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Abstract This paper presents a method for improved analysis of objects with an axial sym-
metry using X-ray Computed Tomography (CT). A cylindrical coordinate system about an
axis fixed to the object’s center of symmetry forms the most natural base to analyze charac-
teristics of those objects that exhibit axial symmetry, as is often the case for industrial parts.
As the sampling grid in the proposed methodology is chosen in reference to the object,
down-sampling may be applied in directions where no good resolution is required, to reduce
reconstruction time without reducing quality. This is very valuable for in-line applications
and fast quality inspection. In combination with algebraic reconstruction algorithms, it per-
mits the use of a pre-computed initial volume perfectly suited to fit a series of scans where
same-type objects can have different positions and orientations. Weighted back-projection
can also be included when some regions are more likely subject to change, to improve re-
construction stability and defect sensitivity.
In this paper, an innovative projection-based pose estimation technique is presented and
validated on realistic simulated projections that resemble a setup with high-throughput con-
ditions. Four cylindrical reconstruction strategies are compared to observe the influence of
using an initial volume or weighted back-projection on tomographic inspection of medical
devices. Finally, the effect of down-sampling the cylindrical reconstruction is analysed on
phantoms with varying spatial frequency.
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1 Introduction

Non-destructive evaluation, either in-line or on random test samples, is paramount in a
modern production environment to detect internal faults at an early stage. For assembled
products, a common fault case is the situation where a component is missing in the final
product. These components are often concealed in the assembly, hindering visual inspec-
tion. X-ray based imaging may offer better insight on manufacturing quality.

For in-line inspection, X-ray transmission scanning is usually applied to make 2D projec-
tion images. Common examples can be found in defect detection [1–3] or material iden-
tification [4]. On the other hand, the more intensive 3D imaging by X-ray CT is mainly
used off-line. The first industrial applications of CT can be found since the 1980s in the
field of material analysis, e.g. observing inner structure and processes or locating internal
defects. More recently, CT scanners are being used dedicated to metrology for dimensional
quality control. High importance is given in this case to accuracy, traceability to the unit of
length and measurement uncertainty [5–7]. New developments in CT technology, driven by
research at synchrotron facilities and medical imaging, allow the technology to be applied
in an automated production environment too [8, 9].

As the industry is gradually becoming aware of the options that X-ray CT offers as a non-
destructive 3D inspection tool, this leads to the demand for systems specifically designed for
scanning sequences of same-type objects in a high throughput environment. The challenges
lie in the fact that a variety of factors restrict the number of projections to as low as technic-
ally feasible. The solutions can be found in more advanced reconstruction techniques like
discrete reconstruction [10] or neural-network based solutions [11]. Even though iterative re-
constructions cannot compete with the analytic counterparts in terms of reconstruction time
for standard cone-beam geometry, they allow making fewer projections with still reasonable
results by incorporating prior knowledge. This reduces the scan time and the absorbed radi-
ation dose per object.

Previous studies have shown that iterative reconstruction schemes using cylindrical coordin-
ates can alleviate memory requirements and be less subject to noise than Filtered Back-
Projection (FBP) algorithms [12]. A potential downside was identified in Jian et al. [13] ,
which reports potential loss in resolution due to non-uniform sampling. In these studies, the
cylindrical coordinate axis is positioned along the vertical axis of the rotation stage.

In this work the specific choice is made not to fix the reconstruction axis to the vertical ro-
tation axis, but to attach the coordinate system to the detected symmetry axis of the scanned
object. In an industrial environment, misalignment of this axis w.r.t. the measurement system
is the rule rather than the exception, so it warrants attention. This tracking reconstruction is
computationally more intensive, as it excludes the reported acceleration of the algorithms
mentioned before. It will however be highly beneficial in both the reconstruction and ana-
lysis phase. A point-tracking technique, presented in part 2.1, has been developed to auto-
matically derive the 3D pose of the scanned object from the projection images. It was tested
extensively using CAD-based phantom simulations. Given the simple symmetry no exten-
sion to more demanding deep learning techniques [14, 15] should be made, which are more
fit for samples with lower symmetry. Using this prior knowledge on the 3D pose, the al-
gebraic reconstruction is improved by including an initial solution that automatically has a
correct orientation and that is adapted to the more convenient cylindrical coordinate system.
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Within the same coordinates, regions can be marked to have a high or low probability of
change to improve reconstruction stability (section 2.2). The effect of aimed resampling is
demonstrated on simulated data in section 2.3 and improved reconstruction algorithms in
cylindrical coordinates are applied on a large series of scans in 2.4.

