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Abstract

Standard scene reconstruction methods attempt to determine the positions which

visible elements of the environment occupy in space. Instead of determining where

things are, we choose to model where things are not. We model the open space in a
scene.

This is accomplished by tracking a human participant moving in the environment.

Based on the position of the tracked object and where it is visible to the cameras, a

3-D vacancy grid is modified which represents the empty space in the environment.
This method can produce useful spatial models itself or can be used to complement

other reconstruction methods.
This thesis begins with a survey of scene reconstruction followed by a general

description of this method and its advantages and disadvantages. Its application to

a single camera system is illustrated by an example. The numerous considerations

for extending to multiple camera systems are discussed. Possible applications and

extensions are outlined and conclusions are drawn.
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Chapter 1

Introduction

In order for computer algorithms which can effectively approximate human-level vi-

sual tasks to be realized, they must either be restricted to known, structured envi-

ronments or be capable of modeling the uncertainties of the environment. This is

one of the prime motivations for the overwhelming interest in scene reconstruction.

Scene reconstruction refers to systems which attempt to use one or more sensors in an

environment to create a geometric interpretation of the scene. Sensors can be cam-

eras, laser range-finders, sonar arrays, etc. Some possible geometric interpretations

are exact reconstructions, projective geometry reconstructions, or occupancy/vacancy

evidence grids.

In this thesis, we investigate an approach to creating a vacancy model of an active

scene from any number of unique, static cameras. This is a common situation in

static camera systems, including most human-computer interaction and surveillance

systems. A model of the scene is of particular interest in these cases, because these

systems are used to observe and perhaps to understand the actions of the participants

in these environments.

Unfortunately, there is not enough information available at any instant to robustly

model the scene without making strong assumptions. There are many cases where it is

even impossible for humans to disambiguate a scene based on a single image. This was

the motivation for looking into using tracking information to aid in reconstruction.

In fact, our method depends on the observation of the moving participants to cre-



ate a model. It leverages tracking and visibility information into an evolving model

of the open space in a scene. Essentially, it determines what areas of the space must

be empty in order to match its observation of the moving object at a particular loca-

tion. It does this by accumulating vacancy evidence within the volumes between the

visible parts of the object and the center of projection of the corresponding camera.

This models the unoccluded space from all available viewing angles. The complete

method involves tracking objects in the available views, using the tracking infor-

mation to determine the relationships between the views, determining the objects'

relative position, and altering a 3D occupancy model of the environment to match

the observations.

This method will be useful for tracking, scene understanding, and visualization

applications. While the resulting model will not be an exact geometric representation

of the scene, it will capture important functional properties of the scene. From this

representation, it is possible to have expectations of which parts of moving objects

should be visible or occluded, to determine which parts of the scene are visible in

each camera, to determine entrances and exits to the scene, and also to visualize the

environment.

A scene reconstruction system should not only be evaluated based on what types

of applications it may facilitate, but also based on the circumstances under which it

is effective. To be broadly applicable, an application should work well in different

environments with as few assumptions and restrictions as possible. For instance,

some systems require calibrated sensor systems, completely static scenes, reasonably

similar views, no occlusion, and/or very few areas which are relatively homogeneous.

Much work has been devoted to circumventing these assumptions to make more robust

reconstruction systems. The number and complexity of these considerations helps to

justify the vast quantity of research done in this area[3, 4, 6, 8, 9, 10, 19, 21, 23, 24,

28, 31].

To make more generally applicable systems, researchers have proposed increasing

the number of views with multiple-camera arrays or moving acquisition systems, using

active sensing systems, or increasing resolution to decrease local ambiguity. These all



Figure 1-1: This figure illustrates two views of a scene which are inherently ambigu-
ous. Without additional information there is more than one interpretation of relative
camera position.

may result in improvements, but often it is not desirable to add or change equipment

depending solely on the needs of one algorithm and often better equipment is either

too expensive or not yet available.

The method described in this thesis attempts to create a camera-relative model

of a scene based on how objects present in the scene over time. There are two

obvious assumptions in this method. First, moving objects must be present within a

static environment which can be localized. While requiring moving objects restricts

use of this method, many of the applications of the resulting model are centered on

understanding of the moving objects.

The second restriction is the necessity for observation over time. Having a model

which is constantly updated based on current observations is also useful because most

scenes are not completely static. If the model is no longer sufficient to explain the

observations, the model can be altered to remove the contradiction.

While integrating information over time restricts use of this method to relatively

static scenes with static cameras, it also adds robustness. For instance, certain prob-

lems are not solvable by human observers without the information gained over time.

Figure 1-1 illustrates that in scenes which contain symmetries and don't contain am-

ple distinguishing features between unique views, finding relative positions of static
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cameras can be an ill-posed problem. Even humans can find it difficult to calibrate

two distinct views of a scene based on single views.

Our method stands to be more robust to unknown camera placements by inte-

grating correspondences derived from tracking moving objects. Our method makes no

assumptions about the similarity in appearance between the available views. It can

integrate color, black and white, infrared, and other sensing systems. Also, partial

occlusions will only hinder the system in cases where it greatly affects the localization

of the object.

Chapter 2 outlines related work in reconstruction. Chapter 3 gives a general de-

scription of this method and its advantages and disadvantages. In Chapter 4, a single

camera system is described followed by a discussion of the resulting representation.

Chapter 5 covers the numerous considerations for extending to multiple camera sys-

tems. Chapter 6 discusses possible applications and extensions. The final chapter

summarizes this work.



Chapter 2

Related Work

Visualization, recognition, object tracking, and object modeling applications have

motivated much of the work in scene reconstruction. This chapter will cover some

of the primary methods that are used to reconstruct scenes and efforts to overcome

their weaknesses. This will include discussion of methods which model open space in

an environment and methods which explicitly model the environment.

2.1 Modeling Open Space in an Environment

Reconstructing the open space in an environment is a problem that is of particular

importance to mobile robot systems. Path planning, obstacle avoidance, and navi-

gation in unknown and unstructured environments often requires a world model of

which areas are occupied and which are unoccupied.

There are a number of methods of sensing range to the closest object in a direc-

tion. A survey provided by Jarvis[17] discusses some methods of obtaining range data,

including striped lighting, grid lighting, depth from occlusion, texture gradient, fo-

cusing, some "shape from" methods, stereo, motion, triangulation, and time-of-flight

range-finders.

