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Abstract

Exploration of Unknown Environments Using a Tethered Mobile Robot

Danylo Shapovalov

Exploration with mobile robots is a well known field of research, but current solutions cannot
be directly applied for tethered robots. In some applications, tethersmay be very important to pro-
vide power or allow communication with the robot. This thesis presents an exploration algorithm
that guarantees complete exploration of arbitrary environments within the length constraint of the
tether, while keeping the tether tangle-free at all times. While a generalized algorithm that can
be used with several exploration strategies is also proposed, the presented implementation uses a
modified frontier-based exploration approach, where the robot chooses its next goal in the fron-
tier between explored and unexplored regions of the environment. The main modification from
standard frontier-based method is the use of a cost function to sort multiple goals in one itera-
tion and pick the cheapest one to go to, minimizing global path length in the process. The cost
is calculated in terms of path length with tether constraints accounted for. The basic idea of the
algorithm is to keep an estimate of the tether configuration, including length and homotopy, and
decide the next robot path based on the length difference between the current tether length and
the shortest tether length at the next goal position. The length difference is then used to determine
whether it is safe for the robot to take the shortest path to the goal, or whether the robot has to
take a different path to the goal in the way that would put the tether back into the most optimal
configuration. The maximum length difference that would still guarantee global tangle-free paths
has been shown to be the circumference of the smallest expected obstacle in the environment. The
presented algorithm is provable correct and was tested and evaluated using both simulations and
real-world experiments. Navigation of a planar robot is done with the aid of a Simultaneous Lo-
calization and Mapping (SLAM) system, with the data being provided by the on-board LiDAR
scanner. The results from conducted experiments have demonstrated that the proposed algorithm
results in the total path length increase of anywhere from 30% up to to 80% compared to unteth-
ered frontier-based approach, with the exact percentage increase dependent on the complexity of
the environment. It is also approximately 6 times shorter than the total path length in a conservative
approach of backtracking to the base to avoid tangling.
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1
Introduction

1.1 ProblemOverview AndMotivation

Commercial mobile robots are ubiquitous in modern times, ranging from simple autonomous
house vacuums to complex networks of warehouse and delivery robots. Examples of such robots
are shown in Figure 1.1.1. Despite these robots being extremely efficient at their given tasks, they
require almost ideal conditions to operate properly. They have to keep track of their on-board bat-
teries and in most cases also maintain a constant wireless communication with their central hub.

In some scenarios, such limitations are simply not practical. In more extreme environments
wireless communication might not be possible. In other scenarios, such as disaster responses in
mines or collapsed buildings, prolonged mission time with no interruptions might be desired and
on-board batteriesmight no longer be sufficient. Using a tether on the robot can solvemost of these
problems, providing both power and a data connection. In fact, tethers are already used for some
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Figure 1.1.1: Examples of modern mobile robots. (Source: shutterstock.com)

(a) (b)

Figure 1.1.2: Examples of (a) underwater tethered robot and (b) land-based tethered robot.
(Source (a): shutterstock.com, Source (b): nexxis.com)
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Figure 1.1.3: Visual representation of our proposed approach. The robot at the position pr
with a tether τ connecting it to the base at pb compares the shortest path to the goal pg from
the base (τs) with the one from its current position (τr), and takes the path τr,s to return the
tether to its shortest configuration and avoid further tangling.

underwater roboticmissions, and ongoing research is being conducted for land-based platforms as
well, with some examples shown in Figure 1.1.2.

However, tethers come with their own drawbacks. An intrinsic limitation of a tethered robot is
its operating range, since the robot is only able to go as far as the maximum tether length allows it.
Another problem that arises fromusing a tether on a robot, especially in exploration scenarios with
many obstacles in the environment, is having the tether tangle around the obstacles. While there
is not much that can be done about the first problem other than getting a longer tether in the first
place, it is possible to solve the tangling problem, which is the goal of this thesis.

The approach proposed in this thesis is visually demonstrated in Figure 1.1.3. Assuming a re-
tractable tether and a planar environment, we propose a solution to the tangling problemwhere the
robot constantly keeps track of both its current tether configuration and the theoretical most opti-
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Figure 1.1.4: Artist concept of a NASA Mars rover. (Source: rawpixel.com)

mal configuration. At each step during the exploration, these configurations are being compared,
and if the difference becomes too large — the robot returns to the most optimal configuration
before there is a chance for the tether to tangle.

The field of robotic exploration is ever evolving, with new solutions being developed regularly.
Using autonomous robots forunknownenvironment exploration is essential in environmentswhere
direct human influence is not possible. Such environments can range from something like arctic
underwater areas to using autonomous rovers on other planets. Martian rovers are probably the
most well-known examples of such, with an artist concept of one shown in Figure 1.1.4.

1.2 Literature Review

Unknown environment exploration is a standard problem in mobile robotics and is fundamental
for a lot of applications. Exploration is often performed by robots equippedwith sensors that range
from simple cameras [25] and sonars to high-end LiDARs. The goal of such exploration platforms
is usually to create amap of the environment where themobile robot is placed into. Assuming that
the environment is partially or entirely unknown and the mobile robot platform is autonomous,
simultaneous localization and mapping (SLAM) approaches are generally used during the explo-

5
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ration, as continuous and accurate robot localization is essential for building a precise map of the
environment [32].

Robotic exploration is typically applied in scenarios where direct human intervention is either
impractical or too dangerous. One example of an application in such an environment would be
under-ice robotic exploration [2], with another one being fast exploration of underground areas
with a team of robots [23]. Fast and efficient underground exploration can also be applied to
search-and-rescue operations in environments such as mines [34], potentially saving lives in the
process.

There is no single universal method of approaching exploration with mobile robots, with mul-
tiple exploration strategies developed over the years. One of the most common methods used
for unknown environment is frontier-based exploration [31]. This method is based on the robot
continuously selecting and visiting subsequent goals at the borders between known and unknown
areas of the environment, with these borders being called frontiers, until the environment is fully
mapped and explored. In the end, this approach results in maximizing the available information
on the environment. However, other approaches that use available environment information are
methods using harmonic functions [6] and potential information fields [30]. An interesting ap-
proach that explicitly maximizes the information is [3]. The authors use a laser scanner to con-
struct an Occupancy Grid model [7] of their environment and an extended Kalman filter (EKF)
algorithm for their SLAM implementation. The exploration approach presented in their paper was
implemented using the frontier-based method for goal selection. However, the general algorithm
we are proposing is not limited to one particular approach and any explorationmethod can be used
for goal selection.

Another way to approach exploration is by using a graph-based method [22]. In that partic-
ular paper [22], the authors used two robots in collaboration, triangulating their position in the
environment based on line-of-sight to each other and their relation to the obstacles around them.
Furthermore, more than two robots can potentially be used simultaneously for exploration pur-
poses, with the use of a large number of robots being called swarm robotics. The field of swarm
robotics [1] has seen tremendous growth over the recent years, and can be a lot more efficient that
single-robot scenarios should the circumstances permit.

Regardless of the exploration strategy used, one of the most important elements for any explo-
ration algorithm is path planning. There are a multitude of path planning algorithms of varying

6



complexity that have been developed over the years. A commonly used sampling-based path plan-
ner is Rapidly-exploring Random Tree (RRT) [17]. RRT works by sampling random points in
the environment, trying to connect them to closest prior points and grow a path ”tree” that even-
tually ends up connecting to the goal. An evolution of this algorithm is asymptotically-optimal
RRT* [13], which has an extra re-wiring function that optimizes the tree as it is being built. Among
others, common grid-based planners include algorithm such as Dijkstra and A* [9], with the latter
being used as the shortest path planner in our exploration algorithm.

However, in order to achieve tangle-free explorationwhen the tether is involved, the robot’s path
planning algorithm should not only be intelligent enough to account for the tether, but also make
decisions that would keep the tether configuration at its shortest possible length for a given config-
uration. One of the ways to keep track of the tether configuration is using the notion of homotopy.
Two tether configurations are said to be within the same homotopy class (i.e. homotopic to each
other) if they can be continuously deformed into each other without intersecting an obstacle. It is
worth noting that there are several published homotopic path planners. One example is [11], in
which the authors have successfully developed a planner that gets a robot to the goal while consid-
ering the cable length and its interaction with the obstacles in the environment. Their approach,
however, uses only the distance from the initial vertex to distinguish between homotopy classes,
which may fail in scenarios where the same distance can represent multiple configurations. This
concept was later expanded by the authors of [15]. Instead of using a single metric like the dis-
tance, they propose the use of true homotopy invariants, with each possible configuration having
its own unique h-signature. A homotopy augmented graph (or h-augmented graph as called by the
authors) is then used by the authors to plan tangle-free point-to-point paths.