2 Methods and materials

Two techniques are proposed to improve CT reconstruction of misaligned cylindrical ob-
jects.

1. To detect the cylinder orientation from the projection data, a point tracking algorithm is
made for general trajectories.

2. The cylindrical reconstruction is built as an extension of a regular Cartesian Simultan-
eous Algebraic Reconstruction Technique (SART).

The object’s pose, illustrated in figure 1, can be captured in six degrees of freedom. Three
intrinsic zxz Euler angles (α,β ,γ) are captured in the rotation matrix R, while T translates
the object along the three spatial coordinates:

X ′ = R−1(X−T ) (1)

After the alignment from X = (x,y,z) to X ′ = (x′,y′,z′) in equation (1), a transformation to
cylindrical coordinates around the z’-axis is performed on this oriented set of coordinates:

r =
√

x′2 + y′2

θ = arctan
(

y′

x′

)
h = z′

(2)

2.1 Projection based pose estimation

Point tracking

Given a single point in the 3D volume space (x,y,z), the horizontal and vertical projected
coordinate (u,v) of the corresponding volume element or voxel can be uniquely determined
given the view transformations V of the source-volume-detector system. The inverse prob-
lem of projection-based point tracking is ill-posed as any point lying on the straight line
coming from the source point can cast a shadow on the given detector pixel. Combining P
projections from different directions i will overcome this problem and leave you with an
overdetermined set of non-linear equations due to the conical shape of the beam.

(u,v)i = Vi(x,y,z) i = 1,2, . . . ,P (3)

Using minimally P = 2 projections, the Levenberg-Marquardt algorithm [16] yields a solu-
tion (x,y,z)S that minimizes the sum of squared projection distances. Derivatives of Vi(x,y,z)
with respect to changes in (x,y,z) can be calculated analytically.

(x,y,z)S = argmin
x,y,z

P

∑
i=1
|(u,v)i−Vi(x,y,z)|2 (4)
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It is important to notice that this procedure does not optimize the geometry of the scanner
system during the optimization. The influence of misalignments in the acquisition system
(detector orientation and rotation axis position) may be considered as follows: the vertical
z axis through the centre of the volume is defined as the rotation axis in the standard recon-
struction. Any misalignment is incorporated in the position of the source and the detector
by rigid transformations and these effects are additive to the object misalignment. However,
the misalignment is constant throughout the acquisition and is typically well-characterized,
hence does not affect the measurement of the 3D point coordinates. Furthermore, it should
be corrected for in the tomographic reconstruction to avoid negative influence on the recon-
struction quality. Additionally, as a result of the general description of this technique, it is
not limited to standard circular trajectories. To reach a higher continuous throughput, which
is desired in industrial applications, a conveyor belt trajectory [9] could be used.

Axis tracking

To track the cylinder axis, two 3D points along the axis are sufficient to fix five degrees
of freedom, leaving the azimuthal rotation as a last free parameter. In practice these points
can be seen by finding the symmetry axis of the cylindrical object on the projections. These
points should always correspond to the same height along the cylindrical axis, with a single
optimal (x,y,z)S solution to equation 4. Therefore, segments with a clear boundary at the
top are ideal candidates. Due to the symmetric nature of the objects, this algorithm can be
executed very fast using tailor-made Graphics Processing Unit (GPU) techniques. This tech-
nique of projection-based pose estimation may be impossible for objects of lower symmetry.

