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Abstract

The field of pattern recognition developed significantly in the 1960s, and the field

of random graph inference has enjoyed much recent progress in both theory and

application. This dissertation focuses on pattern recognition in the context of a

particular family of random graphs, namely the stochastic blockmodels, from the two

main perspectives of single graph inference and joint graph inference.

Single graph inference is the performance of statistical inference on one single

observed graph. Given a single graph realized from a stochastic blockmodel, we

here consider the specific exploitation tasks of vertex classification, clustering, and

nomination.

Given an observed graph, vertex classification is the identification of the block

labels of test vertices after learning from the training vertices. We propose a robust

vertex classifier, which utilizes a representation of a test vertex as a sparse combination

of the training vertices [17]. Our proposed classifier is demonstrated to be robust

against data contamination, and has superior performance over classical spectral-

embedding classifiers in simulation and real data experiments.
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ABSTRACT

Vertex clustering groups vertices based on their similarities. We present a model-

based clustering algorithm for graphs drawn from a stochastic blockmodel, and il-

lustrate its usefulness on a case study in online advertising [16]. We demonstrate

the practical value of our vertex clustering method for efficiently delivering internet

advertisements.

Under the stochastic blockmodel framework, suppose one block is of particular

interest. The task of vertex nomination is to create a nomination list so that vertices

from the group of interest are concentrated abundantly near the top of the list. We

present several vertex nomination schemes [40], and propose a vertex nomination

scheme that is scalable for large graphs [19]. We demonstrate the effectiveness of our

methodology on simulation and real datasets.

Next, we consider joint graph inference, which involves the joint space of multiple

graphs; in this dissertation, we specifically consider joint graph inference on two

graphs. Given two graphs, we consider the tasks of seeded graph matching for large

graphs and joint vertex classification.

Graph matching is the task of aligning two graphs so as to minimize the number of

edge disagreements between them. We propose a scalable graph matching algorithm,

which uses a divide-and-conquer approach to scale the state-of-the-art seeded graph

matching algorithm to big graph data [59]. We prove theoretical performance guar-

antees, and demonstrate desired properties such as scalability, robustness, accuracy

and runtime in both simulated data and human brain connectome data.
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ABSTRACT

Within the joint graph inference framework, we present a case study on the paired

chemical and electrical Caenorhabditis elegans neural connectomes [18]. Motivated

by the success of seeded graph matching on the paired connectomes, we propose

joint vertex classification on the paired connectomes. We demonstrate that joint

inference on the paired connectomes yields more accurate results than single inference

on either connectome. This serves as a first step for providing a methodological and

quantitative approach for understanding the coexistent significance of the chemical

and electrical connectomes.

Primary Reader: Carey Priebe

Secondary Reader: Donniell Fishkind
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Chapter 1

Introduction and Overview

Pattern recognition is a field in machine learning, in which we learn and discover

patterns from data. Graphs describe a structure that contains interacting objects;

the objects are called vertices, where some pairs of the vertices are adjacent by links

or edges. The graph data structure is useful for representing diverse phenomena.

For example, in a social network, the vertices are people, where some pairs of people

are adjacent by their friendships. In a neural connectome, the vertices are neurons,

where some pairs of neurons are adjacent by the synaptic interactions. In a webpage

network, the vertices are websites, where some pairs of the webpages are linked via

URL links. The term “random graph” here will refer to graphs which have a fixed

vertex set and a random edge set. There has been a surge of interest in studying

graphs in the fields of statistics, machine learning, computer vision, neuroscience,

social science, and so on. The recent advances in random graph research has proven

1



CHAPTER 1. INTRODUCTION AND OVERVIEW

to be very valuable in both theory and applications.

In this dissertation, we are concerned with two main topics in pattern recognition

for random graphs namely: single graph inference – inference performed on one single

graph – and joint graph inference – inference performed on the joint space of mul-

tiple graphs (here we particularly consider two graphs). We formulate our inference

methodologies in the context of a stochastic blockmodel.

In Chapter 2, we present the random graph models considered throughout this

dissertation. The latent position graph is a very general random graph model, where

we assume that each vertex is associated with a latent random vector, which stochas-

tically generates the adjacency matrix. The random dot product model is a special

case of the latent position model. The stochastic blockmodel is a special case of

the random dot product model, and is widely used for exploratory graph analysis; it

enables the development of many principled algorithms.

