
Genetic Programming to Optimise 3D
Trajectories

André Kotze

Thesis submitted in partial fulfilment of the requirements for the Degree of
Master of Science in Geospatial Technologies

Supervised by:

Dr. Carlos Granell Canut
Institute of New Imaging Technologies

Universitat Jaume I
Castellón de la Plana, Spain

Co-supervised by:

Dr. Vı́tor Duarte dos Santos
NOVA Information Management School

Universidade Nova de Lisboa
Lisboa, Portugal

Moritz Hildemann
Institute for Geoinformatics

Westfälische Wilhelms-Universität
Münster, Germany

February 2023

Declaration of Academic Integrity

I hereby confirm that this thesis “Genetic Programming to Optimise 3D Trajectories” is
solely my own work and that I have used no sources or aids other than the ones stated. All
passages in my thesis for which other sources, including electronic media, have been used,
be it direct quotes or content references, have been acknowledged as such and the sources
cited. I agree to have my thesis checked in order to rule out potential similarities with other
works and to have my thesis stored in a database for this purpose.

André Kotze
Castellón de la Plana
17 February 2023

i

Acknowledgements

I would like to express my deepest gratitude to the following people for enabling the com-
pletion of this project:

• Prof. Dr. Marco Painho at NOVA University Lisbon, Dr. Christoph Brox at the
University of Münster, and Prof. Dr. Joaqúın Huerta at Jaume I University, for
their work in coordinating the joint master’s program. It has been one of the most
significant experiences of my academic, social, and professional life.

• My supervisors Dr. Carlos Granell, Dr. Vı́tor Santos and Moritz Hildemann for
their time, support and guidance throughout the duration of this work. Without your
patient advice this thesis would not be nearly as complete or coherent. An additional
thanks to Moritz for the thesis topic, the ideas, and the data.

• My professors, who have inspired me to keep seeking, exploring, thinking and learning.
Thank you for your passion and dedication to teaching.

• My parents for their love and support. Every opportunity I’ve had I owe to you.

• My sister for believing in me, encouraging me, and always noting Good, but can do
better, and without whom I would never have applied to this program. Thank you for
the honesty, the proofreading, and the formatting.

• My friends, old and new. This adventure would not be the same without you. Thanks
for your companionship and advice when I most needed it.

• The open source community, who have allowed me to see further by standing on their
shoulders, who have freely shared their knowledge, expertise, and code with the world.
Without your tireless efforts this work would not have been possible. Your generosity
and commitment to the ideals of open access, collaboration, and innovation are an
inspiration.

ii

Abstract

Trajectory optimisation is a method of finding the optimal route connecting a start and
end point. The suitability of a trajectory depends on non-intersection with any obstacles
as well as predefined performance metrics. In the context of UAVs, the goal is to minimise
the cost of the route, in terms of energy or time, while avoiding restricted flight zones.
Artificial intelligence techniques including evolutionary computation have been applied to
trajectory optimisation with various degrees of success. This thesis explores the use of
genetic programming (GP) to optimise trajectories in 3D space, by encoding 3D geographic
trajectories as syntax trees representing a curve. A comprehensive review of the relevant
literature is presented, covering the theory and techniques of GP, as well as the principles
and challenges of 3D trajectory optimisation. The main contribution of this work is the
development and implementation of a novel GP algorithm using function trees to encode
3D geographical trajectories. The trajectories are validated and evaluated using a real-
world dataset and multiple objectives. The results demonstrate the effectiveness of the
proposed algorithm, which outperforms existing methods in terms of speed, automaticity,
and robustness. Finally, insights and recommendations for future research in this area are
provided, highlighting the potential for GP to be applied to other complex optimisation
problems in engineering and science.

Keywords: genetic programming, evolutionary algorithms, trajectory optimisation, route
planning

iii

Contents

1 Introduction 1
1.1 Background and Problem Definition . 1
1.2 Objectives . 2
1.3 Importance and Relevance . 3
1.4 Thesis Outline . 3

2 Literature Review 5
2.1 Background Concepts . 5

2.1.1 Pathfinding Algorithms . 5
2.1.2 Evolutionary Algorithms . 5
2.1.3 Trajectory Optimisation . 7

2.2 Systematic Literature Review . 7
2.2.1 PRISMA Method . 7
2.2.2 PRISMA Results . 8
2.2.3 PRISMA Discussion . 9

3 Methodology 11
3.1 Study Area . 11
3.2 Data Preparation . 12
3.3 Evolutionary Computation Framework . 13

3.3.1 Parameterisation . 15
3.3.2 Solution Anatomy . 16
3.3.3 Bloating . 17
3.3.4 Elitism . 17
3.3.5 Stopping Criteria . 17

3.4 Solution Transformation . 17
3.5 Path Validation . 19
3.6 Fitness Evaluation . 20

4 Results 21
4.1 Initialisation and Convergence . 23
4.2 Variation and Selection . 24
4.3 Elitism . 25
4.4 Quantifying Validity . 26
4.5 Geometry Complexity . 27
4.6 Comparison of Validation Algorithms . 29

5 Discussion 30
5.1 Function tree representation . 30
5.2 Solution validity . 30
5.3 Calibration . 30
5.4 Applicability and scalability . 31
5.5 Limitations and potential solutions . 31

6 Conclusion 33

iv

List of Figures

1 Study breakdown . 4
2 Example of a genetic program tree and the function it represents 6
3 PRISMA flowchart . 8
4 Keyword co-occurrence network visualisation 10
5 New York City restricted flight areas . 11
6 Clove Lakes dataset showing points . 12
7 Data preparation flowchart . 13
8 Genetic Programming methodology flowchart 14
9 Solution transformation procedure . 18
10 Comparison of 2D (brown) and 3D (green) trajectories. 21
11 Effect on fitness, size and evaluation time for maximum tree height 8 (blue),

12 (orange) and 17 (green). 22
12 Trajectories with no height limit (blue), a 500 m limit (purple), and the actual

213 m limit (yellow). Compare with Hildemann and Verstegen (2023) (green). 22
13 Optimisation and duration for population sizes 300 (blue), 500 (orange), 1000

(green) and 2000 (red). 23
14 Convergence in three scenarios, showing the 95% confidence interval. Map

trajectories correspond to the best (green) and worst (red) outcomes of 10
optimisations. 24

15 Optimisation convergence for crossover probabilities of 0.2 (blue), 0.5 (orange)
and 0.9 (green), and mutation probabilities of 0.05 (blue), 0.1 (orange) and
0.25 (green). 25

16 Size and fitness using tournament (blue) and double tournament (orange)
selection. 25

17 Elitism effect with elite fraction 0% (blue) 1% (orange), 3% (green), and 10%
(red). Average of 10 optimisation runs. 26

18 Solutions only obtainable with quantified intersection. 26
19 Optimisation with total invalidation (top) and flexible invalidation (bottom). 27
20 Vertex count comparison before (left) and after (right) geometry simplifi-

cation. The graph shows the evaluation time for unsimplified (blue) and
simplified (orange) geometries. 28

21 Trajectory waypoints with the number of segments between 1000 and 100. . . 28

v

List of Tables

1 Vertical and horizontal restrictions in meters (Hildemann & Verstegen, 2023) 12
2 Genetic programming parameters . 15
3 Variables considered in the cost function . 20

vi

1 Introduction

1.1 Background and Problem Definition

Pathfinding (also referred to as pathing or routing) in 2-dimensional (2D) space is widely
applied to comparatively simple navigational and logistical problems that may or may not
be confined to segments that are part of an existing network of pathways (Garip et al., 2022).
The problems become more complex with the introduction of additional considerations and
constraints, such as multiple points (Travelling Salesman Problem)(Pezer, 2016), multiple
agents (Vehicle Routing Problem) (Baker & Ayechew, 2003) or dynamism (transient obsta-
cles, alternative routes, Dynamic Vehicle Routing Problem) (Kim et al., 2017).

Path planning in 3-dimensional (3D) space is an ongoing research topic that expands upon
simpler 2D routing. This more complex problem has applications in path planning for au-
tonomous or remotely-operated vehicles, such as Unmanned Aerial Vehicles (UAVs) (Meng
& Xin, 2010; Wang et al., 2015) or Unmanned Underwater Vehicles (UUVs) (An, 2018; Bal-
icki, 2006). In the case of unmanned aircraft, height (relative or absolute) is incorporated
as the third spatial dimension. For unmanned submarine vehicles, the relevant dimension
is depth.

Optimising paths in a space where transport infrastructure is irrelevant (aerial, submarine,
subterranean, extraterrestrial) is complicated by the fact that the number of possible routes
is infinite (Hu et al., 2004). In addition to minimising the path cost in terms of time or
distance, the path also needs to avoid physical obstacles and restricted areas. These barrier
zones can have legal, cost- or safety-related significance. For an exact optimisation that
sequentially evaluates every possible route it is impossible to find the optimum in finite time
due to the immense computational requirements for problems with “large search spaces with
large numbers of potential solutions” (Behzadi & Alesheikh, 2008). It is therefore needed
to optimise the search and sampling method within the solution space.

Heuristic optimisation refers to a solution of maximum efficiency according to specified
criteria, which cannot be guaranteed to be the optimal solution. In the case that a solution
x is found within time t, and significant additional solving time does not yield significantly
better solutions, solution x is heuristically optimal. This approach is more practical than
exact optimisation, which continues until the single, technically most perfect solution is
obtained i.e. an optimal solution is guaranteed. In real-world applications such as free-flight
routing (Hu et al., 2004) time is of the essence. In these situations a quicker, sub-optimal
solution is more valuable than a perfectly optimal one that cannot be found in finite time.

In the realm of heuristic optimisation, evolutionary computation is a biologically inspired
inexact approach to optimisation. Algorithms mimic natural evolution by testing the aptness
of individuals within a population over a number of generations, and applying selective
pressures via a cost (or fitness) function. The procedure to find a heuristic solution is
referred to as a metaheuristic. Therefore, nature-inspired metaheuristic methods such as
evolutionary algorithms and genetic algorithms, are designed to find a sufficiently good
solution by subsampling from the enormous number of possible solutions in 3D space, instead
of exploring them sequentially.

