in this way, B implicitly sets sk1 :=
(pp, x) and sk2 := (pp, a− x), which he does not know.

B now sends pp, pk1 and pk2 to the attacker A, who at some point answers by
sending two messages m1 and m2, a timestamp s and an order-tree T , for which
B needs to compute an aggregate signature, where m1 is signed under pk1 and
m2 under pk2 using the given time stamp s.

We now show that B is able to compute such an aggregate signature, although
he does not know sk1 or sk2 and cannot compute individual signatures for m1
and m2.

To see this, suppose that σi = (σi,1, gti , s) is some valid AGH signature for
mi = mi,1‖ . . . ‖mi,k under pki for i ∈ {1, 2}. Lemma 5.3.37 implies that

σ1,1 =
(
u0

k∏
i=1

u
m1,i

i

)x
· (wdlog(s)ezsh)t1

σ2,1 =
(
u0

k∏
i=1

u
m2,i

i

)a−x
· (wdlog(s)ezsh)t2
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According to the AggAGH algorithm, an aggregate signature σAgg = (σAgg1 , σAgg2 ,
s) for ((pk1,m1), (pk2,m2)) would therefore be given by

σAgg,1 = σ1,1 · σ2,1

=
(
u0

k∏
i=1

u
m1,i

i

)x
· (wdlog(s)ezsh)t1 ·

(
u0

k∏
i=1

u
m2,i

i

)a−x
· (wdlog(s)ezsh)t2

= ux+a−x
0 ·

(
k∏
i=1

(ui)m1,i

)x
·

(
k∏
i=1

(ui)m2,i

)a−x
· (wdlog(s)ezsh)t1+t2

= gya ·
k∏
i=1

((gx)rim1,i) ·
k∏
i=1

(
(ga−x)rim2,i

)
· (gq1dlog(s)e+q2s+q3)t1+t2 .

and σAgg = gt1+t2 . Note that this is true for any order-tree T , since AggAGH
basically only multiplies group elements in a commutative group, see also the
argumentation in Lemma 5.3.37.

Now, since B knows gx, gy, a, r1, . . . , rk, m1, m2, s, q1, q2 and q3, B can ac-
tually compute a valid aggregate signature for the claims (pk1,m1) and (pk2,m2)
by first choosing a random t← Zp and then setting

σAgg := (gya ·
k∏
i=1

((gx)rim1,i) ·
k∏
i=1

(
(ga−x)rim2,i

)
· (gq1dlog(s)e+q2s+q3)t, gt, s).

One can also easily verify that this signature fulfills the rules of VfyAGH, i.e.

VfyAGH(((pk1,m1), (pk2,m2)), σAgg) = 1.

B now computes such an aggregate signature and sends it to A, who will answer
with a claim sequence C∗ and corresponding signature σ∗ = (σ∗1 , σ∗2 = gt

∗
, s∗). If

A successfully deaggregated one of the claims, it holds that VfyAGH(C∗, σ∗) = 1
and C∗ = ((pki,mi)) for i ∈ {1, 2}.

Case C∗ = ((pk1,m1)): According to Lemma 5.3.37, we have that

σ∗1 =
(
u0

k∏
i=1

u
m1,i

i

)x
· (wdlog(s∗)ezs

∗
h)t
∗

= gxy ·
k∏
i=1

((gx)rim1,i) · (gt
∗
)q1dlog(s∗)e+q2s

∗+q3

B can therefore compute

gxy = σ∗1 ·

(
k∏
i=1

((gx)rim1,i) · (σ∗2)q1dlog(s∗)e+q2s
∗+q3

)−1
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Case C∗ = ((pk2,m2)): According to Lemma 5.3.37, we have that

σ∗1 =
(
u0

k∏
i=1

u
m2,i

i

)a−x
· (wdlog(s∗)ezs

∗
h)t
∗

= g−xy ·
k∏
i=1

((ga−x)rim2,i) · (gt
∗
)q1dlog(s∗)e+q2s

∗+q3 .

B can therefore compute

gxy =

σ∗1 ·
(

k∏
i=1

((ga−x)rim2,i) · (σ∗2)q1dlog(s∗)e+q2s
∗+q3

)−1−1

.