Chapter 3–5 present our proposed inference methodologies within single graph in-

ference framework. In Chapter 3, we consider the task of vertex classification, where

a subset of vertices have known labels, and we want to predict the labels of the re-

maining vertices. Here the class labels for classification are the block memberships

in the stochastic blockmodel. We propose a sparse representation vertex classifier,

which represents the test vertex as a sparse combination of the training vertices, and

uses the recovered coefficients to classify the test vertex [17]. This classifier does not

critically rely on the model dimension of the stochastic blockmodel, while the success

2



CHAPTER 1. INTRODUCTION AND OVERVIEW

of classifiers combined with adjacency spectral embedding relies heavily on the model

dimension. We propose two contamination models, where both contamination proce-

dures result in a change of the model dimension. We compare the performance of our

proposed vertex classifier with two other classifiers: adjacency spectral embedding fol-

lowed by the nearest neighbor classifier and adjacency spectral embedding followed by

linear discriminant analysis on both simulated and real data. Our proposed classifier

demonstrates superior or competitive classification performance.

In Chapter 4, we consider the task of vertex clustering, which is the task to group

vertices from the same block of a stochastic blockmodel into the same cluster. We

present a model-based clustering approach using the Bayesian information criterion

[16]. We compare its performance with a goodness-of-fit likelihood method and a

deterministic partitioning method on simulated and on real data. Our case study

examines our clustering algorithm’s applications in online advertising, where we are

concerned with the business problem of targeting a wider variety of online users

based on the relational events of users visiting websites. The business motivation of

applying our approach is to reduce the cost of buying web pages for ads posts while

still reaching a broad variety of the target audience. We demonstrate the effectiveness

of our approach for efficient online advertisement delivery.

In Chapter 5, we consider the task of vertex nomination, where the task is to

create a nomination list such that an abundance of “interesting” vertices are at the

top of the list. We have previously proposed several vertex nomination schemes:

3



CHAPTER 1. INTRODUCTION AND OVERVIEW

canonical vertex nomination, likelihood maximization vertex nomination, and spec-

tral vertex nomination scheme [40]. The canonical vertex nomination is proven to

be the best possible vertex nomination scheme using certain metric, but it is only

computationally feasible for graphs of very few vertices. In this chapter, we propose

a canonical sampling vertex nomination scheme which not only approximates the op-

timal performance quality of the canonical vertex nomination scheme, but also scales

to large graphs [19]. We prove theoretical guarantees for our proposed scheme, and

demonstrate its performance in simulated and real data.

Joint graph inference framework focuses on inference in the joint space of multiple

graphs. In this dissertation, the joint inference is performed on two graphs.

In Chapter 6, we are concerned with the problem of seeded graph matching for

large graphs. Graph matching is the task to find an alignment between the vertices

across two graphs such that it minimizes the number of edge disagreements. The

problem of seeded graph matching leverages information of a partially known vertex

correspondence, and finds an alignment between the remaining vertices. The state-

of-the-art seeded graph matching algorithm is limited to thousands of vertices. We

propose a divide-and-conquer approach to scale the seeded graph matching algorithm

to big graph data. We present the theoretical performance guarantee of our algorithm

under the stochastic blockmodel assumption, and demonstrate its effectiveness in

scalability, accuracy, run time and robustness via simulation and a human brain

connectome experiment.
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In Chapter 7, we present a joint graph inference case study for the pair of neural

connectomes of the Caenorhabditis elegans. We formulate our joint graph inference

from the perspectives of seeded graph matching and joint vertex classification. Our

analysis results indicate that we should perform inference in the joint space of the

neural connectomes. Our proposed joint graph inference provides a methodological

and quantitative framework for understanding the significance of the coexistence of

the chemical and the electrical synapses.

Chapter 8 concludes this dissertation by summarizing our work in single and joint

graph inference.
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Chapter 2

Statistical Models of Random

Graphs

A graph G = (V,E) contains a vertex set V = [n] := {1, 2, . . . , n}, where we use

integers to denote the vertices, and edge set E ⊂
(

[n]
2

)
. In this dissertation, we assume

the graph is undirected, unweighted and non-loopy. The adjacency matrix A is of

order n, binary, symmetric and hollow, i.e., the diagonal entries aii of A are 0. Each

entry aij ∈ {0, 1} for i 6= j denotes the edge existence between vertex i and j, where

1 means edge existence and 0 otherwise.

A random graph is a graph-valued random variable: G : Ω → Gn, where Gn

represents the collection of all 2([n]
2 ) possible graphs on the vertex set V = [n], and

Ω is a probability space. Associated with the adjacency matrix A ∈ {0, 1}n×n, there

exists a communication probability matrix P ∈ [0, 1]n×n, where each entry Pij denotes

6
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the probability of edge existence between vertex i and vertex j. Below, we introduce

several random graph models studied in this dissertation.