A research gap exists in the representation of heuristic geometries in a chromosome. Previous
studies (Hildemann & Verstegen, 2023) using Genetic Algorithms (GA) have used a directly
translated chromosome, with individual genes consisting of the point coordinates that ul-

1

timately comprise the linestring. These solutions, while very effective, have an enormous
computational demand. Path outputs from the optimisation method need to be validated
to ensure that no barriers are intersected, and since validation is required for every possible
solution the number of validations can be a significant and limiting factor due to its effect
on computation time. Using the same evolutionary algorithm, it is possible to change the
method of chromosome encoding to a more efficient format.

The aim of this thesis is to explore the trajectory optimisation problem in 3-dimensional
space using Genetic Programming (GP), an evolutionary computation technique that has
been applied to similar problems in two dimensions (Cakir, 2015; Hanshar & Ombuki-
Berman, 2007) and three dimensions (Meng & Xin, 2010; Wang et al., 2015; Yang et al.,
2016). In the GP approach, solutions are represented by functions that can be evaluated
i.e. programs. These programs are encoded into chromosomes, which can be modified by
changing the constituent genes. Solutions are evaluated according to their fitness in terms
of cost and efficiency using a cost function. Then, a subset of the fittest solutions is selected
to produce the next generation. As chromosomes reproduce, genes are exchanged, combined
and mutated in a process analogous to biological evolution (Behzadi & Alesheikh, 2008), and
successive generations are expected to yield better solutions, evolving towards an optimal
trajectory.

One such option is encoding genes as terms within a function, with each path consisting of
one function. This places the method in the domain of Genetic Programming (as opposed
to GA) since the solutions consist of function trees, which are programmatic representations
and can be manipulated like genetic programs. A segment of the 3D line represented by that
function is then transformed into the problem space and evaluated. The validation criterion
is non-intersection with barriers. The evaluation criterion is cost, in terms of distance
or time, and depends on a number of factors including length and gradient. Trajectories
therefore need to be converted into geographical linestrings to be validated and evaluated
for their suitability in terms of travel cost and intersection with barriers, according to a
cost function. Validation could occur within a GIS with routes and barriers modelled as
features, or in another suitable framework.

With this focus on chromosome representation and efficient validation, the following research
questions can be stated:

• Can functions encoding curves be effectively evolved to solve a minimisation problem?

• Can the speed of 3D geometric path optimisation be significantly increased by changing
the method of path representation?

• How does the method of geometry processing affect processing speed?

• Can path length be quantified before translating the function tree into a geometry?

1.2 Objectives

The goal of this research is to design and evaluate a GP solution to the 3D trajectory
problem, with the explicit objective of optimising routes in the presence of 3D obstacles and
barriers.

To achieve this goal, the following intermediate objectives are defined:

• Conduct a thorough review of existing techniques and knowledge from the literature

2

• Select an appropriate data structure for 3D linestring and zone geometry storage,
representation and computation

• Design a suitable chromosome representation for 3D linestrings that is small in size
and robust against continuous modification

• Design a suitable cost function to evaluate and select solutions from every generation

• Calibrate GP parameters for the 3D routing problem

1.3 Importance and Relevance

Path planning is an integral part of robotic vehicle operation and has many current applica-
tions in operations research, distribution logistics, supply chain management and transporta-
tion (Behzadi & Alesheikh, 2008). Many modern exploratory and scientific expeditions, as
well as commercial or private routes, are pre-planned and completely autonomously navi-
gated by the drones involved. Although remotely-operated vehicles (ROVs) and remotely
piloted aircraft (RPAs) are actively controlled by an expert, they can also benefit from
optimal routes. These routes can assist the pilots by serving as a point of reference for
maximum efficiency. Furthermore, UAVs are susceptible to electro-mechanical faults which
can necessitate an emergency landing. In these situations generating a safe path within
limited time is critical (Garg et al., 2015).

The main advantage of specifically 3-dimensional path planning is the ability to navigate
more complex environments, with the possibility of utilising routes over or under no-go zones.
An assumption in similar 2D problems is that danger zones extend to infinity in altitude or
depth, and route optimisation outputs are bound to a cost surface. However, this is not the
case in many scenarios (Hildemann & Verstegen, 2023) and with increasingly agile robotic
vehicles the need to exploit such routes becomes clear. Examples in airspace include tunnels
and arches, the undersides of bridges and other structures, the tops of buildings and trees,
and any navigable zone beneath an overhang or “above” a no-go zone. Submarine examples
include arches and caves. Establishing a limit on the extent of barriers allows many new
routes to be considered in the optimisation process.

1.4 Thesis Outline

This section describes the research and development process, attempting to solve the path
optimisation problem in 3D in the context of UAVs. The work can be broadly divided into 3
consecutive parts, commencing with an investigation into the specific details of the problem
as well as exploring the various ways in which evolutionary computation has been applied
to similar problems. Figure 1 shows a simple breakdown of the proposed workflow.

3

Figure 1: Study breakdown

The exploration phase starts with a comprehensive and thorough literature review, with
the aim of finding relevant examples and case studies in the context of GP and geometric
transformation (Section 2). It is also necessary to investigate already established differences
in geometric processing of linestrings as stored sets of vertices versus functions.

The main considerations in the methodology design (Section 3) are scale and speed of
processing. As chromosome size increases, processing time increases proportionally. The
same is true for the size and scale of the barrier dataset, and the granularity of the solution
path.

Frameworks need to be selected for the chromosome representation and the geographic
representation of solutions. The speed of the validation process needs to be minimised, as
the number of validations required may be significant. Several methods exist to validate
outputs, and the most efficient routine will have to be identified through testing.

A demonstration of the results (Section 4) is followed by a discussion of their implications
(Section 5). Finally, a summary of the research contribution and a selection of areas of
possible future study is identified and discussed in the conclusion (Section 6).

4

2 Literature Review

A review of scientific publications related to the concepts and methods in this thesis has
been conducted in order to construct a knowledge base and identify knowledge gaps. Focus
is placed on peer-reviewed full papers that discuss pathfinding and route optimisation in
general, as well as optimisation techniques and algorithms that have been or can be applied
to 3-dimensional trajectories.

For trajectory optimisation specifically, an additional Systematic Literature Review (SLR)
is conducted to ensure that all relevant research output and existing methods are known and
understood before proceeding with the proposed methodology. The SLR also ensures that
the conceptual and technical context of this research is optimally defined and illustrated.

2.1 Background Concepts

2.1.1 Pathfinding Algorithms

Pathfinding algorithms are search algorithms that aim to connect start and end points by a
navigable path. The space in which this occurs can be either discrete or continuous. Discrete
spaces (also known as graphs, subdivided spaces, grids or networks) consist of distinct nodes,
samples or points connected by a finite set of edges, links or lines. Thus pathfinding is
reducible to a topological problem with a finite set of possible configurations. Algorithms
such as Dijkstra’s use exhaustive means to find a solution by repeatedly searching adjacent
nodes until the destination node is reached. The shortest path problem has the additional
requirement of finding the optimal route between nodes i.e. minimising the total cost of
the path. Other common problems in graphs are the travelling salesman problem (TSP)
which aims to find the shortest route that visits every node once, and the Hamiltonian path
problem, a special case of TSP that attempts to avoid ever using the same edge twice.

Artificial Neural Networks (ANN) have been applied to many optimisation problems, with
overall success. They have an advantage over techniques such as Simplex or Lagrange in
that they can solve non-linear problems. Some heuristics include ant colony optimisation
(ACO) , simulated annealing and particle swarm optimisation (PSO) (Villarrubia et al.,
2018). However, these methods are only applicable in discontinuous space. The trajectory
optimisation problem under consideration is continuous, and an infinite set of configurations
is possible. It is therefore necessary to use a search method that efficiently explores this
unconstrained space in finite time i.e. without considering every possible configuration in
the search space.

2.1.2 Evolutionary Algorithms

Also known as evolutionary computation (EC), this is a type of artificial intelligence that
encompasses algorithms that mimic biological evolutionary processes. Global optimisation
is achieved via variation and selection, in the same way that species adapt to environments
over generations via natural selection. Evolutionary algorithms have historically been di-
vided into four major paradigms: genetic algorithms (GA), genetic programming (GP),
evolutionary programming (EP) and evolution strategy (ES). These methods differ in the
manner in which solutions are represented as well as the selection methods and reproduction
operators (Sivanandam & Deepa, 2008).

5

Evolutionary algorithms minimally require genetic operators that drive the diversification
into the search space, and selection pressures that guide the adaptation towards a specific
goal i.e. an adaptive system (Holland, 1975). These processes of variation and selection
are what separate a parent population from its offspring in the next generation. Genetic
operators seek to randomise traits by mixing the traits of two individuals (crossover) or
mutating the traits within a single individual (mutation). This diversification is made to be
beneficial, in accordance with the desired criteria, by the selection process. Individuals are
evaluated by quantifying their fitness via a cost function, and are subsequently filtered in
order to yield an offspring population that preserves the best traits of their parents. In this
manner the solution is optimised, by repeated variation and selection through hundreds or
thousands of generations.

Genetic algorithms have been used extensively for pathfinding and navigation problems in
the context of optimisation (Alves et al., 2020; Kumar et al., 2014) and obstacle-avoidance
(Ma et al., 2020; Rath et al., 2019). Hu et al. (2004) and Hildemann and Verstegen (2023)
use chromosomes that assign a single gene to represent a single vertex of the linestring.
In GA, solutions can be encoded as strings, numbers, binary sequences, matrices, symbols
(Meng & Xin, 2010) or any other modifiable and encodable data structure.

Figure 2: Example of a genetic program tree and the function it represents

Genetic programming is a systematic, domain-independent automatic problem solving method
(Poli, Langdon, et al., 2008). It differs from GA in that a procedure, or program, is evolved
in the optimising process. Instead of consisting of a directly encoded solution, the GP
chromosome consists of an encoded function that evaluates to that solution. In linear ge-
netic programming the evolving programs consist of a sequence of instructions processed in
series. More commonly, tree-based GP is used (Koza, 1992), wherein programs are repre-
sented as function trees with nested subordinate trees (branches) spanning multiple levels
(Fig. 2). During reproduction, linear genetic programs swap out or mutate single instruc-
tions, whereas whole nodes and branches are swapped or mutated in the case of function
trees. This implies the potential for extremely high variance in the size of function trees as
opposed to fixed-length linear programs, and thus the potential for greater diversity.

