66 research outputs found

    The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques

    Get PDF
    A methane (CH4) and carbon dioxide (CO2) release experiment was held from April to June 2015 at the Ginninderra Controlled Release Facility in Canberra, Australia. The experiment provided an opportunity to compare different emission quantification techniques against a simulated CH4 and CO2 point source release, where the actual release rates were unknown to the participants. Eight quantification techniques were assessed: three tracer ratio techniques (two mobile); backwards Lagrangian stochastic modelling; forwards Lagrangian stochastic modelling; Lagrangian stochastic (LS) footprint modelling; atmospheric tomography using point and using integrated line sensors. The majority of CH4 estimates were within 20% of the actual CH4 release rate (5.8 g/min), with the tracer ratio technique providing the closest estimate to both the CH4 and CO2 release rates (100 g/min). Once the release rate was known, the majority of revised estimates were within 10% of the actual release rate. The study illustrates the power of measuring the emission rate using multiple simultaneous methods and obtaining an ensemble median or mean. An ensemble approach to estimating the CH4 emission rate proved successful with the ensemble median estimate within 16% for the actual release rate for the blind release experiment and within 2% once the release rate was known. The release also provided an opportunity to assess the effectiveness of stationary and mobile ground and aerial CH4 detection technologies. Sensor detection limits and sampling rates were found to be significant limitations for CH4 and CO2 detection. A hyperspectral imager’s capacity to image the CH4 release from 100 m, and a Boreal CH4 laser sensor’s ability to track moving targets suggest the future possibility to map gas plumes using a single laser and mobile aerial reflector

    The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques

    Get PDF
    A methane (CH4) and carbon dioxide (CO2) release experiment was held from April to June 2015 at the Ginninderra Controlled Release Facility in Canberra, Australia. The experiment provided an opportunity to compare different emission quantification techniques against a simulated CH4 and CO2 point source release, where the actual release rates were unknown to the participants. Eight quantification techniques were assessed: three tracer ratio techniques (two mobile); backwards Lagrangian stochastic modelling; forwards Lagrangian stochastic modelling; Lagrangian stochastic (LS) footprint modelling; atmospheric tomography using point and using integrated line sensors. The majority of CH4 estimates were within 20% of the actual CH4 release rate (5.8 g/min), with the tracer ratio technique providing the closest estimate to both the CH4 and CO2 release rates (100 g/min). Once the release rate was known, the majority of revised estimates were within 10% of the actual release rate. The study illustrates the power of measuring the emission rate using multiple simultaneous methods and obtaining an ensemble median or mean. An ensemble approach to estimating the CH4 emission rate proved successful with the ensemble median estimate within 16% for the actual release rate for the blind release experiment and within 2% once the release rate was known. The release also provided an opportunity to assess the effectiveness of stationary and mobile ground and aerial CH4 detection technologies. Sensor detection limits and sampling rates were found to be significant limitations for CH4 and CO2 detection. A hyperspectral imager\u27s capacity to image the CH4 release from 100 m, and a Boreal CH4 laser sensor\u27s ability to track moving targets suggest the future possibility to map gas plumes using a single laser and mobile aerial reflector

    A low-cost radiation detection system to monitor radioactive environments by unmanned vehicles

    Get PDF
    AbstractUnconventional scenarios with hazardous radioactive levels are expected as consequences of accidents in the industrial sector of the nuclear energy production or following intentional releases of radioactive materials for terrorist purposes (dirty bombs, indoor contaminations, etc.). Nowadays, the need to balance the high standards of safety and security through an effective detection network is a matter of paramount importance. In this work, the authors' challenge has been to design, realize and test a low-cost gamma detection and spectroscopy system which may be used in unmanned vehicles in general and/or drones with low payload capabilities. The designed platform may be used to carry out mapping or localization operations in order to reduce the risk factor for first responders or for the population affected by radiological and nuclear events. In this paper, the design process of a gamma ray detection and spectroscopy system based on affordable and commercially available technologies is presented along with the results of our ongoing characterization of the prototype