To develop and maintain an effective world model, mobile robot platforms have

been developed which integrate their depth readings from different positions to make

more effective models of the open space[7, 33, 26]. Others have attempted to in-



tegrate occupancy evidence using multiple wide-angle stereoscopic images [21]. All

these methods include some form of evidence grid. Each cell in the evidence grid

accumulates either occupancy evidence, vacancy evidence, or both.

Although these methods bear a similarity to our method, they involve introducing

a moving sensor into the environment. Our goal is to create a system which can use

stationary, passive sensors(cameras) to model a scene based on activity within that

scene without introducing strong restrictions on their placement.

2.2 Explicit Modeling of the Environment

The area of passive scene reconstruction has been dominated by the many variants of

stereo[14, 9, 20, 24, 23, 28, 30, 31]. A survey of stereo methods can be found in [6].

Other methods exist for very limited domains. There are many "shape from"

methods, including Shape from Shading[13] and Shape from Texture. These methods

are generally not useful for scene reconstruction unless the scene can be considered a

single surface with at least one property which varies with depth or orientation. In

general, scenes have many discrete, non-uniform surfaces.

In general terms, stereo methods take different views of an environment, find cor-

respondences in those views, determine how those views relate to each other, and use

the correspondences and the relationships between the views to hypothesize the true

positions of the correspondences. Arguably, the crucial step in stereo computation

is establishing the correspondence between homologous features- features which are

projections of the same physical identity in each view.

Regardless of which variant of stereo is used, correspondences can only be drawn

for points in the scene which are visible in at least two different views. Therefore,

to model a scene effectively, it would be necessary to have many, distinct views of

a scene which show all points which need to be reconstructed with at least one re-

dundancy. Researchers have tried to create more complete models by using structure

from motion[3] or large arrays of cameras giving different views[31]. Since structure

from motion usually necessitates introducing a moving acquisition system into the



environment and processing many video streams at once presents other difficulties,

these solutions add undesirable complexity.

Even assuming ample redundancy in the views, it is necessary to determine nu-

merous, robust correspondences. Without numerous correspondences, the resulting

reconstruction will be very sparse. Without robust correspondences, there will be sig-

nificant errors in the relationships between the views and errors in the reprojection of

the points. Most scenes have regions with little or no discernible features. Elements

as common as walls, carpets, tabletops, sky, and small "windowed" regions often lack

significant features. For these regions, an accurate depth cannot be determined.

Assuming the scene contains ample features to create a satisfying reconstruction,

there still exists the difficulty of determining which are matching features. One solu-

tion to this problem is to manually define the correspondences in all the views and

to define which of the points determine surfaces. Although this can result in very

good models, the amount of work and knowledge necessary use this type of system

undesirable.

If the feature determination and matching is not done by human inspection, it

is necessary to choose a feature and define a measure of similarity. Lines, points,

patches of the image, corners, and LEDs are just some of the examples of features

which have been used. Regardless of the feature, mismatches occur.

Researchers have proposed more complex solutions to this problem. There are

methods which use more than two cameras in an effort to reduce mismatches[28, 8, 31].

Additional views give additional constraints for calibrating the camera and make it

possible to verify the correspondences based on their occurrence in many views.

Some systems use motion to find and track correspondences [20, 24, 30, 4, 3].

This includes moving acquisition systems and moving objects. The chance of a mis-

matched feature is reduced by tracking the features through the sequence of images.

Relative camera position through time can be derived as a result of the fairly robust

correspondences.

Stereo algorithms have difficulty whenever the views are very discrete, the views

are not sufficiently redundant, or there are homogeneous regions. The efforts to



reduce the errors resulting from these problems have mostly resulted in more intrusive,

complex techniques. Our effort is directed towards creating a system which does not

require extremely complex acquisition systems and gains robustness from observation

of moving objects within the scene.



Chapter 3

Accumulated Line-of-Sight

This chapter outlines the general method with less attention to the specific details of

any particular implementation. The next chapter gives an example of a single camera

implementation. The following chapter discusses implementation issues of a multiple

camera system.

3.1 The Method

The method described in this section is a very general framework for creating a system

that can model its environment based on its observations of moving objects within

the environment. It can be used with varying success in any system with any number

of static cameras. Systems of multiple cameras with moving objects in their regions

of overlap add significant robustness, but even rough single camera systems can be

implemented, as shown in Chapter 4.

In its most general form, this method involves determining the moving objects,

determining relative positions of the objects, updating the model, and displaying the

model. This section discusses each step and the trade-offs inherent to different camera

configurations. The desired result is a model which consistently explains the visibility

or occlusion of objects in the environment. A single camera reconstruction will result

in a camera relative projective model of the first occlusion along the line-of-sight

of each pixel. The multiple camera reconstruction will result in a spatial model of



Figure 3-1: An example of backgrounding showing (left) the current frame, (middle)
the background, and (right) the thresholded difference between the background and
current frame giving the pixels which are significantly different from the background.
The human figure which is not part of the background is visible in the difference.

vacancy regions which explain the visibility of objects to all cameras.

3.1.1 Determining Moving Objects

Finding unique, static features without specific knowledge of the scene is difficult, but

finding unique, moving regions in static views can be accomplished with some relia-

bility, Systems have been developed for object tracking based on edge detection[12,
15, 29], optical flow[2, 25, 27], corner detection[32], backgrounding[12, 22, 5], and

information specific to a particular context[16]. Edge detection tracking and corner

tracking generally involve locally determining the best match for an evolving model

of the edges or corners are part of the moving object. Optical flow attempts to track

regions of steady flow. Backgrounding refers to a general set of techniques which

attempt to model the static background and use its difference from the current image

to find the pixels which are not part of the background.

Because it is desirable to know which pixels are part of a moving object, the

most effective method is backgrounding, or image subtraction. Backgrounding can

involve taking a single image before any objects are introduced, averaging recent

frames, or only updating a background pixel if the color has remained constant for a

certain period of time. A more complex backgrounding method is used in the example

described in the following chapter.

Once the background has been determined, the current frame is subtracted from
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the background giving an error signal which can be thresholded to produce a binary

image in which 'on' pixels signify points at which the current frame significantly

differs from the background(see Figure 3-1. Running some variant of connected

components[14] on the binary image will give the regions which may represent moving

objects.

