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Abstract. The promotion and maintenance of the population diver-
sity in a Genetic Programming (GP) algorithm was proved to be an
important part of the evolutionary process. Such diversity maintenance
improves the exploration capabilities of the GP algorithm, which as a
consequence improves the quality of the found solutions by avoiding lo-
cal optima. This paper aims to further investigate and prove the efficacy
of a GP heuristic proposed in a previous work: the Inclusive Genetic Pro-
gramming (IGP). Such heuristic can be classified as a niching technique,
which performs the evolutionary operations like crossover, mutation and
selection by considering the individuals belonging to different niches in
order to maintain and exploit a certain degree of diversity in the pop-
ulation, instead of evolving the niches separately to find different local
optima. A comparison between a standard formulation of GP and the
IGP is carried out on nine different benchmarks coming from synthetic
and real world data. The obtained results highlight how the greater di-
versity in the population, measured in terms of entropy, leads to better
results on both training and test data, showing that an improvement on
the generalization capabilities is also achieved.
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1 Introduction

Genetic Programming [12] is known to be a powerful approach to perform Sym-
bolic Regression (SR) , capable of autonomously finding a symbolic expression,
which explicitly models a distribution of observed data, starting from no previ-
ous knowledge of such data. In the past years it was used for several kinds of
applications, from pure symbolic regression [18], to optimization [11] and con-
trol system design [10,/161|21]. Despite this abundance of applications, GP still
suffers from several issues that affect different aspects of a GP algorithm and
undermine its performances. In this work, one of such issues is tackled, namely
the promotion and maintenance of diversity in a GP population.

The importance of the population diversity in an evolutionary algorithm was
treated by several publications in the past: in [5] diversity is addressed as a
method to control exploration and exploitation during the evolutionary process,
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describing also different diversity measures; in [20] a survey of methodologies
for promoting diversity in evolutionary optimization is presented; while in [4]
different diversity measures are analyzed.

This work aims to contribute to the landscape of publications about diversity
maintenance and promotion by performing a deeper analysis of a heuristic pro-
posed in a previous work [15]: the Inclusive Genetic Programming. This heuris-
tic is based on a different formulation of the evolutionary operations, such as
crossover, mutation and selection, aimed to promote and maintain the diversity
in a GP population. These evolutionary operations are based on the partition
of the population into different niches according to the genotypic diversity of
the individuals. Therefore, such heuristic pertains to the class of niching tech-
niques [14]. Traditionally, the individuals are divided according to their genotypic
(individual structure) or phenotypic (fitness value) characteristics [19], although
recently also a niching approach based on the computational time necessary to
execute the individuals was suggested by De Vega et. al. [8]. Nonetheless, all
these methods consist in dividing the population into different niches and evolve
them separately to find different local optima. On the contrary, the approach
proposed in this work aims to subdivide the population into niches and then
take into account the individuals from different niches when performing the evo-
lutionary operations so to have a flow of genes between the different niches. The
concept of combining diverse individuals (e.g. individuals from different niches)
rather than well performing ones was already explored in the past, for example
by Aslam et. al. [2], although their approach is based on the phenotypic diversity
of the individuals and did not considered a subdivision of the population into
niches. Instead they classified the individuals based on a measure called Binary
String Fitness Characterisation, originally introduced by Day and Nandi [6], and
also explored the concept of good and bad diversity.

In this work, the aim of the flow of genes between the different niches is to pre-
serve also more complex structures, which would otherwise be lost due to bloat
control operators, and to exploit them in order to avoid losing well performing
genes which are contained in them. It could be argued that bloat control op-
erators could be removed for this purpose, but nonetheless, they are useful to
avoid having too big individuals which would become of difficult interpretation
for the user. Indeed, bloat control and the GP population diversity are related,
but it was not aim of this work to investigate this relation. Some examples of
this relation are presented by De Jong et. al. [7], where a multi-objective formu-
lation of GP is used to avoid bloat and promote diversity; and by Alfaro-Cid et.
al. [1] where several bloat control operators and their influence on the population
diversity were analyzed.

