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Abstract

The unmanned aerial vehicle (UAV) swarm is gaining massive interest for 
researchers as it has huge significance over a single UAV. Many studies focus only on 
a few challenges of this complex multidisciplinary group. Most of them have certain 
limitations. This paper aims to recognize and arrange relevant research for evaluating 
motion planning techniques and models for a swarm from the viewpoint of control, 
path planning, architecture, communication, monitoring and tracking, and safety 
issues. Then, a state-of-the-art understanding of the UAV swarm and an overview of 
swarm intelligence (SI) are provided in this research. Multiple challenges are con-
sidered, and some approaches are presented. Findings show that swarm intelligence 
is leading in this era and is the most significant approach for UAV swarm that offers 
distinct contributions in different environments. This integration of studies will serve 
as a basis for knowledge concerning swarm, create guidelines for motion planning 
issues, and strengthens support for existing methods. Moreover, this paper possesses 
the capacity to engender new strategies that can serve as the grounds for future work.

Keywords: UAV, swarm intelligence, motion planning, swarm challenges, flight,  
aerial mission

1. Introduction

UAV has significance in our lives due to their potential applications. Single UAVs 
are restricted to limited power, capabilities, sensing, and flight time. This has raised a 
requisite for employing swarms of UAV systems. UAV swarm conquers the exploita-
tions and restrictions of an unaccompanied UAV and assists larger teams to cooperate 
for successful aerial missions. Swarm has benefits and brings versatile possibilities as 
the strength lies in numbers. Many of them are task completion in less time, redun-
dancy, and collaborative task execution.

1.1 Background

Swarming is not a contemporary conception. It existed in nature and was moti-
vated by the cooperation and mutual communication of biological populations [1]. 
Studying the flocking of birds, movement of the ant colony, cooperation of bees, 
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schools of fish, and predation of wolves the concept of the swarm of UAVs came into 
existence. The unity of the animal kingdom makes it possible to achieve a common 
challenging and complex goal.

Nevertheless, swarming is not restricted to a natural phenomenon. It is also 
inspired by a military tactic in which many units from multiple axes coverage attack a 
common target in a coordinated and deliberately structured form [2]. Since the fourth 
century, swarming has been observed throughout military history. However, today 
swarming has changed the traditional concepts of command and control into innova-
tive ones. Moreover, a single person is capable to command and control several UAVs 
at a time.

1.2 Related work

Swarm of UAVs is evolving because of its significant capabilities of long-range 
operations, enhanced robustness, and flexibility [3]. Swarm intelligence has a high 
impact on many fields such as technology, science, society, and various systems like 
inspection, tracking, transporting, and many others [4]. For the motion planning of 
UAV swarms, many improvements in terms of control designs, path planning algo-
rithms, communication structure, monitoring and tracking architectures, and safe 
flight protocols are considered in different studies [5].

The researchers combined computational techniques with mathematical models 
in [6] to examine the communication effects. The modeling process was simplified 
through this approach, but the process of modeling was slow and run out of memory. 
In [7] a controller based on a decentralized, leader-follower strategy, and a geometry 
of the tree-based network were suggested. This study achieved the arrival of multi-
UAVs at a common spot with maintained synchronization. Moreover, the suggested 
design showed flexibility and robust performance. However, this study was bounded 
to a limited number of UAVs. In [8] researchers developed a framework for novel path 
planning of UAV swarm. This proposed algorithm resulted in efficient path planning 
with a reduction in energy and inspection time. Additionally, it provided the guide-
lines for determining various parameters.

In [9] the study presented an algorithm for computing the control of swarm and 
modeling their distributed behavior. The examination and simulations have shown 
the communication latency effects on different scenarios. In [10] an improved 
algorithm with resilience metric is proposed while considering the limited commu-
nication range effects. This strategy is implemented in a surveillance mission, which 
showed its significance as a more realistic method that can face efficiently the exter-
nal disturbance and threats. In a recent study [11], the concepts of PIO algorithm, 
proportional-integral controller, and proportional integral differential controller are 
employed for the formation control of UAV clusters. This strategy has outperformed 
the traditional methods and provided a safe flight protocol. Further extensive reflec-
tion on how this technology has evolved is in the section of the related survey.

1.3 Motivation and contribution

The motivation for this paper is to gather multiple challenges, which can hinder 
the performance of a UAV swarm, on a single platform. Moreover, to provide appro-
priate approaches as the solutions to achieve optimal motion planning. This study 
can assist researchers in exploring multiple motion planning strategies with their 
contributions and limitations. The appropriate selection of the motion planning 
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techniques and models can complete the complex tasks quickly and targets the 
applications dotage as well. Following are the significant contributions of this paper:

• To provide an explanation of swarm intelligence and the challenges it faces.

• To present a detailed analysis of the motion planning techniques with their 
contributions and limitations from several research articles from more than the 
last decade.

• To recommend future directions to guide the researchers.

1.4 Organization of the Paper

The paper is organized into many sections. Section 2 provides the state-of-the-
art of UAV swarms. Section 3 evaluates the concept of swarm intelligence. Section 
4 presents challenges faced by the UAV swarm. Section 5 reflects on an extensive 
survey of the techniques and models used to address many challenges concerning the 
UAV swarm. Section 6 discusses the key findings and limitations. Section 7 gives the 
conclusion, and Section 8 recommends some future work for further research and 
development.

2. State-of-the-art

The swarm makes decisions collectively and completes its aerial mission using 
relatively simple instructions due to the Artificial Intelligence (AI) technology and edge 
computing [12]. Features like following the leader and missions, path planning, sensing, 
and avoiding are already developed in the Veronte Autopilot. This advancement in the 
features makes teamwork possible and ensures task success. Surveillance and attack 
induction is a milestone event in the swarm globally. This game-changing capability of 
the swarm of UAVs is benefitting both larger as well as smaller nations. Other significant 
aspects of swarming include combined decision-making, self-healing, and adaptive 
formation flying. The swarm of UAVs is still in the progressing phase as further research 
is being conducted to further enhance the systems. Further focus includes the expan-
sion of capability of artificial swarm intelligence, increase in the autonomy state among 
the swarm agents, and commodification to reduce the cost impacts.

The most amazing aspect of the UAV swarm is its application for both civilian and 
military purposes using swarm intelligence [13]. The civilian agencies are using the 
swarm technology for bigger plans. The National Aeronautics and Space Administration 
(NASA) is also employing this AI-based swarm technology for climate change analysis 
[14]. This results in the accomplishment of the required things, which were not pos-
sible while using one. Moreover, many developed nations have passed regulations to 
widespread the commercial application of UAV swarms. The swarm shows tremendous 
performance in power line and structure inspections, precision agriculture, surveying, 
search and rescue operations, and others.

However, the swarm of UAVs gained the spotlight for its potential and efficiency in 
military usage. If in combat, some of the UAVs of the swarm get shot down then still 
the remaining ones complete the mission with similar tactics, power, and flexibility. 
Raytheon demonstrated this by employing swarm operation during a field exercise 
of the US Defense Advanced Research Projects Agency (DARPA) program [15]. The 
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Raytheon swarm had the communication and coordination ability. Moreover, all the 
individuals had sensors, cameras, and Tactical Assault Kit (TAK) integration capabil-
ity for environmental explorations.

The swarm technology is enhancing the capabilities of the military in complex 
environmental tasks. Many militaries, like the US and China militaries, are in a lead 
in testing and observing the simulations for swarm operations on the highest levels 
[16]. Some militaries, like the British military, are using this technology for real-time 
operations. The UK has also experimented with Leonardo’s Brite Cloud for swarming 
that contained electronic warfare jammers. Similarly, soon Russia aims large UAV 
swarm induction, “Flock 93,” in its army. Moreover, it is trying to fill the gap by 2025. 
Iran, Turkey, and India are also attempting efforts to mature and proliferate this 
technology using distributed intelligence and edge computing. Swarms of UAVs are 
the future of aerial wars, and the future is now [17].