Some homotopic planners are sampling-based algorithms based on RRT or its asymptotically
optimal version, RRT*. Examples of these include H-RRT [10], which partitions the search space
in order to constrain the sampling regions, HARRT* [33], which can achieve asymptotic optimal-
ity of a generated path within a given homotopy class, and a homotopy-aware kinodynamic plan-
ner [24] that proposes an approach that can considers the differential constraints of the robot. An-
other example of a homotopic path planner is a topology-based multi-heuristic A* [14]. It should
be noted that while all the methods mentioned above can successfully generate a path in a given
homotopy class, they all rely on the complete knowledge of the environment, which makes their
direct use in an exploration scenario without further modifications challenging.

7



Returning to the topic of exploration, so far all the methods mentioned earlier assumed a freely
moving untethered robot. While a tethered robot would have to actively manage the tether, freely
moving mobile robots are not without their own drawbacks. The main limiting factor so far for
small mobile robots is battery life. Considering that all untethered mobile robots require an on-
board power source, energy conservation becomes a big concern for prolonged missions. To ad-
dress this problem, the authors of [20] have developed an energy-efficient exploration algorithm
that reduces the energy consumption of the robot by selecting consequent goals in a way that min-
imizes repeated coverage of the already mapped area. Such an approach therefore also results in a
minimized global path length, a criterion that we will also be aiming to achieve with our approach.

However, there can bemultiple advantages for using a tether other than prolongedmission time
with no need for on-board power supply. Not only the tether could be used as an anchor for navi-
gating a steep and otherwise inaccessible terrain [18], but it could also serve as a high-speed low-
latency data connection to the robot in an environment where wireless communication would be
problematic, like underground mines or deep underwater [4]. The main problem created by a
tether, especially in environments with a large number of obstacles, is avoiding the tangling of the
tether around the obstacles. Presenting a solution to this problem is the goal of this thesis.

The use of tethered robots for space applications has been considered in [12]. The ROSA rover
described in the paper uses a 40meter tether system both as a power supply and a communication
link to the main platform. This reduces the weight of the rover that can in turn be used to carry
more scientific instruments. The sensors on the tether in combination with a camera on the base
platform are also used as a tracking mechanism. The tangling problem was not yet solved in the
paper. Another application of a tethered robot for exploration has been extensively discussed in
[19]. The author discusses using a tethered robot for exploring extremely steep terrains. Contrary
to our solution, during the exploration, the tether gets intentionally wrapped around the obstacles
to serve as additional anchor points, which then gets subsequently unwrappedon the robot’s return
trajectory.

Althoughwe did not find a previous work that solves the tethered exploration problem, tethered
coverage, which is a very similar problem, has been solved in [29]. The authors successfully devel-
oped an algorithm that uses a tethered robot to fully cover an arbitrary unknown environment,
while also keeping the tether in a tangle-free state. This work has later been expanded in [28]. This
paper proposes an algorithm for tethered coverage that successfullyminimizes the total path length
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required to cover the unknown environment. However, because the path required to completely
explore the environment is generally far smaller than the path required to cover one, especiallywith
long-range sensors, direct use of these approaches for exploration may not be the best solution.

1.3 Contributions

Considering all the previous work done on tethered robots and their applications, by the authors
knowledge, our previous conference paper [26] and journal paper [27] along with this thesis are
the first ones that solve the tangle-free exploration problem with tethered robots. The key contri-
butions of these works are as follows:

• Our conference paper [26] proposed the first iteration of our exploration algorithm. The
algorithm itself used standard frontier-based exploration method for goal selection and a
modified RRT-based planner both for shortest path and homotopic path planning. The al-
gorithm guaranteed tangle-free global paths.

• Simulations and experiments presented in [26] demonstrate the effectiveness of proposed
approach, but the real-world experiments usedexternal infrared camera tracking system(VI-
CON) and a simple environment.

• The main exploration algorithm has been generalized and made modular in [27]. The gen-
eralized form is not dependent on any specific exploration or path planning method.

• The implementation of the algorithm using a modified frontier-based approach has been
presented in [27], along with a new homotopic path optimizer that replaced the previously
usedRRT-basedplanner. Thealgorithmstill guaranteed tangle-free global paths,while being
a lot more efficient than the previous version.

• The implementation in [27] is fully integrated with SLAM, meaning the robot can now be
fully autonomous. This is supported by new experiments using an autonomous robot with
SLAM in more complex environments in terms of number and arrangement of obstacles.

9



1.4 Thesis Outline

The rest of this thesis is divided as follows. Chapter 2 gives a detailed background about homotopy
as a whole, then goes over the development history of homotopic path planning used in the ex-
ploration algorithm presented in this thesis. Chapter 3 formally defines the problem solved in this
thesis, followed by a detailed explanation of both generalized and implemented exploration algo-
rithmsproposed. Chapter 4 provides all the collected results, aswell as their interpretation. Results
from both simulations and real world experiments are discussed. Lastly, Chapter 5 presents a con-
clusion to this thesis, as well as proposed directions for future research in this area.

10



2
Homotopic Path Planning

This chapter goes over the development history of the homotopic path planning used in the explo-
ration algorithm proposed in this thesis. The first attempt at homotopy constrained path planning
was implemented using RRTplanner [17] as the basis. However, there were several problemswith
this approach, so in the end a homotopic path optimizer has been chosen instead for its simplic-
ity, efficiency and reliability. While using an optimizer instead of a full planner does limit the path
planning options, it is not an issue in the tethered exploration scenario.

2.1 Background onHomotopy

Considering the topological nature of the posed path planning problem, it is important to explain
the notion of homotopy in that context and describe the way we will be using it. In essence, two
paths that start and finish in the same configuration are considered to be homotopic to each other
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(a) (b)

Figure 2.1.1: (a) 3 example paths from p0 to p1. Paths τ1 and τ2 are homotopic to each
other and therefore lie in the same homotopy class, while τ3 in in a different homotopy
class. (b) 3 example paths from p0 to p1. h-signature of τ1 is r2r3r−1

3 which reduces to r2,
h-signature of τ2 is 0, and h-signature of τ3 is r2r1.

if they can be continuously deformed into each other without crossing any obstacles. Two ho-
motopic paths are said to be in the same homotopy class, which is represented by a unique in-
variant called h-signature [15]. Examples of homotopic and non-homotopic paths are shown in
Figure 2.1.1(a) — paths τ1 and τ2 are homotopic to each other and therefore have the same h-
signature, i.e. h(τ1) = h(τ2), where h is a function that computes the homotopy class of a given
path. In Figure 2.1.1(a), path τ1 cannot be deformed into τ3 without crossing the obstacle, in-
dicating that they are not homotopic and, therefore, do not belong to same homotopy class, i.e.
h(τ1) ̸= h(τ3). In the context of path planning for tethered robots, homotopy is an important
concept. If, for example, a robot equipped with a retractable tether anchored in p0 follows the path
τ1 of Figure 2.1.1(a), its tetherwould assume a shape that is homotopic to τ1. The taut tetherwould
have the same shape if the robot follows the path τ2, which is also homotopic to τ1, aswe concluded
earlier. Therefore, by constraining the path of the robot to have a specific homotopy class, we can
constrain the tether to have the same class. The idea of this thesis is to plan robot paths that make
the tether to be homotopic to the shortest possible path from the anchor position to the goal. Since
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the shortest path, by definition, does not circulate any obstacles, the tether will also not circulate
an obstacle, thus guaranteeing a tangle-free motion.

As proposed in [15], the h-signatures themselves are defined by the rays emanating vertically
from the obstacles, and are computed for a path by the order those rays are crossed in. An example
is shown in Figure 2.1.1(b). It is important to notice that if a ray is crossed backwards, meaning
right to left, a ”−1” superscript is added to that particular signature. For example, the h-signature
of path τ3 shown in Figure 2.1.1(b) would be r2r1 if the path is taken from p0 to p1, but if the
same path were to be taken from p1 to p0, the h-signature would now be r−1

1 r−1
2 . This is also called

inverting the h-signature of a path, so in this example h(−τ1) = h(τ1)−1 = r−1
1 r−1

2 . Another
important property of h-signatures is that the same ray crossed back and forth in sequence cancels
out. An example of this is path τ1, whose h-signature would originally be r2r3r−1

3 , but because r3
was crossed back and forth in sequence, its signature cancels out leaving the overall h-signature of
τ1 as just r2. Such distinction will be important for getting the approximate tether configuration
from the total path taken by the robot.

