16 research outputs found

    Inclusive genetic programming

    Get PDF
    The promotion and maintenance of the population diversity in a Genetic Programming (GP) algorithm was proved to be an important part of the evolutionary process. Such diversity maintenance improves the exploration capabilities of the GP algorithm, which as a consequence improves the quality of the found solutions by avoiding local optima. This paper aims to further investigate and prove the efficacy of a GP heuristic proposed in a previous work: the Inclusive Genetic Programming (IGP). Such heuristic can be classified as a niching technique, which performs the evolutionary operations like crossover, mutation and selection by considering the individuals belonging to different niches in order to maintain and exploit a certain degree of diversity in the population, instead of evolving the niches separately to find different local optima. A comparison between a standard formulation of GP and the IGP is carried out on nine different benchmarks coming from synthetic and real world data. The obtained results highlight how the greater diversity in the population, measured in terms of entropy, leads to better results on both training and test data, showing that an improvement on the generalization capabilities is also achieved

    Virtual sensing and sensors selection for efficient temperature monitoring in indoor environments†

    Get PDF
    5Real-time estimation of temperatures in indoor environments is critical for several reasons, including the upkeep of comfort levels, the fulfillment of legal requirements, and energy efficiency. Unfortunately, setting an adequate number of sensors at the desired locations to ensure a uniform monitoring of the temperature in a given premise may be troublesome. Virtual sensing is a set of techniques to replace a subset of physical sensors by virtual ones, allowing the monitoring of unreachable locations, reducing the sensors deployment costs, and providing a fallback solution for sensor failures. In this paper, we deal with temperature monitoring in an open space office, where a set of physical sensors is deployed at uneven locations. Our main goal is to develop a black-box virtual sensing framework, completely independent of the physical characteristics of the considered scenario, that, in principle, can be adapted to any indoor environment. We first perform a systematic analysis of various distance metrics that can be used to determine the best sensors on which to base temperature monitoring. Then, following a genetic programming approach, we design a novel metric that combines and summarizes information brought by the considered distance metrics, outperforming their effectiveness. Thereafter, we propose a general and automatic approach to the problem of determining the best subset of sensors that are worth keeping in a given room. Leveraging the selected sensors, we then conduct a comprehensive assessment of different strategies for the prediction of temperatures observed by physical sensors based on other sensors’ data, also evaluating the reliability of the generated outputs. The results show that, at least in the given scenario, the proposed black-box approach is capable of automatically selecting a subset of sensors and of deriving a virtual sensing model for an accurate and efficient monitoring of the environment.openopenBrunello A.; Urgolo A.; Pittino F.; Montvay A.; Montanari A.Brunello, A.; Urgolo, A.; Pittino, F.; Montvay, A.; Montanari, A

    Genetic Programming to Optimise 3D Trajectories

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesTrajectory optimisation is a method of finding the optimal route connecting a start and end point. The suitability of a trajectory depends on non-intersection with any obstacles as well as predefined performance metrics. In the context of UAVs, the goal is to minimise the cost of the route, in terms of energy or time, while avoiding restricted flight zones. Artificial intelligence techniques including evolutionary computation have been applied to trajectory optimisation with various degrees of success. This thesis explores the use of genetic programming (GP) to optimise trajectories in 3D space, by encoding 3D geographic trajectories as syntax trees representing a curve. A comprehensive review of the relevant literature is presented, covering the theory and techniques of GP, as well as the principles and challenges of 3D trajectory optimisation. The main contribution of this work is the development and implementation of a novel GP algorithm using function trees to encode 3D geographical trajectories. The trajectories are validated and evaluated using a realworld dataset and multiple objectives. The results demonstrate the effectiveness of the proposed algorithm, which outperforms existing methods in terms of speed, automaticity, and robustness. Finally, insights and recommendations for future research in this area are provided, highlighting the potential for GP to be applied to other complex optimisation problems in engineering and science