3. Preliminaries of swarm intelligence (SI)

In this world, we observe that all individuals wish to amplify their intelligence. 
For this goal, they think and prefer working together, like a bee swarm, fish scull, 
and birds flock together. This is because they believe that they are smarter in a group 
rather than being alone. A new intelligence that is formed due to the deep intercon-
nection of the real system having feedback loops is known as swarm intelligence [18]. 
In simple words, a swarm is a brain of all the brains that are smarter than individual 
ones. Swarm intelligence is an evolving area of bio-inspired artificial intelligence [19].

Moreover, using swarm intelligence, many heads follow a single mind. All the 
individuals follow clear rules and interact not with each other but with the environ-
ment as well. This adaptive strategy requires a large mass of individuals. It is capable 
of scheduling, clustering, optimizing, and routing a cluster of similar individuals. 
Swarm intelligence emphasizes the task’s relative position in the schedule. It follows 
the summation evaluation rule for scheduling. A collaboration of all the similar indi-
viduals in a swarm is known as clustering. For example, UAVs of a swarm are different 
from other clusters’ UAVs. It is capable to provide the best and low-cost solution from 
all the feasible outcomes through optimization. Moreover, it has potential capabilities 
of routing. It imitates the principle of ants in which forward ants gather the informa-
tion while the backward ants utilize that information [20].

3.1 Aspects of SI

Major aspects of swarm intelligence include distribution, stigmergy, cooperation, 
self-organization, emergence, and imitating natural behavior [21]. Distribution is the 
prime characteristic of swarm intelligence as all the individuals are capable to select their 
actions and perform them. The phenomenon with which the agents interact through 
environmental alteration indirectly is called stigmergy. This phenomenon provides them 
with awareness of their surroundings and disconnects the interactions of the individuals. 
Another significant behavior is the cooperation of all the UAVs in a swarm [22]. UAVs 
cooperate for solving complex tasks and show their collective behavior using swarm 
intelligence. Another aspect of swarm intelligence is self-organization. This behavior is 
based on positive feedback, negative feedback, fluctuations amplification, and different 
social interactions. Positive feedback is the amplification that gives better outcomes by 
allocating more UAVs to them. Negative feedback is to stabilize so that not all the UAVs 
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converge to a similar state. The self-organization phenomena usually observe a tension 
between both the feedbacks, such as complex networks, markets, cellular automata, and 
many others. Another characteristic is emergence, which can be weak or strong. The 
emergence is said to be weak if the individual behavior is traceable from the emergent 
properties. The emergence is said to be strong if the individual behavior cannot be traced 
from the properties of emergence. Moreover, a swarm of UAVs is modeled by taking 
inspiration from natural swarm behavior. Generally, swarm behavior includes foraging, 
constructing a nest, and moving together in the environment. Hence, imitating these 
natural swarm behaviors is another key aspect of swarm intelligence [23].

3.2 Levels of SI

There are two levels of swarm intelligence. The first level employs a positive feed-
back pheromone for marking shorter paths and an entry signal for others. Whereas 
the second level of swarm intelligence employs a negative pheromone for marking 
unpleasant routes and no entry signal for others.

3.3 Principles to follow in SI

A swarm follows five principles generally. The proximity principle, the quality 
principle, diverse response principle, stability principle, and adaptability principle 
[24]. Following the proximity principle, the basic swarm individuals can easily 
respond to the environmental variance that is caused by interactions among them. 
The quality principle allows a swarm to respond to quality factors like location safety 
only. The diverse response principle enables to design of the distribution in such a way 
that all the individuals are protected from environmental fluctuations to a maximum 
level. The stability principle restricts the swarm to show a stable behavior with the 
changes in the environment. The adaptability principle shows the sensitivity of a 
swarm as the behavior of the swarm changes with the change in environment. The 
most widely used principles are attraction between all individuals, collision avoid-
ance, and self-organization. While following attraction they come closer and focus 
on a similar direction. While following the collision avoidance principle, they keep a 
particular distance between them to avoid collisions. Whereas, in self-organization 
rule, they interact with the neighbors but do not trust all.

3.4 Mechanism of SI

The mechanisms of swarm intelligence are regarding the environment, interactions, 
and activities of the individuals in a swarm. No direct communication takes among the 
individuals in a swarm [25]. They interact with each other through environmental alter-
ations. Thus, environmental alterations serve as external memory. This simulation of 
work is done by applying the stigmergy behavior of all the swarm members. Moreover, 
the individuals choose their actions with an equilibrium between a perception-reaction 
model and any random model. Then, they react and move according to this perception-
reaction model while perceiving and affecting the local environmental properties.

3.5 Languages used for SI

Proto-swarm, swarm, Star-Logo, and growing point are some programming 
languages for swarm intelligence. The proto-swarm language uses amorphous 
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medium abstraction to program the swarm [26]. This amorphous medium abstrac-
tion is obtained by utilizing a language that is from the continuous space-time model 
of Proto and a runtime library that estimates the model on the provided hardware. 
Another language for swarm intelligence is a distributed programming language 
called a swarm. The basic concept for it is to move the computation rather than the 
data. Swarm is analogous to the Java bytecode interpreter with a primitive version. 
Now it is applied as a Scala library. Star-Logo is not only a programming language but 
also a programmable modeling environment of a decentralized system. By utilizing 
this programming language, different real-life scenarios can be modeled like market 
economies, bird flocks, traffic jams, etc. Whereas, to program amorphous computing 
medium growing point language is essential. This programming language has the 
capacity of generating pre-specified and complex patterns like the interconnection 
form of an arbitrary electrical circuit.

3.6 Significance of SI

There is much significance of swarm intelligence; some of them are discussed 
here. It enables the swarm to be flexible while responding to external challenges 
and internal disturbances. It completes the tasks with robust performance even 
with the failure of some agents [27]. It allows the scalability to range from a few to 
a million individuals in a swarm. No central authority or control lies in the flocking 
of individuals. It is completely adaptable and provides self-organized solutions only. 
The propagation of changes is very rapid in the networks. All these are beneficial for 
clusters of individuals.

4. Swarm challenges

4.1 Swarm control

The basis of a UAV swarm is to control all the individual UAVs during the planned 
path. To solve the reconstruction, anti-collision, search, and tracking issues in the 
swarm formations the development of proper control system frameworks and control-
lers is required [28]. Centralized and distributed are the two major control platforms 
for the automation-equipped clusters. The main advantage of the centralized platform 
is achieving higher quality in outputs but with the limitation of limited scalability. 
Whereas the main contribution of the decentralized platform is its enhanced scalabil-
ity, which is less complex. The network of the UAV swarm guarantees the nodes’ con-
nectivity and simplifies the application designs. Sensor inputs with the environmental 
and target’s prior knowledge are the essentials for the traditional models.

Various research overcome these issues using multi-layer distributed control 
frameworks. The designing of the controller is crucial in the process design of 
the UAVs. Many studies suggest using the ANFIS controller for the learning error 
reduction and quality improvement of the controller. During the movement of 
UAVs following a specific path, the target tracking performance is directly affected 
by the control of the airborne gimbal system. Some studies propose the nonlinear 
Hammerstein block structure for modeling gimbal systems to enhance the efficiency 
of the model predictive controller (MPC). This also improves the performance of the 
target tracking under external interference in real-time. Other approaches for forma-
tion control are leader-follower strategy, consensus theory, virtual structure method, 
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behavior method, etc. Figure 1 represents the concept of distributed guidance model 
using a leader-follower controller as given in [29]. The leader guidance algorithm is 
given in the first column of this figure, whereas the other two columns represent the 
followers. The preassigned topology in this model cannot be altered.

4.2 Swarm path planning

The path planning of a UAV swarm is quite challenging [30]. To solve this NP-hard 
problem many studies suggest path-planning algorithms. These algorithms are cat-
egorized into classic algorithms and meta-heuristic algorithms as shown in Figure 2. 
Classic algorithms require environmental information while meta-heuristic algorithms 
require information on the real-time position and measured environmental elements. 
Road map algorithm (RMA), A* algorithm, and artificial potential field (APF) method 

Figure 1. 
Distributed guidance model using leader-follower controller.