Lastly, it is important tonote how it is possible to concatenate h-signatures of twodifferent paths.
Suppose we have two paths τ1 and τ2, and the end of τ1 coincides with the start of τ2. For such
paths it is possible to get the overall h-signature h(τ1,2) = h(τ1)♢h(τ1), with ”♢” being the con-
catenation operator.

2.2 RRT-BasedHomotopic Path Planner

Out of all the path planning algorithms available, we chose RRT as the basis. There are several rea-
sons that influenced our decision. First of all, as discussed in Section 1.2, a lot of work has already
been done on homotopic path planning using RRT. Another reason is its simplicity of implemen-
tation. Homotopic constraints in our approach were implemented by limiting the tree growth di-
rection, rejecting any branches that would violate the given homotopy constraint. However, that
rejection created a different problem that will be discussed in later in Subsection 2.2.2, essentially
preventing the planner from finding a path under certain conditions.
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Algorithm 1: RRT-based homotopic path planner
input: ps, pg,H, n, Cf,O

1 Nlist←− ps;
2 for i = 1,...,n do
3 prand←− SampleFree(Cf);
4 pnear←−Near(prand,Nlist);
5 pnew←− Steer(prand, pnear);
6 if CollisionFree(pnew, pnear, Cf) andHomotopyCheck(pnew, pnear, H,O) then
7 pparent←− pnear;
8 if CrossedRay(pnew, pparent,O) = 0 then
9 Nlist←−Nlist ∪ {pnew, pparent};

10 else
11 Nlist←− {pnew, pparent};
12 end
13 end
14 if CollisionFree(Nlist[-1], pg, Cf) andHomotopyCheck(Nlist[-1], pg, H,O) then
15 τ←−GeneratePath(Nlist[-1]);
16 if h(τ) = H then
17 τ←−OptimizePath(τ, Cf,O);
18 return τ
19 end
20 end
21 end
22 returnNone

2.2.1 Algorithm

The RRT-based homotopic path planner is presented in Algorithm 1. In essence, this algorithm
follows a tree growth procedure standard to RRT, but there are two major modifications. The first
is the homotopy constraint check in addition to regular collision check, and the second is prior tree
cleanup to allow for looping paths that would originally be impossible in a standard RRT planner.

Inputs for this planner require the start and end positions named ps and pg respectively, required
h-signature of the final path H, maximum allowed number of iterations n, free space Cf, and the
obstacle mapO. As we are using a grid-based environment, this is not a standard RRT implemen-
tation. Specifically, free space Cf and the obstacle map O are defined as lists of cell coordinates,
with the obstacle coordinates grouped up to represent individual obstacles. The first step in the
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algorithm is the initiation of the node list with the starting position ps in line 1. Lines 2 through
21 are the planner itself, with line 22 returning an empty path should the planner run out of itera-
tions and fail to compute one. Returning to the planner itself, line 3 samples a random node out of
the available free space. Notice that because a grid-based environment is used, the sampling is not
based on generating a purely random real number coordinate, instead selecting a random free cell
in the environment. This allows to omit the collision check for random nodes altogether, further
reducing the computation time. Lines 4 and 5 are standard parts of an RRT algorithm, selecting
the nearest available node to connect to and subsequently steering towards it respectively.

Lines 6 through 13 are where the main modifications to the tree growth procedure are located.
Before adding the new node pnew to the node list, line 6 first checks whether the new branch would
be both collision-free and not violate the homotopy constraint given the total current path up to
pnew. Should both conditions be satisfied, line 7 sets the nearest selected node as the parent for pnew.
Then, line 8 checks if any ray emanating from the obstacles as per the definition of h-signature in
[15] was crossed. If no ray was crossed, the algorithm simply adds the new node to the node list
in line 9. However, if a ray was crossed, the algorithm resets the node list, only leaving the newly
added node in it. Because the node has all the parent history recorded in it up to the starting point
ps, this does not affect the final path generation. It does, however, remove all the other nodes from
the selection space, effectively solidifying the path that was generated up to the latest node. This
also has an effect of allowing the algorithm to grow a new tree across the areawhere the old treewas
before, effectively allowing the tree growth algorithm to cross the previously generated part of the
path should the h-signature require it, which was originally impossible in a pure RRT algorithm.

The last step of the algorithm is the final path generation shown in lines 14 through 20. Line 14
checks if there is a direct path from the last added node to the goal that is both collision-free and
doesn’t violate the homotopy constraint. Should that succeed— the final path is generated in line
15, and its h-signature is verified in line 16. That latter step is important because even if the final
branch connecting the last node to the goal doesn’t violate any homotopy constraints on its own,
the complete path may still not match the global h-signature required. If it does match however,
because RRT doesn’t return the shortest path on its own, line 17 first optimizes the generated path
before returning it in line 18.
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Figure 2.2.1: Visual demonstration of an h-trap. In the case where the robot is asked to
go to the goal pg in the way that would put the tether τ into the shortest configuration τs, a
required h-signature of such a path would be r−1

2 since the ray r1 is crossed back and forth in
sequence.

2.2.2 Encountered Problems

The main problem that we encountered with this RRT-based planner was what we started calling
an h-trap, which is shown inFigure 2.2.1. Suchh-traps are a phenomenonwhere, with the notion of
h-signatures that we’re using, a path can end up being impossible to compute due to a ray from one
obstacle going through a different obstacle above it when the h-signature requires the robot to loop
around the latter. As shown inFigure 2.2.1, in this configuration thepath frompr topg thatwouldbe
required to put the robot back to the shortest tether configuration τs would have an h-signature of
r−1
2 since the ray r1 would be crossed back and forth in sequence and cancel out. However, because
the ray r1 is technically outside of the h-signature requested, such path would be impossible to
compute because the planner rejects branches that violate the homotopy constraint of the path.
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As such, the planner would occasionally fail to return the path it was asked for, which required
extra mitigation steps in the main algorithm itself. The frequency of h-traps appearing was directly
dependent on the complexity of the environment, as more obstacles in the environments naturally
meant more chances of h-traps appearing. Therefore, Algorithm 1 in its presented form can not be
considered complete, because it can fail to return a path under a given homotopy constraint even
if such a path exists.

Other notable problem that stemmed from the planner failing to return a path due to encoun-
tered h-traps was performance. While the planner itself has been well optimized for grid-based
environments it was meant to be used in, failing to find a path meant that the planner would go
through the maximum allowed number of iterations no matter what, increasing its own compu-
tation time. On top of that, extra mitigation steps in the main algorithm to counteract the failed
planning often involved small physical backtracking of the robot to allow for different planning
conditions, resulting in even more delays in the exploration process.

While this problem could be solved by developing a more sophisticated planner, we found that
with our particular approach to keep the tether tangle-free, a muchmore reliable and cost-effective
solution would be to simply optimize the data that is already available, namely the total path log
and the tether configuration.

2.3 Homotopic PathOptimizer

Assuming that we can get a path in the desired homotopy class using the data already available to
the algorithm, namely the total path log and the shortest planned path from the base to the goal,
with the next chapter explicitly demonstrating that this is indeed the case, we found that instead
of planning a homotopy-constrained path from scratch it would be much simpler to optimize the
pathdata that is already availablewhile keeping theh-signature of themanipulatedpathunchanged.
The optimizer we are using is a simple 2-step process of first shortening the path by removing the
extraneous nodes as shown in Algorithm 2, and then subsequently tightening the resulting path
to get it closer to the obstacles without colliding, as shown in Algorithm 3. While this approach
will not result in an absolutely shortest path possible, the empirically observed difference was not
significant. This optimizer is also not very computationally intensive.
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Algorithm 2:OptimizeShort algorithm.
input: τ, Cf,O

1 H←− h(τ);
2 i←− 0;
3 j←− EndIndex(τ);
4 while i < EndIndex(τ) do
5 τt ←− RemoveIntermediateNodes(τ, i, j);
6 if h(τt) = H andCollisionFree(τ[i], τ[j], Cf,O) then
7 τ ←− τt;
8 i←− i+ 1;
9 else
10 j←− j− 1;
11 end
12 if j = i then
13 i←− i+ 1;
14 j←− EndIndex(τ);
15 end
16 end
17 return τ;

Algorithm 3:OptimizeTight algorithm.
input: τ, Cf,O

1 for i in τ[1] to τ[−2] do
2 do
3 τ[i]←−MoveAlongLine(τ[i], τ[i− 1]);
4 whileCollisionFree(τ[i+ 1], τ[i], Cf,O);
5 do
6 τ[i]←−MoveAlongLine(τ[i], τ[i+ 1]);
7 whileCollisionFree(τ[i− 1], τ[i], Cf,O);
8 end
9 return τ;

Algorithm 2 is a traditional path shortening algorithm [5], with an added modification of also
considering the h-signature of the path being optimized. It works by first trying to directly connect
the first and last nodes of the input path, and the criteria for a successful connection is for the new
path to be both collision-free and have the same h-signature as the original path (line 6). Should
that fail, the algorithm then tries to connect the first node to the second-to-last node and so on
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until it either succeeds or the ending node comes all the way down to the starting node (line 12),
at which point the starting node is moved up by one and the ending node is set to the last node
again. This cycle continues until the start node comes all the way up to the end (line 4).