This step is performed for every camera in the system. For each camera, a binary

image similar to the thresholded difference image in Figure 3-1 is produced. The

binary image is further processed to determine all connected regions of pixels. The

connected regions of pixels which are not part of the background from each camera

are used in the following steps.

3.1.2 Determining Relative Position of the Object

Depending on the method used to approximate the depths, some moving regions may

have to be filtered out. It is more important to minimize false corresponding regions

than to maximize true corresponding regions, because the location of mismatches

could appear to be part of occupied space. This will adversely affect the model.

Removing noisy components which do not correspond to objects, components which

represent more than one object at different depths, and components caused by changes

in the environment often results in more robust models.

The procedure of approximating the depth for each object is dependent on the

camera position, number of cameras, types of occlusions, and timing of cameras.

Some possibilities are triangulation in disparate views, stereo, or approximation from

a characteristic of the object.

If only one view is available, it is necessary to approximate the position of the

object by using a characteristic of the object that correlates to its approximate depth.

Some characteristics which can correlate to depth are size, height, centroid, top,

and bottom of the region. For instance, the depth of a sphere of known radius is

approximately equal to k/diameter or k/(area)1/2 where k is defined by the camera

parameters and the known radius. In other cases, localizing part of the object that

is known to lie on a plane will give a better estimate. This is discussed further in the



example in the next chapter.

With a single stereo pair, the depth of points in the object could be approximated

by locally averaging over the depth of features within the region of movement. This

would be more robust than simply using some approximation which is a function of

a characteristic of the object in the image. Unfortunately, using a stereo pair with

a small baseline can result in large discretizations in estimated depth while using a

larger baseline can result in errors due to partial occlusions or mismatched features.

More robust results can be gained using triangulation with multiple cameras in

very different positions. If a significant region of the object is visible to at least two

of the views, the error in the resulting relative position should be on the order of a

fraction of the size of the object. If a significant region of the object is not visible or

there is another reason to believe that the localization may have error, the object can

be neglected. This is discussed further in Chapter 5.

With a single camera system, the relative position of the object is represented by

the depth of the object and the position of its centroid in the image. The position of

the centroid in the image defines a unique ray along which the centroid of the object

lies. The depth defines how far along the ray the centroid lies. With a multiple cam-

era, the relative position of the object is the approximate three dimensional location

of its centroid in space. Given the positions of the cameras, it is possible to determine

the distance to the object to within a constant scale factor.

3.1.3 Updating the Model

The initial assumption of the algorithm is that the space surrounding the scene and

the cameras is completely occupied. If no movement occurred, this hypothesis would

remain valid. In this case, most visual routines could completely neglect this camera

because it contains no information about moving objects or the environment.

As moving regions and their corresponding relative positions are observed, the

model must be updated to match these observations. If according to the model an

object should be occluded, but it is visible, that is evidence against the occlusions in

the model. Eventually, the model will be complete enough to explain all the occlusions



observed.

In a single view case, this model can be simplified by modeling a lower bound, dib,

on the depth corresponding to the first occluder, do, along the line-of-sight of each

pixel. It will always be the case that dib < do, because there can never be a visible

object at that point which is exactly at or just farther than the depth of the occluder

in the scene. Although, it will never be possible to determine the exact location, our

algorithm will be relatively certain that it will not be closer than dib. This is the most

complete model which can be achieved without the additional information of where

an object is expected to be seen but is not visible. This simplification reduces the

time and complexity of evolving the model. Further discussion can be found in the

next chapter.

In the multiple view case, it is necessary to have all the cameras in one global

reference frame. Other investigators have created systems which can calibrate cameras

based on moving objects[1], so this will only be tersely handled here. Once all cameras

are calibrated, it is possible to begin modeling the scene. This is discussed further in

Chapter 5.

The single camera implementation produces a "depth" map which represents a

lower bound of the first occlusion for each pixel. The multiple camera implementation

produces a three dimensional evidence grid which can be processed to produce a model

of vacant and occupied space.

3.1.4 Displaying the Model

For a single view reconstruction, the model has been simplified as a lower bound to

the depth of the first occlusion along the line-of-sight of each pixel. This depth map is

similar to the output of many stereo systems. It can be displayed by projecting each

point in a 3-D triangular mesh outward by the corresponding distance in the depth

map using a simple projection model. The current background image can be used

to texture map the 3-D mesh to aid in understanding the model. This is illustrated

further in Chapter 4.

For a multiple view reconstruction, the representation is a three dimensional ev-



idence grid. It is possible to display the evidence grid as a dense volume of small

polygons between adjacent vertices with transparency values derived from the va-

cancy probabilities of each of their vertices. Unfortunately, it is difficult to display

due to hardware limitations. Small gains can be won by removing polygons which

are almost transparent.

An alternative is to model the space discretely as either the open space or occluding

volumes. A simple method for displaying the open space or occluding volumes is to

threshold the vacancy evidence grid above or below a certain value, respectively. The

resulting voxels can be displayed as a cubes centered at the remaining voxel positions.

To reduce the aliasing of this method, a more exact approximation of the surface

could be determined by stitching together vertices derived by linearly interpolating

to find the approximate location of the epi-surface between each adjacent voxel which

are not both vacant or occupied. A more thorough coverage of three dimensional

rendering techniques can be found in the medical literature[18].

3.2 Advantages and Disadvantages

Many of the characteristics of this modeling technique can be considered either an

advantage or a disadvantage. This section will outline a number of considerations

and state under which circumstances they could be considered an advantage or a

disadvantage.

3.2.1 Dependency on Correspondences

This method depends on correspondences of moving objects not homologous features

in the scene. Whereas most every camera pair has homologous features, not all

cameras have moving objects. Without moving objects this method will produce

nothing. Without sufficient homologous features, other methods will also fail to

robustly produce models.

But in a scene with moving objects, virtually unlimited correspondences can be

found. If there are not sufficient correspondences at time, t, to achieve relative cer-



tainty in camera placement, the process can wait until more correspondences are

found. This may make this method more robust to arbitrary camera placements and

scene with relatively few features.

With the correspondences gained over a period of time, there should be a capability

of calbrating cameras which are only partially overlapping views, cameras which are

very widely placed, and even sets of cameras whose views do not necessarily overlap.