Figure 2. 
Path planning algorithms for UAV swarm.
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are some examples of classic algorithms as presented in Figure 2. Particle swarm opti-
mization (PSO), pigeon-inspired optimization algorithm (PIO), fruit fly optimization 
algorithm (FOA), and gray wolf optimization algorithm (GWO) are some examples of 
meta-heuristic algorithms as given in Figure 2.

The swarm path planning can be categorized into dynamic path planning, 3D path 
planning, area coverage path planning, and optimal path planning [31]. Dynamic path 
planning is essential for the task performance of a UAV swarm in a complex environ-
ment. To ensure dynamic path planning many researchers suggest using collision 
probability with Kalman Filter, the artificial potential field (APF) with the wall-follow 
method (WFM) method, trail detection, scene-understanding frameworks, and so on. 
All these methods provide better direction estimation, better performance, and avoid 
path conflicts. 3D path planning is complicated, but many studies apply meta-heuristic 
algorithms for dealing with it. Like the GWO algorithm realizes the feasible flight trajec-
tory, the FOA algorithm performs local optimization and PIO optimizes the initial path.

All these algorithms work efficiently for 3D path planning of UAV swarms under 
threats and emergencies. Path planning in which UAVs can move at all the areas 
of interest points is area coverage path planning. Many studies suggest a five-state 
Markov chain model, improved potential game theory, and a cyber-physical system 
for it. For optimal path planning battery capacity of UAVs, matching performance, 
and energy consumption are serious considerations. Studies suggest a coupled and 
distributed planning strategy, mobile crowd perception system (MCS), and energy-
efficient data collection frameworks for optimal path planning.

4.3 Swarm architecture

For swarm implementations, the architecture of UAVs is of much importance 
[32]. Architecture is a combination of design, management, and optimization 
techniques. Swarm architecture can be based on communication, mission doctrine, 
control, etc. Communication-based swarm architecture has two forms. Ad-hoc 
network-based architecture and infrastructure-based swarm architecture. Both are 
promising architectures and perform well under complex environments.

Considering the operational mission for designing a swarm architecture is also 
important. Studies consider it imprudent if the mission doctrine is not considered. 
Current approaches include bottom-up modeling approaches and top-down design 
approaches for designing swarm systems. Similarly, control-based architectures are 
also beneficial for the swarm. Figure 3 gives a mission-based architecture for swarm 
composability (MASC) as presented in [33]. This framework focuses on the phases, 
tactics, plays, and algorithms. According to this figure, mission explains the entire 
task, phases evaluate specific periods, tactics are the individuals’ usage in a particular 
order for task performance, the play describes the swarm behavior and algorithms are 
the procedures. Moreover, linking distributed behavior control methods with central-
ized coordination can efficiently work for swarm aerial missions. The aerospace archi-
tecture can perform the thinking task, execution task, reaction task, and socialization 
task efficiently. Moreover, the Internet of Things (IoT) supports swarm architectures 
and facilitates interactions as well.

4.4 Swarm monitoring and tracking

Another prime challenge for a swarm is monitoring and tracking. All the UAVs’ 
positions, status, and the external environment change concerning time during 
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a swarm’s operation. Moreover, the swarm adapts to these changes and adjusts its 
behavior accordingly. For this, continuous monitoring and tracking are essential. 
Many researchers propose different control models, simulation models, and simula-
tion tools for solving monitoring and tracking challenge. Dynamic Data-Driven 
Application System (DDDAS) is a solution, which assists in the environment and the 
mission’s adaptation [34].

Target searching requires consideration of effective methods and control strate-
gies. If the target knows about the mobility and position of the searcher, then the 
searching complexity will be enhanced. The distributed strategy also provides 
solutions to the Automatic Target Recognition (ATR) issue. Many researchers sug-
gest layered detection solutions, learning-edge software, and optimal technology for 
tracking UAVs in a swarm. Figure 4 represents spatial distribution using an improved 
bean optimization algorithm (BOA) that is based on the population evolution model 
as developed in [35]. In this figure, the swarm space is distributed into three layers, a 
temporary dispatch layer, an individual layer, and a parent layer. BOA shows effective 
target search capabilities, emerging group intelligence, and distributed collaborative 
interaction. The individuals’ distribution using BOA can be given as,

       ( ) ( ) ( )+ = +1 , 1ij i ijX t X t if X t is a parent  (1)

            ( )( ) ( )+, 1  i ijG X t if X t is not a parent  (2)

Figure 3. 
MASC framework.
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Here, the parent i generates the position of individual j and is denoted by ( )+1ijX t , 

the ( )iX t  denotes the parent i, and ( )( )iG X t  gives the distributed function.

4.5 Swarm communication

Communication is one of the prime challenges for UAV swarms [36]. Under a 
noisy and complex environment, a swarm requires accurate and efficient data com-
munication for the task executions. Data communication depends upon an appropri-
ate structured network. Figure 5 shows that wireless ad-hoc networks are capable to 
provide efficient communications as presented in [37]. A base station is connected 
with two UAVs in this figure. Both of these UAVs are further connected to a different 
group of UAVs. The intraconnection of UAVs is independent but the interconnection 
is dependent on the base station. Three forms of networks include Flying Ad-hoc 
Network (FANET), Mobile Adhoc Network (MANET), and Vehicle Adhoc Networks 
(VANET). FANET network provides a network for communication between a few 
UAVs with GCS, while the rest of the UAVs communicate with each other. FANET 
enhances the range of communication as well as the connectivity in areas with 
limited cellular infrastructure and obstacles. Whereas MANET and VANET are 
interlinked with FANET. Therefore, FANET possesses similar features to both the 
other forms except a few ones like mobility, better connectivity, energy constraints, 

Figure 4. 
Spatial distribution of individual UAVs.



11

Motion Planning of UAV Swarm: Recent Challenges and Approaches
DOI: http://dx.doi.org/10.5772/intechopen.106270

etc. MANET does not require any support from the infrastructure of the internet and 
is formed with a required number of mobile devices. Whereas the VANET consists of 
terrestrial vehicles.

For quick deployment UAVs act as aerial base stations in a swarm to support the 
infrastructure of the communication. This wireless networking is implemented suc-
cessfully between UAV and Internet of Things (UAV-IoT), UAV and cellular unload-
ing (UAV-CO), UAV and emergency communications (UAV-EC), and others. These 
improve transmission efficiency and reduce response delays. Moreover, efficient 
communication can also solve other challenges like cooperation, control, and path 
planning. Hence, the foundation of a UAV swarm is effective communication.

4.6 Swarm safe distance protocol

In UAV swarm collaboration, the self-organization behavior becomes essential 
for each UAV. Transfer of data and communication take place among all the UAVs for 
appropriate decision-making during self-organizing swarm flights. But there is a risk 
of collision among UAVs in complex flight conditions. Hence, one of the key challenges 
is to provide a collision avoidance protocol for safe flights [38]. These protocols are 
necessary because of the continuous mobility of UAVs, limited resources, and air links 
instability. All the UAV members of a swarm must know each other’s positions using 
a multi-hop connection. Most of these require a global positioning system (GPS) and 
in the absence of GPS, the location of a UAV can be estimated using the Euclidean 
distance formula with three nodes of known positions. Several kinds of research 
provide safe flight protocols using goose swarm algorithms, Reynolds rule, and pigeon 
flock algorithm. Other than this, many optimization algorithms can promote the UAV 
swarm consensus. Reynolds protocol uses three flocking behavioral rules. First is the 
separation rule in which a UAV attempts to move away from neighboring UAVs in a 
swarm. Second is the alignment rule in which UAV attempts to align the velocity with 
the neighboring UAV to avoid collisions. The third is the cohesion rule-following which 

Figure 5. 
Ad-hoc network for multi-group UAV.
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the UAV tries to share the same position by coming closer to the neighboring UAVs to 
form clusters. A self-organized flight model using Reynolds Rules is given using the 
idea of [39]. All these rules are summarized in the following equation,

 
( )( ) ( )

( )Î
= +å    2

si ti ij j Ni t
J V s t

 (3)

Here N shows the number of UAVs in a swarm, ijs  is the position of two UAVs i, 
and j in time t and 𝑗 ∈ N𝑖 (𝑡) with 𝑉 represents an attractive–repulsive potential 
function with a local minimum. These rules provide a proper safe flight protocol 
among the UAV swarm but still have limitations, which should be improved to achieve 
safer trajectory planning.