Several authors have tackled problems involving multiple agents or objectives by stacking

6

or nesting EC methods. Kala (2012) used co-evolutionary GP, a multi-level optimisation
method, for path planning for multiple robots with the constraint of non-collision. It employs
a master GA that evaluates the overall optimality while individual agents evolve their own
GP solutions. Edison and Shima (2011) took on the cooperative multiple task assignment
problem (CMTAP) in the context of multiple cooperating UAVs with kinematic constraints
using GA.

A number of default parameter values have been empirically derived, or exist due to compu-
tational constraints. Koza (1992) suggests a tree height limit of 17 and a maximum number
of generations of 50. Poli, Langdon, et al. (2008) pose some general recommendations, while
emphasising that optimal parameters are highly dependent on the application. They suggest
a run length of 10 to 50 generations claiming that the most productive search occurs this
early, and like Koza (1992) they posit a population size of 500.

2.1.3 Trajectory Optimisation

Trajectory optimisation is a combination of pathfinding and minimisation. Because trajec-
tories are not constrained to a pre-existing network, an additional degree of freedom exists
in where paths can be placed (cf: routing, pipe routing) (Sandurkar & Chen, 1999). Thus,
any graph-based solutions are inapplicable. Additional degrees of freedom can be intro-
duced by considering additional dimensions, such as time or altitude. In this study, altitude
(z-dimension) is considered and should facilitate the creation of paths over (or under) obsta-
cles that are shorter than similar paths around the same obstacles. Theoretically, negative
altitude or depth can be used similarly in the case of underwater navigation.

The optimal solution depends on arbitrarily chosen objectives, and can vary by application.
Different goals in the same search space will yield different optimal solutions, and similarly
different sets of goals will yield different Pareto fronts when considering multiple objectives.
Objectives need to be quantifiable and some that have been considered in the case of un-
manned vehicle trajectories include noise pollution, scenery obstruction, fuel consumption,
vehicle-specific limitations (turning radius, ascent gradient, size) etc (Ait Saadi et al., 2022;
Hildemann & Verstegen, 2023). It is also possible to distinguish between “soft” objectives
that minimise an undesirable metric, and “hard” imperatives that are restricted outright.
For example, it may be preferred to traverse less densely populated areas, but highly popu-
lated areas are not off limits (soft). On the other hand, it is physically impossible to intersect
a building, which makes it a critical and unwavering objective (hard).

2.2 Systematic Literature Review

2.2.1 PRISMA Method

In order to ensure an exhaustive and reproducible literature review, to the extent that this
is possible, a systematic literature review (SLR) was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page
et al., 2021). The method starts with a research repository search using a set of keywords
in a constant expression.

The focus of the SLR is trajectory optimisation in the context of 3D navigation, using
artificial intelligence techniques. Therefore, the search criteria includes two title-specific re-
quirements and one more generic (title, abstract or keywords) requirement. Firstly, results

7

must contain “trajectory”, “path” or “route” as well as one of the renditions of “optimi-
sation” in the British or American spelling. To exclude outdated references the results are
also limited to papers published after 2016. The Scopus research repository is considered
and the final search expression was used in October 2022 and is shown below:

TITLE ("trajectory OR "path" OR "route") AND TITLE ("optimisation"
OR "optimization" OR "optimising" OR "optimizing" OR "optimise" OR
"optimize") AND TITLE-ABS-KEY ("artificial intelligence" OR
"machine learning") AND PUBYEAR > 2016

Exclusion criteria were chosen to maximise the relevance of retained articles. First, opti-
misation techniques that exclusively involve routing in graphs are identified and excluded.
This includes any subdivision of the search space into a non-continuous medium. Second,
articles that do not explicitly involve path optimisation are identified and excluded. Thirdly,
techniques that do not require obstacle avoidance as part of the pathfinding process are ex-
cluded. Trajectory optimisation in two dimensions is included since some of the techniques
may be relevant in 3D space.

2.2.2 PRISMA Results

The results of the PRISMA systematic literature review are shown in the flow diagram in
Fig 3.

Figure 3: PRISMA flowchart

The Scopus search returned 296 results, with a further 6 sourced manually from other
repositories. In these 302 records there were no duplicates, and a single record was excluded
for lacking an abstract. 301 records were thus assessed for eligibility.

8

The majority of exclusions by title were on the grounds of graph-based optimisation be-
ing the focus of the research. Synonyms for this domain are “combinatorial optimisation”,
“graph search” etc. This includes research into air and road traffic management, and robotic
pathfinding in a grid-based environment. These techniques focus on node-to-node topolog-
ical optimisation, or optimising the node order in a multiple-target setting. Some of the
optimisation methods limited to graphs include Swarm Intelligence (SI) techniques such as
ACO and PSO, Artificial Bee Colony (ABC), Cuckoo Search (CS) and Invasive Weed Op-
timisation (IWO). Many of these articles were returned by the search due to routing and
pathfinding often being used interchangeably.

Another prolific area of research is trajectory planning for serial manipulators. However,
these are excluded because the trajectory is solely a result of the orientation of the joints,
and the base and total length are constant. Other exclusions were for single-stage to orbit
spaceplane trajectory planning, lunar lander hopping trajectories and interplanetary tra-
jectories, which all involve parameterisation of a starting configuration that will result in a
desired final configuration, after considering external effects.

Where the title was not sufficiently explicit to warrant exclusion, the record’s abstract had
to be scrutinised for eligibility. In many cases the increased detail revealed the research’s
non-applicability and a majority of rejections were again due to the research being limited
to graph optimisation in a graph.

With 239 records already excluded by title and abstract, the remaining 62 were studied
to assess relevance by consulting the full text. This process led to another 25 exclusions,
leaving 37 articles for consideration in the literature review.

Of the 301 articles 106 were excluded on the basis of being routing methods navigating
through an existing network, as opposed to path finding in an unconfined search space
(regardless of dimensionality). Another 25 articles applied exclusively to routing within
electronic networks. After the eligibility phase, articles are filtered a final time for valid but
unanticipated reasons. Ten articles were thus excluded on the grounds of relevance, leaving
27 retained articles.

2.2.3 PRISMA Discussion

Figure 4 shows the keyword co-occurrence of the 296 returned articles. Out of 868 keywords
the ones with 4 or more occurrences are visualised. From this, the popularity of swarm
intelligence techniques such as PSO and especially ACO is immediately evident. Machine
learning is the second most common keyword and is followed by artificial intelligence, both
of which frequently occur alongside genetic algorithm. Energy consumption also appears
here, testifying to its importance as an optimisation factor. Mobile robots are the most
common application used as a keyword, in 9 articles.

Twenty retained articles (74%) are constrained to 2D space. Two use a cost surface as a
third dimension (Balogun et al., 2017; Garćıa et al., 2022), and one optimises the x and z
dimension (Pérez-Cutiño et al., 2022). Applications range from paths for UAVs (13 records),
mobile robots (7 records), USVs (2 records) and spacecraft (2 records) to UUVs, ships and
submarine pipelines (1 record each).

PSO is the most popular technique for stochastic optimisation, used in 6 articles. Mokhtari
(2022) generated 3D paths by mapping a B-spline onto PSO-generated points, and validated

9

Figure 4: Keyword co-occurrence network visualisation

solution candidates by measuring their distance from obstacles. Oultiligh et al. (2020)
compared Dijkstra, Voronöı, PSO and Fuzzy Logic and concluded that PSO is superior in
that it yields the shortest possible path, whereas Dijkstra struggles in complex environments
and Voronöı guarantees obstacle avoidance but cannot yield an optimal path. Other common
techniques include deep learning, used by Qie et al. (2019) to plan paths for multiple UAVs
while avoiding threat areas.

Only eight articles discuss 3-dimensional trajectory optimisation and of these, four addition-
ally consider obstacle avoidance. Zhang and Duan (2015) use Predator-Prey Pigeon-Inspired
Optimisation (PPPIO) in a dynamic 3D environment, effectively incorporating a fourth di-
mension. Their novel algorithm is not only an improvement over PIO but was also shown
to outperform PSO and differential evolution (DE).

Ma et al. (2020) and Sundaran (2018) emphasise the importance of path smoothness for
ease of navigation, citing the turning abilities of different vehicles. They use Bézier and
B-spline curve generation respectively to obtain smoothed paths, whereas Zhang and Duan
(2015) use a dynamically feasible path smoothing strategy called κ-trajectories.

Evolutionary algorithms were used in three papers: GA applied to mobile robots in 2D
(Mane & Vhanale, 2019) and UAVs in 3D (Hildemann & Verstegen, 2023), and GP applied
to USVs in 2D (Jing et al., 2022). Thus the literature review suggests that potential exists
for GP applications in 3-dimensional space with obstacle avoidance.

The literature review findings shows that a great deal of research has already been invested
into trajectory optimisation. However, it is overwhelmingly 2D-constrained with only a
tiny minority of articles venturing into the third dimension. This represents a plethora of
potential navigational applications that have yet to be addressed. The majority of pub-
lished research uses swarm intelligence based EA optimisation, and GP based approaches
are severely underrepresented. This leads to the conclusion that a 3D GP trajectory opti-
misation is a novel approach worthy of investigation.

10

3 Methodology

The literature review findings established the scientific background for the rest of the study.
The proposed methodology to support this research is guided by the achievements of ex-
isting research as well as the shortcomings thereof described earlier in Section 2.2.2. GP
is chosen over GA due to its more compact representation and speedier computation. The
problem is extended to three dimensions in order to broaden the potential benefits of its
application. The encoding method of the solution geometries and the transformation into
geographical space are also novel, with no similar methods having been previously devel-
oped. The proposed methodology therefore represents a unique approach to 3D trajectory
optimisation that mainly builds upon the findings of Hildemann and Verstegen (2023), a
co-supervisor of this thesis.

In the simplest terms, the goal is to generate an optimal path from a given start and end point
in three dimensional space without intersecting any restricted areas. These barriers and two
points comprise the geographical inputs. The only other input is the set of parameters
which, to varying extents, affect the outcome and the performance of the optimisation.
Adjusting these input parameters carefully can effectively calibrate the optimisation model
to yield better or quicker results. As output we expect a 3D linestring connecting the origin
and destination points in the most cost-effective manner, avoiding all obstacles.