In both cases, B successfully computes gxy, which B now sends to CCDH to win
the experiment.
B simulates the 2DEAGG security experiment perfectly for A. The success

probability of B is greater than or equal to the success probability of A and
their runtimes are roughly the same (the runtime of B is basically the run time
of A plus the time it takes to set up the parameters, to compute the public
keys and to extract gxy at the end, which is all polynomial). It follows that
the success probability of A must be negligible, since we assumed that the CDH
assumption holds. Therefore the 2DEAGG security of the AGH synchronized
aggregate signature scheme follows.

Theorem 5.3.42. The AGH synchronized aggregate signature scheme is nDEAGG
secure for all n ≥ 2 polynomial in the security parameter κ under the Computa-
tional Diffie-Hellman assumption.

Proof. The theorem follows directly from Theorem 5.2.21, Theorem 5.3.41 and
the lemmas 5.3.38, 5.3.39 and 5.3.40.

Unfortunately, just like most previous schemes, the AGH synchronized aggre-
gate signature scheme is not nDEAGG+ secure.

Theorem 5.3.43. The AGH synchronized aggregate signature scheme is not
nDEAGG+ secure for any n.

Proof. Consider the following PPT attacker A on the nDEAGG+ experiment.
First, A receives public parameter pp = (`, k, p,G, g, u0, . . . , uk, w, z, h) and n
public keys pki = (pp, gai) from the challenger. A chooses n random messages
mi = mi,1‖ . . . ‖mi,k consisting of k blocks of ` bits, and sends them and a
fitting order-tree (for example the order-tree describing sequential aggregation)
to the challenger, so that mi gets signed under pki. The challenger answers
with a valid signature σAgg = (σAgg,1, σAgg,2, s) for the claim sequence C =
((pk1,m1), . . . , (pkn,mn)), where s is the timestamp and σAgg,2 = gt for some
exponent t ∈ Zp.
A will now manipulate the signature σAgg so that it becomes valid for

a new claim sequence C ′ = (c′1, ((pk2,m2), . . . , (pkn,mn))) for a new claim
c′1 = (pk′,m1) 6= (pk1,m1). To do this, A sets

pk′ = (pp, ga1 · g) = (pp, ga1+1).
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Clearly, we have c′1 6= (pk1,m1) and therefore C 6= C ′. Since σAgg is valid and
was computed by the challenger by correctly applying the SignAGH and AggAGH
algorithms, it holds that

σAgg,1 =
(
u0

k∏
i=1

u
m1,i

i

)a1

· ... ·

(
u0

k∏
i=1

u
mn,i

i

)an

(wdlog(s)ezsh)t.

Next, A multiplies σAgg,1 with the value σ′1 =
(
u0
∏k
i=1 u

m1,i

i

)
to compute

σAgg,1 · σ′1 =
(
u0

k∏
i=1

u
m1,i

i

)a1+1

·
n∏
j=2

(
u0

k∏
i=1

u
mj,i

i

)aj

· (wdlog(s)ezsh)t

and sets σ′ = (σAgg,1 · σ′1, σAgg,2, s), which is a valid signature for the claim
sequence C ′. A outputs C ′ and σ′ and wins the experiment, since the claim
(pk1,m1) no longer appears in the claim sequence. The success probability of A
is equal to 1 and its runtime is polynomial. It follows that the AGH scheme is
not nDEAGG+ secure.

The problem and attack strategy is essentially the same as for the BGLS
scheme: the attacker changes the public key of one of the claims, but leaves the
messages as they were before. Note that, also like in the attack on the BGLS
scheme, the attacker could set pk′ = (pp, ga1 · gr) and σ′1 =

(
u0
∏k
i=1 u

m1,i

i

)r
for

a random exponent r ∈ Zp \ {0} to completely hide the connection to pk1.

Theorem 5.3.44. The AGH synchronized aggregate signature scheme is not
ADEAGG secure.

Proof. The theorem follows from Theorem 5.2.34 and Theorem 5.3.43 directly
above. It also follows from the fact that aggregation can be inverted. An
attacker can easily output a weakly signable claim sequence together with a
fitting signature by inverting the group elements of other signatures.