The implementation for a specific medical device is illustrated in figure 2(a). First the most
stable symmetric feature is segmented. In this device, this segment has a medium projected
intensity. To achieve stable results, the darkest regions (i.e. the metal spring, needle and the
sample holder below) are first thresholded and dilated. These regions (coloured red) are re-
moved before a higher threshold is set to segment the intermediate intensities. The area that
is situated too low in the remaining radiograph (blue) is also subtracted to leave only the
edges of the desired segment (green). It is obvious that the specific details of this procedure
depend strongly on the object under investigation. As the scope of this work is exactly the
inspection of products at the assembly line, this is no real limitation. The same procedure
can be used repeatedly once it has been defined and validated.

Now three different techniques are compared to select projected feature points along the
symmetry axis:

1. Take the pairwise centres of the four corner pixels at the top and the bottom of the
segment;

2. Use minAreaRect function of OpenCV [17] to find the rotated bounding rectangle of the
segment with minimal area;

3. Calculate the mean position and the covariance matrix of the segment to fix two points
along the axis.

These two centres are tracked on each projection and in this way the 3D position of the
object is calculated using equation (4). Each of these techniques will respond differently
to grey value fluctuations. The first two are only sensitive to the outer edges, while the
third is also subject to variations within the bulk of the material. Note that these projected
intensities depend on the spectrum of the beam and the response of the detector. Settings
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that work on one scanner do not necessarily work on other scanners or acquisition setups,
so it should be checked if the predefined segmentation values still yield the same results
upon implementation at the production site. A realistic polychromatic CT simulation of the
complete scanner may be used to predict how different settings balance the reconstructed
quality and the accuracy of the pose estimation. Also beam fluctuations at different times
of the acquisition process affect the intensity, these can be monitored by selecting an area
in the detector that should give a constant intensity (e.g. a rectangle containing only air).
Finally, should the segmentation lead to spurious results in a single projection, then outliers
can be easily rejected from the tracking algorithm.

Figure 1: The cylinder can take a free pose in the scanning space. This pose is retrieved by
tracking the predefined feature points on projections taken from different directions.

Azimuthal phase

In some cases it may be necessary to know the azimuthal phase γ of the object before recon-
structing. When a detailed initial solution or weighted volume is used, any internal rotation
of the object around its symmetry axis will produce false features in the reconstruction. In
this case, the sample contains only a discrete symmetry in the azimuthal direction with a
period of 90◦. Since the sample is rotated during the acquisition, this last Euler angle γ can
be derived by profiling the projected intensity fluctuations in a region parallel to the pro-
jected axis. This region is shown as the smaller rectangle in figure 2(a). For all different
positions of the sample holder, this intensity profile will give similar results in function of
the projection angle, only phase shifted due to the object’s internal azimuthal rotation and
the geometrical angle φG w.r.t. the optical axis of the cone beam scanner.

This perceived phase shift φP can be translated back to the last Euler angle when a correc-
tion for the first Euler angles α and β is also taken into account. After all, the phase was
calculated w.r.t. the original x-axis, not the x′-axis.

Although this approach relies on some violation of the continuous cylindrical symmetry of
the object, this is not a limitation as it can be noted that the azimuthal phase is only relevant
when such violation is present.
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(a) (b)

Figure 2: (a) The projections of a CT acquisition to inspect four medical devices simultane-
ously are analysed before the reconstruction to estimate the pose of the objects. In position
0 (left), a plain simulated projection of a phantom with known misalignment is shown. Pos-
itions 1 to 3 illustrate the three techniques that were compared to select feature points along
the axis of the green segments on every position. These are the corner-based technique, the
rotated bounding rectangle and the covariance technique. A cosine function was fitted in (b)
to the internal fluctuations in the small rectangles of (a) to capture the azimuthal phase of
the object. The period of 90◦ corresponds to the presence of four repetitions in the azimuthal
direction of the object.

γ = φP−φG− arctan
(

tan(α)

cos(β )

)
(5)

Accuracy and precision of the pose estimation

The pose estimation accuracy is crucial information when reconstructing objects with peri-
odic cylindrical symmetry using an initial volume. Any mismatch of the pose counteracts
the advantages of using an initial volume, and impedes fast inspection analyses that rely on
exact spatial coordinates.