The reminder of this paper is organized as follows: in Section [2]the Inclusive Evo-
lutionary Process is described; in Section [3] the benchmarks used in this work,
the settings of the algorithms employed in the comparison and the produced re-
sults are presented. Finally in Section 4 conclusions and future work directions
are discussed.
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2 Inclusive Evolutionary Process

In this Section, the components of the evolutionary process that is at the founda-
tion of the IGP are described. Such evolutionary process is based on a modified
version of the evolutionary strategy p+ A [3], as described by Algorithm [1} The
differences from the standard version consist in: 1) the creation of the niches at
the beginning of the evolutionary process and every time after a new offspring is
generated; 2) the use of the Inclusive Reproduction; 3) the use of the Inclusive
Tournament.

Algorithm 1 Pseudocode of the Inclusive g 4+ A

1: Evaluate fitness of the individuals in the population

2: Update Hall of Fame of best individuals

3: while Generation < Maximum Generation Number do

4:  Create n niches according to the maximum and minimum length of the indi-
viduals in the population and allocate the individuals to their respective niche

Perform Inclusive Reproduction to produce A offspring

Evaluate fitness of the individuals in the obtained offspring

Update Hall of Fame of best individuals

Create n niches according to the maximum and minimum length of the individ-
uals considering both the parents and the offspring and allocate the individuals
to their respective niche

9:  Perform Inclusive Tournament Selection to select p new parents

10: end while

2.1 Niches Creation

At the core of the Inclusive Evolutionary Process, there is the niching creation
mechanism. The niches are created in an evenly distributed manner (linearly
divided) between the maximum and minimum length (number of nodes) of the
individuals in the population, then the individuals are assigned to the respective
niche according to their length. The same number of niches is kept during the
evolutionary process, but their size (the interval of individuals lengths that they
cover) and the amount of individuals inside them change at every generation.
The variation of size of the niches allows for a shifting of the individuals between
contiguous niches every time maximum and minimum lengths of the individuals
in the population changes. Once the niches are created, both the reproduction
and selection are performed considering individuals from different niches in or-
der to maintain the population diversity. Figure [T] depicts the rationale behind
the niches creation mechanism. In this example, a population composed by 10
individuals of length 1, 1, 2, 2, 3, 4, 4, 5, 7, 8 (without considering the root node)
is considered and 10 niches are created. These niches span the lengths depicted
in the figure and contain the individuals depicted inside them.
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Fig. 1: Illustration of niches creation rationale.

2.2 Inclusive Reproduction and Inclusive Tournament

Algorithm [2| describes the mechanism behind the Inclusive Reproduction. Such
mechanism consists in applying either crossover, mutation or 1:1 reproduction
(the individual is passed unaltered to the offspring) using the individuals in
the different niches. If the crossover is selected, a one point crossover is applied
between two individuals which are selected from two different niches. About the
two individuals chosen, one is the best of the considered niche, in order to pass the
best performing genes to the future generation and the other is selected randomly
in order to maintain a certain degree of diversity in the population. Moreover,
a mechanism to avoid breeding between the same or very similar individuals
is used (lines in Algorithm . Here n; is a preset constant defining the
maximum number of loop iterations, needed to avoid possible infinite loops. If
the mutation is selected, a mutation operator among those listed in Table [1] is
applied to an individual randomly chosen from the chosen niche. Finally, if the
1:1 reproduction is selected, a randomly chosen individual from the chosen niche
is passed to the offspring. The niches selected in all three previously described
operations (crossover, mutation and 1:1 reproduction) are picked from a list of
exploitable niches, which is continuously updated in order to avoid selecting
always from the same niches.

The Inclusive Tournament consists in performing a Double Tournament [13]
on each niche as in Algorithm [3] For the Inclusive Tournament the niches are
selected in a sequential manner and the double tournament on each niche is per-
formed at most ¢ times where t is the number of individuals inside the considered
niche, to avoid having clones in the final population.
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Algorithm 2 Pseudocode of Inclusive Reproduction