For example, if σ1 = (σ1,1, σ1,2, s) is a signature for C1 = ((pk1,m1),
(pk2,m2), (pk3,m3)) and σ2 = (σ2,1, σ2,2, s) a signature for C2 = ((pk1,m1),
(pk3,m3)), then

σ′ =
(
σ1,1

σ2,1
,
σ1,2

σ2,2
, s

)
is a valid signature for the claim sequence C ′ = ((pk2,m2)). If the attacker only
queries signatures for C1 and C2, then C ′ is weakly signable and the attacker
can use it to win the experiment with success probability 1.
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5.3.8 The AGHRO Synchronized Aggregate Signature Scheme
Ahn, Green, and Hohenberger [AGH10] also give a more efficient variant of their
scheme, which however is only secure in the random oracle model:

Definition 5.3.45 (AGHRO Synchronized Aggregate Signature Scheme). The
AGHRO synchronized aggregate signature scheme ΣAGHRO = (SetupAGHRO, GenAGHRO,
SignAGHRO, AggAGHRO, VfyAGHRO) consists of five PPT algorithms as follows:

SetupAGHRO(1κ). Select a bilinear group G of prime order p > 2κ and a pairing
e : G × G → GT . Let H : {0, 1}∗ → Zp be a hash function treated as a
random oracle. Choose random elements g, u, v, w, z, h ∈ G. Output the
public parameters as

pp = (G,GT , H, g, u, v, w, z, h).

GenAGHRO(1κ, pp). Pick a random a← Zp. Set pk := (pp, ga) and sk := (pp, a),
initialize sprev to zero and return (pk, sk).

SignAGHRO(sk,m, s). Abort, if s = sprev or s ≥ 2κ. Otherwise set sprev := s (it is
assumed that the input s is the current time period as output by clock()).
Select a random t ∈ Zp, compute

σ1 :=
(
vuH(m)

)a
· (wdlog(s)ezsh)t,

σ2 := gt,

and return σ = (σ1, σ2, s) as the signature.

AggAGHRO(C1, C2, σ1, σ2). Parse σi as (σi,1, σi,2, si) and check that s1 = s2 and
VfyAGHRO(Ci, σi) = 1 for i ∈ {1, 2}. If any of these check fails, output ⊥.
Otherwise compute

σAgg,1 := σ1,1 · σ2,1,

σAgg,2 := σ1,2 · σ2,2,

and output σAgg := (σAgg,1, σAgg,2, s1).

VfyAGHRO(C, σ). Parse C = ((pk1,m1), . . . , (pkn,mn)) and σ = (σ1, σ2, s). Check
that 0 < s < 2κ. If this is not the case, abort and output 0. Extract gai

from each pki and check that

e(g, σ1) = e(
n∏
i=1

gai , v) · e(
n∏
i=1

gaiH(mi), u) · e(σ2, w
dlog(s)ezsh).

Output 1 if this check is successful, otherwise output 0.

This variant exhibits the same properties as the AGH scheme in the standard
model. We give the respective theorems below, the proofs are largely analogous
to the proofs of the theorems above.
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Theorem 5.3.46. The AGHRO synchronized aggregate signature scheme is
SyncAS-EUF-CMA secure in the random oracle model, if the computational
Diffie-Hellman assumption holds and H is modeled as a random oracle.
Proof. A proof of this theorem can be found in Appendix B of [AGH10].

Lemma 5.3.47. The AGHRO synchronized aggregate signature scheme is ex-
tendable, claim-removable and order-independent.
Proof. The proof of this lemma is analogous to the proofs of the Lemmas 5.3.38,
5.3.39 and 5.3.40.

Theorem 5.3.48. If the Computational Diffie-Hellman assumption holds, then
the AGHRO synchronized aggregate signature scheme is 2DEAGG secure in the
random oracle model.
Proof. This proof is largely analogous to the proof of Theorem 5.3.41. We
therefore omit detailed discussions of some formalities to keep the proof short.
Let CCDH be the Computational Diffie-Hellman challenger and A a PPT attacker
on the AGHRO scheme. We construct a simulator B that uses A to solve the
Computational Diffie-Hellman problem.

First, CCDH passes on a CDH challenge tuple (g, gx, gy) to B. Next, B will
choose the parameters of the scheme in a way that is indistinguishable from an
honest execution of SetupAGHRO:
• The group G is the same that is being used by CCDH with prime order p.
As its generator, B chooses g from the CDH challenge tuple.

• B chooses random values r and q1, q2, q3 from Zp and sets

u := gr,

v := gy,

w := gq1 ,

z := gq2 ,

h := gq3 .

All of these elements are uniformly distributed.

• B now sets
pp := (G,GT , H, g, u, v, w, z, h),

where H is the random oracle. A cannot distinguish these parameters from
honestly generated parameters output by SetupAGHRO.