To test the reliability of the projection-based pose estimation, a scan of the test object was
simulated using a CAD-designed model. Such models are often available in manufacturing
industry, although it should be noted that these usually represent an ideal sample without
any defects. During the production, deviations from this ideal sample will appear. These de-
viations are in this case exactly the interest of the CT inspection, but they may also affect the
outcome of the pose estimation. This influence should be kept to a minimum by selecting
the most stable components, if possible.

This reliability was measured by simulating projections of a single CAD model of the device
at 600 different poses in total at four different lateral positions of the rotation stage. The
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poses and linear attenuation coefficients were derived from a real scan with the same geo-
metry, to ensure that they resemble actual situations. The projection simulator that was used
here is the same simulator that was used in the iterative reconstruction introduced in sec-
tion 2.2. The difficulty of this approach is that the linear attenuation coefficients of the
phantom should match those of a standard CT scan on the same setup to yield the same
projected intensities. To avoid this step, a polychromatic projection simulator could be used
where the linear attenuation coefficients are replaced by more relevant material properties
(i.e. chemical composition and density) [18].

The simulated geometry resembles an in-line CT inspection setup (see figure 2(a)). As can
be seen in the scanner settings in table 1, the objects are placed rather close to the wide
detector in order to scan more samples at the same time. The rotation stage is a combination
of four holders that rotate at the same speed. The distance from the source to the object
was calibrated by scanning a phantom with known dimensions. Furthermore, the detector
misalignment and the projected horizontal coordinate of the rotation axis, which influence
the reconstruction quality, are also assumed to be stable over multiple scans.

2.2 SART reconstruction in cylindrical coordinate system

In order to situate which extensions have been made to incorporate the cylindrical coordinate
system into the iterative reconstruction framework as previously described in [19, 20], a
brief overview is given in this section. CT reconstruction seeks to calculate the distribution
of attenuation coefficients µ of an object given the projected X-ray intensities on the detector
for a number of projection angles. The basic operation in these methods is back-projection,
which tries to invert the set of monochromatic Lambert-Beer equations for all pixel values
p j to a grid of attenuation coefficients µl :

p j =− ln
[

I j

I0, j

]
=

L

∑
l=0

t jl ·µl (6)

The weights t jl represent the intersection length of the ray j passing through the voxel l,
where j runs over all pixels of all projection images. In the SART approach, the solution
is found by updating each voxel with a correction factor that is found by comparing the
actual projection with a simulation on the current state of the volume [19]. This update step
k is performed for each projection in SART. The correction factor is accompanied by the
relaxation λ which dampens the contribution to each update.

~µ
(k+1)
m =~µ

(k)
m +λ ∑

j∈OS

(
p j−∑

L
l=0 t jl ·µ

(k)
l

)
∑

L
l=0 t jl

·
t jm

∑ j∈OS t jm
(7)

The ordered subset (OS), which groups radiographies for each update step, corresponds to
one full image in SART. The size of the ordered subset can be increased to trade off conver-
gence speed for more stability. The projection step is calculated in a pixel driven sampling
approach, by tracing the rays between source and detector pixel with an equidistant sampling
scheme in Cartesian space. The ray-voxel intersection weights t jl are calculated intrinsically
as the number of samplings in each voxel. The extension added in this work entails that the
attenuation coefficients are interpolated on the aligned cylindrical grid. This method is also
easily extendable to other division schemes.
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The same extension can be used for the back-projection step, which is executed in a voxel
driven approach. Only the coordinate transform (2) from the cylindrical to the original
Cartesian coordinates is applied before the corresponding correction term is accessed. The
total overhead translates in this case to one cylindrical transformation each time a volume
access is performed. The alignment matrix needs to be precomputed for equation (1).

