9,186 research outputs found

    Fast tomographic inspection of cylindrical objects

    Get PDF
    This paper presents a method for improved analysis of objects with an axial symmetry using X-ray Computed Tomography (CT). Cylindrical coordinates about an axis fixed to the object form the most natural base to check certain characteristics of objects that contain such symmetry, as often occurs with industrial parts. The sampling grid corresponds with the object, allowing for down-sampling hence reducing the reconstruction time. This is necessary for in-line applications and fast quality inspection. With algebraic reconstruction it permits the use of a pre-computed initial volume perfectly suited to fit a series of scans where same-type objects can have different positions and orientations, as often encountered in an industrial setting. Weighted back-projection can also be included when some regions are more likely subject to change, to improve stability. Building on a Cartesian grid reconstruction code, the feasibility of reusing the existing ray-tracers is checked against other researches in the same field.Comment: 13 pages, 13 figures. submitted to Journal Of Nondestructive Evaluation (https://www.springer.com/journal/10921

    Thermal image processing for real-time noncontact respiration rate monitoring

    Get PDF
    A real-time thermal imaging based, non-contact respiration rate monitoring method was developed. It measured the respiration related skin surface temperature changes under the tip of the nose. Facial tracking was required as head movements caused the face to appear in different locations in the recorded images over time. The algorithm detected the tip of the nose and then, a region just under it was selected. The pixel values in this region in successive images were processed to determine respiration rate. The segmentation method, used as part of the facial tracking, was evaluated on 55,000 thermal images recorded from 14 subjects with different extent of head movements. It separated the face from image background in all images. However, in 11.7% of the images, a section of the neck was also included, but this did not cause an error in determining respiration rate. The method was further evaluated on 15 adults, against two contact respiration rate monitoring methods that tracked thoracic and abdominal movements. The three methods gave close respiration rates in 12 subjects but in 3 subjects, where there were very large head movements, the respiration rates did not match

    Stereo Vision: A Comparison of Synthetic Imagery vs. Real World Imagery for the Automated Aerial Refueling Problem

    Get PDF
    Missions using unmanned aerial vehicles have increased in the past decade. Currently, there is no way to refuel these aircraft. Accomplishing automated aerial refueling can be made possible using the stereo vision system on a tanker. Real world experiments for the automated aerial refueling problem are expensive and time consuming. Currently, simulations performed in a virtual world have shown promising results using computer vision. It is possible to use the virtual world as a substitute environment for the real world. This research compares the performance of stereo vision algorithms on synthetic and real world imagery

    Optical Orbit Tracking and Estimation

    Get PDF
    Angles-only initial orbit determination methods are currently limited in their use as they require some prior knowledge of where the observed object will be and when it will be there. This research aims to produce a viable method to automate this process so that objects whose trajectories are not saved in a user’s catalog can be observed. A method is devised using a novel approach to satellite recognition in an image. This method is used in addition to Astrometry to determine the right ascension and declination of the object. This information is then used to either obtain the initial conditions needed for a state estimator or is utilized by a Kalman Filter to correct any resulting error. In addition, an extra goal is set to create a modular process so that any stage of the end-to-end process can be changed to suit a user’s individual needs while still being able to perform the task for which it was assigned. Tests with varying times between measurements were first run to determine if a discrete-time Kalman Filter is a viable method to correct the error created by the state estimator, where coordinates were fed directly into the filter with no images. These tests showed that the filter succeeded in its goal of adjusting the projections made by the mathematical representation of the satellite’s trajectory based on measured data. After this, tests were done on images that were acquired in a manner similar to how the filter would have acquired them to test the entire end-to-end process. This test demonstrated that the end-to-end process worked as intended, with the Kalman Filter keeping the error well within the image. This means that if the projection is in the middle of the image, the centroid of the satellite streak will be in the middle well. A final test was conducted to implement the Kalman Filter on a telescope system while utilizing a different image processing technique. This test demonstrated that the Kalman Filter worked as intended in real time

    Scene reconstruction using accumulated line-of-sight

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 49-52).by Christopher P. Stauffer.M.S

    Simulation of a new respiratory phase sorting method for 4D-imaging using optical surface information towards precision radiotherapy

    Get PDF
    Background: Respiratory signal detection is critical for 4-dimensional (4D) imaging. This study proposes and evaluates a novel phase sorting method using optical surface imaging (OSI), aiming to improve the precision of radiotherapy. Method: Based on 4D Extended Cardiac-Torso (XCAT) digital phantom, OSI in point cloud format was generated from the body segmentation, and image projections were simulated using the geometries of Varian 4D kV cone-beam-CT (CBCT). Respiratory signals were extracted respectively from the segmented diaphragm image (reference method) and OSI respectively, where Gaussian Mixture Model and Principal Component Analysis (PCA) were used for image registration and dimension reduction respectively. Breathing frequencies were compared using Fast-Fourier-Transform. Consistency of 4DCBCT images reconstructed using Maximum Likelihood Expectation Maximization algorithm was also evaluated quantitatively, where high consistency can be suggested by lower Root-Mean-Square-Error (RMSE), Structural-Similarity-Index (SSIM) value closer to 1, and larger Peak-Signal-To-Noise-Ratio (PSNR) respectively. Results: High consistency of breathing frequencies was observed between the diaphragm-based (0.232 Hz) and OSI-based (0.251 Hz) signals, with a slight discrepancy of 0.019Hz. Using end of expiration (EOE) and end of inspiration (EOI) phases as examples, the mean±1SD values of the 80 transverse, 100 coronal and 120 sagittal planes were 0.967, 0,972, 0.974 (SSIM); 1.657 ± 0.368, 1.464 ± 0.104, 1.479 ± 0.297 (RMSE); and 40.501 ± 1.737, 41.532 ± 1.464, 41.553 ± 1.910 (PSNR) for the EOE; and 0.969, 0.973, 0.973 (SSIM); 1.686 ± 0.278, 1.422 ± 0.089, 1.489 ± 0.238 (RMSE); and 40.535 ± 1.539, 41.605 ± 0.534, 41.401 ± 1.496 (PSNR) for EOI respectively. Conclusions: This work proposed and evaluated a novel respiratory phase sorting approach for 4D imaging using optical surface signals, which can potentially be applied to precision radiotherapy. Its potential advantages were non-ionizing, non-invasive, non-contact, and more compatible with various anatomic regions and treatment/imaging systems
    • …
    corecore