The shorter path optimized in Algorithm 2 is then fed into Algorithm 3 to be further optimized
bymaking that path tighter. This algorithm goes through every node in the path except the first and
last ones (line 1). The node that is being currently manipulated is first moved along the line on the
path “downstream” from it as far as it can gowithout resulting in collisions (lines 2 through 4). The
same node then undergoes a similar process, nowmoving it along the line on the path ”upstream”
from it (lines 5 through 7). This process results in a final path with minimal space wasted between
the obstacles.

2.4 Concluding Remarks

In this chapter the concept of homotopy with all the properties of h-signatures has been thor-
oughly explained, and examples have been provided. Two approaches of generating homotopy
constrained paths have been presented, highlighting advantages and drawbacks of both. While the
RRT-based homotopic planner is more versatile overall, allowing for any arbitrary start and end
points, in its current implementation it ended up too unreliable for the purposes of efficient explo-
ration. Rather than developing amore complex and sophisticated planner, amuch simpler solution
of using an optimizer was chosen instead. While an optimizer is not as versatile as a proper path
planner, for the purposes of tethered exploration it ended up being more than adequate, resulting
in a muchmore efficient and reliable homotopic path acquisition considering the data for the path
was already available in the form of total path log and shortest path from the base to the goal.
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3
Exploration Algorithm

This chapter presents the main contribution of this thesis, which is an algorithm for exploration
of environments using a planar tethered robot. The key parameter in the algorithm, which will
be responsible for keeping the tether tangle-free, is the length tolerance ΔL. This parameter is a
comparison between the shortest path from the base to the goal and the tether configuration if the
robot were to take the shortest path from its current position to the goal. This tolerance is used to
determine whether the robot should take the shortest path to the goal or take the path that would
put it in the same homotopy configuration as the shortest path from the base.

3.1 Formal ProblemDefinition

This section defines the problem solved in this thesis. Consider an unknown, planar environment
W ⊂ R2 populated with a number of unknown random obstacles of arbitrary shape and size.
Exploration, which we consider to be the task of maximizing the information about the environ-
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ment to construct a map, is to be done with a planar robot, tethered to the fixed base at position
pb = (xb, yb). The robot is expected to start the exploration at the position of the base pb. We
assume that the tether is able to freely rotate around the robot, meaning the rotation of the robot
will not cause the tether to be wound up around the robot itself. The tether is assumed to be re-
tractable and always kept in a taut condition, and the maximum tether length L = Lmax must not
be exceeded at any point during the exploration. Our goal is to efficiently cover and map the max-
imum amount of ground with the footprint of the robot’s sensor, which in our case is assumed to
be a circle with the radius equal to the field of view of the sensor, while making sure that the tether
is kept in a tangle-free configuration at all times. With the tether constraints in mind, it is also pos-
sible for the robot to not be able to reach some parts of the environment, in which case the robot
should still be able to explore any and all the parts that it can reach.

As briefly mentioned in Chapter 1 and illustrated in Figure 1.1.3, we propose an exploration
algorithm that would guarantee that the tether would be kept in a tangle-free state throughout the
entire exploration process. This is achieved by keeping track of the tether configuration and not
allowing the robot to stray too far from the optimal global tether configuration. However, it is first
important to mention how we define tangling, as this definition will be used as the basis for our
approach.

Definition 1 (Tangling). Consider a tethered robot in a planar environment with tether represented by
τ(c) ∈ R2, 0 ≤ c ≤ 1, where c = 0 is the position of the base and c = 1 the position of the tether’s
attachment to the robot. If there exist points c1 and c2 along the tether such that τ(c1) = τ(c2) and
c1 ̸= c2, the tether is considered to be tangled.

In other words, any taut tether configuration that loops around the obstacles and crosses itself is
defined as tangled. However, especially in particularly dense environments, the tether could also
get wound up around multiple obstacles in sequence without actually tangling as per Definition 1
but still resulting in a configuration that is very far from theoptimum. Thealgorithmweare propos-
ing eliminates such configurations from the solution space as well.
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Algorithm 4:Tether-aware exploration algorithm, general form.
input: pb, Lmax, ΔL

1 τ ←− ∅;
2 pr ←− Cf ←− O ←−SLAMupdate;
3 Explored←− False;
4 while not Explored do
5 pg←− SelectGoal;
6 if pg = ∅ then
7 pg ←− pb;
8 Explored←−True;
9 end

10 τs ←− ShortestPath(pb, pg, Cf);
11 τr ←− ShortestPath(pr, pg, Cf);
12 if (L(τ + τr) - L(τs)) > ΔL or L(τ + τr) > Lmax then
13 h∗ ←− h(τ)−1♢h(τs);
14 τr←− ShortestHPath(pr, pg, h∗, Cf,O);
15 end
16 FollowPath(τr);
17 τ←− τ + τr;
18 end
19 return Cf,O;

3.2 Generalized Form of the Algorithm

The generalized algorithm we are proposing is shown in a flowchart form in Figure 3.2.1. Algo-
rithm 4 presents a more detailed algorithmic version of the flowchart shown in Figure 3.2.1. The
algorithm is initialized with the position of the tether anchor (i.e. robot base) pb, maximum al-
lowed tether length Lmax, and the length tolerance ΔL. The total path τ is initialized as an empty
set before the exploration begins. The position of the robot pr, the free space Cf and the obstacle
positionsO are expected to be dynamically updated via SLAM in parallel with themain algorithm.

The algorithm itself can be thought of as having different modules that can be replaced with
any desired approach. The first such module is goal selection at line 5, which will depend on the
exploration approach used in the algorithm. The second, shortest path planning module would
then first compute the shortest path from the base to the goal (line 10), and then the shortest path
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Figure 3.2.1: Flowchart representing the proposed generalized exploration algorithm.
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from the robot to the goal (line 11). Line 12 is the main contribution of this algorithm, and it is
what’s responsible for keeping the tether in a tangle-free configuration. Using the function L(·)
to get the estimate of the taut tether configuration in a given path, the algorithm checks both if
the difference between the tether configuration if the robot were to take the shortest path τr and
the optimal configuration in τs exceeds the length tolerance ΔL, and if the total path should the
robot take the path τr exceeds themaximum tether length Lmax. If any one of those two conditions
is violated, in line 13 the algorithm then proceeds to compute the h-signature h∗ required to put
the robot back in the shortest possible tether configuration. This h-signature would be the same as
backtracking to the base and then taking the shortest path τs. Notice that the robotwill not actually
backtrack all the way to the base. Lastly, the third module is the homotopic path planner (line 14)
that computes the shortest path from the robot position pr to the goal pg satisfying a unique h-
signature h∗ computed in the previous step. Note that this path replaces τr computed in line 11.
Finally, line 16 commands the robot to take the computed path τr. This path is subsequently added
to the total path record τ in line 17.

When the algorithm runs out of available goals to select (line 6), either by completely exploring
the environment or by no longer having any goals that can be physically reached with the tether
constraint Lmax, the algorithm concludes the exploration process by selecting the base pb as the
final goal and subsequently returning to it. This process is shown in lines 6 through 9.

3.3 Algorithm Analysis

Byproperly selecting the length toleranceΔL the algorithmwill guarantee to always keep the tether
in a tangle-free configuration by returning to the optimal shortest configuration before the tether
has a chance to tangle. However, it is important to discuss a theoretical upper limit on ΔL beyond
which a tangle-free global path is no longer fully guaranteed. This upper limit is demonstrated in
Theorem 1.

Theorem 1. Algorithm 4 guarantees tangle-free paths if the length tolerance ΔL is smaller or equal to
the circumference of the smallest expected obstacle in the robot’s configuration space.

Proof. Using Definition 1 for tangling and a circular obstacle as an example, the only way a taut
tether can cross itself is by looping around the obstacle. The shortest possible way to loop the
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tether τ around a circular obstacle so that τ(c1) = τ(c2) is by encircling the obstacle completely,
giving the smallest tangle radius as 2πR, where R is the radius of the smallest obstacle.

Theorem 1 states that the maximum allowed tolerance value would be 2πR. In the real world,
however, the robot would rarely be expected to perfectly encircle an obstacle during the explo-
ration. So depending on the complexity of the environment and density of the obstacles, it is gen-
erally safe to pick values for ΔL slightly larger than the theoretical maximum of 2πR. This will be
supported by our simulation results in Section 4.1.