These possibilities open up many new and interesting questions which are discussed

further in Chapter 5.

3.2.2 What is Being Modeled?

Most modeling methods attempt to model the exact location of all visible elements

of the scene. If this can be achieved effectively, the scene can be reproduced from any

position. Our method models the open space in the scene. With many cameras, this

will approximate an effective model of the scene.

Even with a single camera the depth map has some very desirable properties. The

depth map gives a lower bound on the depth to every pixel, not only the pixels which

have significant features. Given a moving region and a corresponding depth, it will

be possible to determine if it is adjacent to an occluding contour for that depth. If

it is adjacent to an occluding contour, it is probable that the object is not entirely in

view and should be analyzed more specutively.



Chapter 4

Single Camera Reconstruction

The goal of reconstruction from a single view is to create a dense representation of

the depth of the visible parts of the scene relative to that view. This representation

should determine a depth for each pixel, not only for distinguishable features. Our

representation is a lower bound on the distance to what a pixel represents in a scene.

This particular implementation was motivated by difficulties which arose from

efforts in the Human Computer Interface(HCI) Room at the MIT AI lab. The HCI

Room is an attempt to create an environment which allows groups of people to interact

with the computer unhindered by traditional keyboards, displays, or mice. There

are two cameras involved in the tracking and visual interpretation of the rooms'

participants. Figure 4-1 shows an example image from both cameras.

Because the HCI room contains tables, chairs, windows, doors and other occluding

boundaries, simple methods for tracking, localizing, and analyzing the actions of

participants can be confused. Since the location of elements of the environment are

not available, the room must be capable of modeling the environment to determine

where potentially confusing elements of the environment are located.

4.1 The method

The method described below involves segmenting moving objects from the back-

ground, filtering objects which can't be localized, approximating the depth of the



(a) (b)

Figure 4-1: A typical view from the (a) left and (b) right camera in the HCI room.

Each illustrates the difficulties in tracking and analyzing participant's actions.

remaining objects, updating the representation, and displaying the resulting model.

More specifically, the segmentation involves a backgrounding procedure which

includes modeling the most probable appearance of the background based on the

statistical properties of the pixels. Of the objects which are different from the back-

ground, some can be localized and others can't. Because our depth approximation

procedure assumes that the object is a standing human, it is necessary to filter out ob-

jects which may not be standing humans. Once the silhouettes of standing humans

can be determined over time, it is necessary to make an assumption to determine

their approximate depths. Finally, the silhouettes and depths are used to update the

model.

The output of the single camera reconstruction is a projective model of the scene

build only from the information available in one camera. Figure 4-2 shows the models

resulting from two independent processes using one of the cameras available in the

HCI room.

4.1.1 Segmenting Moving Objects

Because robust, updatable backgrounding is desired, standard backgrounding meth-

ods were insufficient. Using a single background image taken before object are in-

~-~I)- · · · ~



Figure 4-2: The reconstruction from both cameras.

troduced is undesirable because any changes in the environment will accumulate and

eventually cause serious errors. For instance, shuffled papers, a moved coffee cup, or

a jacket left in the corner will introduce connected components which will continue

to exist unless the scene is returned to the exact initial condition. While they exist

these falsely detected moving components will be incorporated into any object which

comes into contact with them causing errors in the representation.

There also exist many dynamic methods of backgrounding which involve main-

taining an evolving background. Two simple methods are averaging recent frames and

adopting a new pixel from the current image if that pixel has been different from the

background for a significant number of frames. Unfortunately, both these methods

suffer from moving objects significantly affecting the appearance of the background.

This can leave significant after-images from objects which are stationary for long

enough to affect the background which results in regions which do not correspond to

true objects.

In an effort to keep moving human figures from altering the background image, a

new heuristic was adopted. This heuristic is that if the recent values of a particular

pixel are modeled by a number of Gaussian distributions, the most probable model of

the background pixel is the Gaussian distribution which has occurred more frequently

and varied less in recent history. With this heuristic, people in the scene can only
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become part of the background if they stay in one position and the pixels which

represent them vary less than the background at that point for a significant amount

of time. Of course, static rigid objects can more easily become part of the background.

The backgrounding procedure involves modeling the N most probable Gaussian

distributions which best explain the recently observed values of each pixel. N must

be large enough that models with high probability are generally not lost. If N is too

high, it becomes prohibitively expensive to maintain the models. In this example, N

was chosen to be 5. The Gaussian model includes a mean, variance, and frequency

statistic which are maintained for each stored value.

Qualitatively, a model is more probable if it has occurred frequently enough and

did not vary significantly in the recent past. For example, the most probable back-

ground model for a pixel which represents a blue wall in a static scene will be a

Gaussian centered at "blue" with a small variance and a large occurrence value, be-

cause often the pixel is blue and it varies only as much as the noise in the sensor. If

the pixel turns green as a result of a person with a green shirt entering the scene, the

background will not adopt the green model unless the person can remain in the same

position for enough time to have the model's frequency statistic outweigh its larger

variance.

Initially, the N models are given a frequency of zero which makes all of them

improbable and they are quickly replaced by the first values which appear. As their

statistics are altered, they are ordered with the most probable background model

first.

For every frame, each pixel is checked against the N stored pixel models in order

of their probability until a match occurs. A match of the image pixel, Iij, to the

corresponding pixels' mth model is defined as:

1 if (i,j - Pim)2 < kcra
Match(i, j, m) = (4.1)

0 otherwise

where ij is the value of the pixel at the position (i,j), pTmj is the stored mean value

for the mth model for that pixel, o.m is its stored variance, and k is a constant



which defines a relative threshold for the pixel error. This adjusts the threshold on a

model by model(pixel by pixel) basis which accounts for different surfaces which vary

different amounts. For instance, because lighter surfaces, monitors, and light sources

have greater variation than dark, shadowed, and "washed out" regions in video, dark

regions of the room should be more sensitive to pixel variations.

Depending on the type of camera and environment, the pixel value and pixel

difference can be defined differently. Our color cameras were in a fairly controlled

environment with good lighting and few shadows, so a simple RGB representation

was sufficient. Our difference was defined as the length of the vector of differences.

But HSV, normalized RGB, or some other mapping may produce better results in

certain situations.