    Behavior Of Variable-length Genetic Algorithms Under Random Selection

    Get PDF
    In this work, we show how a variable-length genetic algorithm naturally evolves populations whose mean chromosome length grows shorter over time. A reduction in chromosome length occurs when selection is absent from the GA. Specifically, we divide the mating space into five distinct areas and provide a probabilistic and empirical analysis of the ability of matings in each area to produce children whose size is shorter than the parent generation\u27s average size. Diversity of size within a GA\u27s population is shown to be a necessary condition for a reduction in mean chromosome length to take place. We show how a finite variable-length GA under random selection pressure uses 1) diversity of size within the population, 2) over-production of shorter than average individuals, and 3) the imperfect nature of random sampling during selection to naturally reduce the average size of individuals within a population from one generation to the next. In addition to our findings, this work provides GA researchers and practitioners with 1) a number of mathematical tools for analyzing possible size reductions for various matings and 2) new ideas to explore in the area of bloat control

    Fighting Bloat With Nonparametric Parsimony Pressure

    No full text
    Many forms of parsimony pressure are parametric, that is final fitness is a parametric model of the actual size and raw fitness values. The problem with parametric techniques is that they are hard to tune to prevent size from dominating fitness late in the evolutionary run, or to compensate for problem-dependent nonlinearities in the raw fitness function. In this paper we briefly discuss existing bloat-control techniques, then introduce two new kinds of non-parametric parsimony pressure, Direct and Proportional Tournament. As their names suggest, these techniques are based on simple modifications of tournament selection to consider both size and fitness, but not together as a combined parametric equation

    Artificial evolution with Binary Decision Diagrams: a study in evolvability in neutral spaces

    Get PDF
    This thesis develops a new approach to evolving Binary Decision Diagrams, and uses it to study evolvability issues. For reasons that are not yet fully understood, current approaches to artificial evolution fail to exhibit the evolvability so readily exhibited in nature. To be able to apply evolvability to artificial evolution the field must first understand and characterise it; this will then lead to systems which are much more capable than they are currently. An experimental approach is taken. Carefully crafted, controlled experiments elucidate the mechanisms and properties that facilitate evolvability, focusing on the roles and interplay between neutrality, modularity, gradualism, robustness and diversity. Evolvability is found to emerge under gradual evolution as a biased distribution of functionality within the genotype-phenotype map, which serves to direct phenotypic variation. Neutrality facilitates fitness-conserving exploration, completely alleviating local optima. Population diversity, in conjunction with neutrality, is shown to facilitate the evolution of evolvability. The search is robust, scalable, and insensitive to the absence of initial diversity. The thesis concludes that gradual evolution in a search space that is free of local optima by way of neutrality can be a viable alternative to problematic evolution on multi-modal landscapes

    Programmation génétique appliquée à l'imagerie hyperspectrale pour l'évaluation d'une variable biophysique au sein d'une grande culture : cas de l'azote dans un champ de maïs

    Get PDF
    L'imagerie hyperspectrale de télédétection offre d'innombrables opportunités pour la gestion durable des ressources naturelles. L'agriculture de précision est une approche récente qui prend en considération l'hétérogénéité biophysique des cultures, lors de l'application d'intrants (engrais, herbicides...). Nous proposons une nouvelle méthode fondée sur les principes de la programmation génétique et des indices de végétation; l'objectif est d'élaborer un modèle décrivant une variable biophysique d'un champ, pour évaluer précisément sa variabilité et agir localement. La validation de notre approche est réalisée sur des mesures d'azote (variable biophysique étudiée) relevées dans un champtest de maïs de l'Université McGill (Montréal). Le meilleur modèle obtenu explique 84.83% de la variance d'un jeu de données non apprises avec une erreur de généralisation de 14.34%, améliorant ainsi les résultats de la littérature

    An investigation of techniques for improving the performance of a Pittsburgh approach learning classifier system

    Get PDF

    An investigation of techniques for improving the performance of a Pittsburgh approach learning classifier system

    Get PDF
    corecore