3.4 Implementation

It is important to mention that, since Algorithm 4 is generalized, an implementation of that al-
gorithm will not always follow strictly the same structure. The flowchart of our implementation
is shown in Figure 3.4.1, with its algorithmic version shown in Algorithm 5. This algorithm uses
a modified frontier-based exploration method for the goal selection module and A∗ algorithm as
the shortest path planner, but the homotopic path planning and goal selection modules are not as
clearly separated as they are in Algorithm 4. We are also using a path optimizer instead of a tradi-
tional path planner to get the homotopic shortest path, the reasons and algorithm for which were
explained previously in Section 2.3.

At its core, Algorithm 5 still uses a similar structure to Algorithm 4, with the exception that the
goal selection and path acquisition modules (lines 5-15 in Algorithm 4) are nowmeshed together.
Before the exploration begins, the algorithm initializes the total path array as an empty set in line 1,
and requests the robot position pr, free space Cf, obstacles O and frontier F to be updated dy-
namically in real time through the connected SLAM system. This algorithm uses a frontier-based
exploration method as the basis for the goal selection. The main modification in our algorithm
is that it samples multiple goal points and then picks the most cost-effective goal to follow, with
the cost defined by the length of the path required to reach that goal with the tether constraints
accounted for. If the final tether configuration of a proposed path will result in the tether length
exceeding themaximumallowed value ofLmax, the cost for that path is set to∞, signifying that this
particular path would be impossible to take.
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Figure 3.4.1: Flowchart representing our implemented exploration algorithm.
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Algorithm 5: Implemented tether-aware exploration algorithm.
input: pb, Lmax, ΔL, Fmax

1 τ ←− ∅;
2 pr ←− Cf ←− O ←− F ←− SLAMupdate;
3 Explored←− False;
4 while not Explored do
5 τ list ←− Cost←− ∅;
6 do
7 pg ←−ClosestFrontier(pb,F);
8 [τ list,Cost]←−GetPath(pb, pr, pg, τ, Lmax,ΔL, Cf,O);
9 while Cost[−1] =∞ and pg ̸= ∅;

10 pg ←−ClosestFrontier(pr,F);
11 [τ list,Cost]←−GetPath(pb, pr, pg, τ, Lmax,ΔL, Cf,O);
12 for Fmax do
13 pg ←− RandomFrontier(F);
14 [τ list,Cost]←−GetPath(pb, pr, pg, τ, Lmax,ΔL, Cf,O);
15 end
16 if pg = ∅ or min(Cost) =∞ then
17 pg ←− pb;
18 Explored←−True;
19 τr ←−GetPath(pb, pr, pg, τ, Lmax,ΔL, Cf,O);
20 else
21 τr ←−CheapestPath(τ list,Cost);
22 end
23 FollowPath(τr);
24 τ←− τ + τr;
25 end
26 return Cf,O;

At the beginning of each cycle of the main loop, both the list of proposed paths and the list of
their associated costs are defined (re-defined in the following cycles) as empty sets in line 5. In
lines 6 through 9 the algorithm attempts to find the frontier that is closest to the base that could
also be physically reached with the tether length constraint. The loop keeps iterating until it either
finds the closest frontier cell that the tether could physically reach or runs out of frontier cells to
sample (line 9). The GetPath function used to compute both the paths and their respective costs
is shown in Algorithm 6 and will be explained later. Lines 10 and 11 execute a similar process,
except only the closest frontier cell to the robot is tested. Lastly, lines 12 through 15 pick a number
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Algorithm 6:GetPath function.
input: pb, pr, pg, τ, Lmax,ΔL, Cf,O

1 τs ←− ShortestPath(pb, pg, Cf);
2 τr ←− ShortestPath(pr, pg, Cf);
3 if (L(τ + τr) - L(τs)) > ΔL or L(τ + τr) > Lmax then
4 τr ←− τ−1 + τs;
5 τr←−OptimizePath(τr, Cf,O);
6 end
7 if L(τ + τr) > Lmax then
8 Cost←−∞;
9 else
10 Cost←− L(τr);
11 end
12 return τr,Cost;

of random frontier cells to test, with the exact number defined by the input variable Fmax, which in
our experiments has been set to 8 randomcells, giving a total of 10 cells to sample assuming the cell
in lines 6-9 is found immediately. By testing both the closest frontier to the robot and the closest
frontier to the base, as well as sampling several cells across the entire frontier, the algorithm ensures
that the total path length is kept to a minimum throughout the exploration process.

Overall, lines 5 through15 canbe seen as both the goal selectionmodule and thepath generation
module of Algorithm 4. Line 16 then checks if the algorithm has no more frontiers to sample or if
all the sampled frontiers are impossible to reach, in which case the final goal is selected as the base
in line 17 and the path is generated to take the robot there, after which the exploration concludes.
Otherwise, in line 21 the algorithm picks the cheapest path that it could take out of all the earlier
tested frontiers. Lastly, line 23 commands the robot to take the selected path, and line 24 adds that
path to the total path array.

An important point to mention is that, in our implementation, we decided to use simple Eu-
clidean distance to get the closest frontiers instead of a true path length that would be required
to get there in order to save on computation time. While it could be argued that using true path
length instead of Euclidean distance would result in a more optimal goal selection and therefore
shorter total path length required to explore the environment, in our simulations, when we com-
pared the algorithm with Euclidean distance sorting versus the true distance sorting, we did not
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see a measurable difference in total path length. This will be demonstrated in Section 4.1.1.
Lastly, theGetPath function shown in Algorithm 6 is the actual core of our approach that guar-

antees global tangle-free paths. As described in Algorithm 4 earlier, lines 1 and 2 of Algorithm 6
generate the shortest paths to the goal from the base and from the robot respectively, which in our
implementation is done by the A∗ algorithm, which assumes that the environment is represented
by a grid. Line 3 here serves the same function as line 12 in Algorithm 4, in that it checks if the
tether length should the robot take the path τr from line 2 is greater than the most optimal tether
configuration from a path acquired in line 1 bymore than the length toleranceΔL, and if that same
length should the robot take the path τr would be greater than the maximum tether length Lmax.
Should any of these conditions be violated, in lines 4 and 5 the algorithm generates the shortest
path that would take the robot to the optimal tether configuration that would have the same ho-
motopy as if the robot would have returned to the base and then took the shortest path τs. Note
that this is no longer a proper path planner, but a path optimizer, which was explained in detail
in Section 2.3. Should the newly generated path τr in line 5 still result in the tether length being
greater than Lmax, a condition that is checked in line 7, this would mean that the goal in question is
impossible to reach with the imposed tether length limit, and the cost for that path is set to∞ in
line 8. Otherwise, in line 10 the cost is set to the length of the path τr computed earlier.

3.5 Concluding Remarks

In this chapter a formal definition of the problemof tangle-free exploration that this work is solving
has been presented. The definition of tangling in the way it will be used throughout this study has
been formally defined. The main algorithm of the thesis has also been presented. The algorithm
has first been given in a generalized form, allowing for any exploration strategy and path planner
to be utilized. This is possible due to the defining tangle-free module of the algorithm with the
length tolerance ΔL not being dependent on any particular method used for either exploration
or path planning. It has also been shown and proven that the maximum theoretical value for ΔL
that guarantees tangle-free global paths at all times is equal to 2πR, with R being the radius of the
smallest expected obstacle in the environment to be explored.

In practice, since it it not always possible to guess the size of the smallest obstacles expected in
the unknown environment, one could always assume a point obstacle to be the smallest and just
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take R to be the radius of the robot. However, as will be further discussed in the next chapter,
small errors in ΔL that overshoot the theoretical maximum will generally still result in in tangle-
free global paths. This is because in the real world, the robot would almost never be expected to
take a trajectory that would perfectly encircle the obstacle.

The presented implementation of the algorithm uses a modified cost dependent frontier-based
explorationmethod as the basis for exploration and theA∗ planner for shortest path planning. Ho-
motopic path planning is done using a path optimizer instead of a proper path planner, saving on
computation times.
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4
Results

Theapproach that we proposed in Algorithm 5 has been implemented using Python programming
language and the ROS (Robot Operating System) framework [21]. We used gmapping [8] as our
SLAM system, and have tested the implementation both in simulations and using a real-world
robot.