2.1 Latent Position Models

The latent position model (LPM) was proposed in [49]. In this model, each vertex

i is associated with a latent random variable Xi ∈ Rd drawn independently from a

specified distribution F on Rd. These latent variables determine the probabilities of

edge existence. We formally define the latent position model as the following:

Definition 2.1. Latent Position Model (LPM) Let F be a distribution on Rd.

Let X1, ..., Xn
iid∼ F and define X := [X1, ..., Xn]T ∈ Rn×d. Let P ∈ [0, 1]n×n be the

communication probability matrix, where each entry Pij is the probability that there

is an edge between vertices i, j conditioned on Xi and Xj for ∀i, j. Let A ∈ {0, 1}n×n

be the random adjacency matrix. Then the graph G is realized from a latent position

model G ∼ LPM(F ) if there is a link function l : Rd×Rd → [0, 1] such that, for ∀i, j

P(A|X1, ..., Xn) = Πi<jP
Aij

ij (1− Pij)1−Aij , (2.1)

Pij = P(Aij = 1|Xi, Xj) = l(Xi, Xj). (2.2)

The random variables Xis are the latent positions for the model.

7
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2.2 Random Dot Product Graphs

The random dot product graph model proposed in [98] is a special case of the

latent position model, where the link function l(Xi, Xj) is the inner product of latent

positions, l(Xi, Xj) = 〈Xi, Xj〉 with the restriction 〈Xi, Xj〉 ∈ [0, 1] for ∀i, j. The

random dot product model is defined as follows:

Definition 2.2. Random Dot Product Graph (RDPG) Let F , X , A be defined

as in Section 2.1. Let H be the hollowing function that puts zeros along the diagonals

of a matrix. Let P denote the symmetric communication probability matrix such that

P = H(XX T ) ∈ [0, 1]n×n. Then the graph is realized from a random dot product

graph G ∼ RDPG(F ) if

P(A|X1, ..., Xn) = Πi<jP
Aij

ij (1− Pij)1−Aij , (2.3)

Pij = P(Aij = 1|Xi, Xj) = 〈Xi, Xj〉. (2.4)

We say the RDPG is d-dimensional, if the rank of the communication probability

matrix P is d = rank(P ).

2.3 Stochastic Blockmodels

In this section, we present the stochastic blockmodel, which is the underlying

framework where we develop several inference methodologies. The stochastic block-

model was introduced in [50]. It is a family of random graph models such that a set

8
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of n vertices randomly belong to K blocks. Conditioned on the K-partition, edges

between all the pairs of vertices are independent Bernoulli trials with parameters

determined by the block memberships of the two vertices.

We introduce three different parametrizations of the stochastic blockmodels in

Definitions 2.4, 2.5 and 2.6 useful for the task of vertex classification, graph matching

and vertex nomination respectively. Even though the parametrizations are slightly

different, the theoretical results of [41], [84], [85], [86], [63] and [6] hold for all three

parametrizations.

Before proceeding with the definitions of stochastic blockmodels, we first review

a related definition: the unit simplex.

Definition 2.3. Unit N-Simplex The unit N -simplex ∆N ⊂ RN+1 is a collection

of points t = (t1, t2, . . . , tN+1) ∈ RN+1 such that

∆N := {t = (t1, t2, . . . , tN+1) ∈ RN+1|
N∑
i=0

ti = 1, ti ≥ 0, for ∀i}. (2.5)

We first present the stochastic blockmodel parametrized by the vertex set [n] :=

{1, 2, . . . , n}, a symmetric matrix B ∈ [0, 1]K×K , and a unit-length vector π ∈ [0, 1]K .

Definition 2.4. Stochastic Blockmodel SBM([n], B, π) Let K be the number

of blocks. Let π be a length K vector in the unit simplex ∆K−1 specifying the

block membership probabilities. The block membership of the vertex i is given

by Yi
iid∼ Multinomial([K], π). Let B be a K × K symmetric block communica-

tion probability matrix. Then the graph G is realized from a stochastic blockmodel

9
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G ∼ SBM([n], B, π) if

P(A|Y1, ..., Yn) = Πi<jP
Aij

ij (1− Pij)1−Aij , (2.6)

Pij = P(Aij = 1|Xi, Xj) = P(Aij = 1|Yi, Yj) = BYi,Yj . (2.7)

The following parametrization of SBM assumes the parameter of block sizes are

fixed. We will use this definition of SBM for graph matching tasks in Chapter 6.