1: if Crossover probability < 0.8 then
2:  Mutation probability = Mutation probability - 0.01
3 Crossover probability = Crossover probability + 0.01
4: end if
5: Good Indexes <+ Indexes of filled niches
6: List of exploitable niches < Good Indexes
7: while Size offspring < A\ do
8 Choice - Random number between [0, 1]
9:  if Choice < Crossover Probability then
10: if List of exploitable niches is empty then
11: List of exploitable niches <+— Good Indexes
12: end if
13: Select randomly two different niches from List of exploitable niches
14: Remove chosen niches from List of exploitable niches
15: Select the best individual from the first niche and select a random individual
from the second niche
16: n=20
17: while The selected individuals have the same fitness and n < n; do
18: Repeat lines [10] to
19: n =n+l
20: end while
21: Apply crossover to the chosen individuals
22: Add first child to offspring
23: if Size of offspring < A then
24: Add second child to offspring
25: end if
26:  else if Choice < Mutation probability + Crossover Probability then
27: Repeat lines [10] to |15 but selecting only one category
28: Select randomly one individual from the chosen category
29: Perform mutation of the chosen individual
30: Add mutated individual to the offspring
31:  else
32: Repeat line 27, 28
33: Add chosen individual to the offspring
34:  end if
35: end while
3 Algorithms Setup and Results

In this section the results obtained from a comparison between the IGP and the
Standard Genetic Programming (SGP) are presented. The SGP is a standard
formulation of GP.

3.1 Benchmarks

The benchmarks selected for the comparison were taken from [22]. These were
selected since comprehend both synthetic and real world data, hence they cover
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Algorithm 3 Pseudocode of Inclusive Tournament

1: while Number of selected individuals < u do

2: for ¢ in number of niches do

3: if Number of selected individuals from ¢-th niche < total number of individuals
in i-th niche then

4 Select one individual in i-th niche with Double Tournament selection

5 end if

6: end for

7: end while

a sufficient variety of problems. More on the benchmarks can be found in [22]. In
this work the same number of samples and sampling technique to produce them
as in [22] were used, except for the benchmarks kornsi11, where 5000 samples were
used instead of 10000 to reduce the computational time, both on training and
testing samples; and for the benchmark S2 where the same number of training
samples used for the z variable were also used for the y one.

3.2 SGP and IGP settings

Both algorithms were implemented in Python 3 relying on the open source li-
brary DEAP [9]. The experiments were run on a Laptop with 16GB of RAM and
an Intel®) Core™ i7-8750H CPU @ 2.20GHz x 12 threads and multiprocessing
was used. The code developed in this work is open source and can be found at
https://github.com/strath-ace/smart-ml.

For both algorithms the bloat control mechanism implemented in the DEAP
library was used with the limit height and size set as in Table [I| The mutation
operators listed in Table[I]refers to the homonym functions in the DEAP library.
Regarding the primitives listed in Table [I} add3 and mul3 are respectively a
ternary addition and multiplication, while plog and pexp are respectively a pro-
tected natural logarithm and protected exponential, to avoid numerical errors.
Regarding the crossover and mutation probability for the IGP, they changed
dynamically during the evolutionary process as shown in lines of Algorithm
This mechanism was introduced to incentivate the exploration at the begin-
ning of the evolutionary process and the exploitation at the end of it. It was not
adopted for the SGP since it was tested but did not introduce any improvement.
300 generations were chosen as stopping criteria to have a good compromise
between the goodness of the results and a reasonable computation times.

3.3 Results

Both the SGP and IGP algorithms were run on nine different benchmarks con-
sisting of synthetic and real world data as described in Section On each
benchmark the evolutionary process was repeated 100 times in order to obtain
statistically significant results.
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Table 1: Settings for the SGP and IGP algorithms. The percentages near the
mutation mechanisms refers to the probability of that mutation mechanism to
be chosen when the mutation is performed.

SGP \ IGP
Population Size 300 individuals
Maximum Generations 300
Stopping criteria Reaching maximum number of generations
Crossover probability 0.8 0.2 =+ 0.8
Mutation probability 0.2 0.8 — 0.2
Evolutionary strategy w+ A
o Population size
A Population Size x 1.2
Number of Ephemeral constants 1
Limit Height 15
Limit Size 30
Selection Mechanism Double Tournament‘ Inclusive Tournament
Double Tournament fitness size 2
Double Tournament parsimony size 1.2
Tree creation mechanism Ramped half and half
. . Uniform (50%), Shrink (5%),
Mutation mechanisms Insertion (25%),(Mut)ate Epher(nerézl (20%)
Crossover mechanism One point crossover
Primitives Set + = % adds, mul3', tanh
square, plog, pexp, sin, cos
Fitness measure RMSE