4.1 Simulations

In order to test our algorithm’s both statistical and real-world performance, before implementing
it on a real robot, we first implemented the algorithm in a stand-alone Python environment to iso-
late all the external variables and focus on the algorithm itself. The core algorithm is unchanged in
this implementation, but both the robot movement and localization are removed from the calcu-
lations and are just supplied to the algorithm in a perfect form. Mapping is also being simulated
with a separate function that emulates a sensor reading in a given field of view, with its own com-
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putation time excluded from the statistical records. Because both localization and mapping in a
full implementation are performed in parallel via SLAM, this approach is still representative of the
performance of the algorithm. Gazebo [16] simulations were also performed. These simulations
used a full implementation of the algorithm, with both gmapping and proper robot movement.

4.1.1 PerformanceMetrics

Tomake sure the algorithmgets properly tested in various scenarios, weprepared three randomized
grid-based environment types to run the algorithm against, all of which were run with a resolution
of 0.5 and themaximum tether lengthLmax set to 40. Typical configurations of these environments
as well as example paths taken to explore them are shown in Figure 4.1.1. We do not specify any
units in these simulations since formeasuring the performance of the system, a 20×20mapwith a
resolutionof0.5wouldbe computationally identical to a40×40mapwith a resolutionof1, assum-
ing the field of view and the maximum tether length Lmax are also scaled appropriately. However,
one can assume that all dimensions are inmeters, since the same approach is also translated to both
the Gazebo simulations and the real-world experiment.

The first “low-density” environment type in Figure 4.1.1 is a 20 × 20map with 15-20 random
obstacles, each of radius up to 2. The second “high-density” environment type is also a 20 × 20

map, but now with 50-60 random obstacles, each of radius up to 0.5. Lastly, the third “large” en-
vironment type is a 40 × 40map with 40-50 random obstacles, each of radius up to 2. The field
of view of the simulated sensor was set to 4 for both low and high-density environments, and 10
for large environment. Due to the random nature of this approach, the actual number of discrete
obstacles on a given map is generally less than the defined value due to obstacle overlap.

All the environment types mentioned above were simulated with varying length tolerances ΔL
to observe the effect it has on tangling rate, computation time, number of iterations it took to ex-
plore a given environment, maximum reached tether length, and total path length required to ex-
plore the environment. In addition to that, two extra simulations were performed as control sam-
ples— one that avoided tangling by simply backtracking the robot to the base after every iteration
before selecting the next goal, and one with the ΔL and tether length constraints removed to rep-
resent the standard frontier-based approach. The simulations were performed 50 times per value
of ΔL to get a representation of average performance that should be expected from a given config-
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Figure 4.1.1: Typical randomized environments used in simulations. Shown are typical con-
figurations for low-density environment (a), high-density environment (c) and large environ-
ment (e), as well as example paths taken to explore them, shown in (b), (d) and (f) respec-
tively.
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Table 4.1.1: Simulation data for low density environment. 20×20 map, 0.5 resolution, tether
length 40, 15-20 obstacles of radius up to 2. Tether base is at [1, 1], and the field of view is
set to 4.

Tolerance
ΔL

Tangle
(%)

Time per
iteration (s) Total time (s)

Backtrack 0 0.063± 0.005 2.611± 0.323
0 0 1.000± 0.184 37.727± 7.629

2πR 0 0.979± 0.123 36.335± 5.545
4πR 0 1.051± 0.153 39.174± 6.963
8πR 14 1.120± 0.143 42.239± 6.951
16πR 28 1.264± 0.220 48.757± 9.515
∞ 44 1.339± 0.366 53.098± 12.331
∞

(Lmax =∞) 88 0.270± 0.089 10.554± 3.745

Tolerance
ΔL

Total
iterations

Max tether
length

Total path
length

Backtrack 41.5± 2.5 24.129± 0.912 1120.101± 78.904
0 37.0± 2.6 27.742± 5.800 187.544± 39.293

2πR 37.0± 2.8 29.937± 4.696 169.000± 29.433
4πR 37.2± 3.0 32.431± 4.264 165.251± 19.336
8πR 37.6± 2.2 36.147± 3.192 170.364± 23.007
16πR 38.5± 2.1 39.014± 0.940 173.233± 21.557
∞ 39.2± 2.8 39.476± 0.685 171.970± 26.533
∞

(Lmax =∞) 38.8± 2.8 78.129± 18.817 126.714± 14.293

uration. All of this was run on an AMD Ryzen 9 3950x CPU on a machine running Windows 10.
The CPU’s reported clock speed during the simulations was 4.2 GHz.

The results from simulations of the low-density environment type are shown in Table 4.1.1.
There are several important trends in this table that are worth pointing out. First of all, as we
have proved, the length tolerance ΔL = 2πR did indeed result in a tangle-free global path every
time. However, since this environment type was not densely populated with obstacles, the value of
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ΔL = 4πR also resulted in tangle-free global paths, supporting our claim that depending on the en-
vironment type, values of ΔL slightly larger than 2πRwill generally be fine. Beyond that, however,
we start to see progressively more tangling the larger ΔL becomes. As expected, the largest tangle
percentagewas acquired for a simulation typewhere restrictions on the tether lengthwere removed
as well. The shortest maximum tether reached is, as expected, achieved with simple backtracking,
and the longest one is where the tether limit was removed. For the simulations with varyingΔLwe
see an increasing trend, with the maximum tether length leveling off to Lmax asΔL −→∞. While
the average amount of iterations required to complete one map are all within the margin of error
of each other for every simulation parameter with a slight increasing trend (with the exception of
”Backtrack” simulation), computation time per iteration is measurably increasing with ΔL, and
the total time also increases as a result. This can be explained by the robot straying progressively
further from the optimal tether configuration with larger values of ΔL, which in turn requires the
path optimizer to work with more complex h-signatures, thus increasing the overall computation
time. Lastly, there are several interesting points regarding the total path length taken by the robot.
The shortest one is, as expected, the one where both ΔL and the tether length were ignored, and
the longest one is when the robot used simple backtracking, resulting in the path length almost 10
times the former. As for the simulations with varying ΔL, we can see that the longest path was for
ΔL = 0, with the minimum being achieved somewhere around ΔL = 4πR. The value of ΔL = 0

would force the algorithm to always return to the shortest tether configuration, andwhile this does
guarantee a tangle-free global path, this approach is not themost efficient, hence the increased total
path length. On the other hand, even if we ignore tangling, increasing ΔL too much would allow
the robot to stray too far from the optimal configuration, which in turn would require a longer re-
turn path to get back to the optimum, resulting in a longer global path again. The minimum total
path length is reached in between these two extremes.

It should be noted that the tangle detection function is only able to return a positive detection
based on Definition 1 of tangling. This is why even with ΔL = ∞ the tangling percentage is
not nearing 100%, even though the tether may be wound up around multiple obstacles and very
far from the optimal configuration. This will be important to keep in mind for the high-density
environment results. However, if the robot still fully retracts its tether by the time it returns to the
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Table 4.1.2: Simulation data for high density environment. 20 × 20 map, 0.5 resolution,
tether length 40, 50-60 obstacles of radius up to 0.5. Tether base is at [1, 1], and the field of
view is set to 4.

Tolerance
ΔL

Tangle
(%)

Time per
iteration (s) Total time (s)

Backtrack 0 0.076± 0.051 3.558± 0.383
0 0 2.256± 0.470 100.280± 24.641

2πR 0 2.440± 0.453 107.576± 22.351
4πR 6 2.625± 0.733 120.867± 39.459
8πR 12 2.974± 0.607 139.431± 31.309
16πR 32 3.174± 0.979 154.725± 51.098
∞ 54 3.241± 1.054 153.764± 53.731
∞

(Lmax =∞) 98 1.484± 0.554 70.894± 29.271

Tolerance
ΔL

Total
iterations

Max tether
length

Total path
length

Backtrack 46.5± 3.0 24.673± 0.754 1269.056± 92.467
0 44.2± 3.2 26.479± 3.282 292.230± 42.446

2πR 43.9± 2.3 26.721± 1.481 236.458± 25.719
4πR 45.6± 3.1 30.550± 2.292 225.613± 27.852
8πR 46.7± 3.1 35.543± 2.435 223.947± 21.973
16πR 46.9± 3.0 39.178± 0.689 215.708± 19.908
∞ 47.1± 3.0 39.200± 0.722 218.256± 23.976
∞

(Lmax =∞) 47.2± 3.3 102.364± 13.341 145.629± 13.175

base, such cases do not pose a problem.
Results for a high-density environment demonstrated in Table 4.1.2 show a similar picture, but

there are a few key differences. First of all, with the environment being a lot more tightly packed
with obstacles, tangle percent for ΔL = 4πR is no longer zero, while ΔL = 2πR still guarantees a
tangle-free global path, with a slightlymore aggressive tangling rate increase overall. The increasing
trend in total iteration number and computation times is now more pronounced, and the compu-
tation time itself is noticeably larger due to the more complex h-signatures the algorithm has to
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Table 4.1.3: Simulation data for large environment. 40 × 40 map, 0.5 resolution, tether
length 40, 40-50 obstacles of radius up to 2. Tether base is at [20, 20], and the field of view
is set to 10.