Definition 2.5. Stochastic Blockmodel SBM(~n, b, B) Let K ∈ N+ denote the

number of blocks. Let V1, V2, . . . , VK denote the K blocks. Let ~n = (n1, n2, . . . , nK) ∈

NK denote the size of the K blocks with
∑

k∈[K] nk = n. Let b denote the unknown

block assignment function b : V → {1, 2, . . . , K}, such that the cardinality |Vk| =

{v ∈ V : b(v) = k} = nk for k ∈ [K]. Let B ∈ [0, 1]K×K be a symmetric block

communication matrix. We say that G ∼ SBM(~n, b, B) if and only if the conditional

probability of edge existence is a Bernoulli random variable for any unordered pair of

distinct vertices {i, j} ∈ V , i.e.,

P(Aij = 1|b(i), b(j)) = Bb(i)b(j). (2.8)

The following parametrization of SBM assumes the block assignment function is

discretely uniformly distributed in the space of all possible block assignments. This

definition is useful for vertex nomination in Chapter 5.

10
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Definition 2.6. Stochastic Blockmodel SBM(~n,L, B) Let K ∈ N+ denote the

number of blocks. Let V1, V2, . . . , VK denote the K blocks. Let ~n = (n1, n2, . . . , nK) ∈

NK denote the size of the K blocks with
∑

k∈[K] nk = n. Let B ∈ [0, 1]K×K be a sym-

metric block communication matrix. Let L consist of all block assignment function

l : V → {1, 2, . . . , K}, such that the cardinality |Vk| = {v ∈ V : l(v) = k} = nk for

k ∈ [K]. A graph G ∼ SBM(~n,L, B) may be realized via the following procedure.

Let l be discrete-uniformly selected from L. Conditioned on l, the probability of edge

existence is a Bernoulli random variable for any unordered pair of distinct vertices

{i, j} ∈ V , i.e.,

P(Aij = 1|l(i), l(j)) = Bl(i)l(j). (2.9)

The main difference between SBM(~n, b, B) and SBM([n], π, B) is that SBM(~n, b, B)

assumes that the block sizes ~n = (n1, n2, . . . , nK) are fixed, while SBM([n], π, B) has

expected block sizes πn. The main difference between SBM(~n, b, B) and SBM(~n,L, B)

is that SBM(~n,L, B) assumes a uniform prior for the block assignment functions,

while SBM(~n, b, B) considers the block assignment function fixed but unknown. The

parametrization SBM([n], π, B) is useful for the mechanism of vertex classification

and clustering, SBM(~n,L, B) is appropriate for explaining vertex nomination, and

SBM(~n, b, B) is useful for constructing correlated SBMs (see Section 2.4) for graph

matching.

When the block communication probability matrix B is symmetric and diago-

11



CHAPTER 2. STATISTICAL MODELS OF RANDOM GRAPHS

nally dominant, the stochastic blockmodel is called positive semidefinite. The eigen-

structure of the stochastic blockmodel is often low-rank, i.e., d � n. Let δ1(P ) ≥

δ2(P ) ≥ · · · ≥ δn(P ) denote the singular values of P sorted in non-increasing order.

Since the rank of the matrix P is rank(P ) = d, then any singular values after the

d-th position vanishes δj(P ) = 0 for all j ≥ d.

Definition 2.7. Model Dimension For stochastic blockmodels, the model dimen-

sion refers to the rank of the block communication probability matrix, rank(B) = d.

We say such a stochastic blockmodel is d-dimensional.

The stochastic blockmodel can be parametrized as a random dot product graph.

Suppose rank(B) = d. There exists a unique (up to rotation) matrix v ∈ RK×d such

that B = vvT . By definition, Bij = 〈vi, vj〉. Define X = [X1, X2, . . . , Xn]T to be the

matrix containing the latent positions. Then each row i ∈ [n] is given by XT
i = vTYi .

Then P(Aij = 1|Yi, Yj) = BYi,Yj = 〈vYi , vYj〉 = 〈Xi, Xj〉, which is precisely the random

dot product model.

This RDPG parametrization of SBM is a convenient theoretical tool, and the

spectral properties of RDPG are well-understood (see [41], [84], [85], [86], [63] and

[6]).

12
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2.4 Correlated Stochastic Blockmodels

We introduce correlation between two graphs G1 and G2 realized from the stochas-

tic blockmodel SBM(~n, b, B) in Definition 2.5. Recall the definition of the Pearson

product-moment correlation coefficient ρ between two random variables V1 and V2 is

defined as

ρ =
cov(V1,V2)√

Var(V1)
√

Var(V2)
, (2.10)

where Var denotes the variance of the random variable.