Weighted back-projection, as implemented by Heyndrickx et al. [20], uses a volume with
weights to describe the likelihood of change for every voxel in the reconstruction. The cor-
rection term in equation 7 contained an extra factor wm/Wj, where the normalization factors
are computed by integration of the L weights along the straight line to the pixel j:

Wj =
∑

L
l=0 t jl ·wl

∑
L
l=0 t jl

(8)

The weights w are assigned as a function of the attenuation values in the initial volume:
w = 1+ ν · exp(−µ2/(2σ2)), in this work using ν = 4, µ = 0.45 cm−1, σ = 0.1 cm−1.
The weight volume can be similarly described in the cylindrical coordinate system, without
affecting the core of the algorithm.

2.3 MTF measurements on phantom data

Due to the way that the reconstruction grid is divided, the number of azimuthal divisions
can be changed effortlessly. Depending on the application, reducing the number of voxels in
a direction that contains broad, smooth structures can be tolerated or may even be necessary
to reduce aliasing effects.

To get a sense of the resolution dependence on the number of azimuthal voxels (Nθ ) and
number of radial voxels (Nr), we perform a high detail simulation on samples consisting of
radial or azimuthal lines as shown at the left in figure 3. The simulations are made with an
excessive amount of 4096 projections with a width of 2048 pixels, to ensure this projection
does not affect the reconstruction. In the four reconstructions on the right, a deviation can
be observed especially for smaller radial positions. This is only a single example, with clear
visual effects, that was selected to illustrate how these phantoms are used to quantitatively
measure the response of the cylindrical reconstruction.

The directional Modulation Transfer Function (MTF) [21] (radial or azimuthal MTF) of the
reconstruction is determined by measuring the modulation (resp. mr and mθ ) for varying
frequency factor, i.e. the number of lines nl in the phantom of constant size. The modulation
m(nl) for a given frequency nl is determined by measuring the minimum and maximum
reconstructed attenuation coefficients µmin and µmax in the central slice (to eliminate the
effect of cone beam artefacts).

m(nl) =
µmax(nl)−µmin(nl)

µmax(nl)+µmin(nl)
(9)

This value varies between 0 and 1, given the positive values of µ . A value of 1 is expec-
ted to be the result of a good response of the reconstruction algorithm to the used phantom
frequency. However, one downside to this measure is that it does not punish aliasing effects
that alter the line frequency but maintain the modulation depth. A visual inspection is also
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required to investigate these faulty cases. In all reconstructions, also the radial dependency
of the MTF is measured. For the azimuthal MTF (mθ ) this is simply the MTF at each r. The
radial dependency of the radial MTF (mr) is calculated with a short-range sliding window
over the line period. The window width is equal to one period of the phantom. The slide step
is equal to the width instead of 1 voxel, for ease of implementation.

The lines are modelled by a cosine function on the respective direction. For the mθ , each
horizontal slice (in Cartesian coordinates) of the phantom looks like a Siemens star pat-
tern [22]. The mr is measured in a phantom of concentric circles. Highly detailed projections
are simulated on these samples of shape (Sh,Sθ ,Sr) = (32,1608,256). The frequencies are
doubled until a factor of 128 (= Sr/2) is reached. The image is projected on 4096 images of
dimensions (W,H) = (2048,128) to reduce the influence of sampling artefacts in the simu-
lation step.

Figure 3: Azimuthal (a) and radial (b) line phantoms, here with nl = 4, are created to test
the response of the cylindrical reconstruction method. In (c) and (d), the full-resolution
projections of respectively (a) and (b) are reconstructed on cylindrical slices with (Nθ ,Nr) =
(1608,32). Analogously, (e) and (f) show azimuthally sub-sampled reconstructions with
(Nθ ,Nr) = (32,256). The reconstructions are quantitatively assessed by the mθ (top) and
the mr (bottom).