Tolerance
ΔL

Tangle
(%)

Time per
iteration (s) Total time (s)

Backtrack 0 0.526± 0.031 34.285± 4.214
0 0 5.564± 0.912 357.424± 74.419

2πR 0 5.573± 0.697 360.587± 59.524
4πR 2 5.942± 1.056 393.569± 86.561
8πR 20 6.177± 0.924 417.102± 75.505
16πR 32 6.466± 0.862 441.738± 64.365
∞ 48 6.618± 0.869 454.108± 68.735
∞

(Lmax =∞) 96 5.091± 1.404 375.764± 108.251

Tolerance
ΔL

Total
iterations

Max tether
length

Total path
length

Backtrack 65.0± 5.1 26.661± 0.980 2032.611± 173.774
0 63.9± 5.1 27.401± 1.335 667.252± 71.126

2πR 64.5± 4.3 28.351± 1.771 533.391± 53.077
4πR 65.9± 4.9 30.658± 1.449 516.228± 71.644
8πR 67.3± 4.0 35.225± 1.967 481.901± 42.814
16πR 68.3± 4.4 39.385± 0.522 489.221± 38.029
∞ 68.5± 3.4 39.534± 0.384 498.749± 43.545
∞

(Lmax =∞) 73.6± 3.9 218.189± 23.007 285.281± 19.157

deal with. Maximum reached tether length shows a very similar behavior to Table 4.1.1, and with
the exception of a generally longer paths, so does the total path length. One difference in total path
length is that the minimum is now reached around the ΔL = 8πRmark.

Lastly, the simulation results for a large environment shown in Table 4.1.3 continue to support
the general trends established in Tables 4.1.1 and 4.1.2. Total number of iterations and compu-
tation times continue to show an increasing trend with ΔL, though the computation times them-
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Table 4.1.4: Results using true distance to frontiers at ΔL = 2πR.

Environment
type

Tangle
(%)

Time per
iteration (s) Total time (s)

Low density 0 4.095± 0.751 157.243± 33.027
High density 0 6.937± 1.279 315.000± 67.851

Environment
type

Total
iterations

Max tether
length

Total path
length

Low density 38.3± 2.8 30.322± 4.843 171.551± 20.323
High density 45.2± 2.9 27.432± 2.320 239.675± 26.978

selves are now also much larger because in addition to more complex h-signatures, A∗ now has a
larger computation area as well. Themaximum tether length shows a very similar trend to bothTa-
bles 4.1.1 and4.1.2, and theminimum for total path length has been reached around theΔL = 8πR
mark similar to Table 4.1.2. While in this particular environment type the computation times per
iteration became relatively large, it should be noted that even these times would still be much less
than the time it would take the robot to move.

As we have mentioned earlier, in order to save on computation time for all our simulations and
experiments we used simple Euclidean distance to sort out closest frontiers instead of getting a
proper shortest path length it would take to actually reach them. While this could have hurt the
performance in terms of total path length since the closest Euclidean frontier is not necessarily the
closest reachable one, our testing did not reveal such a correlation. Table 4.1.4 shows both low and
high-density environments at ΔL = 2πR tested again, but this time using proper path distance
to frontiers to sort the closest ones instead of simple Euclidean distance. Comparing this data to
the corresponding lines in Tables 4.1.1 and 4.1.2 at ΔL = 2πR, it is evident that there was no
measurable change to the total path length, while the computation time rose significantly. Hence
we decided to keep using the Euclidean distance-based sorting method.
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Table 4.1.5: Results using varying numbers of random frontier cells at ΔL = 2πR in a high-
density environment.

Cells
sampled

Time per
iteration (s) Total time (s) Total

iterations

0 0.515± 0.128 24.174± 7.017 46.6± 2.9
4 1.562± 0.534 71.740± 25.452 45.7± 2.8
8 2.440± 0.453 107.576± 22.351 43.9± 2.3
16 4.099± 0.841 186.638± 43.164 45.4± 2.5
32 7.206± 1.592 331.824± 84.986 45.8± 2.9
64 11.576± 2.896 535.286± 147.438 46.0± 2.7
128 11.937± 3.171 546.617± 159.215 45.5± 3.1

Cells
sampled

Max tether
length

Total path
length

0 27.295± 2.540 284.044± 32.336
4 27.067± 1.797 249.882± 30.136
8 26.721± 1.481 236.458± 25.719
16 28.081± 2.797 228.557± 26.656
32 27.682± 2.088 227.961± 24.718
64 28.042± 2.215 227.405± 28.321
128 27.969± 2.637 226.805± 27.268

The last important point to our experiment is our use of the number of random frontier cells
to sample. While in theory in order to get the absolute best frontier to go to in terms of cost one
would need to check all the available frontiers in the map, in practice such an approach would be
very computationally inefficient. Another source of inefficiency is that a lot of frontier cells will be
right next to each other and there would be little reason to test cells in such close proximity. We
have ran an additional test in a high-density environment at ΔL = 2πR, varying only the number
of random frontier cells sampled. The results of this test are shown in Table 4.1.5. The number of
cells sampled goes from 0, meaning no randomness and that only closest cells to the base and to the
robot are tested, to 128, which in this testing environment is always more than the total number
of frontier cells at any given point. It should also be mentioned that the selection algorithm does
not select repeated cells, and should Fmax exceed the total number of cells it stops once all the cells

39



0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

Ti
m

e 
p

er
 it

er
at

io
n

 (
s)

Number of random frontier cells

(a)

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

To
ta

l t
im

e 
(s

)

Number of random frontier cells

(b)

200

210

220

230

240

250

260

270

280

290

0 20 40 60 80 100 120 140

To
ta

l p
at

h
 le

n
gt

h

Number of random frontier cells

(c)

Figure 4.1.2: Illustration of the data from Table 4.1.5. The effect of the number of random
frontier cells on time per iteration (a), total computation time (b) and total path length (c).
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have been sampled.
It is evident from Table 4.1.5 that the number of random cells does not affect neither the total

iteration number nor the maximum tether length in a measurable way. The other parameters are
affected significantly, and the effect is visually demonstrated in Figure 4.1.2. We can see that both
the timeper iteration aswell as total computation time increase linearlywith the number of frontier
cells sampled, and saturates at around 70 cells, meaning that in the testing environment this was
approximately the maximum number of frontier cells throughout the simulation. This means that
computational penaltywouldbedirectly proportional to thenumber of cells sampled. So, bybrute-
force sampling all the frontier cells in a large high-resolution environment these computation times
can easily exceed any reasonable boundaries.

Looking at Figure 4.1.2(c) however, it is clear that such an approach is not necessary. While
having no randomness in the algorithm and relying only on the two cells closest to the base and
the robot results in a very long total path compared to the rest, the total path length saturates very
quickly with the number of random frontier cells, and at 16 cells it has already completely leveled
off. Looking back at computation times though, at 8 random cells the algorithm is almost twice as
fast as the one at 16 cells, while the total path length is notmuch longer. We considered this a good
balance and hence went with Fmax = 8 for our experiments.

4.1.2 Gazebo Simulations

In order to further test the proposed algorithm in amore realistic scenario before fully implement-
ing it on a real robot, we ran two simulations in the Gazebo simulator. Specifically, we simulated
a smaller 20 × 20 meters “room” type environment as well as a bigger unlimited “forest” type
environment. Both environments are shown in Figure 4.1.3(a) and (b), respectively. A model of
the iRobot Create mobile robot equipped with a 360-degree planar LiDAR was used in these sim-
ulations. While the “room” environment was a more simplistic test to assess the operation of the
algorithm itself, the “forest” environment was meant to demonstrate how the algorithm behaves
in a more dense field where the tether length is the only constraint on the exploration distance. In
both cases maximum tether length Lmax was set to 15meters and the length tolerance ΔL was set
to 4meters, with the latter being just over the 2πR theoretical maximum for the “forest” environ-
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(a)

(b)

Figure 4.1.3: Environments used in Gazebo simulations. “Room” type environment is shown
in (a), and “forest” type environment is shown in (b).
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(a) (b)

(c) (d)

Figure 4.1.4: Results from Gazebo simulations. Maps generated my gmapping for room and
forest environments are shown in (a) and (b) respectively, and the processed maps used by
the algorithm with expanded obstacles and total paths taken being shown in (c) and (d) re-
spectively.

ment. This further demonstrates the viability of letting ΔL go slightly over 2πR while still having
tangle-free global paths.
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Since the algorithm assumes a point robot in its operation, which was not an issue for the arti-
ficial simulations of previous subsection, to account for the robot dimension in both Gazebo sim-
ulations and real-world experiment the map interpreter in the algorithm creates the robot config-
uration space by expanding the detected obstacles radially by the radius of the circular robot used.
This approach also has a convenient side-effect of expanding the obstacles over what could have
been a few extra frontier cells behind an obstacle, saving the robot some unnecessary movement.

