7 research outputs found

    Joint Optimization of Fidelity and Commensurability for Manifold Alignment and Graph Matching

    Get PDF
    In this thesis, we investigate how to perform inference in settings in which the data consist of different modalities or views. For effective learning utilizing the information available, data fusion that considers all views of these multiview data settings is needed. We also require dimensionality reduction to address the problems associated with high dimensionality, or “the curse of dimensionality.” We are interested in the type of information that is available in the multiview data that is essential for the inference task. We also seek to determine the principles to be used throughout the dimensionality reduction and data fusion steps to provide acceptable task performance. Our research focuses on exploring how these queries and their solutions are relevant to particular data problems of interest

    Pattern Recognition on Random Graphs

    Get PDF
    The field of pattern recognition developed significantly in the 1960s, and the field of random graph inference has enjoyed much recent progress in both theory and application. This dissertation focuses on pattern recognition in the context of a particular family of random graphs, namely the stochastic blockmodels, from the two main perspectives of single graph inference and joint graph inference. Single graph inference is the performance of statistical inference on one single observed graph. Given a single graph realized from a stochastic blockmodel, we here consider the specific exploitation tasks of vertex classification, clustering, and nomination. Given an observed graph, vertex classification is the identification of the block labels of test vertices after learning from the training vertices. We propose a robust vertex classifier, which utilizes a representation of a test vertex as a sparse combination of the training vertices. Our proposed classifier is demonstrated to be robust against data contamination, and has superior performance over classical spectral-embedding classifiers in simulation and real data experiments. Vertex clustering groups vertices based on their similarities. We present a model-based clustering algorithm for graphs drawn from a stochastic blockmodel, and illustrate its usefulness on a case study in online advertising. We demonstrate the practical value of our vertex clustering method for efficiently delivering internet advertisements. Under the stochastic blockmodel framework, suppose one block is of particular interest. The task of vertex nomination is to create a nomination list so that vertices from the group of interest are concentrated abundantly near the top of the list. We present several vertex nomination schemes, and propose a vertex nomination scheme that is scalable for large graphs. We demonstrate the effectiveness of our methodology on simulation and real datasets. Next, we consider joint graph inference, which involves the joint space of multiple graphs; in this dissertation, we specifically consider joint graph inference on two graphs. Given two graphs, we consider the tasks of seeded graph matching for large graphs and joint vertex classification. Graph matching is the task of aligning two graphs so as to minimize the number of edge disagreements between them. We propose a scalable graph matching algorithm, which uses a divide-and-conquer approach to scale the state-of-the-art seeded graph matching algorithm to big graph data. We prove theoretical performance guarantees, and demonstrate desired properties such as scalability, robustness, accuracy and runtime in both simulated data and human brain connectome data. Within the joint graph inference framework, we present a case study on the paired chemical and electrical Caenorhabditis elegans neural connectomes. Motivated by the success of seeded graph matching on the paired connectomes, we propose joint vertex classification on the paired connectomes. We demonstrate that joint inference on the paired connectomes yields more accurate results than single inference on either connectome. This serves as a first step for providing a methodological and quantitative approach for understanding the coexistent significance of the chemical and electrical connectomes

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia
    corecore