2.4 Application in batch CT scan inspection

To illustrate how the developed strategy can be applied in a real production environment,
a scan was performed on a series of medical devices with high safety demands. 50 objects
have been scanned, reconstructed and analysed for artificially induced internal defects. The
analysis of the devices is beyond the scope of this article. Only one test outcome, measuring
the presence of a particular piece, will be presented to assess the influence of the different
reconstruction strategies:

(a) The object is reconstructed without aid of initial volume or weighted back-projection.
(b) Include an initial solution, which is considered to be the dangerous approach in the case

of missing components. The iterative algorithm might not remove these sufficiently.
(c) Only weighted back-projection: the algorithm starts from a completely empty volume.
(d) Initial solution combined with weighted back-projection. Some predefined regions are

given higher weights to change their attenuation value.
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Table 1: Imaging parameters for high speed circular cone beam scans of medical devices.

Geometry Circular cone beam
Source Detector Distance SDD 791 mm
Source Object Distance SOD 679 mm
Number of projections Np 21
Last scan angle 200◦

Detector Varex 1512
Detector size (H,W) (1536,1944)
Detector pixel size ps 0.0748 mm
Projected pixel size pv 0.06 mm
Exposure time 130x9 ms

Source mode Large focus
Voltage 60 kV
Power 18 W

Sample KN-S
Height 64 mm
Radius 8 mm

3 Results

3.1 Characterization of cylindrical reconstruction on simulated data

The Modulation Transfer Function was used to quantify the response of the cylindrical re-
construction on phantom samples with varying spatial frequency in the azimuthal or radial
direction. This test was performed to give insight into the following aspects of the recon-
struction:

1. What is the behaviour at low radii, where the azimuthal voxel dimensions are smaller?
2. How does downsampling the cylindrical coordinate system affect the signal modulation?
3. What is the influence of CT acquisitions with angular sub-sampling?

The mθ and mr at reconstruction shape (Nh,Nθ ,Nr) = (32,512,256) are shown in figure 4.
As expected, the MTF becomes worse at high frequent lines. The azimuthal MTF shows
worse behaviour at small radii. Even though the voxel size is virtually decreased at lower
r, the actual resolution does not automatically follow this trend. For the radial MTF, only a
minor effect of the centre distance can be observed in figure 4(b).

Figure 4: At each radial position r of the reconstruction, the mθ (a) and mr (b) are measured.
Each vertical line represents an MTF. The mθ (measured in the Siemens star-like phantom),
becomes worse at low radii, not being able to reconstruct the high frequency signals. For the
mr, only a small radial dependence is found.
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No variation of the mr was noted for any Nθ between 1 and 512. Note that this is a very
extreme phantom and the results will probably be a mixed term in real objects.

The same exercise has been done over for a lower number of projections (Np). Now 67
instead of 4096 projections were simulated and the same reconstruction shape was used.
Similar results have been noted for 64 projections, the odd number of 67 was chosen to
avoid any numerical bias. These results are shown in figure 5 and the modulation factor is
lower than the previous outcome as expected. More variation can be observed for the mr
phantom in the radial direction. When we look at the reconstructed slices in figure 6, the
origin of the seemingly good mr at high r is revealed. Due to the insufficient amount of
projections, aliasing effects appear in the reconstruction. Actually, the quality is better at
low r where no azimuthal aliasing shows up at lower frequencies. Decreasing the number
of azimuthal divisions Nθ to the order of the projections number gives more truthful results,
though the aliasing is still visible. When the same radial resolution is required at a greater
distance from the central axis, a higher Np is required. This requirement remains true for
hollow cylinders. Understanding these aliasing effects can help in the development of more
advanced sampling strategies.

Figure 5: When fewer projections are taken, both mθ (a) and mr (b) are affected, but they
behave similarly to the previous case (figure 4). The white pattern in the top image, which
indicates a seemingly high mθ at high frequencies, is most likely caused by reconstruction
aliasing effects where the MTF method fails.

3.2 Accuracy and precision of the pose estimation

The accuracy and precision of the projection-based pose estimation using the three different
feature selection techniques (listed in section 2.1 - Axis tracking) are given in tables 2, 3,
4, respectively. For these scans, the axis detection using the first feature selection technique
(using extremal corner pixels) took only 0.23 s on average. The two other techniques (using
rotated bounding rectangles or the covariance approach) were slightly slower with 0.35 s
each. Although these timings strongly depend on the used hardware, the relative increase
will probably be similar.