3.1 Study Area

A section of New York City has been selected as the primary test case. The reason is
threefold: firstly, the study area has shown itself to be appropriate and popular for air
taxi studies (Hildemann & Verstegen, 2023); secondly, it allows a direct comparison of the
results of said prior research with the results of this work, yielding greater insight into its
academic value; and lastly, the data is freely available and has been largely preprocessed
already. The map in Fig 5 shows the study area along with the pathing result of Hildemann
and Verstegen (2023), which this research aims to improve upon.

Clove Lakes Scenario Cunningham Park Scenario

Figure 5: New York City restricted flight areas

The urban area of New York is rife with flight obstacles due to flight regulations (restricted
airspace) and public disturbance (protected airspace). Ground and sea level are the obvious
lower flight limits. However, flights are also restricted to a minimum height of 152.4 m above
buildings, and due to the density of buildings in New York this is the de facto lower limit.
The upper limit imposed by the Federal Aviation Administration (FAA) due to plane air

11

traffic is 213.36 m. Protected areas include schools, cemeteries, recreational areas etc. and
have vertical and horizontal no-flight buffer zones as shown in Table 1:

Land use Vertical Restriction Horizontal Restriction

Airport 600 7620
Hospitality 300 300
University 200 300
Park 300 100
Cemetery 300 100
Recreational Area 300 100
Rooftop 152.4 -

Table 1: Vertical and horizontal restrictions in meters (Hildemann & Verstegen, 2023)

3.2 Data Preparation

The study area has been partially prepared by Hildemann and Verstegen (2023) and an ESRI
file Geodatabase (available at https://github.com/mohildemann/3D-Flight-Route-Optimization)
is ready for use for some test cases. Public city data, made available by Open Data NY,
OpenStreetMap and the Federal Flight Agency, has been processed to yield barriers. Buffer
zones have been created around restricted and protected land use areas. These were then
extruded by the appropriate flight height clearance limits to yield 3-dimensional polygons
of restricted areas. A minimum forbidden airspace exists above all rooftops, and an upper
limit is in effect universally. The ground forms the absolute minimum constraining flight
altitude.

Figure 6: Clove Lakes dataset showing points

A test area containing 17 barrier polygons around Clove Lakes Park in northern Staten
Island was prepared by manually selecting points to be used as start and end points, with
the intention of providing various combinations of obstacles between pairs of points in order
to assess the GP performance. Another scenario was created that includes the whole Staten
Island (42 polygons). The hardest route to find is in the third scenario, in the same area
near Cunningham Park used by Hildemann and Verstegen (2023). The universal height

12

https://github.com/mohildemann/3D-Flight-Route-Optimization

limit was varied or removed to assess the optimisation’s response to changing availability of
the z-dimension.

Figure 7: Data preparation flowchart

Three-dimensional intersection algorithms using only polyhedrons that are convex hulls are
significantly more efficient than algorithms using more complex concave meshes. To use these
routines it is therefore necessary to prepare additional preprocessed datasets, consisting of
only geometric primitives such as faces, convex hulls or triangulated meshes. How this is
done depends on the input format, but generally the 3D barriers are deconstructed into their
parts. Triangles are simply faces limited to three vertices, and convex hulls are simply 3D
meshes without concavities. Figure 7 shows the data preparation process to produce different
3D geometry formats for use in different validation methods. The type of intersection
calculation varies with the barrier geometry: for concave hulls, a barrier is intersected if any
of the vertices of the 3D line are contained within the hull; for faces and triangles, a barrier
is intersected if any of the 3D line segments intersects any of the 2D barrier components.

3.3 Evolutionary Computation Framework

Distributed Evolutionary Algorithms in Python (DEAP) is a framework for developing
evolutionary computation techniques in the Python programming language (Fortin et al.,
2012). The code and data used in this thesis is available at https://github.com/andre-kotze/
gp-trajec. In DEAP, classes exist to typify function trees (syntax trees) as individuals,
consisting of operators and terminals (primitives) that comprise the primitive set (Poli,
Langdon, et al., 2008). A base.Toolbox() instance is created to manage the evolutionary
operators and register functions used in the optimisation. Here the creation, selection,
crossover and mutation methods are specified, and limits are defined as decorators.

Figure 8 shows the generalised GP flowchart. During initialisation, a starting population is
randomly generated according to user-set parameters. These candidate solutions are then
validated by checking whether their intersection with the barriers is an empty set. Valid
solutions are then evaluated i.e. their fitness is quantified. A cost function is called that
measures an individual’s aptness as a solution, according to the optimisation criteria, and
the population is subsequently ranked by fitness. With all the fitnesses known, the best-
performing individual is compared to the stopping criteria. If this solution is sufficiently
apt, the routine terminates and the optimisation is complete. If not, the population is varied

13

https://github.com/andre-kotze/gp-trajec
https://github.com/andre-kotze/gp-trajec

by mating pairs of individuals or randomly mutating genes in an individual. Individuals
with greater fitness have a greater probability of mating, mutating or entering the next
generation unchanged. After this variation, the offspring generated becomes the starting
population of the next generation, and the process repeats.

Figure 8: Genetic Programming methodology flowchart

Variation algorithms are used to vary the parent population to produce the offspring, via
crossover of genes, mutation or both. In DEAP, the VarAnd variation algorithm is so called
because it applies crossover and mutation. The operators are not applied systematically.
Rather, an initial iteration over the population mates consecutive individuals according to
the crossover probability cxpb with the resulting individuals replacing their parents. In
this work the tools.cxOnePoint algorithm is used for crossover, which only swaps a sub-
branch from each tree at one point and therefore the resulting trees have the length that the
other had. A second iteration mutates individuals according to the mutation probability
mutpb with the mutated individuals replacing their unmutated versions. The mutation
method used is tools.mutUniform which selects a random point in the tree and replaces
the sub-branch stemming from this point with a newly generated tree. Thus the offspring
consists of new individuals that are crossed-over, mutated, crossed-over and then mutated,
or unchanged.

After evaluating the fitnesses of the population, selection is done using one of the tournament-
based selection methods tools.selTournament or tools.selDoubleTournament, which it-
eratively selects the best solution from a randomly selected subset of individuals. The

14

double tournament has a second stage where solution size is considered instead of fitness,
and has been shown to effectively control bloat by preferring smaller individuals (Luke &
Panait, 2002). The selection method can take multiple objectives into account to a limited
extent, since the fitness is derived from the cost function where different fitness metrics have
different weights.

3.3.1 Parameterisation

DEAP allows extensive customisation of its internal algorithms, as well as facilitating a
high level of parameterisation. Tuning these settings via experimentation can improve the
optimisation method’s performance by calibrating it to specific use cases, for example where
greater precision or higher speed is required, or where complex scenarios require larger trees
and more iterations. Default values exist for all parameters and are given in Table 2.

For this research an extensive and accessible parameter dictionary is utilised and categorises
the parameters into 5 configuration categories based on the aspect of the model that they
affect:

dataset Spatial input data to use
defaults GP and optimisation settings

validation Validation-specific settings
logging Logging-related settings

visualisation Plotting-related settings

When the starting population is generated, its size is dictated by the pop size parameter.
Population size remains constant throughout the evolutionary process. Population size di-
rectly affects diversity and higher values have greater search potential. However, this also
incurs a significant performance cost. The size of individuals is limited in length and height
by the max length and max height parameters respectively, which limits the number of
nodes in a primitive tree as well as the depth (maximum distance from the top of the tree).
For example, the tree in Figure 2 has a length of 10 and a height/depth of 4. Similar to
population size, larger trees encapsulate more diversity and complexity, but are detrimental
to performance. The init min and init max parameters control the minimum and maxi-
mum length of newly initialised trees, which will have a random length within this range.
Higher values can yield more complex solutions earlier on in the evolution.

Parameter Type Default Description

ngen int 250 Number of generations
mutpb float 0.1 Probability of mutating an individual
cxpb float 0.5 Probability of mating two individuals
nsegs int 100 Number of line segments in the 3D path
patience int 100 Number of generations to wait for improvements
max height int 17 Size limit per individual, by number of levels
max length int 80 Size limit per individual, by length
pop size int 1000 Population size
elitism Bool True Whether to implement elitism
hof size int 10 Number of elite individuals to preserve
adaptive mode Bool True Whether to quantify intersections

Table 2: Genetic programming parameters

The ngen parameter sets the number of planned generations for the optimisation to evolve

15

through. This is the ultimate stopping criterion at which point the program will terminate
regardless of the quality of the optimisation achieved. If no improvement is seen over a
significant number of generations, it can be assumed that the optimisation is practically
complete and that further processing is unnecessary. This number is set by the patience

parameter.

During variation, an offspring population is produced from the parent population by ran-
domly applying crossover and mutation operations. Individuals are looped over sequentially
and two consecutive individuals are crossed over according to the probability cxpb. Af-
ter the mated individuals have been replaced by their two children, a second loop applies
the mutation operation according to the probability mutpb. Higher values lead to greater
differences between parent and offspring populations.

When deriving a curve of finite length from a function tree, it is important to consider the
interval in which to select the curve. The lower and upper x-axis values are thus given
by the start and end parameters. The granularity of the curve i.e. the number of line
vertices, is given by nsegs and is one more than the number of line segments. More vertices
yield a more resolved linestring but significantly affect processing speed. It is conceptually
equivalent to the chromosome length in studies where lines are traditionally encoded.

Top individuals can be selected and saved into the “Hall of Fame (HoF)”, which is updated
each generation after fitnesses have been updated. The HoF preserves the set of best so-
lutions from the whole optimisation and individuals in the HoF can only be replaced by
fitter individuals from subsequent generations. The number of solutions preserved is con-
trolled by the hof size parameter. The elitism parameter determines whether elitism is
implemented, and the number of elite individuals carried over is equal to the HoF size.

To toggle between selection by tournament or double tournament, the dbl tourn param-
eter may be adjusted. The tournsize parameter determines the number of individuals
participating in each tournament. Double tournament takes two additional parameters.
parsimony size defines the weight of the solution size in the second part of the tourna-
ment, and must be a real number in the range [1,2]. fitness first determines whether
the fitness or the size stage of the tournament is held first.