If no match occurs, the least probable stored pixel model is replaced by the current

color with the default variance and frequency characteristics. If a match occurs, the

matched model is updated as follows:

= 1i,jn) - ( l - (1) c± ± Ii,j (4.2)

' (1 - &2) * •ri + (a • ) * -li,r )2 (4.3)

f' = (1 - o0 i)*) f •, + J o (4.4)

where f' is its occurrence probability and caz is the learning values for each function.

If al = a2 = 0, the model for each stored value will be static with initial value and

default variance. If a,50, the value will track long term trends in the background

color. With a2#0, a will approximate the variance of the samples which are classified

in the mth model.

After all the models which matched have been updated, the occurrence frequency

of all models is decreased:

fi' = (1 - a2) * fm. (4.5)

where ao2 determines how fast the frequency statistic decreases. As a model is seen



d.

Figure 4-3: a. An series of pixel values as received over time. b-d. Three dynamic,
Gaussian models of the pixel values showing the mean(blue), range of values(red), and

occurrence frequency(green).

less, its occurrence frequency decreases slowly. Eventually, a model will become

improbable because no example of that model has occurred.

A simple example of a three model system is shown in Figure 4-3. When an

example of a particular model is observed, its frequency increases and its mean and

variance are altered accordingly. When no example for a particular model is observed,

its mean and variance remain constant, but its frequency decreases. In the sequence,

the top model is the most probable for this sequence because its variance is smallest

and it occurs most often. The second model has a noticeably higher variance and the

third model does not occur often, making them less probable.

Figure 4-4 shows the execution of the backgrounding method in the room. The

b.
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Figure 4-4: (left column) The current background and the current image. (middle

column) The variance and frequency for the model of each pixel in the background.

Lighter pixels in the variance image correspond to pixels which vary more. Lighter

pixels in the frequency image correspond to pixels which have more consistently oc-

curred in the recent past. (right column) The binary image of pixels which are not

part of the background and the filtered connected components.

background appears identical to the current image except that it does not include the

person. The background image is also a time-filtered version of the most probable

background. The variance is higher in brighter regions (including the monitor), except

the areas which are "washed out." Unfortunately, despite the higher variance in the

region of the monitor, there is still a small residue from the flicker. The frequency

is slightly decreased where the person is standing, but will quickly recover when the

person moves from that area. The filtered component includes the entire region in

which the person is visible, including through the arm of the chair. That often allows

depths to be determined even through windowed regions in the scene (under tables,

chair legs, etc.).

Using adaptive pixel models allows this procedure to adapt while limiting the

chance that moving objects will be included in the model of the background. The

ability to adapt adds robustness to long term changes in the environment. The

backgrounding heuristic helps limit the number of falsely detected objects due to an
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incorrect background model or noisy regions in the image.

The output of this algorithm is a binary image which represents the pixels that

are not part of the background. This binary image is "on" where the current pixel

did not match with the most probable model and is "off" where the current pixel

matched to most probable model. We used connected components[14] to segment the

binary images into connected regions.

4.1.2 Approximating the Objects' Depths

Reconstruction using a single camera necessitates making an assumption. In the

past, single camera reconstructions have assumed: the scene is made of a single,

uniform, Lambertian surface; the spatial characteristics of texture change as their

depths change; or objects can be recognized and their relative sizes can be used to

determine relative depths. Another means is to determine a characteristic which

correlates with depth.

With relatively rigid objects in an environment with few occlusions, the most

obvious characteristics which correlate with distance are the area of projection, height,

or width. Unfortunately, humans are very deformable and are often partially occluded

to the camera, so these are not good indicators of depth. The assumption that our

single camera method uses is that it is possible to detect a single, standing, human

figure and to approximate its depth based on the position of the top of the head in

the image.

Because our method assumes that the connected component is a standing human,

it is necessary to apply filters to remove regions which may not be localized or may

not correspond to moving objects. Although the backgrounding procedure limits the

number of falsely detected objects, there are still connected regions which do not

correspond to real objects. The first step filters objects based on their size. Objects

less than 5% or greater than 200% the size of an average human are neglected. Objects

which are near the ceiling in a region above the highest possible head position are

also removed. Figure 4-4 shows an example where reflections and monitor flicker

connected components have been filtered out.



The remaining objects are localized by assuming that the top of their head lies

near a plane which is parallel to the floor. As the point on the plane moves up in the

image, the object is assumed to be farther from the camera. Using this approximator,

the distance to the object can be approximated by

1
distance oc (4.6)

Ytop - Yhorizon

where Ytop is the verticle position of the topmost pixel of the person and Yhorizon is

a horizon line for the top of the head at infinite distance which is determined by

experimentation.

This distance may be underestimated in the case of people sitting, bending over,

or being particularly short, but it should not be over estimated. Underestimation does

little to alter the model because we are modeling the lower bound of the depth of the

first occlusion, while overestimation can cause depths to be greater than their actual

distance. The distance metric must be defined with respect to the tallest person

which enters the environment. The difference in height of the people can cause errors

in the distance estimates resulting in shorter people appearing to not touch the floor.

In the case of this experiment, a difference of 2 inches in height for a person in the

middle of the room would result in approximately 6 inches error in depth.

4.1.3 Updating the Depth Map

As stated in the previous chapter, the initial assumption is that the space surrounding

the scene and cameras is completely occupied. In our simplified model, this corre-

sponds to setting the lower bound for the distance to the first occlusion for each

pixel to zero. Because we are modeling a lower bound, the initial condition has no

information about the scene.

Once the connected regions and their corresponding depths have been determined,

it is possible to test whether the current scene model contradicts our current obser-

vations. For example, if a person is standing 10 feet from the camera and is behind

an occlusion which is at 8 feet(e.g. a table), the region where that person is detected



Figure 4-5: Output of the program run in the example. (upper left) the current back-
ground image. (lower left) the current frame. (upper right) the connected component
which remained after filtering. (lower right) the current depth map in a very early
stage of development. As the depth map is refined, it nears the approximate depth of
the scene.

should not include the pixels which represent the table, otherwise the person would

have to be in front of the table.

We model a lower bound on the first occlusion along the line-of-sight of a pixel. If

that lower bound, docclusion, is closer than an object visible in that pixel(i.e. docclusion <

dobject) there is a contradiction. Therefore, doccusion >= dobject.