Results fromGazebo simulations of both environments can be seen in Figure 4.1.4. The “room”
environmentwas fairly straight-forward, with the robot completely exploring the environment and
returning to the base without tangling the tether, as expected. The “forest” environment is a bit
more involved,with amuch largernumberof obstacles andnoexternal borders. However, as shown
in Figure 4.1.4(d), the robot still managed to explore all the space it could reach with the tether
length constraint, while also keeping the tether tangle-free throughout the exploration process.
Videos of these simulations can be seen here: https://www.shorturl.at/bcdDW

4.2 RealWorld Experiments

4.2.1 Externally Tracked Implementation

Our original methodology, using the RRT-based path planner and having no SLAM integration,
was first tested with an iRobot’s Create 2 robot using a VICON system for localization. The robot
was controlled by a laptop with an Intel Core i3 processor clocked at 1.8GHz and 4 gigabytes of
memory that runs Linux Ubuntu 18.04. A spring-loaded retractile tether spool was anchored at
the base with the tether attached to the robot. For this demo, the robot sensor was simulated as a
circle of 70 cm radius centered on the robot. Themaximum tether length was set to be 4mand the
length tolerance ΔL to be 0.8m, which is smaller than the actual theoretical minimum of approx-
imately 2m and considers the radius of the robot (0.17m) and of the smallest obstacle (0.15m).
Figure 4.2.2 shows snapshots of the experiment while the robot explores a small 3 × 3m envi-
ronment with a circular and a rectangular object. The robot explores the entire environment and
returns to the base by following a tangle-free global path. For the sake of comparison, Figure 4.2.1
shows snapshots of the environment when the robot executes a standard frontier-based strategy
(ΔL = Lmax = ∞). The environment is completely explored but the tether ended up tangled
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around the obstacles. A video of this experiment can be found at https://youtu.be/2lRHnf43T9g.
While this approach was successful in demonstrating the operation of the main algorithm, the

lack of autonomous navigation and a pre-determined map made it just a proof of concept. The
originally developedRRT-based planner alsomade this approach’s computation times scale poorly
with the size and complexity of the environment. It is also worth noting that at the time of that
experiment no cost filtering has been implemented yet, so the robotwas always selecting the closest
frontier cell as the goal.

4.2.2 SLAM Implementation

For our final experiment we used the same real robot to fully explore our research lab environment
with some extra obstacles placed around, this time with full SLAM integration. The picture of the
environment is shown in Figure 4.2.3. We have used the same robot, equipping it with the YDLI-
DAR X4 360-degree plannar LiDAR scanner. The same retractile tether spool was used, anchored
to the robot’s base and starting point for the exploration. The robot is controlled with the same
small laptop computer.

We ran two separate instances of the experiment — one using standard frontier-based explo-
ration, and one using our proposed algorithm. Snapshots of the map building process for these
two runs are shown in Figure 4.2.4 and Figure 4.2.5 respectively. In these figures, the robot base is
shown as a red triangle and the robot’s position is shown as a green star. Computed paths that the
robot was required to take are shown in solid yellow, and the robot’s true paths as reported by the
SLAM system are shown in dashed green. The true path and computed path are very close to each
other on the figures, making them hard to separate visually, meaning the robot was following the
desired path with minimal deviations. Lastly, the tether approximation that was used throughout
the exploration is shown in solid purple. As evident from these figures, the standard frontier-based
approach that ignored the tether ended up with major tangling, which is visualized by the tether
shown in purple being looped around multiple obstacles across the entire testing environment as
the robot returned to the base after concluding the exploration. On the other hand, our proposed
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Figure 4.2.1: Snapshots of the externally tracked experiment with standard frontier-based
exploration approach used.
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Figure 4.2.2: Snapshots of the externally tracked experiment with our approach used.
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Figure 4.2.3: Lab environment used for the experiment.

approach successfully explored the entire environment while keeping the tether in a tangle-free
configuration at all times, as the tether is completely retracted by the time the exploration con-
cluded. A video containing similar experiments can be found at https://youtu.be/52bhZoiNjF0.
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Figure 4.2.4: Snapshots of map building during during the real world experiment using stan-
dard frontier-based exploration. The tether approximation during the exploration is shown in
purple.
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Figure 4.2.5: Snapshots of map building during during the real world experiment using our
proposed approach. The tether approximation during the exploration is shown in purple.
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5
Conclusions And Future Work

This thesis proposes an algorithm for tangle-free exploration of 2D environments with a tethered
mobile robot. The core of the algorithm hinges on the length tolerance valueΔL, which represents
the difference between the tether length in proposed total path and the one in the shortest path to
the goal, and shouldΔL be exceeded— the algorithm computes a path to the goal that will put the
tether in the shortest possible configuration. The configuration of the tether is being kept track of
by using homotopy invariants, which define a unique path configuration in relation to the obstacles
in the environment.

The algorithm was proven correct given the right choice of parameter ΔL, which is used to de-
cide when the robot needs to retracts its tether to avoid tangling. Although our proof determines a
maximum value for this parameter in function of the size of the obstacles in the environment being
2πR, where R is the radius of the smallest expected obstacle in the environment, we show experi-
mentally that tangle-free exploration is still possible even with larger errors in this parameter. This
is an important characteristic, since we usually do not know the actual size of the obstacles before
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starting the exploration of an environment. Our results show the effectiveness of our algorithm
in both bounded and unbounded spaces, indicating that it can be directly used for exploring any
arbitrary environment with a tethered robot.

There could be multiple applications for such an algorithm where having a tether on the robot
is either a convenience or a necessity. One such possible application is disaster response for col-
lapsed buildings ormines. In such scenarios, there will always be a lot of rubble in the environment
which can be considered as obstacles, whilewireless communication to the robotmight be severely
hampered. In addition to that, on-board power source of the robot might not be sufficient for long
search-and-rescue operations, further facilitating the need for a tether. A lot of such environments,
while being fairly large, are still planar, allowing for direct use of our algorithm.

We have initially described a generalized algorithm for our proposed approach. This algorithm
is modular, meaning any method can be used for each respective module. These modules include
the goal selection, shortest path planning, and homotopic path planning to return the robot to the
most optimal tether configuration. Any method or planner can in theory be used for any of those
modules, with tangle-free global paths being guaranteed by the ΔL condition.

Our actual implementation of the proposed algorithm is based on a modified frontier-based
exploration approach. The main modification is sampling of multiple goals per iteration, subse-
quently sorting them by their respective costs, with the cost represented as path length required to
reach the goal with the homotopy constraints accounted for. This means that in our implementa-
tion the goal selection andpath planningmodules of the generalized algorithmare no longer clearly
separated.

Themain highlights of our approach are its ease of implementation and its efficiency in terms of
global path length with the tether constraint accounted for and the ability tomaintain a tangle-free
global path. Our testing has demonstrated that the total path length in our approach is 30 to 80%
longer than the one in standard untethered frontier-based exploration method depending on the
environment size and obstacle density, with a higher percent increase in denser environments. It
is also approximately 6 times shorter that the total path length in a conservative method that uses
simple backtracking to the base after every iteration as its means of keeping the tether tangle-free.
There are however some compromises in our use of a homotopic path optimizer instead of a proper
planner. While it offers great efficiency and is perfectly adequate for the purposes of exploration, it
is not as versatile as a proper homotopic path planner outside of the proposed scenarios. However,
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the RRT-based homotopic path planner that we have initially developed was not reliable enough
in complex environments to continue using it.

The main drawback of our approach is its assumption of planar environments. While there
are a lot of real-world environments that can be approximated as being planar, like mines and
forests, our implemented algorithm without further modifications would fail in true 3D environ-
ments, or even should the environment have multiple floors to it. That said, the next logical step
in our research would be the extension of our algorithm to 3D environments. This is a compli-
cated task, however. Even though we have successfully tested the algorithm on simulated drones,
we still reduced both the drone motion and mapping to the plane (see a video here: https:
//youtu.be/A6A7--rLkfo). While the proposed algorithm itself canwork both in 2D and 3D,
defining h-signatures and getting accurate tether configuration data becomes muchmore complex
in 3D. Further research is required in this aspect.
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