3.3.2 Solution Anatomy

Two degrees of freedom in the pseudo-y and pseudo-z dimension of the solution space allow
individuals to develop increased complexity and greater likelihood of finding valid trajec-
tories in complex obstacle-rich scenarios. These can be thought of as lateral and vertical
deviation from the straight line (pseudo-x) connecting the origin and destination point. To
yield these truly 3-dimensional lines an additional input argument is added to the primitive
set so that the function tree accepts two arguments. These can then be individually evalu-
ated by setting the other value to 0 (or any other arbitrary value) to produce two distinct
outputs.

Smoothness and solution granularity is an important factor for navigability of the trajectory
due to the differing turning radii and attainable ascent gradients of UAVs. It is also beneficial
in terms of energy cost to navigate along smoother routes (Ma et al., 2020). Hildemann and
Verstegen (2023) used a set of vertices (3D points) with a corresponding set of smoothed lines
connecting them, whereas Ma et al. (2020) used a set of control points to constrain a Bézier
curve. In this work, the smoothness derives from the curve of the functions represented by

16

the genetic programs, and the granularity depends directly on the ratio of the trajectory
length and the nsegs parameter.

3.3.3 Bloating

As a result of continuous variation over generations, tree size generally increases dispro-
portionately to fitness. This phenomenon is known as bloat (Poli, Langdon, et al., 2008;
Whigham & Dick, 2009) and can drastically reduce the optimisation performance. Four
methods of bloat control are implemented in this work: a global hard limit on the size of
trees, double tournament selection, size as part of the cost function, and an elitist strategy.
The global limit suggested by Koza (1992) is 17, but allows for enormous programs up to
131, 072 (217) in length. Limits of 8, 12 and 17 are used in this study in combination with
other bloat control methods.

3.3.4 Elitism

While the average fitness generally improves over generations, high-fitness “elite” individuals
may be lost if their offspring are less fit. The stochastic nature of the optimisation means
that it is just as likely for offspring to be better as it is for them to be worse. Elitism is
implemented to prevent any loss of fitness by preserving elite individuals unchanged for the
next generation.

At its least influential, elitism prevents any deterioration of the population’s maximum
fitness. It is therefore guaranteed that the best individual ever will be in the final population.
Elitism also has the potential to accelerate the optimisation by increasing the number of
pairing instances that high-fitness individuals participate in, and even counteracting the
propensity for bloat (Poli, McPhee, et al., 2008a; Poli, McPhee, et al., 2008b). In this work,
elitism is enabled by default, but can be disabled. The number of elite individuals retained
per generation is determined by the hof size parameter, and the elite fraction is defined
as the ratio of hof size to pop size. Increasing the elite fraction can prove beneficial, but
also carries a risk of premature convergence due to the corresponding cost to diversity.

3.3.5 Stopping Criteria

Evolution will continue until one of the stopping criteria is reached. The simplest stopping
criterion is the end of the specified number of generations. If the patience parameter is set,
the evolution will terminate if no improvement is seen in the given number of generations.
Alternatively, termination can be triggered once the first valid solution is found (useful for
highly complicated environments), or once the fitness reaches a specified threshold (useful
for time-critical scenarios).

3.4 Solution Transformation

The individual validation procedure starts with decoding the chromosome and compiling the
program into a callable function. This function is then plotted in 3D space in an arbitrary
interval to yield a finite path between two points (Figure 9). In order to validate this path,
it is transformed to map onto the problem interval in geographic space. Once this path
connects the input start and end points, its suitability can be assessed according to the
chosen criteria. For the transformation procedure, the start point, end point and number
of segments are required. The process is outlined below:

17

Figure 9: Solution transformation procedure

1. translate to origin

2. normalise

3. rotate about origin

4. scale to geographic scale

5. translate to destination

To facilitate rotation about the origin, and to anchor the start point, the solution curve
is translated to the origin. The displacement of the start point coordinates is used as the
translation magnitude:

Translation: Tσx,σy,σz

1 0 0 0
0 1 0 0
0 0 1 0
σx σy σz 1

The next step is normalisation of the vector, which is simply dividing the vector by its
magnitude. Here we consider the direct displacement from the start point to the end point
(i.e. the net displacement of the path) as the vector:

Normalisation: û = u
|u|

After normalising we are left with a unit vector that we want to align with the geographic
displacement by rotation. The simplest method is to measure the angles between the two
vectors in each plane separately, using arctan2, and negate the difference. The vector can
then be rotated through this angle using Euler rotation, in each plane separately:

Rz,θ =

cos(θ) sin(θ) 0 0
−sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

Ry,θ =

−sin(θ) cos(θ) 0 0

0 0 1 0
cos(θ) sin(θ) 0 0

0 0 0 1

18

Rx,θ =

0 0 1 0

cos(θ) sin(θ) 0 0
−sin(θ) cos(θ) 0 0

0 0 0 1

However, this method introduces error due to gimbal lock, a well-known limitation in 3D
rotation using Euler angles (Mansur et al., 2020). Gimbal lock occurs when two axes align
during rotation in 3 dimensions and cause the rotational system to lose a degree of freedom.
Instead of three consecutive matrix calculations for the three axes, quaternions can be used
to rotate the vector in a single direction a single instance. This translates to a faster and
more precise rotation operation.

Quaternions (versors) provide a convenient way of expressing and applying rotation in 3D
space using imaginary numbers. They have four components i, j, k, w: where w is the
magnitude of the rotation and i, j, k are a unit vector in imaginary space, representing the
axis of rotation. Unlike rotation matrices they are not susceptible to gimbal lock, and since
they have only four components and are applied only once, they are also computationally
more efficient than matrices (Huynh, 2009).

In order to align the solution curve and the geographic interval, both must first be translated
to the origin and normalised as vectors i.e. only the start- and end-points are used in this
stage, to create a pair of unit vectors. The quaternion initialisation requires two arguments:
the overall axis of rotation in ijk space (equal to the cross product of the two unit vectors)
and the angle of rotation (scalar, equal to the dot product of the two unit vectors). Once
the quaternion is created, the same magnitude of rotation is applied to each vertex of the
solution line to align it with the geographic interval.

Rotation: R =

1− 2s(q2j + q2k) 2s(qiqj − qkqr) 2s(qiqk + qjqr)
2s(qiqj + qkqr) 1− 2s(q2i + q2k) 2s(qjqk − qiqr)
2s(qiqk − qjqr) 2s(qjqk + qiqr) 1− 2s(q2i + q2j)

The penultimate step is scaling the curve to the size of the geographic interval. For this,
a simple scaling matrix is used, with the scale factor k equal to the magnitude of the
geographic interval divided by that of the solution curve.

Scaling: Sk =

k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 1

Finally, the result is translated from the origin to map onto the geographic space. Once
there, it can be validated and evaluated.

3.5 Path Validation

In this stage, the geographic path is plotted in the same space as the 3D barriers and val-
idated by checking whether any intersection exists between it and the barriers. Several
approaches can be used in the validation process, varying in accuracy and performance.
Performance is affected by the intersection algorithm used as well as the geometry repre-
sentation: the solution can be considered as a collection of line segments (high performance

19

cost) or vertices (low cost). Likewise, the barriers can be considered as 3D meshes (high
cost), collections of concave hulls (medium cost) or collections of 3D polygons with a height
attribute (low cost). Another possibility is using 2D polygons with a height attribute. This
has a low performance cost but limits the third dimension to a single range per polygon.

Accuracy is affected similarly by geometric representation. A path’s vertices might not
intersect a barrier, although its segments do (Hildemann & Verstegen, 2023). More intricate
geometries can be represented with 3D meshes than with convex hulls or polygons.

In this work, two main approaches to 3D intersection are considered. The first is a simpli-
fied two-and-a-half-dimensional (2.5D) geographic intersection, where the x-y intersecting
geometry (if it exists) is evaluated separately in the z-dimension. The restricted height
range is taken from the barrier data attributes. Although fast and applicable to many real
scenarios, this approach is limited in its representation of complex 3D environments.

The second approach is a fully 3-dimensional intersection using convex hulls and points. It
is therefore limited to convex geometries (although concave shapes can be decomposed is
an additional preprocessing step) and is susceptible to omission errors due to its use of the
route vertices instead of line segments.

Invalid paths are either deleted or their fitness severely penalised, depending on the model
configuration. Deleting invalid individuals ensures that the population only contains viable
solutions that will continue to be optimised. However, as the complexity of a scenario
increases the likelihood of initialising a valid individual decreases, and it is not unusual for
no valid solutions to ever be randomly initialised. Penalising invalid routes indicates to the
model the undesirability of such routes, but allows the evolution to continue by allowing the
individual to be varied.

3.6 Fitness Evaluation

Following validation, paths are evaluated for fitness, primarily by measure of length. Addi-
tional fitness factors, or optimisation objectives, are incorporated in the cost function. In
this way a ranking within the generation is established for the selection operation to operate
on.

An individual’s fitness is derived directly from what is returned by the cost function. The
first consideration is the total path length, the traditional subject of path optimisation.
Other metrics with adjustable weight include solution size and path variability in the z-
dimension (this has a direct and significant energy cost). Path length is not measured
directly in 3D, as the cost of moving through the z-dimension is not equivalent to moving
parallel to the surface. Length is measured in the x-y plane and variation in the third dimen-
sion is measured separately, as absolute cumulative displacement. Thus vertical movement
tends to become minimised and the ratio between these measurements can be adjusted.

Metric Weight Identifier Description
Length 0.85 l Path length
Altitude variation 0.1 z Cumulative absolute z-dimensional dis-

placement
Size 0.05 s Chromosome length * height

Table 3: Variables considered in the cost function

20

4 Results

In two dimensions, the GP method is robust against complex obstacle environments and
usable results are obtained in a relatively short time. Results in 3D may be quicker in
some cases, if a simple route over nearby obstacles is available, although the time per
evaluation is greater. Accounting for the number of generations, the duration of 2- and
3-dimensional optimisation is mainly affected by population size, geometry size (number
of vertices), tree size and scenario complexity. The quality of the optimisation is mainly
affected by the broadness of the search, which depends on variation and selection (including
elitism) settings.