5. Related survey

Successful motion planning of UAV swarms requires significant optimization 
algorithms with relevant infrastructures or models. Table 1 provides a compre-
hensive exploration of techniques and models applied for the motion planning of 
a swarm of UAVs. This review will provide a detailed and better understanding of 
appropriate techniques for challenges faced by UAV flocks used in previous and 
current studies.

Kim et al. [40] considered the Kalman filter with Covariance Intersection (CI) 
algorithm and smoothing, and string-matching methodologies to observe the air-
borne monitoring using a swarm of UAVs. The researchers employed the hidden 
Markov model (HMM) for path planning and achieved an increment in the track-
ing accuracy and a reduction in the tracking error. Oh et al. [41] suggested a vector 
field guidance approach to track the moving objects. The study further introduced a 
two-phase approach; K-means clustering with Fisher information matrix (FIM) and 
cooperative standoff tracking method for this purpose. The results showed standoff 
group tracking successfully, allowed local replanning, and kept all the targets of inter-
est within the sensor’s field-of-view (FOV). Sampedro et al. [42] presented Global 
Mission Planner (GMP) and Agent Mission Planner (AMP) for a UAV swarm. Their 
proposal gave a complete operative, robust, scalable, and flexible framework that 
automatically performed many high-level missions.

Yang et al. [43] analyzed eleven swarm intelligence (SI) algorithms for UAV 
swarm. This research explained the features and principles of these algorithms and 
analyzed different algorithm combinations and task assignments for multiple UAVs. 
Hocraffer and Nam [44] performed a meta-examination of the human-system 
interface concerning human factors. The analysis provided a basis to start research, 
enhanced situation awareness (SA), and yielded efficient results. Lee and Kim [45] 
studied multirotor dynamic models with linear and nonlinear controllers for trajec-
tory tracking control of multi-UAVs. The study showed that linear controllers were 
easily applicable, robust, and provide optimality and some nonlinear controllers were 
also easily applicable, intuitive, and gave global stability. Yang et al. [46] linked an 
orthogonal multi-swarm cooperative particle swarm optimization algorithm with 
a knowledge base model (MCPSO-K). This technique converged faster, avoided 
premature convergence, lessened the computational costs, and ensured the uniform 
distribution of particles.
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Ref. Author 

(Year)

Applied 

Technique/Model

Challenges 

Addressed

Contributions Limitation

[40] Kim et al. 
(2010)

Kalman filter with 
CI and smoothing
Boyer-Moore 
algorithm
HMM

Monitoring and 
tracking

• Enhances the track-
ing accuracy

• Reduces the tracking 
error by 50%

• Shows weaving 
behavior

• Requires 
decision-making 
integrations

[41] Oh et al. 
(2015)

Vector field 
guidance approach
Two-phase 
approach.
K-means clustering 
with FIM and 
Cooperative 
standoff tracking 
method

Target tracking • Gives standoff group 
tracking successfully

• Allows local replan-
ning and keeps 
all the targets of 
interest within the 
sensor’s FOV

• Has many imple-
mentation issues

• Shows imperfect 
communica-
tion effects and 
measurement data 
association effects

[42] Sampedro et 
al. (2016)

GMP
AMP

Architecture, 
target detection, 
and exploration

• Gives a complete 
operative, robust, 
scalable, and flexible 
framework

• Performs automati-
cally many high-
level missions

• Does not focus on 
various behavior 
functionalities

• Does not include 
time-based or 
autonomy-based 
optimization 
approaches

[43] Yang et al. 
(2017)

SI Management 
and task 
assignments

• Explains features 
and principles of 
many SI algorithms

• Analyzes SI 
combinations and 
task assignments for 
multiple UAVs

• Does not consider 
parameter optimi-
zation and swarm 
robot application

• Does not focus 
on algorithms for 
computational cost 
and convergence 
speed

[44] Hocraffer 
and Nam 
(2017)

Human-system 
interface

Human-system 
interfaces

• Focuses on the 
human-system 
interface and human 
factors concerns

• Provides a basis to 
start research and 
gives efficient results

• Enhances SA

• More effective 
interfaces are 
required

• Requires more 
research

[45] Lee and Kim 
(2017)

Multirotor dynamic 
models
Linear and non-
linear controllers

Trajectory 
tracking control

• Linear controllers 
are easily applicable, 
robust, and provide 
optimality

• Some non-linear 
controllers are easily 
applicable, intuitive, 
and give global 
stability

• Linear controllers 
require more 
modification, and 
some have limited 
applications

• Some non-linear 
controllers do 
not work if noise 
or model error 
exists and lack 
robustness
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[46] Yang et al. 
(2017)

MCPSO-K Cooperation, 
searching, and 
path planning

• Converges faster and 
avoids premature 
convergence

• Lessens the compu-
tational costs

• Ensures the uniform 
distribution of 
particles

• Requires adjust-
ment of informa-
tion interaction at 
the swarm level

[47] Guastella et 
al. (2018)

Modified A* 
algorithm

Path planning • Reduces the compu-
tational time

• Improves path 
trajectories

• Improves 
targets’ automatic 
redistribution

• No visible path for 
the two UAVs

[48] Duan et al. 
(2018)

MA with VND Path planning • Optimizes the path 
routing

• Gives highly effec-
tive results

• Solves CVRP even 
NP-hard problems 
efficiently

• Does not consider 
delivery and 
pickup issues 
simultaneously

[49] Koohifar et 
al. (2018)

EKF
Recursive Bayesian 
estimator
CRLB

Localization and 
path planning

• Plans the future 
tracking trajectory

• Enhances the 
performance

• CRLB and the 
Bayesian estimator 
outperform

• Shows higher 
computational 
costs

• Non-convex 
optimization can 
be more significant

[50] Shao et al. 
(2018)

RISE-ESO 
controller
Residual estimation 
error

Trajectory 
tracking control

• Tackles the lumped 
disturbance issues

• Achieves tracking 
accuracy, effective-
ness, and superiority

• Does not include 
real-time flight 
experiment

[51] Campion et 
al. (2018)

Cellular mobile 
infrastructure
Machine learning
Distributed control 
algorithms
M2M and 5G 
networks

Communication 
and control 
architecture

• Alleviates limiting 
factors for previous 
studies

• Enhances efficiency 
of the swarm and 
commercial usage

• Does not apply 
practically on a 
commercial level

[52] Shao et al. 
(2018)

ESO-based robust 
controllers
DSC design
DOB control 
techniques

Trajectory 
tracking control

• Shows effective and 
superior results in 
tracking

• Shows increased 
anti-disturbance 
capability

• Requires further 
modifications for 
output feedback–
based controllers
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[53] Mammarella 
et al. (2018)

SMPC Guidance 
algorithm

Trajectory 
tracking control

• Deals efficiently 
with noise and para-
metric uncertainty

• Guarantees real-time 
tracking

• Ensures performance 
with good stability

• May require an 
onboard fellow 
computer

[54] Huang and 
Fie (2018)

GBPSO Path planning • Improves the ability 
to search and avoids 
the local minimum

• Provides the feasible 
optimal path with 
superior quality and 
speed

• Requires further 
improvements in 
terms of accuracy 
and searching 
efficiency

[55] Ghazzai et al. 
(2018)

Bandwidth hungry 
and delay-tolerant 
applications
mm-Wave 
and μ-Wave 
communication 
modules
Hierarchical 
iterative approach

Path 
planning and 
communication

• Increases the stop-
ping locations

• Minimizes the 
service time

• Does not consider 
non-orthogonal 
transmission while 
applying μ-wave

• Requires limiting 
the interference 
effect during extra 
coordination

[56] Liu et al. 
(2018)

Distributed 
formation control 
algorithm
MPC
Disturbance 
estimation method

Control • Convenient for the 
formations of arbi-
trary, time-varying 
prescribed shapes