• For the public keys, B picks a random a← Zp and sets

pk1 := (pp, gx),
pk2 := (pp, ga−x).

Both keys are random and uniformly distributed, since x is chosen randomly
by CCDH. They are also independent from one another, since g is a generator
and a was chosen randomly. Therefore, A cannot distinguish them from
keys created by GenAGHRO.
Note that by setting the public keys in this way, B implicitly sets sk1 :=
(pp, x) and sk2 := (pp, a− x).
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B now sends pp, pk1 and pk2 to the attacker A. For the rest of the experiment,
all random oracle queries to H will be answered honestly by B, i.e. if A sends a
random oracle query for H(m), B first checks whether this value was already
set. If yes, B answers with this stored value, if not, B chooses a new random
value from Zp, sends it as the answer and stores it.

At some point, A answers by sending two messages m1 and m2, a timestamp
s and an order-tree T for which B needs to compute an aggregate signature,
where m1 is signed under pk1 and m2 under pk2 using the given time stamp s.

Similar to Lemma 5.3.37 one can prove that individual signatures of the
AGHRO scheme are always of the form σ = (σ1, σ2, s) where

σ1 :=
(
vuH(m)

)a
· (wdlog(s)ezsh)t,

σ2 := gt,

for some t ∈ Zp and where a is the exponent of the corresponding secret key.
Similar to the proof of Theorem 5.3.41, it follows that a valid signature for
C = ((pk1,m1), (pk2,m2)) is given by

σAgg = (gya · (gx)H(m1)r · (ga−x)H(m2)r · (gq1dlog(s)e+q2s+q3)t, gt, s).

for any order-tree T . It is also easy to see that this signature fulfills the rules of
VfyAGHRO, i.e. we have VfyAGHRO(C, σAgg) = 1. Since B knows the values gy, a, r,
m1, m2, q1, q2, q3, s and can choose t randomly, B can compute such a signature
and send it to A, who will answer with C∗ and σ∗ = (σ∗1 , σ∗2 = gt

∗
, s∗). If A

successfully deaggregated one of the claims, it holds that VfyAGHRO(C∗, σ∗) = 1
and C∗ = ((pki,mi)) for i ∈ {1, 2}.

Case C∗ = ((pk1,m1)): We have that

σ∗1 = vx · uH(m)x · (wdlog(s∗)ezs
∗
h)t
∗

= gxy · (gx)H(m1)r · (gt
∗
)q1dlog(s∗)e+q2s

∗+q3 .

B can therefore compute

gxy = σ∗1 ·
(

(gx)H(m1)r(σ∗2)q1dlog(s∗)e+q2s
∗+q3

)−1
.

Case C∗ = ((pk2,m2)): We have that

σ∗1 = va−x · uH(m2)a · u−H(m2)x · (wdlog(s∗)ezs
∗
h)t
∗

= g−xy · g−ya · gH(m2)ar · (gx)−H(m2)r · (gt
∗
)q1dlog(s∗)e+q2s

∗+q3 .

B can therefore compute

gxy =
(
σ∗1 ·

(
g−ya · gH(m2)ar · (gx)−H(m2)r · (σ∗2)q1dlog(s∗)e+q2s

∗+q3
)−1

)−1
.
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In both cases, B can use σ∗ to compute gxy, which B now sends to CCDH to win
the challenge.
B simulates the 2DEAGG security experiment perfectly for A. The success

probability of B is greater than or equal to the success probability of A and
their runtimes are roughly the same (the runtime of B is basically the runtime
of A plus the time it takes to set up the parameters and to extract gxy at the
end, which is all polynomial). It follows that the success probability of A must
be negligible, since we assumed that the CDH assumption holds. Therefore
the 2DEAGG security of the AGHRO synchronized aggregate signature scheme
follows.

Remark. Note that the proof above never takes explicit advantage of the fact
that H is a random oracle. However, since the scheme is only proven to be
unforgeable in the random oracle model, we also only state the theorem in this
model.

Theorem 5.3.49. If the Computational Diffie-Hellman assumption holds, then
the AGHRO synchronized aggregate signature scheme is nDEAGG secure in the
random oracle model for all n ≥ 2 polynomial in the security parameter κ.

Proof. The theorem follows directly from Theorem 5.2.21, Theorem 5.3.48 and
Lemma 5.3.47.