The measured poses at four different positions of the rotation stage were compared to
remark any systematic deviation. The deviations in the pose of the reconstructed object
and the phantom object were captured using the differences of four observed quantities.
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Figure 6: Decreasing Nθ in the rθ slice (a) compared to (b) reduces aliasing artefacts in the
azimuthal direction when an insufficient amount of projections is given. This cannot be done
for a Cartesian reconstruction (c), where the results are similar to the reconstruction in (b).
Table 2: Measured accuracy and precision for the projection-based pose estimation using
the corner-based approach.

pose deviation overall pos 0 pos 1 pos 2 pos 3
azimuthal angular accuracy (◦) -4.402 -2.984 -4.325 -4.682 -5.617

precision (◦) 4.149 2.927 2.436 4.712 5.346
top transverse accuracy (mm) 0.077 0.077 0.085 0.073 0.072

precision (mm) 0.033 0.033 0.032 0.033 0.033
middle transverse accuracy (mm) 0.060 0.064 0.067 0.057 0.051

precision (mm) 0.025 0.025 0.024 0.025 0.024
bottom transverse accuracy (mm) 0.050 0.060 0.054 0.049 0.037

precision (mm) 0.020 0.019 0.019 0.019 0.017

These quantities are the internal azimuthal angles and the locations of the axis top, middle
(31.2 mm from the top along the axis) and bottom (62.4 mm along the axis).

From this table, it can be seen that the internal azimuthal angle is known with a precision of
4.2◦. The systematic deviation of the internal angle of -4.4◦ could be contributed to the naive
assumption that the maximal attenuation should correspond to a perpendicular position of
the internal structure. This systematic deviation can be easily corrected by subtracting this
value from the pose estimation. A small increasing deviation between the results from the
different rotation axis positions could be found.

The overall transverse accuracy of the pose is best at the bottom of the sample, where the
device is contained by the sample holder. The results are comparable to the projected pixel
size of 0.06 mm. For these pose estimations, 21 projections were used to trace back the po-
sitions along the axis. The longitudinal precision is nearly constant at 0.011 mm, 0.031 mm
and 0.025 mm, for each feature selection technique respectively. Constant systematic devi-
ations along the axis can be compensated by defining the origin of the cylindrical coordinates
higher or lower along the axis.
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Table 3: Measured accuracy and precision for the projection-based pose estimation using
the rotated bounding rectangle approach.

pose deviation overall pos 0 pos 1 pos 2 pos 3
azimuthal angular accuracy (◦) -0.961 -0.362 -0.659 -1.492 -1.330

precision (◦) 13.350 12.438 11.517 15.658 13.397
top transverse accuracy (mm) 0.362 0.416 0.383 0.302 0.347

precision (mm) 0.164 0.176 0.177 0.113 0.159
middle transverse accuracy (mm) 0.186 0.215 0.203 0.159 0.166

precision (mm) 0.081 0.087 0.085 0.061 0.076
bottom transverse accuracy (mm) 0.067 0.060 0.071 0.071 0.064

precision (mm) 0.025 0.024 0.026 0.022 0.025

Table 4: Measured accuracy and precision for the projection-based pose estimation using
the covariance approach.

pose deviation overall pos 0 pos 1 pos 2 pos 3
azimuthal angular accuracy (◦) -5.993 -5.975 -6.664 -3.735 -7.596

precision (◦) 19.579 17.497 16.842 22.707 20.488
top transverse accuracy (mm) 0.236 0.227 0.248 0.240 0.229

precision (mm) 0.094 0.084 0.089 0.095 0.105
middle transverse accuracy (mm) 0.082 0.085 0.091 0.078 0.072

precision (mm) 0.040 0.037 0.039 0.040 0.039
bottom transverse accuracy (mm) 0.108 0.098 0.099 0.115 0.118