Figure 10 shows two trajectories evolved to connect points b and bc. The 2D trajectory is
clamped to the ground and must navigate between and around the barriers, whereas the 3D
trajectory has the added ability of passing over barriers whenever doing so would shorten
the route. Due to the innate smoothness of generated trajectories and the weight of height
minimisation, the 3D route does not go over the obstacles nearest to the start and end
points. Instead it circumvents them, similar to the 2D route, and only directly passes above
the obstacles near the centre of the trajectory.

Figure 10: Comparison of 2D (brown) and 3D (green) trajectories.

Varying the maximum tree height shows a clear advantage for higher values in terms of
fitness (Figure 11). Significant variability of the 95% confidence interval continues into later
generations, which hints at local minima being encountered, and the propensity for this is
directly correlated with the tree height limit. Although evaluation time increases propor-
tionally to tree size, the increased diversity of larger trees allows them to outperform more
restricted trees. In the initial 100 generations the middle value is superior, before being
mostly superseded by the smallest trees up until 190 generations, and the optimisation is
finally dominated by the largest trees. This suggests that parameters have distinct advan-
tages at different stages of the evolution. Lower height limits can yield quicker solutions,
but do so inconsistently. Higher limits ensure a finer convergence, at the expense of solution
size and optimisation speed.

21

Fitness Size Evaluation Time

Figure 11: Effect on fitness, size and evaluation time for maximum tree height 8 (blue), 12
(orange) and 17 (green).

Figure 12: Trajectories with no height limit (blue), a 500 m limit (purple), and the actual
213 m limit (yellow). Compare with Hildemann and Verstegen (2023) (green).

Figure 12 shows the trajectories generated after 1000 generations, with quantified intersec-
tions, compared to the results of Hildemann and Verstegen (2023). Most striking is the
difference in length and smoothness. Under identical constraints (height limitation 213 m)
the GP line is 12,469 m in length, compared to 12,513 m. This is a minuscule reduction in
length, however the gradual curvature in the GP solution presents a significant reduction in
flight time and energy cost due to the increased acceleration and deceleration required to
navigate sharp changes in heading.

Varying the global height limit also shows how the algorithm is able to adapt to different
scenarios. In the real world a 213 m flight height limit exists, which forces the optimisation
to navigate around the 300 m-high restricted areas. The 500 m limit represents a situation
where the airport zone is completely impassable, but the 300 m high zone over the park can
be flown over. With no global height limit, the optimal route goes directly over the airport
zone.

22

4.1 Initialisation and Convergence

Population size is one of the two major numerical parameters of GP (Koza, 1992). Poli,
Langdon, et al. (2008) recommend using the highest value that can be gracefully handled
by the system in use. Figure 13 shows the outcomes of four different values for population
size with all other parameters kept constant. It shows a clear improvement in optimisation
efficiency but a direct cost to evaluation time, as expected. Over 10 optimisations the larger
populations converge more finely in the minimum fitness, but diverge more in the evaluation
time.

Fitness Evaluation time

Figure 13: Optimisation and duration for population sizes 300 (blue), 500 (orange), 1000
(green) and 2000 (red).

Considering the stochastic nature of the initialisation, variation and selection operations, it
is not surprising that optimisations with the same inputs can vary significantly. In order to
visualise the convergence of the evolutionary process, multiple optimisations for the same
problem are computed, varying the random seed state each time. The result is a relatively
high diversity in the fitness values in earlier generations, which eventually converges as the
objective is reached. The 95% confidence intervals in Figure 14 show that optimisations
with different starting states converge to a near-optimal solution after 50 generations for
the scenario shown in Fig. 14 (a) (CoV = 0.2%), and 20 generations for the scenario in Fig
14 (b) (CoV = 1.1%).

23

(a)

(b)

(c)

Figure 14: Convergence in three scenarios, showing the 95% confidence interval. Map
trajectories correspond to the best (green) and worst (red) outcomes of 10 optimisations.

In the third scenario (c), the optimisation fails to converge after 400 generations (CoV =
21.9%). Due to the complexity of this scenario the search is vulnerable to local optima, and
the initial state has a significant effect on the final outcome. The minimum fitness after 400
generations ranges from 11979 m to 25434 m

4.2 Variation and Selection

Crossover and mutation directly affect the diversity of the population, which is effectively
the search radius. Additionally, crossover can produce more specialised offspring by com-
bining the beneficial traits of both parents. Figure 15 shows how optimisation performance
increases with a higher probability of both crossover and mutation. This illustrates how
larger values allow for a quicker and broader search and may aid in avoiding or escap-

24

ing local minima. Increasing these values also increases the processing time because more
evaluations are required for the higher number of altered offspring.

Considering size in the selection process, as an additional tournament stage, means that
smaller solutions are preferred if fitness is similar. The results in Figure 16 show the reduced
average size in the double tournament experiment, but also show a slight improvement in
the optimisation.

Crossover Mutation

Figure 15: Optimisation convergence for crossover probabilities of 0.2 (blue), 0.5 (orange)
and 0.9 (green), and mutation probabilities of 0.05 (blue), 0.1 (orange) and 0.25 (green).

Size Fitness

Figure 16: Size and fitness using tournament (blue) and double tournament (orange) selec-
tion.

4.3 Elitism

Enabling elitism can improve convergence speed due to its preservation of the best individu-
als. The best fitness in the population is therefore protected from degrading with continued
evolution. Optimisation results show that the minor loss of diversity is offset by the increase
in speed and quality, depending on the size of the elite fraction (see Figure 17). However, the
effect is not proportional: after 100 generations, elitism with 3% elite fraction outperforms
10%. Elitism with 10% of individuals preserved performs the best in terms of optimisation
speed and solution size.

25

Fitness Tree size

Figure 17: Elitism effect with elite fraction 0% (blue) 1% (orange), 3% (green), and 10%
(red). Average of 10 optimisation runs.

Effective bloat control using elitism is well-documented (Poli, McPhee, et al., 2008a; Whigham
& Dick, 2009) and the effect of elitism on solution size, especially in later generations, is
also shown in Figure 17. After 120 generations tree size starts to proliferate grossly, and it
can be seen that this bloating is constrained proportionally to the elite fraction.

4.4 Quantifying Validity

The first generations tend to contain more invalid solutions, and once the first valid tra-
jectories are found, an evolutionary process of refinement centred around these trajectories
is triggered. In very hard to navigate scenarios, with densely packed barriers or narrow
passages, the algorithm is unlikely to randomly land on a valid solution that can then be
refined. Thus the rough-stage optimisation fails and the binary validation method is inef-
fective. Hildemann and Verstegen (2023) circumvents this problem by “seeding” vertices
within a navigable channel, and then using GA and a repair mechanism to refine this rough
progenitor trajectory. This requires some foreknowledge of the barrier layout and a more
automated and potentially generalisable solution is for the algorithm to recognise such nav-
igable channels by itself. Thus, in order to mould the trajectory into the allowed airspace
of a highly complex environment, it is necessary to nudge the optimisation into the right
direction by giving it more explicit feedback. Solutions that intersect the barrier geometry
to different extents would then have to be penalised differently i.e. the validation criterion
must be quantified.

Figure 18: Solutions only obtainable with quantified intersection.

26

Towards this end, an additional parameter was introduced to “allow” intersection. Enabling
the adaptive mode parameter means that the fitness of invalid/intersecting trajectories is
not identically calculated, but depends on the amount of intersection. Trajectories that
intersect barriers over most of their length will thus be less fit than those that intersect only
in a small part. By discriminating between solutions based on the size of the intersecting set,
the refining evolutionary process can begin before a valid solution is found. This refinement
is then driven by incremental improvements in fitness over incremental reductions in the size
of the intersecting set. The algorithm is then able to find more intricate solution trajectories
since it is able to know, from the size of the intersection, when it is evolving in the right
direction.

Figure 19: Optimisation with total invalidation (top) and flexible invalidation (bottom).

Cases have been observed where optimisation was unable to generate a valid solution due
to the minimum required complexity of the solution. Figure 18 shows one example of how
intersection quantification can “push” evolution towards a valid solution. This method is
significantly slower because all intersections between the trajectory and barriers are mea-
sured and summed, instead of invalidating the trajectory after the first intersection is found.
Figure 19 shows how quantifying the intersection facilitates the adaptation by encouraging
individuals to adapt gradually to a niche. Since these solutions are not completely inval-
idated, it may happen that the final solution is invalid, having only minimised but not
eliminated the amount of intersection. To avoid this, the intersection cost parameter
may be adjusted to impose a sufficient penalty to evolve away from even small intersections,
towards a fully valid trajectory.

4.5 Geometry Complexity

The nature of the validation algorithm is such that every barrier is compared to every part
of the solution geometry to confirm non-intersection, unless an intersection is encountered.
Therefore, barrier geometries are processed continuously in memory and their size signifi-
cantly affects the speed of validation. Simplifying barrier geometries can reduce the number
of vertices drastically, with no appreciable or significant loss of information. Decimating
geometries using the Douglas-Peucker algorithm can yield nearly functionally identical ge-
ometries with a much lighter memory requirement. Figure 20 shows a barrier polygon
simplified with a maximum deviation of 10 m from the original, with the number of vertices
reduced from 322 to 29. Total vertices in the entire set of polygons is reduced from 3218 to

27

284 (91%). Alternatively the geometries can be generalised given a threshold tolerance, to
yield bounding geometries that are marginally larger but geometrically simpler. It can also
be argued that this approach imposes an additional safety factor by slightly buffering the
actual restricted zone. The result, however, was a mere 5% reduction in processing time for
the simplified polygons.

Figure 20: Vertex count comparison before (left) and after (right) geometry simplification.
The graph shows the evaluation time for unsimplified (blue) and simplified (orange) geome-
tries.

The optimal number of vertices to use depends on the scale of the area under study, since the
vertex density along the trajectory depends directly on its length. Figure 21 shows the vertex
density along a 9,000m route with approximately 9m per segment and 90m per segment,
along with the optimisation duration in each case. Computation time scales proportionally
with the vertex count and here a nearly 70% drop in speed is observed for a tenfold increase
in vertex count.

Figure 21: Trajectory waypoints with the number of segments between 1000 and 100.