Theorem 5.3.50. The AGHRO synchronized aggregate signature scheme is
neither nDEAGG+ secure for any n nor ADEAGG secure.

Proof. The proof of this theorem is analogous to the proofs of Theorem 5.3.43
and Theorem 5.3.44.

Since the AGHRO scheme is also only secure in the random oracle model,
an interesting question is whether modifications similar to the ones by Bellare,
Namprempre, and Neven [BNN07] (see Section 5.3.2) and Saxena, Misra, and
Dhar [SMD14] (see Section 5.3.3) applied to the BGLS scheme could be used
to make the scheme nDEAGG+ or ADEAGG secure. Instead of signing H(m),
Bellare et al. sign H(pk‖m) and Saxena et al. sign H(m‖r‖pk) for a random
value r ← {0, 1}κ, that is then also stored in the signature. However, we leave
this question open, especially since the modification of Saxena et al. has a drastic
negative effect on the signature size (signatures now grow linearly in the number
of claims) and aggregation no longer compresses the signatures.

5.3.9 Overview of the Schemes
To conclude, we give an overview over the deaggregation security of the known
aggregate signature schemes that we examined in this thesis in Table 5.1 below.
The column “Security” states the strongest form of deaggregation security
provided and the used computational assumption. Note that this overview is
not complete and there exist several more schemes which deaggregation security
needs to be researched, like for example [GR06; LLY13b; LLY13a; HW18].
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Scheme Type Model Security Comment

BGLS
[Bon+03]

Full RO nDEAGG
(CDH)

BNN
[BNN07]

Full RO nDEAGG+

(CDH)
The scheme is called AS-3 in
[BNN07].

SMD
[SMD14]

Full RO ADEAGG
(CDH)

Signature size grows linearly in
the number of claims.

LMRS
[Lys+04]

Seq. RO None

NEV
[Nev08]

Seq. RO None

LOSSW
[Lu+06]

Seq. Stand. nDEAGG
(CDH)

AGH
[AGH10]

Sync. Stand. nDEAGG
(CDH)

AGHRO
[AGH10]

Sync. RO nDEAGG
(CDH)

More efficient variant of AGH, but
only proven secure in the random
oracle model.

Table 5.1: An overview of the deaggregation security of the schemes discussed
in this thesis. “Full” stands for fully flexible aggregation, “Seq.” for sequential
aggregation and “Sync.” for synchronized aggregation. “RO” stands for random
oracle model, “Stand.” for standard model and “CDH” for Computational
Diffie-Hellman Assumption.

5.4 Deaggregation Security & Fault-Tolerance

Since both fault-tolerance and deaggregation security are important concepts for
many applications of aggregate signature schemes, it seems like the final goal
would be to construct an efficient fully flexible scheme that is both fault-tolerant
and deaggregation secure. Unfortunately, as we show in this section, it is not
possible to achieve this goal.

In fact, deaggregation insecurity is virtually a “built-in feature” of fault-
tolerant schemes, since deaggregating a signature or modifying a claim basically
inserts one fault. To see this, let σAgg be a valid aggregate signature for a
claim sequence C = (c1, . . . , cn) that was computed by aggregating individual
signatures σi for ci, i.e. “σAgg =

∏n
i=1 σi”. Now, simply removing the claim cn

from C will mean that the already aggregated signature σn is no longer regular,
i.e. this removal introduces one fault. Since the scheme is fault-tolerant, it will
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therefore only output the claims c1 to cn−1, so the claim cn was successfully
deaggregated. We prove this formally in the following theorem.

Again, we only discuss the case of fully flexible aggregate signature schemes in
detail, the results however also transfer to sequential and synchronized schemes.

Remark. To be formally precise, we would first need to restate the deaggregation
security definitions to consider fault-tolerance and list verification. This could
be done by demanding that the set of claims output by Vfy contains all non-
empty claims of the claim sequence sent by the attacker, as well as the normal
requirement that at least one claim must have been deaggregated (either by
allowing additional claims for nDEAGG+ security or not for nDEAGG security),
i.e. at least one of the old claims is not part of the output of Vfy after the
attack. If the scheme needs some order among the claims (like in our construction
from Chapter 4), then the challenger will also use the order described by the
order-tree for this purpose. Since these changes are rather straightforward, we
forgo formally defining these experiments again.

Theorem 5.4.1. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature scheme
with list verification. If Σ is d-fault-tolerant for any d ∈ N, then Σ is not nDEAGG
secure for any n ≤ d.