precision (mm) 0.058 0.053 0.052 0.059 0.063

3.3 Use of initial volume and back-projection weights in cylindrical reconstruction
algorithms

The added value of the initial solution and the weighted back-projection are investigated for
the batch scan with settings listed in table 1. The number of voxels in the cylindrical recon-
struction is (Nh,Nθ ,Nr) = (240,40,60) for a virtual voxel size of 0.312 mm. Reconstruction
times changed from 0.30 s for a normal one, to 0.52 s for a weighted back-projection re-
construction. There is virtually no overhead for the reconstruction using an initial volume,
since this can be stored in memory during the batch reconstruction. In figure 7, the results
are illustrated for each distinct reconstruction strategy described in section 2.4.

From figure 7, a number of preliminary conclusions can be derived. When no prior info is
included, the slices have low contrast and sharpness. This will negatively affect the later
analysis phase where image characteristics are converted to binary results (present / miss-
ing). In sub-figure 7(b) a higher sharpness is perceived compared to figure 7(a). For this
reconstruction, the initial volume as seen in figure 7(f) was used. This volume should not
necessarily be equal to the ideal picture that is given in figure 7(e). In this initial volume, the
spring component (the bright, vertically extended ellipse on cylindrical slice) was averaged
over all azimuthal voxels, to incorporate that this component was able to move freely in this
direction. The weighted approach in figure 7(d) removes the blurred streaks from the static
air regions. Remark that the noise contribution in the dynamic regions of the reconstruc-
tion using weighted back-projection is higher than the standard approach that uses equal
contributions in the back-projection step. This is particularly true for the reconstruction in
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Figure 7: A cropped rθ slice of four different cylindrical reconstructions, severely influenced
by a dense metal spring and needle on the left of each slice. (e) shows the phantom that was
used. The initial volume in (f) only includes structure in the azimuthal direction θ where the
components can be fixed. In (a), the SART reconstruction using 21 projections is executed
without prior knowledge. (b) and (d) use an initial volume, while weighted back-projection
is applied in (c) and (d).

figure 7(c) that does not include an initial solution. However, the response to anomalous
cases where specific components are missing from the sample is expected to be better using
weighted back-projection.

The results can also be observed in the inspection test measuring the presence of a particular
piece, as described above in 2.4. Figure 8 shows the distribution of this measure for the
different methods. It is clear that the difference between the groups has increased most when
an initial volume and weights are included. This clear distinction is necessary to increase the
detection rate of the internal defects without discarding safe devices.

4 Conclusion

In this work two techniques have been developed in the scope of high-throughput CT in-
spection of cylindrical objects. These are necessary to reduce scan time while maintaining
reasonable image quality. A pose estimation technique for cylindrical objects has been im-
plemented that uses only basic segmentation algorithms on the projected images. The axis
extraction using the corner information was found to be both fast and precise. Reconstruc-
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Figure 8: When the reconstruction contrast is improved, it becomes easier to spot a missing
component in samples (0-5) and (20-30). The labels (a-d) correspond to the ones given in
figure 7.

tion was performed directly in the aligned cylindrical coordinate system.

The MTF characterization shows how reliably the scanner can reconstruct different fre-
quencies of the (phantom) object. The artificially high number of azimuthal divisions at low
radius should only be interpreted as a mathematical construct. The actual resolution corres-
ponds more to the Cartesian voxel size. The number of divisions could be matched better
with the actual content of the object. When the components only have a low frequency in
the azimuthal direction, the number of divisions may be reduced. For the radial direction, a
similar reasoning applies. This reduces the reconstruction time.

The aligned reconstruction allows the inclusion of more advanced techniques when a series
of same-type objects is scanned. An initial volume can be used to achieve faster conver-
gence. Weighted reconstruction adds a higher sensitivity to changes.

The methods work for scans of cylindrical objects and can be easily added to existing frame-
works. The SART reconstruction technique is not mandatory, any iterative method can be-
nefit from alignment. The coordinate change yields equal reconstruction quality in the most
simple case. The adaptation to the symmetry of the objects allows that more advanced tech-
niques are added to improve image quality.
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