28

4.6 Comparison of Validation Algorithms

Three validation methods for 3D intersections were developed, each with their respective
strengths and weaknesses. They were compared by applying all three to the same simple
trajectories within the Clove Lakes scenario. The Shapely-based 2.5D method is the fastest,
ranging from 20 to 50 seconds for a 100-generation optimisation. The first SciPy-based
method using Delaunay simplices was the slowest, requiring 2 to 5 hours for the same task.
The second SciPy method using convex hulls required between 40 and 100 minutes.

29

5 Discussion

5.1 Function tree representation

The operators in the primitive set have been selected in order to maximise the variabil-
ity achievable relative to the program size. Basic arithmetic functions addition, subtrac-
tion, multiplication, division and negation are used in conjunction with the sine and cosine
trigonometric functions to produce solution curves that can theoretically match any trajec-
tory shape. Other functions were tested, but ultimately excluded due to buffer overflows
and performance degradation, and include roots, logarithms, exponents, powers and the
hyperbolic tangent. Ephemeral constants consisting of floating point numbers were tested,
but degraded performance. Integer ephemeral constants in a broader range can be used,
but their effect on the optimisation has not been investigated.

In this work loosely typed GP is used, which allows any primitive or terminal to be passed
as an argument to a primitive. Using strongly typed GP allows additional primitives to
be incorporated that take or return, for example, Booleans. In such an implementation
conditionals such as if then else, operators such as xor or Boolean terminals could also be
used in the syntax tree. The efficacy of strongly typed GP applied to trajectory optimisation
also remains to be investigated.

An alternative approach exists for creating genetic programs with two distinct outputs when
given the same input i.e. varying a trajectory in two dimensions. In this work the primitive
set is augmented with a second input argument, and alternatively passing a placeholder
argument allows two separate values to be extracted. However, individuals can also be
initialised as pairs of two function trees that evolve in tandem, with a single fitness value
calculated for the pair. The crossover and mutation functions then need to be similarly
modified to process the function pairs. This approach is more difficult to implement and
tends to larger solutions, and its efficacy has not been investigated.

5.2 Solution validity

Ideally a population of valid trajectories would be initialised before the evolutionary process
begins. Subsequent generations would then refine these individuals by adapting them more
precisely to the problem. However, in highly obstructed routes it can be nearly impossible
to randomly generate a valid geometry due to the complexity required. In these cases
invalid solutions are kept and their fitness evaluated, with a penalty applied proportional
to the “magnitude” of their invalidity. Doing so allows the evolution to find niches, or
to incrementally solve a very complex optimisation that would not be possible without
informative feedback. Another option is to seed waypoints within the navigable airspace
by generating random points in the study area, and using these as checkpoints for the
optimisation.

5.3 Calibration

Parameter influence was discernible to various extents, and it was possible to broadly cal-
ibrate the model to differing use cases by prioritising speed, accuracy or search radius.
Certain parameters proved to be disproportionately significant, especially population size
and parameters directly enhancing diversity.

30

Taking into account the results of testing different parameter values it is possible to identify
configurations that are more or less optimally suited to the 3D trajectory optimisation
problem. Population size should be as large as possible, preferably 1000 or more, and
no less than 300. Size limits and variation probabilities depend on the complexity of the
scenario, but may be safely increased to 17 for tree height, 90% for crossover and 25% for
mutation. Elitism should be implemented with an elite fraction of 5-10%.

5.4 Applicability and scalability

The case studies presented vary in trajectory length from 5 to 25 km and represent a common
application for low-altitude routing over moderately large distances in a highly obstructed
space. In the areas studied, the universal height limit has been ignored in some cases in
order to demonstrate the ability of the method to find trajectories over restricted areas.

It is possible to incorporate topographic models to incorporate the terrain as an additional
restriction. In 2 dimensions the method can be applied to maritime routing, robot path
planning or autonomous vehicles. In 3 dimensions the method can work for UAVs and
submarines.

Scaling the method to much larger areas should have a very limited effect on speed, provided
that the geometrical complexity is not excessive. Performance depends on the number
of features and vertices within features, as well as the granularity of the trajectory and
the desired coordinate precision. Geometries that are geographically larger or smaller will
require the same amount of computational effort if the feature and vertex counts are similar.

5.5 Limitations and potential solutions

The tendency towards local optima can be effectively offset by larger population sizes and
increased diversity. This translates directly into a slower optimisation but guarantees more
consistent results despite the random nature of the initialisation and variation routines.
The broadness of the search and the quality of the end result relies more on the starting
parameters than on the length of the optimisation.

Very complicated trajectories can have an enormous computational cost, due to the tendency
for bloating to occur and the limited feedback available to the selection algorithm. In these
cases the optimisation is no more than a random search. Hildemann and Verstegen (2023)
uses a seeding method to create a progenitor trajectory that is then refined incrementally
using GA and repair. Although this method works well, the seeding requires prior knowledge
of the environment. Quantifying intersection solves this problem in the scenarios tested, but
requires significantly more solving time. One semi-automatic method of accommodating
problems that require a very wide lateral or vertical deviation is to iteratively search for the
nearest non-intersecting point in the plane that contains the midpoint of the trajectory start
and end points and is normal to the line connecting them. Using the distance of this point
and the displacement between the start and midpoint, a stretching factor can be calculated
and used to exaggerate the route geometry in a certain direction. In this way the algorithm
could yield trajectories with very wide turns early on, allowing the rest of the optimisation
(refinement) to be triggered.

Where the length of intersection is measured in the evaluation routine (when adaptive mode
is enabled) the algorithm is currently susceptible to major errors if overlapping polygons

31

are present. Parts of the trajectory that intersect multiple polygons will contribute to the
total intersection length for each polygon. Care must be taken that no barrier geometries
overlap if this setting is enabled.

One possible performance augmentation is spatial indexing of the barrier geometries. With
this implemented, non-intersecting barriers can be identified without calling an intersection
algorithm if a barrier is sufficiently distant. This can potentially speed up the validation
process, which accounts for 85-95% of the processing time.

PostGIS is a popular geospatial extension for PostgreSQL that supports 3D geometries
and 3D geometric predicates. Barriers can be represented as 3D polyhedral surfaces or
triangulated irregular networks, and trajectories as 3D line segments (Real et al., 2019). It
should be possible to recreate this research using geographic objects stored in a database
and substituting the 3D intersection algorithm with the equivalent function in PostGIS.

It is not necessarily required for outputs to be converted to geographic lines before their
intersection status can be established. With barriers modelled as sets of planes and paths
as simple 3D linestrings, it is possible to run the intersection check in a purely geometric
(mathematical) space. Comparison of this method with an explicitly geographical method
will yield an indication of their respective merits. It is also possible to compute the geo-
graphic trajectory length without converting to a geographic format, by scaling the curve
with the ratio of the size of the geographic interval to the size of the interval in the solution
space.

Another promising prospect is meta-evolutionary algorithms, wherein a GA is used to opti-
mise the parameters of a GP. The calibration done during this research could theoretically
be done to a more exhaustive extent by an evolutionary algorithm operating over repeated
runs of the same optimisation. Similar to this is co-evolutionary algorithms that take into
account multiple UAVs, and have the added condition of non-collision with other UAVs
while travelling the optimised route.

The cost function is able to incorporate four objectives with varying weights, although
overall trajectory length is the dominant fitness criterion. For improved multi-objective
optimisation, it is necessary to alter the method of selection in order to obtain a Pareto front.
NSGA-III is a novel non-dominated sorting approach, based on NSGA-II (used successfully
by Hildemann and Verstegen (2023) for 3D routing) that has shown its effectiveness with
up to 15 objectives (Deb & Jain, 2013), and presents a promising research opportunity for
3D trajectory optimisation in the future.

32

6 Conclusion

In this work, a novel approach to the trajectory optimisation problem in 3D was proposed,
using genetic programs to encode geometries and applying selective pressures to minimise
the cost of the route while avoiding intersection with obstacles. The method was applied to
two case studies in New York with widely differing levels of navigational difficulty, and with
different constraints imposed to assess the adaptability of the algorithm.

The literature suggests that trajectory optimisation is a well-studied topic and that vari-
ous methods using artificial intelligence are in current employment, including evolutionary
algorithms. However, it is also very clear that most current methods are limited to pla-
nar environments, discontinuous spaces, or both. Furthermore, the studies addressing the
problem in three dimensions and continuous space have been limited in terms of speed
and automaticity. A promising research opportunity therefore exists in applying genetic
programming to the trajectory optimisation problem.

After devising a method of evolving functions and transforming them into geographic tra-
jectories, it was possible to evolve geographic trajectories in place and subsequently answer
the research questions. The syntax-tree representation of functions encoding curves proved
to be able to represent highly variable shapes to match complicated environments rich in
obstacles. These trees are also easily processed and stored, and amenable to manipulation
by evolutionary processes. Compared to Hildemann and Verstegen (2023) the optimisa-
tion improved upon the computational requirement, and allowed results to be obtained in a
much shorter time. The optimisation process was successful in every use case presented, and
showed a reliable convergence over numerous experiments. The solutions are also lightweight
and the bloat-control methods implemented were able to minimise their size and maximise
their processing speed.

In complex use cases it was necessary to guide the evolution towards validity, as in the
presence of too many barriers the first-generation initialisation of a valid geometry becomes
exceedingly unlikely. An adaptive method, which incorporates the length of intersection
into the cost function, was able to find heuristically optimal trajectories in very confined
spaces. An alternative to this may be to construct a seed function that operates in the
initialisation process, to increase the diversity in first generation individual creation.

Three methods of 3D geometry intersection were compared, with a clear inverse relationship
between processing speed and geometry complexity. The shapely-based intersection evalua-
tion method is faster, but restricts the resolvable detail of the third dimension. A significant
performance cost accompanied the fully 3D methods, and as a result these may be imprac-
tical in some use cases. The 3D representation of barrier geometries is limited to convex
shapes, although this only means that additional preprocessing is required to accommodate
concave polyhedrons. Full mesh geometry support is an opportunity for future work, as is
the investigation into the possible benefit of GPU processing.

This research not only showcases the versatility of GP, but also demonstrates the possibility
of solving spatial optimisation problems where the form of the solution being found differs
widely from the final form. The only requirement is that the solution, or an encoded form
of the solution, is derivable from a function.