Proof. Consider the following PPT attacker A on the nDEAGG experiment.
First, A receives a list of public keys pk1, . . . , pkn from the challenger CnDEAGG.
A then chooses n messages m1, . . . ,mn at random and sends (m1, . . . ,mn), T
to CnDEAGG, where T is a fitting order-tree for the n messages. Next, A receives
a valid aggregate signature τAgg for C = ((pk1,m1), . . . , (pkn,mn)).

Now, let τi be the individual signatures computed by the challenger for
the claim (pki,mi), which was used to compute τAgg. Observe that τi 6= λ,
since (pki,mi) 6= ⊥. Then M = {(c1, τ1), . . . , (cn, τn)} is the multiset of claim-
signature pairs associated with C and τAgg. Since all signatures τi and τAgg were
computed correctly, M contains 0 errors and we have Mreg = M and Mirreg = ∅.

The attacker now defines a new claim sequence C ′ := ((pk1,m1), . . . ,
(pkn−1,mn−1),⊥), does not modify τAgg at all and simply outputs C ′, τAgg.

The associated multiset of claim-signature pairs now is M ′ = {(m1, τ1), . . . ,
(mn−1, τn−1),(⊥, τn)}, since all n signatures τi were used to compute τAgg. Since
τn 6= λ, we have that M ′reg = (((pk1,m1), τ1), . . . , ((pkn−1,mn−1), τn−1))) and
Mirreg = ((⊥, τn)), i.e. M ′ contains 1 error.

Since Σ is d-fault-tolerant for some d ≥ 1, we have that M ′reg ⊆ Vfy(C ′, τAgg).
Furthermore, since (pkn,mn) is not in elem(C ′), we also have that (pkn,mn) /∈
Vfy(C ′, τAgg) by definition, since the Vfy algorithm of a fault-tolerant scheme
never outputs claims that are not parts of its input (see Definition 4.3.1).

It follows that A has successfully deaggregated the claim (pkn,mn) and
therefore wins the nDEAGG experiment. A is a PPT algorithm and has success
probability 1, which proves the theorem.

Corollary 5.4.2. Let Σ = (Gen,Sign,Agg,Vfy) be an aggregate signature scheme
with list verification. If Σ is d-fault-tolerant for any d ∈ N, then Σ is neither
nDEAGG+ secure for any n ≤ d nor ADEAGG secure.

Proof. The corollary follows directly from Theorem 5.2.9, Theorem 5.2.34 and
Theorem 5.4.1.
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The question now is if we can find some other meaningful definition of deaggre-
gation security that can be achieved by fault-tolerant schemes.

First, note that the proof can easily be changed so that A deaggregates a
whole set of claims (as long as the number of removed claims is less than or
equal to d). Therefore the scheme remains insecure even if we would change
the winning condition in the nDEAGG security experiment to require that more
than one claim needs to be deaggregated.

Only if we’d require that more than d claims need to be deaggregated could
the scheme potentially be nDEAGG secure. However, we are of the opinion that
a change like this is not constructive and would remove the definition further
from real-life applications, especially since the goal is to provide d-fault-tolerance
for a d that is as large as possible.

Another way could be to not interpret such removals of claims from the
sequence as an error, but this would only be sound for schemes where such
removals do not influence the validity of other claims. Therefore, while it is not
obvious how such a scheme could work or be constructed, it seems questionable
if this approach is reasonable. For example, if we look at schemes based on
algebraic groups, like the BGLS scheme, we can see that such “claim removals”
without also removing the corresponding signature parts from the aggregate will
always invalidate the whole aggregate, i.e. they clearly should be interpreted as
an error. This is similar to aggregating a random element of the signature space,
without knowing or including its corresponding claim in the verification, which
should render any aggregate signature of any non-fault-tolerant scheme invalid.

No matter how we try to redefine nDEAGG security, nDEAGG+ and especially
ADEAGG security is generally unachievable. If the attacker A does not simply
remove the claim (pk1,m1), but instead exchanges it with a random claim
(pk′,m′), A would always win the respective security experiments.