Figure 4-5 shows the output of the program at a very early stage. Almost nothing

is known about the depth of the scene for most of the pixels, except along the path

were the person has recently appeared. Figure 4-7 shows a more developed model.

4.1.4 Displaying the Model

At any point, the model can be displayed as a 3-D projective surface. This surface is

a composed of tiling polygons with vertices at adjacent pixel positions. Two viable

tilings are square tilings and triangular tilings. Square tilings require more complex

graphics capabilities, because the four vertices are not necessarily coplanar. Because

of the number of polygons necessary, our implementation used a triangle tiling which



Figure 4-6: A patch of a flat triangular mesh surface, a projected mesh surface, and
a texture-mapped surface

can be rendered in real-time.

The mesh surface connects adjacent points on the scene model. The location

of these points is determined by projecting a point corresponding to each pixel a

distance which corresponds to the distance for that pixel using a standard projective

model. After projecting the mesh it can be texture-mapped with the background

model by giving the entire polygon the average color of its vertices. Figure 4-6 shows

this process for a small patch of the model. With an efficient graphics engine, the

individual polygons could be texture-mapped which would reduce the aliasing evident

in Figure 4-6.

Finally, polygons for which there is no depth information or which correspond to

large depth changes which occur near occluding boundaries are removed for visualiza-

tion purposes. Figure 4-7 shows a depth map and the corresponding 3-D projective

surface model.

4.2 Results

The same process was run on the two available cameras in the HCI room resulting

in two projective reconstructions from each camera. For this experiment, a person

walked around the room for 5 minutes without changing the environment.

Figure 4-5 shows the output of the program running on the left as it maintained

..... ..........



(a) (b)
Figure 4-7: (a) The depth map from our example (b) The final output which shows
the background used for texture, the depth map used for reprojection, and the resulting
model. (center) the resulting model in 3-D.

a background, segmented moving objects, filtered objects whose depth could not be
approximated, approximated the depth of the remaining objects, and updated the
model accordingly.

The model appears to have captured many important aspects of the environment.

Occluding contours are very pronounced. Although the furniture is very salient, there

is little depth information within the furniture. They appear somewhat flat in this
single camera model.

The walls and floors are smooth and flat. The general shape of the scene is
correct. The doors and windows are at visibly different depths than the wall they
are on, despite the fact that there are few features in those regions. Because no one
has been located on the ceiling or in front of the standing halogen lamp, no depth
information has been gained there.

Looking at the average depth of furniture in the room is gives a more quantitative

measure of the results. Table 4.1 shows the approximate depths of the object relative

to the average depth of the corresponding region(Figure 4-8) in the model.

In the region of the standing halogen lamp, the depth remains 0 because the upper

part of the lamp has not been occluded. The other regions are relatively uniform,
because the space has been defined by the depth of the person who has occluded

........... ... ........... 
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Table 4.1: Average Depths of Regions Compared to True Depths

Region Region Approx. Normalized Corrected Ratio
Label True Model Model Depth

Depth Depth(di,j) (k di,j)
A halogen lamp 6' - (zero) - undef
B chair near halogen lamp 5' .145 4.8' .962
C second chair 10' .306 10.1' 1.014
D table and surrounding chairs 14' .431 14.3' 1.021
E farthest chair 20' .639 21.2' 1.059
F back wall near door 25' .784 26.0' 1.040
G hallway outside the door 29' .910 30.1' 1.040
H back wall near window 22' .628 20.8' .945
I hallway outside the window 26' .733 24.3' .935

Figure 4-8: The regions used to evaluate depth map.

them. A comparison of the average depth of the model within these regions and the

approximate average depth to visible regions of the model gives a more quantitative

feel for the correctness of the resulting model.

In general, although the structure of the individual elements of the scene is not

present, the general structure of the entire scene is evident. For a single camera

reconstruction, these results are quite surprising.
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Chapter 5

Multiple Camera Reconstruction

This chapter discusses the issues of implementing a self-calibrating multiple camera

system which can automatically reconstruct a scene based on movement within the

scene. While this method is more complex than the single camera model, it is not

dependent upon making an assumption which greatly restricts is use.

It assumes only that there are multiple, similar, synchronized cameras which are

directed towards a certain region in space in which objects move and are partially

visible in at least two cameras. It does not assume that the cameras have a certain

distribution in the scene (small displacement, small rotations, etc.) or that the scene

has certain visual or structural properties (large scale textures, many objects, etc.).

5.1 The Method

As described in Chapter 3, this process involves determining the visibility of moving

objects, localizing the moving objects, updating the model, and displaying the model.

With multiple synchronized cameras, some these steps are significantly different than

the single camera implementation discussed in Chapter 4.

The goal of this methods is to leverage visibility of objects in multiple views into a

three dimensional model of open space in a scene. With multiple cameras, this model

can potentially be very complete.
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Figure 5-1: Two cameras and the corresponding rays for the uppermost point, low-
ermost point, and centroid of the object in the image. Note that there is no direct
correspondence between the highest point in one image and the highest point in the
other. If this is not apparent, imagine Camera 2 undergoing a 180 degree in plane
rotation. This switches the uppermost and lowermost point.

5.1.1 Determining the Visibility of Moving Objects

Determining the visibility of moving objects with multiple cameras is accomplished

by the same method as a single camera reconstruction. This is outlined in detail in

Chapter 4.

In addition to a binary mask of the moving regions, the moving regions can be
processed to determine properties which may be useful in determining correspon-

dences, determining the reliability of the correspondences, or localizing parts of the
object. For instance, the centroid of the object, the size of the object, whether the
object is adjacent to an occluding boundary, and a description of the object(e.g. color
histogram, first moments, average brightness, clustered color regions and locations,
speed, direction, etc.).

5.1.2 Localizing the Moving Objects

Localizing the moving object involves finding correspondences in multiple views, using
the correspondences to calibrate the cameras, and using the calibrated cameras to
determine the relative position of the cameras on the objects. After calibration, it is
possible to iterate this process by removing obvious outliers from the correspondences

and repeating the process.
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Establishing Correspondences

Once the visibility is determined, it is necessary to localize a feature of the object in

at least two views. Unfortunately, the top, bottom, left side, or right side of an object

in different cameras do not correspond to the same point in space. For example, with

two views of a box(see Figure 5-1), the top pixel in both views corresponds to different

corners, as does the bottom pixel. The left and right edges will also correspond to

different edges in most cases. Because these optical rays do not correspond to the

same feature in space, they would produce poor camera calibration and overestimates

and underestimates of depth.