Figure [7] depicts the evolution of the RMSE median values of the SGP and IGP
algorithms during the evolutionary process on the nine benchmarks. The shaded
areas represent the standard deviation interval. From these results it is clear how
the IGP is always capable of finding better or equally performing individuals to
those found with SGP and also it converges faster than SGP to a minimum.
Moreover, the Figures from [2] to [6] show the RMSE median and standard de-
viation on the different benchmarks on both train and test data. As can be
seen, IGP always outperforms the SGP in terms of generalization capabilities,
achieving a lower (better) RMSE, except for the kozal benchmark were the IGP
performs worse than the SGP. A possible explanation for this could be that the
key feature of IGP, which is the greater diversity in the population, leads to
bigger individuals than those obtained with SGP. Such bigger individuals could
be overkill solutions for a simple test case like kozal, which could be solved more
efficiently by smaller individuals.

To assess how and if the population diversity was maintained throughout the
evolutionary process, the entropy of the population was considered as proposed
in [17]. Figure 8| shows the entropy median and standard deviation values of the
population of both the SGP and IGP during the evolutionary process for all
the benchmarks. As for the fitness values, also the entropy median values were
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computed over the results obtained from 100 different runs.
The entropy was measured as in Equation [I]

entropy = — Z(d x log(d)) (1)

where d is the distribution of the individuals across the different niches without
considering the empty ones. Assuming the example illustrated in Figure [I} d
would be the array [0.2, 0.2, 0.1, 0.2, 0.1, 0.1, 0.1] and the corresponding entropy
would be 1.89. For sake of the comparison carried out in this work, also the
population in the SGP algorithm was subdivided into niches to evaluate the
entropy in the same way as was done in the IGP, although these were not used
during the evolutionary process.

As can be seen in Figure [§ the IGP is able to maintain an entropy value around
2.30 during the whole evolutionary process, while the SGP tends to decrease
towards the end of the evolutionary process, meaning that the population tends
to have more similar individuals, i.e. lose diversity, while the evolution proceeds.
Now by looking at both Figure [7] and [8] the results suggest that indeed the
diversity maintenance plays an important role during the evolutionary process,
resulting in a GP which can converge faster to the minimum, is more precise
and has better generalization capabilities than a standard GP implementation.
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Fig.2: RMSE of training and test data on synthetic benchmarks Kozal and
Kornsll. The median and standard deviations values were evaluated over the
results produced on 100 different runs.
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Fig. 3: RMSE of training and test data on synthetic benchmarks S1 and S2. The
median and standard deviations values were evaluated over the results produced
on 100 different runs.
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4 Conclusions

In this paper an heuristic approach to promote and maintain the diversity in a ge-
netic programming algorithm, the Inclusive Genetic Programming, is described
and tested by comparing its performance with a standard genetic programming
implementation. The comparison was performed and here presented on nine dif-
ferent benchmarks, composed by both synthetic and real world data and on each
benchmark the evolutionary process was repeated 100 times both with IGP and
SGP. Then, the obtained best behaving individuals were tested on a set of test
data, different from the training data, to assess the generalization capabilities.
The results show how the IGP almost always (8/9 benchmarks) outperforms the
SGP by converging faster to a minimum, with a better final fitness function value
and by possessing better generalization capabilities than the SGP. To assess the
importance of the population diversity on this outcome, the population’s entropy
was analyzed and it was observed that indeed the IGP is capable of maintain-
ing it approximately constant throughout the evolutionary process, while in the
SGP it tends to diminish towards the end of the evolutionary process, meaning
a decrease in the population diversity.

This work aims to be a positive contribution to the open problem of the explo-
ration vs. exploitation in the GP community, by describing and analyzing a new
effective heuristic which highlights the importance of the exploration achieved
through the promotion and maintenance of population diversity. Future works
could investigate the application of the proposed heuristic to other GP formula-
tions like the MGGP in order to assess its applicability. Moreover, it would be
interesting to combine it with other diversity maintenance strategies to further
increase the obtained benefits.
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