Since a modification of a claim like this should clearly be interpreted as
an error in the sense of fault-tolerance, it seems like there is no good way to
combine fault-tolerance and deaggregation security. If both fault-tolerance and
deaggregation security is needed, one therefore needs to carefully decide which
feature should be directly provided by the aggregate signature scheme and which
feature needs to be achieved by additional security measures. For example,
while deaggregation security would be advantageous for secure logging, our
construction from Section 4.7 shows that a similar protection can be achieved by
combining a standard digital signature scheme with a fault-tolerant sequential
aggregate signature scheme. The digital signature scheme is used to compute a
signature on the length of the log, which, together with unforgeability of both
schemes, ensures that no entry can be removed. However, this approach only
works since the way the log changes over time is very clearly defined and is only
directly modified by one party (i.e. the server) that can create and store the
additional secret key and signature. If an aggregate signature scheme should be
used to protect a more complex database, then such a simple approach might
not work. Instead, it might be favorable to use a deaggregation secure scheme
and additional strong back-up mechanisms to provide “fault-tolerance”.

Remark. Theorem 5.4.1 of course also holds for our fault-tolerant black-box
construction using a standard aggregate signature scheme and a cover-free family
presented in Chapter 4. Even if the underlying aggregate signature scheme might
be deaggregation secure, the resulting fault-tolerant scheme will not be.



142 CHAPTER 5. DEAGGREGATION SECURITY



Chapter 6

Conclusion and Prospects

In this thesis, we discussed fault-tolerance and deaggregation security of aggregate
signature schemes. Aggregate signature schemes are a type of digital signature
that offer an additional aggregation algorithm that can be used to compress
several signatures over multiple claims into a single small signature.

All aggregate signature schemes presented so far have the shared problem
that signatures become invalid as soon as one invalid signature is aggregated. In
contrast, signatures of a fault-tolerant scheme can withstand the aggregation of
invalid signatures, so that they can still be used to validate the correctly signed
messages after invalid signatures were aggregated.

We precisely defined the concept of fault-tolerance for all three major types
of aggregation (fully flexible, synchronized and sequential aggregation) and
gave the first construction of a fault-tolerant aggregate signature scheme. The
construction uses a cover-free family and a standard aggregate signature scheme
as building blocks. It is a black-box transformation that can be used to turn any
aggregate signature scheme into a fault-tolerant scheme and has a tight security
proof. We show that fault-tolerant schemes cannot offer perfect compression
(i.e. aggregate signatures need to grow in size and cannot be of the same size as
individual signatures), if at least a constant number of faults is to be tolerated.
We also show that signatures of our scheme only grow logarithmically in the
number of claims, which is optimal.

Our construction has two restrictions: First, claims are identified with subsets
of the cover-free family. As a result, claims need to be assigned to a fixed position
in the claim sequence, which means that aggregation is slightly restricted. It is
only possible to aggregate signatures that have no overlap in the already occupied
positions of their claim sequences. However, this restriction is only minor, since
signatures can still be aggregated in any order and in many applications signers
can easily agree on such fixed positions for their claims. Second, and more
importantly, the number of claims that can be aggregated is bounded by the
size of the universe of the cover-free family. We also showed an unbounded
construction, however its signatures unfortunately grow linearly in the number
of claims. As a practical application, we showed how fault-tolerant sequential
aggregate signatures can be used to construct a robust and secure logging scheme.

The second concept that we discussed, namely deaggregation security, pro-
vides security against the unwanted removal of claims from an aggregate signature.
Given an aggregate signature of a set of messages, an attacker might be able to
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use it to compute a new signature for a subset of these messages by removing or
deaggregating individual signatures. We introduced several security definitions
capturing a basic protection against deaggregation attacks, namely nDEAGG
and nDEAGG+ security. Both definitions provide security against attackers that
can ask for one aggregate signature of n claims and then need to deaggregate at
least one claim from it. For nDEAGG, the attacker is not allowed to aggregate
additional claims for his attack, while nDEAGG+ allows this. These definitions
are comparatively weak, but suffice for interesting applications, like constructing
verifably encrypted signature schemes.

