129 research outputs found

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    Axel Rover Tethered Dynamics and Motion Planning on Extreme Planetary Terrain

    Get PDF
    Some of the most appealing science targets for future exploration missions in our solar system lie in terrains that are inaccessible to state-of-the-art robotic rovers such as NASA's Opportunity, thereby precluding in situ analysis of these rich opportunities. Examples of potential high-yield science areas on Mars include young gullies on sloped terrains, exposed layers of bedrock in the Victoria Crater, sources of methane gas near Martian volcanic ranges, and stepped delta formations in heavily cratered regions. In addition, a recently discovered cryovolcano on Titan and frozen water near the south pole of our own Moon could provide a wealth of knowledge to any robotic explorer capable of accessing these regions. To address the challenge of extreme terrain exploration, this dissertation presents the Axel rover, a two-wheeled tethered robot capable of rappelling down steep slopes and traversing rocky terrain. Axel is part of a family of reconfigurable rovers, which, when docked, form a four-wheeled vehicle nicknamed DuAxel. DuAxel provides untethered mobility to regions of extreme terrain and serves as an anchor support for a single Axel when it undocks and rappels into low-ground. Axel's performance on extreme terrain is primarily governed by three key system components: wheel design, tether control, and intelligent planning around obstacles. Investigations in wheel design and optimizing for extreme terrain resulted in the development of grouser wheels. Experiments demonstrated that these grouser wheels were very effective at surmounting obstacles, climbing rocks up to 90% of the wheel diameter. Terramechanics models supported by experiments showed that these wheels would not sink excessively or become trapped in deformable terrain. Predicting tether forces in different configurations is also essential to the rover's mobility. Providing power, communication, and mobility forces, the tether is Axel's lifeline while it rappels steep slopes, and a cut, abraded, or ruptured tether would result in an untimely end to the rover's mission. Understanding tether forces are therefore paramount, and this thesis both models and measures tension forces to predict and avoid high-stress scenarios. Finally, incorporating autonomy into Axel is a unique challenge due to the complications that arise during tether management. Without intelligent planning, rappelling systems can easily become entangled around obstacles and suffer catastrophic failures. This motivates the development of a novel tethered planning algorithm, presented in this thesis, which is unique for rappelling systems. Recent field experiments in natural extreme terrains on Earth demonstrate the Axel rover's potential as a candidate for future space operations. Both DuAxel and its rappelling counterpart are rigorously tested on a 20 meter escarpment and in the Arizona desert. Through analysis and experiments, this thesis provides the framework for a new generation of robotic explorers capable of accessing extreme planetary regions and potentially providing clues for life beyond Earth.</p

    Exploration of Unknown Environments Using a Tethered Mobile Robot

    Get PDF
    Exploration with mobile robots is a well known field of research, but current solutions cannot be directly applied for tethered robots. In some applications, tethers may be very important to provide power or allow communication with the robot. This thesis presents an exploration algorithm that guarantees complete exploration of arbitrary environments within the length constraint of the tether, while keeping the tether tangle-free at all times. While a generalized algorithm that can be used with several exploration strategies is also proposed, the presented implementation uses a modified frontier-based exploration approach, where the robot chooses its next goal in the frontier between explored and unexplored regions of the environment. The main modification from standard frontier-based method is the use of a cost function to sort multiple goals in one iteration and pick the cheapest one to go to, minimizing global path length in the process. The cost is calculated in terms of path length with tether constraints accounted for. The basic idea of the algorithm is to keep an estimate of the tether configuration, including length and homotopy, and decide the next robot path based on the length difference between the current tether length and the shortest tether length at the next goal position. The length difference is then used to determine whether it is safe for the robot to take the shortest path to the goal, or whether the robot has to take a different path to the goal in the way that would put the tether back into the most optimal configuration. The maximum length difference that would still guarantee global tangle-free paths has been shown to be the circumference of the smallest expected obstacle in the environment. The presented algorithm is provable correct and was tested and evaluated using both simulations and real-world experiments. Navigation of a planar robot is done with the aid of a Simultaneous Localization and Mapping (SLAM) system, with the data being provided by the on-board LiDAR scanner. The results from conducted experiments have demonstrated that the proposed algorithm results in the total path length increase of anywhere from 30% up to to 80% compared to untethered frontier-based approach, with the exact percentage increase dependent on the complexity of the environment. It is also approximately 6 times shorter than the total path length in a conservative approach of backtracking to the base to avoid tangling

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Design of a walking robot

    Get PDF
    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Space physics missions handbook

    Get PDF
    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science

    Distributed architectures for Mars surface exploration

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2001.Includes bibliographical references (p. [361]-370).by Christopher E. Carr.S.M

    Oceanus.

    Get PDF
    v. 38, no.1 (1995
    corecore