Without explicit knowledge of the camera placement the most consistent feature

is the centroid of the pixels in the perspective projection of the object. This is obvious

when looking at a roughly spherical object in N views. This approximation is usually

accurate except in cases of shapes with unusual projections and occlusions.

Without occlusion, the centroid of the projection of the most objects should closely

correspond to the centroid of the true object. This will not be true for all cases, but

it is the best method of establishing correspondences. As an extreme example, a

sailboat from one angle may appear to be a boat with only a mast but from another

angle may have a full sail. In this case, the ray from the centroid in the first image

centroid will pass close the center of mass of the boat and mass while the other will

pass nearer the center of mass of the sail. These cases are relatively rare and can

be detected as poor correspondences once a rough camera calibration is determined.

Using the centroid results in relatively small error for objects such as people, cars,

trucks, push carts, and animals.

With occlusion, the centroid of the visible regions of the object should be calcu-

lated within approximately the maximum dimension of the object. The difficulties

resulting from occlusion are similar to the the difficulties resulting from shapes which

have very different perspective projections. The reliability calculated after rough cam-

era calibration has been determined will also be relatively low for large occlusions.

Given a single moving object in the scene, correspondences of moving regions are

easily determined. With multiple moving objects in a scene, there is the additional a



problem of determining which objects correspond to which in each view. Depending

on what type of cameras are available, additional information can be derived from

the images of the objects which can aid in disambiguating matches. This process

would involve determining a description of the object and finding a distance measure

for that description. Some possible descriptors are: color histogram, moment ratios,

average brightness, average motion, "speed", and clustered color regions. These mea-

sures may help to determine a set of correspondences that are more likely to be true

correspondences which will be extremely useful in robustly calibrating the cameras.

Calibrating the Cameras

Researchers are currently investigating methods which require only point correspon-

dences that can be used to find not only the epipolar geometry of a set of cameras but

estimates of the internal parameters and relative motion between views[19, 10]. Since

we do not have a priori knowledge of the scene, but do have many correspondences,

these methods are ideal for parameterizing the cameras.

Using one of these methods, we can determine both the intrinsic and extrinsic

parameters for the cameras up to a similarity transform. Because some of the corre-

spondences will be affected by occlusions or unusual projections, the camera model

can be refined by by removing or devaluing the correspondences which are outliers.

5.1.3 Updating the Model

Once the cameras have been calibrated, the three dimensional evidence grid must

be updated to explain the visibility of the objects. This process involves verifying

the correspondences, determining relative position of the objects, and accumulating

vacancy evidence.

Verifying correspondences involves attempting to determine whether features in a

set of images correspond to the same homologous feature- in our case, a moving object-

and further that they correspond well enough to effectively localize that object. The

error in the correspondences can be approximated by the distance between the lines

of projection of the corresponding centroids. If the centroids correspond to a single



point in space, the projection rays of the centroids intersect in space, resulting in no

error. Using multiple views, the false correspondences can be reduced.

For the consistent correspondences, the approximate position can be determined

by finding the closest point to the line of projection of the centroids. The relative

depth of the object is the distance between the camera and the object. If the corre-

spondence has no error, that point is the intersection of the line of projection of the

centroids.

To update the model, we can trace a the voxels that make up a line which passes

from the camera in the direction of each visible pixel to a depth of the corresponding

object. At each voxel, the vacancy evidence is increased. At any time this vacancy

evidence grid may be visualized.

5.1.4 Displaying the Model

It is possible to display the evidence grid as a dense volume of small polygons between

adjacent vertices with transparency values derived from the vacancy probabilities of

each of their vertices. Unfortunately, it is difficult to display large numbers of semi-

transparent polygons due to hardware limitations. Small gains in computability can

be won by removing polygons which are almost completely transparent.

An alternative is to model the space discretely as either the open space or occluding

volumes. A simple method for displaying the open space or occluding volumes is to

threshold the vacancy evidence grid above or below a certain value, respectively. The

voxels that have sufficient vacancy or occupancy evidence can be displayed as a cubes

centered at the remaining voxel positions.

To reduce the aliasing of this method, a more exact approximation of the sur-

face could be determined by stitching together vertices derived by a local, linear

interpolation that approximates the location of the epi-surface between each adjacent

voxel which are not both vacant or occupied. There are many variants of this in

medical imaging literature. An example of such a method is the Marching Cubes

Algorithm[18].



Chapter 6

Future Work and Extensions

6.1 Future Work

It is possible to overcome some of the limitations resulting from assumptions that were

used to implement this method. Often surveillance systems have cameras which pivot.

Many scenes have structural elements which move or change over time. The depth

assumption made in the single camera model limits it use. This section discusses how

to overcome some of the limitations resulting from those assumptions.

6.1.1 Incorporating Pivoting Cameras

Pivoting cameras necessitate a more complex backgrounding scheme. Given a camera

which pivots around its optical center, it is still possible to do backgrounding. The

process would involve determining the colineation and radial distortion parameters

which bring the current image into correspondence with a background image that is

a mosaic of all the viewing angles.

Once this colineation has been determined, one could interpolate the values for

the background pixels from the current image. These values would be used to update

the Gaussian models and to determine moving regions as discussed in Chapter 4.

There is the additional consideration that at one time, only one window of the

background for that camera is visible. This could easily be modeled as a moving



occlusion mask which is overlaid onto the background. This mask would allow the

system to deal with objects that are moving off camera, but which would be visible

at other camera angles.

6.1.2 Dynamic Scene Modeling

Unfortunately, most scenes are not completely static. Walls can be added or removed.

Trees can grow leaves or fall down. Statues and buildings can be erected. Our model

is capable of determining new areas which are vacant, because it constantly updates

itself as necessary. Unfortunately, there is no simple mechanism for determining new

occlusions.

Three methods could be implemented which would aid in updating the model in

these situations. First, the depths could be occasionally reset to zero. The model

would have to be rebuilt. The old model could be used until the new model develops.