• Achieves a balanced 
configuration on a 
prescribed 2D or 3D 
shape

• Requires algorithm 
extension for 3D 
situations having 
different obstacles

• Needs human 
operator directions

[57] Xuan-Mung 
et al. (2019)

RAS-BSC
Lyapunov theory

Trajectory 
tracking control

• Provides the stability 
of the closed-loop 
system

• Bounds the tracking 
errors and ESO 
errors

• Rapid and robust in 
the uncertainties

• Gives superior 
performance

• Designing of for 
landing quadrotor 
in moving platform

• Not applicable 
in multi-agent 
systems

• Slow response time

[58] Fabra et al. 
(2019)

MUSCOP Coordination 
and 
synchronization

• Achieves swarm 
cohesion with a 
high degree under 
multiple conditions

• Allows least synchro-
nization delays with 
low position offset 
errors

• Does not validate 
the proposed pro-
tocol with different 
formations
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[59] Causa et al. 
(2019)

Multi-GNSS 
constellation 
approach
Edge cost 
estimation

Path planning • Decreases the 
computation time 
and entire mission 
time

• Provides a rapid 
solution to the task 
assignment issue 
and planning for 
offline and in near 
real-time scenarios

• Has high computa-
tional cost

[60] Brown and 
Anderson 
(2019)

Quintic 
polynomials 
trajectory 
generation method
OMOPSO
Area search radar 
model

Trajectory 
optimization and 
surveillance

• Gives maximum 
number of better 
trajectories

• Reduces the time 
to revisit and fuel 
consumption and 
enhances the detec-
tion probability

• Requires excessive 
fuel to fly at higher 
altitudes

[61] Mehiar et al. 
(2019)

QRDPSO Searching 
and obstacle 
avoidance

• Provides a more 
stable, efficient, 
and quick optimal 
solution

• Avoids obstacles 
and overcomes the 
communication 
constraints

• Reaches the global 
best for search and 
rescue operations

• Requires more 
energy conserva-
tion and enhanced 
lifetime

[62] Wang et al. 
(2020)

Leader-following 
model
Routh–Hurwitz 
criterion
Consensus protocol
MPC

Control and 
stability

• Predicts the changes 
in the leader’s state

• Lessens the con-
sensus achievement 
time

• Keeps the formation 
shape

• Not extended to 
nonlinear systems

• Does not consider 
disturbance issue

[63] Altan (2020) PSO
HHO

Control and path 
following

• Performs the best for 
multiple geometric 
paths

• Quickly determines 
the controller 
parameters

• HHO outperforms 
and overcomes the 
stabilization issues

• HHO gives the least 
settling and peak 
time and overshoot

• Does not focus 
on model-based 
controller design



17

Motion Planning of UAV Swarm: Recent Challenges and Approaches
DOI: http://dx.doi.org/10.5772/intechopen.106270

Ref. Author 

(Year)

Applied 

Technique/Model

Challenges 

Addressed

Contributions Limitation

[64] Wang et al. 
(2020)

NRI model
Mapping Table

Trajectory 
prediction

• Improves the 
position detection 
performance

• Projects the motion 
in 3D space into a 2D 
plane

• The designed 
algorithm predicts 
the trajectory and 
gives high accuracy

• Does not 
consider the height 
information

• Does not include 
trajectory predic-
tion in 3D space

[65] Rubí et al. 
(2020)

BS and FL 
algorithms
NLGL
CC algorithms

Path following 
control

• BS outperforms for 
yaw error and path 
distance

• CC needs fewer data 
and proves to be 
easily applicable for 
any path type

• Does not consider 
experimental 
platform features

[66] Selma et al. 
(2020)

ANFIS-PSO Trajectory 
tracking control

• Adjusts auto-
matically the ANFIS 
parameters

• Minimizes tracking 
error by improv-
ing the controller 
quality

• Gives high 
performance

• limitations of 
classical control 
laws are solved 
in the absence of 
model parameters 
not found

[67] Liu et al. 
(2020)

Kinetic controller
The BAT-based 
topology control 
algorithm
FANET

Control and 
communication

• Can perform a 
neighbor selection

• Reduces the commu-
nication overhead 
significantly

• Does not consider 
delay, interfer-
ence, and other 
communication 
constraints

[68] Madridano 
et al. (2020)

3D PRM algorithm
ROS architecture
MavLink protocol
Pixhawk autopilot
Hungarian method

Control and 
communication

• Generates optimal 
solutions using 
minimum time

• Lessens the compu-
tational time

• Reduces the total 
traveling distance

• Requires produc-
ing a node and 
developing an 
MRTA algorithm 
for allocation 
efficiently

• Does not mount 
onboard sensors 
for dynam-
ics obstacles 
detection

[69] Zhou et al. 
(2020)

Hierarchical control 
framework
SI

Decision-
making, path 
planning, 
control, 
communication, 
and application

• Categorizes the 
major technologies 
with trends, future 
research, and 
limitations

• Requires expensive 
loads for high 
performance

• Needs to improve 
safety relation
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[70] Wubben et 
al. (2020)

MUSCOP protocol
Ardu-Sim

Resilience and 
synchronization

• Handles the loss of 
a leader and backup 
leaders efficiently

• Introduces an ignor-
able flight times delay

• Does not address 
swarm split-up 
situation

[71] Selma et al. 
(2020)

Hybrid ANFIS-
IACO controller

Trajectory 
tracking control

• Proves the superior 
performance

• Reduces the errors, 
MSE and RSE 
significantly

• Allows the UAVs to 
reach the desired 
trajectory in a 
minimum period

• Applicable to only 
a 2D vertical plane.

[72] Altan and 
Hacıoğlu 
(2020)

Newton–Euler 
method-based 
3-axis gimbal 
system
Hammerstein 
model
MPC

Control and 
target tracking

• Tracks the target 
with stability

• Shows robustness 
even under external 
disturbances

• Does not track an 
aerial target

[73] Sanalitro et 
al. (2020)

Fly-Crane system
Optimization-based 
tuning method
Inner or outer loop 
approach

Control • Deals with paramet-
ric uncertainties

• Performs rotating 
and translating 
of particular 
trajectories

• Guarantees stability 
and enhances the 
performance of H∞

• Needs to keep the 
motion low

• Requires relaxation 
in the structure

[74] Chen and 
Rho (2020)

SI
SOMs

Tactical 
deployment and 
communication

• Enables self-
organization for 
UAV arrays

• Allows reconfigura-
tion of the UAVs into 
hubs or terminals

• Shares information 
efficiently

• Requires big-data 
cloud centers to 
handle huge data

[75] Qing et al. 
(2021)

IACO
Minimum-snap 
algorithm
ZCBF

Collision 
avoidance

• Gives optimal results 
for decision-making 
in real-time

• Evaluates collision-
free effectiveness

• Does not perform 
in the real flight

[76] Miao et al. 
(2021)

A multi-hop mobile 
relay system
MSEE maximization 
transmission 
scheme
BCD
SCA
Dinkelbach method

Secrecy 
and energy 
efficiency, and 
communication

• Guarantees the 
convergence

• Provides major 
improvements in 
energy efficiency 
and secrecy rate

• Does not include 
channel models, 
real-time com-
munications, and 
unknown nodes’ 
locations
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[77] Shao et al. 
(2021)

Multi-segment 
strategy
IPSO-GPM

Trajectory 
planning and 
obstacle avoidance

• Increases obtained 
solution optimality

• Generates high-
quality trajectories

• Takes minimum 
running time

• Does not select 
collocation points

• Does not generate 
trajectory with 
dynamic obstacles

[78] Gu et al. 
(2021)

NIT Identification • Gives a quick 
response, accuracy

• Proves to be effective, 
fault-tolerant, and 
stable in complex 
environments

• Sensitive to nuance

• Only suitable for 
high-dimensional 
trajectories

[79] Ling et al. 
(2021)

Out-of-the-box 
trajectory plotting
Multi-round Monte 
Carlo simulation

Communication, 
estimation, 
perception fusion, 
and path planning

• Works in noise 
and unstable 
communication

• Proves to be useful for 
cooperative swarm 
application

• Does not consider 
additional mode 
functionalities 
and reinforcement 
learning-based 
cooperative plan-
ning algorithm