33

References
Ait Saadi, A., Soukane, A., Meraihi, Y., Benmessaoud Gabis, A., Mirjalili, S., & Ramdane-

Cherif, A. (2022). Uav path planning using optimization approaches: A survey.
Archives of Computational Methods in Engineering, 1–52.

Alves, N., Ferreira, M. A. S., Colombini, E. L., Da Silva Simoes, A., et al. (2020). An
evolutionary algorithm for quadcopter trajectory optimization in aerial challenges.
2020 Latin American Robotics Symposium, 2020 Brazilian Symposium on Robotics
and 2020 Workshop on Robotics in Education, LARS-SBR-WRE 2020.

An, P. (2018). Path optimization method of autonomous intelligent obstacle avoidance for
multi-joint submarine robot. Journal of Coastal Research, (82 (10082)), 288–293.

Baker, B. M., & Ayechew, M. (2003). A genetic algorithm for the vehicle routing problem.
Computers & Operations Research, 30 (5), 787–800.

Balicki, J. (2006). Multicriterion genetic programming for trajectory planning of underwater
vehicle. IJCSNS, 6 (12), 1.

Balogun, A.-L., Matori, A.-N., Hamid-Mosaku, A. I., Umar Lawal, D., & Ahmed Chandio,
I. (2017). Fuzzy mcdm-based gis model for subsea oil pipeline route optimization:
An integrated approach. Marine Georesources & Geotechnology, 35 (7), 961–969.

Behzadi, S., & Alesheikh, A. A. (2008). A pseudo genetic algorithm for solving best path
problem. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 3.

Cakir, M. (2015). 2d path planning of uavs with genetic algorithm in a constrained envi-
ronment. 2015 6th International Conference on Modeling, Simulation, and Applied
Optimization (ICMSAO), 1–5.

Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with
box constraints. IEEE transactions on evolutionary computation, 18 (4), 577–601.

Edison, E., & Shima, T. (2011). Integrated task assignment and path optimization for
cooperating uninhabited aerial vehicles using genetic algorithms. Computers & Op-
erations Research, 38 (1), 340–356.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research,
13, 2171–2175.

Garćıa, A. E., González, H. E., & Schupke, D. (2022). Hybrid route optimisation for maxi-
mum air to ground channel quality [31]. Journal of Intelligent and Robotic Systems:
Theory and Applications, 105 (2).

Garg, M., Kumar, A., & Sujit, P. (2015). Terrain-based landing site selection and path
planning for fixed-wing uavs. 2015 international conference on unmanned aircraft
systems (ICUAS), 246–251.

Garip, Z., Karayel, D., & Erhan Çimen, M. (2022). A study on path planning optimization of
mobile robots based on hybrid algorithm. Concurrency and Computation: Practice
and Experience, 34 (5), e6721.

Hanshar, F. T., & Ombuki-Berman, B. M. (2007). Dynamic vehicle routing using genetic
algorithms. Applied Intelligence, 27 (1), 89–99.

Hildemann, M., & Verstegen, J. A. (2023). 3d-flight route optimization for air-taxis in urban
areas with evolutionary algorithms and gis. Journal of Air Transport Management,
107, 102356.

34

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory anal-
ysis with applications to biology, control, and artificial intelligence. University of
Michigan Press.

Hu, X.-B., Wu, S.-F., & Jiang, J. (2004). On-line free-flight path optimization based on im-
proved genetic algorithms. Engineering Applications of Artificial Intelligence, 17 (8),
897–907.

Huynh, D. Q. (2009). Metrics for 3d rotations: Comparison and analysis. Journal of Math-
ematical Imaging and Vision, 35, 155–164.

Jing, Y., Luo, C., & Liu, G. (2022). Multiobjective path optimization for autonomous land
levelling operations based on an improved moea/d-aco [106995]. Computers and
Electronics in Agriculture, 197.

Kala, R. (2012). Multi-robot path planning using co-evolutionary genetic programming.
Expert Systems with Applications, 39 (3), 3817–3831.

Kim, H., Kim, S.-H., Jeon, M., Kim, J., Song, S., & Paik, K.-J. (2017). A study on path
optimization method of an unmanned surface vehicle under environmental loads
using genetic algorithm. Ocean Engineering, 142, 616–624.

Koza, J. (1992). On the programming of computers by means of natural selection. Genetic
programming.

Kumar, A., et al. (2014). Efficient hierarchical hybrids parallel genetic algorithm for shortest
path routing. 2014 5th International Conference-Confluence The Next Generation
Information Technology Summit (Confluence), 257–261.

Luke, S., & Panait, L. (2002). Fighting bloat with nonparametric parsimony pressure. In-
ternational conference on parallel problem solving from nature, 411–421.

Ma, J., Liu, Y., Zang, S., & Wang, L. (2020). Robot path planning based on genetic al-
gorithm fused with continuous bezier optimization. Computational intelligence and
neuroscience, 2020.

Mane, S. B., & Vhanale, S. (2019). Genetic algorithm approach for obstacle avoidance
and path optimization of mobile robot. In Computing, communication and signal
processing (pp. 649–659). Springer.

Mansur, V., Reddy, S., Sujatha, R., & Sujatha, R. (2020). Deploying complementary filter to
avert gimbal lock in drones using quaternion angles. 2020 IEEE International Con-
ference on Computing, Power and Communication Technologies (GUCON), 751–
756.

Meng, H., & Xin, G. (2010). Uav route planning based on the genetic simulated annealing
algorithm. 2010 IEEE International Conference on Mechatronics and Automation,
788–793.

Mokhtari, S. A. (2022). Fopid control of quadrotor based on neural networks optimiza-
tion and path planning through machine learning and pso algorithm. International
Journal of Aeronautical and Space Sciences, 1–16.

Oultiligh, A., Ayad, H., Elkari, A., & Mjahed, M. (2020). Path planning using particle swarm
optimization and fuzzy logic. International Conference on Artificial Intelligence &
Industrial Applications, 239–251.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D.,
Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., et al. (2021). The prisma
2020 statement: An updated guideline for reporting systematic reviews. Systematic
reviews, 10 (1), 1–11.

35

Pérez-Cutiño, M. A., Rodŕıguez, F., Pascual, L. D., & Dı́az-Báñez, J. M. (2022). Ornithopter
trajectory optimization with neural networks and random forest [17]. Journal of
Intelligent and Robotic Systems: Theory and Applications, 105 (1).

Pezer, D. (2016). Efficiency of tool path optimization using genetic algorithm in relation to
the optimization achieved with the cam software. Procedia Engineering, 149, 374–
379.

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic
programming.

Poli, R., McPhee, N. F., & Vanneschi, L. (2008a). Analysis of theeffects ofelitismonbloat
inlinear and tree-basedgenetic programming. In Genetic programming theory and
practice vi (pp. 1–20). Springer.

Poli, R., McPhee, N. F., & Vanneschi, L. (2008b). Elitism reduces bloat in genetic pro-
gramming. Proceedings of the 10th annual conference on Genetic and evolutionary
computation, 1343–1344.

Qie, H., Shi, D., Shen, T., Xu, X., Li, Y., & Wang, L. (2019). Joint optimization of multi-uav
target assignment and path planning based on multi-agent reinforcement learning.
IEEE access, 7, 146264–146272.

Rath, A. K., Parhi, D. R., Das, H. C., Kumar, P. B., Muni, M. K., & Salony, K. (2019).
Path optimization for navigation of a humanoid robot using hybridized fuzzy-genetic
algorithm. International journal of intelligent unmanned systems, 7 (3), 112–119.

Real, L. C. V., Silva, B., Meliksetian, D. S., & Sacchi, K. (2019). Large-scale 3d geospatial
processing made possible. Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 199–208.

Sandurkar, S., & Chen, W. (1999). Gaprus—genetic algorithms based pipe routing using
tessellated objects. Computers in industry, 38 (3), 209–223.

Sivanandam, S., & Deepa, S. (2008). Genetic algorithms. In Introduction to genetic algo-
rithms (pp. 15–37). Springer.

Sundaran, K. (2018). Genetic algorithm based optimization technique for route planning of
wheeled mobile robot. 2018 Fourth International Conference on Advances in Elec-
trical, Electronics, Information, Communication and Bio-Informatics (AEEICB),
1–5.

Villarrubia, G., De Paz, J. F., Chamoso, P., & De la Prieta, F. (2018). Artificial neural
networks used in optimization problems. Neurocomputing, 272, 10–16.

Wang, H., Lyu, W., Yao, P., Liang, X., & Liu, C. (2015). Three-dimensional path planning
for unmanned aerial vehicle based on interfered fluid dynamical system. Chinese
Journal of Aeronautics, 28 (1), 229–239.

Whigham, P. A., & Dick, G. (2009). Implicitly controlling bloat in genetic programming.
IEEE Transactions on Evolutionary Computation, 14 (2), 173–190.

Yang, X., Cai, M., & Li, J. (2016). Path planning for unmanned aerial vehicles based on ge-
netic programming. 2016 Chinese Control and Decision Conference (CCDC), 717–
722.

Zhang, B., & Duan, H. (2015). Three-dimensional path planning for uninhabited combat
aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic en-
vironment. IEEE/ACM transactions on computational biology and bioinformatics,
14 (1), 97–107.

36

	Introduction
	Background and Problem Definition
	Objectives
	Importance and Relevance
	Thesis Outline

	Literature Review
	Background Concepts
	Pathfinding Algorithms
	Evolutionary Algorithms
	Trajectory Optimisation

	Systematic Literature Review
	PRISMA Method
	PRISMA Results
	PRISMA Discussion

	Methodology
	Study Area
	Data Preparation
	Evolutionary Computation Framework
	Parameterisation
	Solution Anatomy
	Bloating
	Elitism
	Stopping Criteria

	Solution Transformation
	Path Validation
	Fitness Evaluation

	Results
	Initialisation and Convergence
	Variation and Selection
	Elitism
	Quantifying Validity
	Geometry Complexity
	Comparison of Validation Algorithms

	Discussion
	Function tree representation
	Solution validity
	Calibration
	Applicability and scalability
	Limitations and potential solutions

	Conclusion