Second, the depth along a particular pixels' line-of-sight can be linked to the

background model for that pixel. For instance, the single camera implementation

could include the approximate lower bound on the depth of the first occlusion in its

Gaussian model for the background pixel. When a background pixel changes to a

new value, the depth can be reset. If an object was moved to a new location, as the

new pixels of a object are incorporated into the background, they will be reset to zero

and the modeling will continue.

The third possibility is to decrease the vacancy evidence grid values slowly as the

model is developing. In this manner, occasional mismatches and other errors will

eventually be "forgotten." This will also result in errors resulting from less frequently

occupied regions of space losing their vacancy evidence over time.

6.1.3 Single View Reconstruction with Stereo

The assumption used in the single camera implementation limits the use of that

system to particular types of environments. If the single camera was replaced by a

stereo rig, a more robust method for determining the depth of an object could be



used.

The same backgrounding method could be used to determine which regions cor-

respond to moving objects. A stereo algorithm could be used only on those regions

to determine the approximate depth of features within those regions. Because oc-

clusions of the moving regions will not be part of the moving region, only objects'

self-occlusions will cause ordering problems to search for matching features.

Once the depth of the features in the region have been determined, the depth of

the entire region can be approximated by locally averaging the depth of the closest

features in that image. If the matches in a particular region are not consistent, the

higher variance of the features in the region can be used to determine that the local

average is not an effective approximation of the depth.

In this manner, any object could be used to carve out space- not only space that

can be occupied by a human standing in an environment. A book thrown on the table

or a hand reaching behind a desk could be used as effectively as a moving human

figure. Using a stereo rig to approximate the depth of an object could greatly increase

the applicability of this system.

6.2 Extensions

Some applications that this method can facilitate are different than applications of

standard reconstruction methods. While it can be useful for visualization applica-

tions, it is more useful for applications in which issues of occlusion and robust scene

models are more important.

6.2.1 Automatic Event Extraction

An effective model of the scene may facilitate analysis of the actions of the participants

in the environment. For instance, the operator of a surveillance system may want to

be warned dangerous conditions or things which have not occurred before. He could

specify that he would like to be notified if an object passes through a certain door or

if a large object is approaching the area. The computer could also model the actions



it has observed in the past and tell the operator when something new or unusual

occurs(e.g. a person falling out a window, a truck on the White House lawn, etc.).

With a three dimensional model or a projective model of the scene, it is possible

to determine features in an environment. For instance, fitting planes to the projective

model in our single camera example can produce a reasonable segmentation of the

scene into structural elements(walls, chairs, tables, lamps, doors, windows, etc.).

The position of these features in space can be used to define spaces objects can

occupy. When an object is being tracked, it's path can be stored as a list of regions

it occupied as it passed through the room. This greatly reduced representation of

tracking data can be used to learn activity patterns or to define conditions under

which the operator should be warned.

6.2.2 Compression and Synthetic Movies

Video surveillance systems generally have very large amounts of video and long peri-

ods in which few events occur. This makes them a prime candidate for compression.

Any standard of video compression could result in large compression ratios.

Compressing the background and the moving objects separately could increase

the compression ratio even more. Because this method produces a model of which

pixels occlude which regions of space, a moving object could be stored as a bounding

box, a depth, and an image with a transparency mask.

The bounding box would reduce the size of the region which needed to be stored.

The depth would allow all values of the occluded pixels to be neglected in compression.

And the transparency mask would determine which pixels were part of the object,

allowing the compression algorithm to neglect background pixels within the bounding

box.

A simple example is a parking lot surveillance system which observes an automo-

bile passing through it. If the automobile passes behind trees as it moves straight

through the lot, standard compression methods would model the change in all the

pixels in which the automobile appears. Algorithms could exploit that fact that the

large changes would occur near the automobile. When the automobile passed behind



the trees, the local change in pixel value would be very high.

A more effective backgrounding scheme would maintain a static background that

modeled the occlusions which can occur. This would leave only the appearance of the

car to be modeled as it moves through the scene which can be significantly compressed.

Creating synthetic movies is similar application. By simply overlaying the moving

regions from a camera in a similar relative position into the background model of

another camera, a new video can be constructed. The mask that models which of

the pixels of the moving object should be visible at that depth is intersection of the

moving region and the background regions which do not have occlusions at a depth

less than that moving region. This binary mask would be used as a blending function

of the two videos.

6.2.3 Visualization Applications

One application of reconstruction systems is visualization of the scene. Once the

method recreates a scene, the scene can be visualized as a three dimensional model.

Often this is considered the primary goal, not just a means of qualitative evaluation

of the model. As a result, reconstruction algorithms are often critiqued based on how

accurately they recreate the scene.

While our method results in a fairly complete model for areas of the scene in which

moving objects are visible, it does not have any depth information where moving

objects do not appear. But that lack of depth information means that an occlusion

exists for that region or that none of the objects that have been localized have been

found in that region.



Chapter 7

Conclusion

This thesis describes a general method for reconstructing a scene using segmentation

of moving objects in any number of static views. While standard reconstruction

methods attempt to model the location of the visible parts in the scene, this method

models the open spaces. Having a model of the open space in a scene as defined

by the objects which move in the scene constrains locations where moving objects

can exist and where objects at certain depth can be observed. It can also produce

effective models for visualization of the scene.

A single camera implementation is described which illustrates the effectiveness of

this method despite using a simplifying assumption to determine the depth of the

objects. The resulting model has little detail within individual elements of the scene,

but it effectively models the general shape of the room. This method did not produce

large errors for regions with little or no texture and windowed regions and effectively

localized features within the room.

While multiple camera systems would be more difficult to implement, the a mul-

tiple camera system would involve fewer assumptions and could potentially be more

robust. By using the abundant correspondences that can be observed given suffi-

cient time, the cameras could be robustly calibrated. Using multiple cameras, the

correspondences can be verified and the resulting model will be more complete.

Although the systems described are widely applicable, future investigation could

lead to incorporating pivoting cameras, modeling dynamic scenes, and single view



reconstruction with a stereo rig. The model can be used in interesting applications,

including scene visualization, symbolic event abstraction, compression, and synthetic

movie generation.

It is evident that this method was motivated by difficulties in implementing track-

ing systems, because it not only models visibility of objects as they move, but it relies

on the moving objects to create that model. That is what defines this method and

what sets it apart from other methods.
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