[80] Yao et al. 
(2021)

Swarm intelligence-
based automatic 
inspection 
optimization 
algorithm

Inspection and 
communication

• Controls the UAVs 
effectively

• Improves the 
autonomy and 
inspection efficiency

• Minimizes the cost of 
inspection

• Does not avoid path 
repetition

[81] Xia et al. 
(2021)

MARL-MUSAC Monitoring and 
target tracking

• Allows making intelli-
gent flight decisions

• Reduces the power 
consumption

• Enhances the tracking 
success rates

• Gives high perfor-
mances for detection 
coverage

• Not valid for differ-
ent formations

[82] Nnamani et 
al. (2021)

Grid-structured 
approach

Communication • Improves the secrecy 
rate of ground 
communications

• Improves physical 
layer security

• Evaluates the optimal 
radius of the eaves-
dropper’s unknown 
location

• No real-time 
communications

[83] Xu et al. 
(2021)

Communication-
aware centralized 
and decentralized 
controllers

Trajectory 
tracking 
control and 
communication

• Achieves high waypoint 
tracking accuracy

• Decentralized con-
troller outperforms

• Maintains the stability

• Does not suppress 
Cochannel noise

• Does not ignore 
multipath effects
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[84] Sharma et al. 
(2021)

SI Environmental 
knowledge, 
communication, 
obstacle 
avoidance, and 
target tracking

• PSO has a low 
computational 
complexity

• ACO possesses good 
scalability

• Firefly utilizes a 
single operator for 
solution searching

• Needs to explore 
an improved, 
hybrid optimiza-
tion algorithm 
with no limitations

[85] Han et al. 
(2021)

backscatter 
communication 
system
MIMO
CLT-based 
approach

Communication • Performs well to 
detect parasite 
devices and separate 
parasite signals

• Reduces the energy 
consumption

• Optimizes the 
trajectory planning

• Requires a large 
number of anten-
nas to reduce the 
channel distribu-
tion error

[86] Zhou et al. 
(2021)

MTT system
Cooperative 
tracking algorithm
Multi-objective 
Lyapunov 
optimization model

Target tracking 
and collision 
avoidance

• Reduces the execu-
tion complexity and 
energy consumption

• Improves the 
prediction accuracy 
of trajectory

• Reduces the 
consumption 
of energy of the 
system only if the 
episodes increase

[87] Brown and 
Raj (2021)

Reactive tracking
Reactive tracking 
with predictive 
pre-positioning

Formation, 
tracking, and 
communication

• Shows supe-
rior tracking 
performance

• Requires offsetting 
the angular 
orientation of sur-
veillance’s adjacent 
rings for the voids’ 
size-reduction

[88] Sastre et al. 
(2022)

Improved CSTH
CED_CSTH
ArduSim simulator
VTOL with KMA

Take-off 
and collision 
avoidance

• Allows the 
computation time 
optimization

• Ensures safe 
distancing

• Improves the time 
required for take-off

• KMA proves to be 
the most reasonable 
choice for realistic 
conditions

• Requires more 
reduction in 
take-off time 
and the number 
of resulting UAV 
batches

[89] Bansal et al. 
(2022)

SHOTS
PUFs
Mao Boyd’s logic 
approach
Christofides 
algorithm

Communication, 
physical security, 
and scalability

• Achieves scalability

• Guarantees physical 
security

• Resists against 
various attacks

• Outperforms and 
reduces computa-
tional costs

• Requires further 
reduction in the 
attestation and 
computation time

Table 1. 
A comprehensive review of the motion planning of the swarm of UAVs applying various techniques and models.
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Guastella et al. [47] considered operating space as a 3-directional (3D) grid and 
applied the modified A* algorithm for path planning of multi-UAVs. The researchers 
found a reduction in computational time, improvement in planned trajectories, and 
automatic redistribution of targets. Duan et al. [48] gave a novel hybrid metaheuristic 
approach by linking memetic algorithm (MA) with variable neighborhood descend 
(VND) algorithm for path planning of multiple UAVs. The results yielded an opti-
mization in routes, gave highly effective results, and solved capacity vehicle routing 
problems (CVRP) and even Non-deterministic Polynomial-time hard (NP-hard) 
problems efficiently. Koohifar et al. [49] applied the extended Kalman filter (EKF) 
with recursive Bayesian estimator, and Cramer-Rao lower bound (CRLB) path plan-
ning for UAV swarms. The analysis showed that the proposed method planned the 
future tracking trajectory successfully. Moreover, CRLB outperformed and enhanced 
the performance as well.

Shao et al. [50] combined a robust integral of the sign of the error (RISE) feed-
back controller with an extended state observer (ESO) and used residual estimation 
error. This strategy tackled the lumped disturbance issues and achieved tracking 
accuracy, effectiveness, and superiority. Campion et al. [51] studied cellular mobile 
infrastructure, machine learning and distributed control algorithms, machine-to-
machine (M2M) communication, and 5th generation (5G) networks for UAV swarm. 
This study showed that the applied techniques alleviated limiting factors for previous 
studies and enhanced the efficiency of the swarm and commercial usage. Shao et al. 
[52] proposed extended state observer (ESO)-based robust controllers with dynamic 
surface control (DSC) design and disturbance observer-based (DOB) control tech-
niques. This proposal showed effective and superior results in tracking with increased 
anti-disturbance capability. Mammarella et al. [53] applied sample-based stochastic 
model predictive control (SMPC) and guidance algorithm for tracking control of UAV 
swarm. The applied algorithms dealt efficiently with noise and parametric uncer-
tainty and guaranteed real-time tracking and performance with good stability.

Huang and Fie [54] introduced the global best path with a competitive approach to 
particle swarm optimization (GBPSO). This developed strategy improved the ability 
to search, avoided the local minimum, and provided the feasible optimal path with 
superior quality and speed. Ghazzai et al. [55] suggested applications of bandwidth-
hungry and delay-tolerant and exploited typical microwave (μ-Wave) and the high-
rate millimeter wave bands (mm-Wave) for trajectory optimization. Further, the 
research also implemented a hierarchical iterative approach. The dual-band increased 
the stopping locations and minimized the service time of multi-UAVs. Liu et al. [56] 
implemented distributed formation control algorithm with a fast model predictive 
control method and disturbance estimation method. This strategy was convenient for 
the formations of arbitrary, time-varying prescribed shapes and achieved a balanced 
configuration on a prescribed 2-directional (2D) or 3D shape.

Xuan-Mung et al. [57] used a robust saturated tracking backstepping controller 
(RAS-BSC) and Lyapunov theory. The researchers found that the proposed mecha-
nisms provided the stability of the closed-loop system and bounded the tracking 
errors and extended state observer (ESO) errors. Moreover, it was rapid and robust 
in the uncertainties and gave a superior performance. Fabra et al. [58] suggested a 
Mission-based UAV Swarm Coordination Protocol (MUSCOP) for a swarm of UAVs. 
This study achieved swarm cohesion with a high degree under multiple conditions 
and allowed the least synchronization delays with low position offset errors. Causa 
et al. [59] employed a multi-global navigation satellite system (multi-GNSS) constel-
lation approach and edge cost estimation method for path planning of multiple UAVs. 
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These approaches decreased the computation time and entire mission time providing 
a rapid solution to the task assignment issue and planning for offline and in near real-
time scenarios.

Brown and Anderson [60] applied the Quintic polynomials trajectory generation 
method, multi-objective particle swarm optimization (OMOPSO) and area search 
radar model to optimize the trajectories for the UAV swarm. This combination gave a 
maximum number of better trajectories, reduced the time to revisit and fuel consump-
tion, and enhanced the detection probability. Mehiar et al. [61] developed Quantum 
Robot Darwinian particle swarm optimization (QRDPSO) for UAV flocks. This 
optimization algorithm provided a more stable, efficient, and quick optimal solution, 
avoided obstacles, and overcome communication constraints. Moreover, it reached 
the global best for search and rescue operations. Wang et al. [62] suggested a Leader-
following model, Routh–Hurwitz criterion, a consensus protocol, and a model predic-
tive controller for multiple UAVs. The applied approaches predicted the changes in the 
leader’s state, reduced the consensus achievement time, and kept the formation shape.