We examined the relationship of these definitions and showed that there exists
a formal hierarchy, i.e. different levels for different n do not necessarily imply
one another. However, we also showed that for aggregate signature schemes
that exhibit three natural properties, called extendability, claim-removability
and order-independence (that might also be of independent interest), nDEAGG
security implies n′DEAGG security for n′ > n (the same holds for nDEAGG+

security).
Furthermore, we showed that unforgeability does not imply any form of

deaggregation security. We also discussed and generalized the security definition
of Saxena, Misra, and Dhar [SMD14] (which we called ADEAGG security) that
implies a high level of security against deaggregation attacks and showed how it
relates to the other definitions. Also, using our hierarchy of security definitions,
we precisely classified the deaggregation security provided by several known
aggregate signature schemes by giving new security proofs and attacks. Since
most schemes were not designed with deaggregation security in mind, almost
all of them only provide nDEAGG or nDEAGG+ security. The only scheme to
provide ADEAGG security is the scheme of [SMD14], which has the drawbacks
that signatures grow linearly in the number of aggregated claims and that it is
only proven secure in the random oracle model.

Finally, we also discussed the connection between fault-tolerance and deag-
gregation security. We showed that no fault-tolerant scheme can offer any form
of deaggregation security, which implies that for applications of aggregate signa-
ture schemes, a trade-off between both properties needs to be made. It needs
to be carefully decided which property should be provided by the aggregate
signature scheme and if other measures need to be taken (i.e. using additional
cryptographic primitives or security mechanisms) to achieve a protection of the
application similar to that provided by the other property.

In the following, we briefly discuss some research questions that arise from
our work. An interesting open problem is to find fault-tolerant constructions
with a very small or even no “gap” between the number d of faults that can be
tolerated and the number n of aggregated claims. The question if there exist
d-fault-tolerant schemes were d is not fixed a priori, but can grow in proportion
to the number of aggregated claims, also remains open. Note that there is a
trivial solution to achieve both goals: The aggregation algorithm simply stores
all individual signatures in a list. While this construction is very inefficient and
it is questionable if it should even be interpreted as an “aggregate” signature
scheme, it hints at the existence of such schemes. Furthermore, the theoretically
best number of how many faults can be tolerated by schemes that actually do
compress their input is unknown.
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Another interesting research direction would be to search for other building blocks
than cover-free families that can be used to construct fault-tolerant schemes and
to investigate if they can achieve better bounds then our construction.

Since signatures of fault-tolerant schemes necessarily need to grow in size if at
least a constant number d of faults is to be tolerated, it would be interesting to
research whether a trade-off between constant signature size and d can be made,
for example by investigating if schemes can be constructed that offer constant
signature size, but where d slowly degrades in the number of aggregated claims.

In our fault-tolerant construction, signers need to assign positions to their
claims, i.e. aggregation is slightly restricted and not fully flexible. This is
unproblematic for many applications, especially since we do not impose an order
of aggregation, but it would still be interesting to construct a fault-tolerant
scheme that offers fully flexible aggregation. Furthermore, only a limited number
of signatures can be aggregated. While we also construct an unbounded scheme,
we only achieve a constant compression ratio. Idalino and Moura [IM18] already
improved our construction by using nested cover-free families and achieve better
compression ratios. However, there is still room for improvement, since they
also do not achieve the optimal compression ratio (i.e. signatures that only grow
logarithmically), if more than two faults are to be tolerated.

Moreover, we assume that aggregation itself is always done correctly. While
it is impossible to give guarantees for all possible errors that can happen during
aggregation (a faulty aggregator could output a random string), it would be
interesting to investigate certain classes of errors that can occur in practice due
to common software or hardware errors.

Another interesting research direction would be to investigate whether
schemes can be constructed where partially invalid aggregate signatures could
also somehow efficiently and securely be “repaired”, such that the signature
again becomes valid for all of its claims.

For deaggregation security, most known (and efficient) aggregate signature
schemes unfortunately only provide basic nDEAGG security and are vulnerable to
stronger attacks. The important problem of constructing an efficient aggregate
signature scheme (of any type) in the standard model that provides a stronger
form of protection against deaggregation attacks remains open for now. In par-
ticular, there exists no efficient aggregate signature scheme with short signatures
that is also ADEAGG secure, neither in the standard model, nor in the random
oracle model.

Since a large number of fully flexible, sequential and synchronized aggregate
signature schemes have been proposed, we could only examine the deaggregation
security of a limited number of schemes in this thesis. It would therefore be
interesting to exactly classify the security of the remaining schemes as well.

Furthermore, while we showed that nDEAGG security implies n′DEAGG
security for n′ > n for schemes that are extendable, claim-removable and order-
independent and showed that order-independence is a necessary property, it
remains open whether extendability and claim-removability are also necessary
for this implication to hold. The same question remains open for extendability
for nDEAGG+ security (here, claim-removability is not necessary).
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