    Motion Planning of UAV Swarm: Recent Challenges and Approaches

    Get PDF
    The unmanned aerial vehicle (UAV) swarm is gaining massive interest for researchers as it has huge significance over a single UAV. Many studies focus only on a few challenges of this complex multidisciplinary group. Most of them have certain limitations. This paper aims to recognize and arrange relevant research for evaluating motion planning techniques and models for a swarm from the viewpoint of control, path planning, architecture, communication, monitoring and tracking, and safety issues. Then, a state-of-the-art understanding of the UAV swarm and an overview of swarm intelligence (SI) are provided in this research. Multiple challenges are considered, and some approaches are presented. Findings show that swarm intelligence is leading in this era and is the most significant approach for UAV swarm that offers distinct contributions in different environments. This integration of studies will serve as a basis for knowledge concerning swarm, create guidelines for motion planning issues, and strengthens support for existing methods. Moreover, this paper possesses the capacity to engender new strategies that can serve as the grounds for future work

    Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Full text link

    Ant-based Swarming with Positionless Micro Air Vehicles for Communication Relay

    Get PDF
    Swarming without positioning information is interesting in application- oriented systems because it alleviates the need for sensors which are dependent on the environment, expensive in terms of energy, cost, size and weight, or unusable at useful ranges for real-life scenarios. This principle is applied to the development of a swarm of micro air vehicles (SMAVs) for the deployment of ad hoc wireless communication networks (SMAVNETs) between ground users in disaster areas. Rather than relying on positioning information, MAVs rely on local communication with immediate neighbors and proprioceptive sensors which provide heading, speed and altitude. To solve the challenging task of designing agent controllers to achieve the swarm behavior of the SMAVNET, inspiration is taken from army ants which are capable of laying and maintaining pheromone paths leading from their nest to food sources in nature. This is analogous to the deployment of communication pathways between multiple ground users. However, instead of being physically deposited in the air or on a map, pheromone is virtually deposited on the MAVs using local communication. This approach is investigated in 3D simulation in a simplified scenario with two ground users

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Journal of undergraduate research and scholarly excellence

    Get PDF
    JUR publishes extraordinary undergraduate work in an easily accessible and professional peer-reviewed journal. The mission is to print outstanding undergraduate research, scholarly articles, and creative works in order to make them available to the public and connect the worldwide community of college undergraduates. http://jur.colostate.edu/index.cfm.Includes bibliographical references.Empathy Factory: How Louisiana Can Treat Mental Illness / Alexandra Lenczycki and LeeAnn Derdeyn -- A Literature Review of Pain Research: Theories, Mysteries, and Future Directions / Anahvia Taiyib Moody -- Transcendentalist Literature and the Question of Slavery: An Examination of Transcendentalist Critiques Before and After the Fugitive Slave Act of 1850 / Blake Carrera and John Pipkin -- Luna Moth / Angela Natrasevschi -- Luna Agate | Snowdrop / Angela Natrasevschi -- Transient / Angela Natrasevschi -- Sandpaper Soles / Lindsey Whittington -- Forsaken Conscience | Humanism and Nonsensical Mathematics / Thomas Bloomberg -- Flux | High Viscosity | Interfering Circumstance | Impossible Storm / Kendall Rose Kippley -- Nested Selves | Selves | Untitled / Alexandra Lake -- Untitled / Courtney Wells -- Journey| Zion / Rachel Wolf -- An Affordable Method of Thermal Infrared Remote Sensing of Wadeable Rivers using a Weather Balloon / Tim Beach, Sarah Null, and Curtis Gray -- Gene Expression in Hardwood Tree Species Exposed to Ozone / Abby Carroll, Chicko Jones, Teo Best, John Carlson Kate Shumaker -- An Analysis of Gene Expression Induced by Elevated Atmospheric Ozone in Hardwood Trees Native to Eastern North America / Timothy Odom, KelviNeisha Williams, Teodora Best, Nicole Zembower, Ketia Shumaker, Mark Coggeshall, Scott E. Schlarbaum, and John E. Carlson -- An Analysis of American Drone Strikes in the Middle East, North Africa Region and the Development of Radical Anti-Americanism / Sandra Morrell Andrews -- The Tarnishing of the Golden Years: The Economic Ramifications of Ineffective Long-Term Care Policy / Tanney smith -- Popular Psychology and the Public Image / Sophie Gullett.Annual
    • …
    corecore