Altan [63] proposed metaheuristic optimization algorithms, Harris Hawks 
Optimization (HHO), and Particle Swarm Optimization (PSO) for UAV swarm. His 
suggested methods performed the best for multiple geometric paths and quickly 
determined the controller parameters. HHO outperformed, overcome the stabiliza-
tion issues, and gave the least settling, peak time, and overshoot. Wang et al. [64] 
developed Neural Relational Inference (NRI) model along with a Mapping Table 
between the UAV swarm and the spring particles. The results of the developed 
method were able to improve the position detection performance. Moreover, it pro-
jected the motion in 3D space into a 2D plane and the designed algorithm predicted 
the trajectory and gave high accuracy. Rubí et al. [65] employed four PF algorithms 
namely, backstepping (BS) and feedback linearization (FL) algorithms, Non-Linear 
Guidance Law (NLGL) algorithm, and Carrot-Chasing (CC) geometric algorithms 
for UAV swarms. In comparing, the results of path following BS outperformed for 
yaw error and path distance and the CC algorithm needed fewer data and proved to be 
easily applicable for any path type. Selma et al. [66] used a hybrid controller, adaptive 
neuro-fuzzy inference system (ANFIS), and PSO algorithms for trajectory tracking of 
multiple UAVs. The results evaluated that the PSO algorithm adjusted automatically 
the ANFIS parameters, minimized tracking error by improving the controller quality, 
and gave a high performance.

Liu et al. [67] suggested a kinetic controller, distributed β-angle test (BAT)-based 
topology control algorithm, and Flying ad-hoc network (FANET) for UAV flocking. 
This mechanism could perform neighbor selection and reduce the communication 
overhead significantly. Madridano et al. [68] applied the 3D probabilistic roadmaps 
(PRM) algorithm, Robot Operating System (ROS) architecture, Mav-Link proto-
col, Pixhawk autopilot, and Hungarian method for trajectory planning in 3D. This 
combination generated optimal solutions using minimum time and lessened the 
computational time and the total traveling distance. Zhou et al. [69] analyzed the 
Hierarchical control framework with different SI algorithms. This analysis catego-
rized the major technologies with trends, future research, and limitations. Wubben 
et al. [70] employed MUSCOP protocol and an emulation tool, Ardu-Sim, to provide 
resilience to multiple UAVs. This protocol handled the loss of leaders and backup lead-
ers efficiently and introduced an ignorable flight time delay.

Selma et al. [71] applied an adaptive-network-based fuzzy inference system 
(ANFIS) and improved ant colony optimization (IACO) for controlling trajectory 
tracking tasks. This strategy proved its superior performance, reduced the mean 
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squared error (MSE) along with root mean squared error (RMSE) significantly, 
and allowed the UAVs to reach the desired trajectory in a minimum period. Altan 
and Hacıoğlu [72] used Newton–Euler method-based 3-axis gimbal system, the 
Hammerstein model, and the model predictive control (MPC) algorithm for target 
tracking. This mechanism tracked the target with stability and showed robustness 
even under external disturbances. Sanalitro et al. [73] suggested a Fly-Crane system 
with an optimization-based tuning method and an inner or outer loop approach. This 
system dealt with parametric uncertainties performed by rotating and translating tra-
jectories, guaranteed stability, and enhanced the performance of H∞. Chen and Rho 
[74] introduced the SI technique with self-organizing maps (SOMs) based on requests 
from end-users (EUs). This technique allowed self-organization for UAV arrays and 
reconfiguration of the UAVs into hubs or terminals. Moreover, it shared information 
efficiently.

Qing et al. [75] applied improved ant colony optimization (ACO), minimum-snap 
algorithm, and zeroing control barrier function (ZCBF) for multiple swarms. The 
results evaluated that the proposed algorithms gave optimal results for decision-making 
in real-time. Moreover, it efficiently provided collision and avoidance-free trajectories. 
Miao et al. [76] proposed a multi-hop mobile relay system, the minimum secrecy energy 
efficiency (MSEE) maximization transmission scheme, and generated an algorithm 
using the block coordinate descent method (BCD), successive convex approximation 
(SCA) techniques, and Dinkelbach method for multiple UAVs. The results guaranteed 
the convergence and provided major improvements in energy efficiency and secrecy 
rate. Shao et al. [77] linked multi-segment strategy with improved particle swarm 
optimization-Gauss pseudo-spectral method (IPSO-GPM) for UAV swarms. The 
outcomes evaluated that the applied mechanisms increased obtained solution optimal-
ity, generated high-quality trajectories, and took minimum running time.

Gu et al. [78] suggested Network Integrated trajectory clustering (NIT) for 
determining subgroups of a flock of UAVs. This clustering showed a quick response 
and accuracy and proved to be effective, fault-tolerant, and stable in complex envi-
ronments. Ling et al. [79] presented a planning algorithm; out-of-the-box trajectory 
plotting with multi-round Monte Carlo simulation for UAV swarms. This developed 
algorithm worked in noise and unstable communication and proved to be useful for 
cooperative swarm applications. Yao et al. [80] employed swarm intelligence and 
optimization algorithms for UAV swarms. The results showed that the proposed 
algorithm controlled the UAVs effectively improved the autonomy and inspection 
efficiency and minimized the cost of the inspection. Xia et al. [81] suggested multi-
agent reinforcement learning (MARL) with multi-UAV soft actor-critic (MUSAC) for 
the UAV swarm. The suggested mechanism allowed to make intelligent flight deci-
sions, reduced the power consumption, enhanced the tracking success rates, and gave 
high performances for detection coverage.

Nnamani et al. [82] applied a grid-structured approach to the UAV swarm. The 
outcomes showed improvement in the secrecy rate of communications and physi-
cal layer security and evaluated the optimal radius of the eavesdropper’s unknown 
location. Xu et al. [83] designed communication-aware centralized and decentralized 
controllers for UAV swarm. Their proposed controllers achieved high waypoint track-
ing accuracy. Between both controllers, the decentralized controller outperformed 
and maintained stability. Sharma et al. [84] studied multiple SI algorithms for path 
planning of UAV swarm. This analysis showed that PSO had low computational 
complexity, ACO possessed good scalability, and Firefly utilized a single operator for 
solution searching. Han et al. [85] employed a backscatter communication system 
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with the massive multiple-input multiple-output (MIMO) and Central limit theorem 
(CLT)-based approach to analyze the performance and optimize the trajectory. This 
combination performed well to detect parasite devices and separate parasite signals. 
Moreover, it reduced energy consumption and optimized trajectory planning.

Zhou et al. [86] used Multi-Target Tracking (MTT) system, an intelligent UAV 
swarm-based cooperative tracking algorithm, and a multi-objective Lyapunov opti-
mization model. The results showed a reduction in the execution in the complexity 
and energy consumption with an improvement in the prediction accuracy of trajec-
tory. Brown and Raj [87] applied reactive tracking and reactive tracking with predic-
tive pre-positioning to study the effects of initial swarm formation. The tracking gave 
a superior performance.

Sastre et al. [88] applied collision-less swarm take-off heuristic (CSTH) with 
two improvements and Euclidean distance-based CSTH (ED-CSTH) algorithms 
to analyze the trajectory and batch generations. This study also used the ArduSim 
simulator and vertical take-off and landing (VTOL) techniques with Kuhn-Munkres 
Algorithm (KMA) for UAV swarms. The proposed method showed the computa-
tion time optimization, ensured safe distancing, and improved the time required 
for take-off. Whereas KMA proved to be the most reasonable choice for realistic 
conditions. Bansal et al. [89] proposed a scalable authentication-attestation protocol, 
SHOTS, with Physical Unclonable Functions (PUFs), Mao Boyd logic approach, 
and Christofides algorithm for UAV swarms. The authors suggested a lightweight 
authentication and attestation mechanism for UAV swarms that makes use of Physical 
Unclonable Functions (PUFs) to ensure physical security as well as the necessary trust 
in a lightweight manner.

6. Discussion

The significance of multiple UAVs is expanding their cooperative operations and 
applications in many fields. Swarms are deployed in many environments such as 
uncertain, indoor, outdoor, traffic, and many others. Findings show that many chal-
lenges such as decision-making, control, path planning, communication, monitoring, 
tracking, targeting, collision, and obstacle avoidance may hinder the motion plan-
ning of a UAV swarm. Survey shows that different approaches are adopted in all the 
research addressing different challenges. Like mission planning architectures provide 
a complete operative, robust, scalable, and flexible framework. Many controllers 
whether linear or nonlinear, proves to be easily applicable, intuitive, robust, and 
provide optimality and global stability. Improved model predictive controllers ensure 
real-time monitoring and tracking of swarms. Moreover, they enhance the tracking 
accuracy, effectiveness, and superiority. Machine learning, 5G networking, and other 
technologies alleviate limiting factors for previous studies and enhance the efficiency 
of the swarm and commercial usage. Among all these evolving technologies in this 
chapter, swarm intelligence is determined as an appropriate solution for the reliable 
and efficient deployment of swarms. Moreover, it enables self-organization, recon-
figuration, control, efficient sharing of information, reduction in inspection costs, 
and improvement in autonomy.

Besides many mentioned advantages of the swarm and technological develop-
ment, many important and interesting limitations exist that can hinder the swarm 
performance. Among these restrictions, the manufacturing cost of the large-scale 
swarm is still high. Existing loads are huge, expensive, and mostly not appropriate for 
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pursuing high performances. Hence, the lightweight and low-cost loads and platforms 
are essential for swarm formation. Battery capacity for aerial mission completion 
is of much significance. Long-lasting batteries are essential for continuous tasks. 
However, the capacity of the battery can be enhanced by increasing the UAV’s weight. 
And this weight increment will also require an increment in energy consumption. To 
provide a proper battery solution such systems are essential that can easily and rapidly 
replace the depleted battery with the supplementary one and are capable to charge 
other batteries. Another limitation is the privacy protection protocol. This is essential 
for deploying swarm in sensitive locations safely. Otherwise, it can lead to national 
security issues.

7. Conclusion

In this chapter, we have presented the state-of-the-art of UAV swarm technology 
that shows its promising application for different purposes, especially in the military 
fields. An overview of swarm intelligence, explaining its aspects, levels, mechanisms, 
followed principles, and significance, is provided in this chapter. Then, the chal-
lenges faced by a swarm and approaches given by different researchers are discussed. 
Moreover, to analyze the motion planning of a swarm, we have studied and compiled 
multiple kinds of research. All these research papers provide different approaches to 
counter the challenges faced by a swarm of UAVs. Many of these approaches are based 
on trending technologies like swarm intelligence and outperform the traditional 
strategies. All the findings show the significance of using a swarm rather than using 
a single UAV. Finally, we discuss the key findings of this paper with some limitations 
and suggest some recommendations for future work.

8. Future work

Although swarm intelligence is in an emerging phase, more progress in this 
AI-based technology is expected in the upcoming years. Future research can design 
more intelligent controllers, optimal path planning algorithms, robust architecture, 
monitoring, target searching strategies, efficient communication structures, and 
safe flight protocols for swarms. The flight problems and formation maintenance of 
large-scale swarms still require future explorations. During the modeling process, 
the size and load of UAVs must be considered to increase the robustness of the swarm 
control. In the future holistic system, solutions will be provided for integrated task 
scenarios. Path planning of swarms in a curve requires more efficient algorithms. 
Moreover, algorithms that can give optimized paths rapidly in any complex environ-
ment are future work. The development of low-cost sensors is necessary to address 
the collective monitoring and target tracking issues but with the capability to provide 
high accuracy and robustness to noise. More research is required to standardize the 
communication networking between UAV swarms by upgrading the frequency bands, 
cooperative countermeasures, and signal distortion monitoring. To enhance the 
response speed in the threat environments, the focus will be on designing dynamic 
sensing and powerful safe flight protocols. Considerations are essential for intel-
ligence assisted programs that can meet the next-generation networks. Like 6th 
generation (6G) network should be used for wireless communication services in 
swarms. This will extremely enhance the significance of formation, coordination in 
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tasks, machine-human interactions, and many more. Improvements should be made 
that can understand and adapt to the environment along with this, and it can respond 
to user feedback rapidly. This can further improve the systems’ agility with the reli-
ability and performance of the network.
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Acronyms Definitions
2D  2-Directional
3D  3-Directional
5G  5th Generation
6G  6th Generation
ACO  Ant Colony Optimization
AI  Artificial Intelligence
AMP  Agent Mission Planner
ANFIS  Adaptive Neuro-fuzzy Inference System
APF  Artificial Potential Field
ATR  Automatic Target Recognition
BAT  β-angle Test
BCD  Block Coordinate Descent
BOA  Bean Optimization Algorithm
BS  Backstepping
CC  Carrot-Chasing
CI  Covariance Intersection
CLT  Central Limit Theorem
CRLB  Cramer-Rao Lower Bound
CSTH  Collision-less Swarm Take-off Heuristic
CVRP  Capacity Vehicle Routing Problems
DARPA  Défense Advanced Research Projects Agency
DDDAS  Dynamic Data-Driven Application System
DOB  Disturbance Observer-based
DSC  Dynamic Surface Control
ED-CSTH Euclidean Distance-based Collision-less Swarm Take-off Heuristic
EKF  Extended Kalman Filter
ESO  Extended State Observer
EUs  End-users
FANET  Flying Ad-hoc Network
FIM  Fisher Information Matrix
FL  Feedback Linearization
FOA  Fruit Fly Optimization Algorithm
FOV  Field-of-View
GBPSO  Global Best Path with Particle Swarm Optimization
GMP  Global Mission Planner
GPS  Global Positioning System
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GWO  Gray Wolf Optimization
HHO  Harris Hawks Optimization
HMM  Hidden Markov Model
IACO  Improved Ant Colony Optimization
IoT  Internet of things
IPSO-GPM  Improved Particle Swarm Optimization-Gauss Pseudo-Spectral 

Method
KMA  Kuhn-Munkres Algorithm
M2M  Machine-to-Machine
MA  Memetic Algorithm
MANET Mobile Adhoc Network
MARL  Multi-agent Reinforcement Learning
MASC  Mission-based Architecture for Swarm Composability
MCPSO-K  Multi-swarm Cooperative Particle Swarm Optimization Algorithm 

with Knowledge
MCS  Mobile Crowd Perception System
MIMO  Multiple-input Multiple-output
mm-Wave MillimeterWave
MPC  Model Predictive Control
MSE  Mean Squared Error
MSEE  Minimum Secrecy Energy Efficiency
MTT  Multitarget Tracking
Multi-GNSS Multi-Global Navigation Satellite System
MUSAC  Multi-UAV Soft Actor-Critic
MUSCOP Mission-based UAV Swarm Coordination Protocol
NASA  National Aeronautics and Space Administration
NIT  Network Integrated Trajectory
NLGL  Non-Linear Guidance Law
NP-hard Non-Deterministic Polynomial-Time hard
NRI  Neural Relational Inference
OMOPSO Multi-objective Particle Swarm Optimization
PIO  Pigeon-inspired Optimization
PRM  Probabilistic Roadmaps
PSO  Particle Swarm Optimization
PUFs  Physical Unclonable Functions
QRDPSO Quantum Robot Darwinian Particle Swarm Optimization
RAS-BSC Robust Saturated Tracking Backstepping Controller
RISE  Robust Integral of the Sign of the Error
RMA  Road Map Algorithm
RMSE  Root Mean Squared Error
ROS  Robot Operating System
SA  Situation Awareness
SCA  Successive Convex Approximation
SI  Swarm Intelligence
SMPC  Stochastic Model Predictive Control
SOMs  Self-organizing Maps
TAK  Tactical Assault Kit
μWave  Microwave
UAV  Unmanned Aerial Vehicle
UAV-CO Unmanned Aerial Vehicle-Cellular Unloading
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