Definition 2.8. ρ-Correlated Stochastic Blockmodels Let v ∼G1 v
′ denote the

event that two vertices in G1 are adjacent, and 1v∼G2
v′ for two vertices in G2 are

adjacent. Two graphs G1 and G2 realized from SBM(~n, b, B) are ρ-correlated, if the

set of all indicator random variables {1v∼Gi
v′}{v,v′},{w,w′}∈(V

2),i∈{1,2} are mutually inde-

pendent, except that for each {v, v′} ∈
(
V
2

)
, the indicator random variables 1v∼G1

v′

and 1v∼G2
v′ have Pearson product-moment correlation coefficient ρ.

Introducing a correlation between two SBMs as defined in Definition 2.4 naturally

assumes there is a bijective alignment between the vertices across two graphs, thus

making it suitable for the task of graph matching in Chapter 6. Note that the notion

of correlated SBMs may not be suitable for the SBM in Definition 2.4, since the

vertices will not be exactly aligned.

Simulation of the ρ-correlated stochastic blockmodels can be done in the following

manner. We first realize G1 from the underlying model SBM(~n, b, B) as in Definition

13
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2.5. Given G1, if v and v′ are adjacent in G1, then the probability that an edge exists

between a pair of vertices in G2, i.e., P(v ∼G2 v
′) is B(v, v′)+ρ(1−B(v, v′)). If v and

v′ are not adjacent in G1, then the probability that an edge exists between a pair of

vertices in G2 is B(v, v′)(1−ρ). In short, given the adjacency matrix A1 of G1, for each

{v, v′} ∈
(
V
2

)
, the indicator random variable 1v ∼G2 v

′ is an independent Bernoulli

trial with probability of success (1−ρ)B(v, v′) +ρ [A1]b(v)b(v′), where [A1]b(v)b(v′) is the

b(v)b(v′)-th entry of A1.

2.5 Adjacency Spectral Embedding

In this section, we present the method of adjacency spectral embedding (ASE)

for estimating the latent positions of the stochastic blockmodel [84]. This embedding

technique uses a decomposition of a low rank approximation of the adjacency matrix.

The embedded vertices are represented in a low dimensional space. This method is

presented in Algorithm 1.
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Algorithm 1 The adjacency spectral embedding method for undirected graphs

Input: The adjacency matrix A ∈ {0, 1}n×n. The embedding dimension d̂.

Output: Approximated latent positions X̂ ∈ Rn×d̂

Step 1: Spectral decomposition on A. Compute the first d̂ eigen-pairs of A,

denoted by (UA, SA) ∈ Rn×d̂×Rd̂, where SA has d̂ largest eigenvalues in magnitude

sorted in non-increasing order.

Step 2: Denote the d̂-dimensional coordinate-scaled singular vector matrix of A

be X̂ = UAS
1/2
A ∈ Rn×d̂.

For stochastic blockmodels with K blocks and a known model dimension d, Suss-

man et al. [84] show that partitioning on adjacency spectral embedding consistently

estimates the block memberships of the stochastic blockmodel. When the model di-

mension d is not known, Fishkind et al. [41] show that embedding the adjacency

matrix to d̂ > d-dimension is also consistent.

An example of adjacency spectral embedding is shown in Figure 2.1. Given the

model dimension d, the resulting embedding X̂ ∈ Rn×d consistently estimates the

latent positions X.

Besides embedding the adjacency matrix A for consistently estimating the block

memberships, in [78], the consistency property of Laplacian spectral embedding is

proved, and this yields the same algorithm as in Algorithm 1 except that the input

matrix A becomes the Laplacian matrix L := D − A, where D is the degree matrix.

Both methods require the knowledge of the embedding dimension d. However, in
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Figure 2.1: An example of adjacency spectral embedding. We simulate a stochastic

blockmodel with 200 vertices and parameters specified in Equation 3.37. (Top left):

The communication probability matrix P of a stochastic blockmodel. (Top right):

The adjacency matrix drawn from the P . (Bottom middle): Adjacency spectral

embedding represents the vertices into 2-dimensional Euclidean space. The vertices

from two different blocks are well-separated in the Euclidean space. The black dots

are the two eigen-vectors of B. The latent positions of the stochastic blockmodel here

are mixture of these two points.
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practice, the model dimension is often unknown. Indeed, for finite samples, when

d is unknown and under data contamination, adjacency spectral embedding fails to

consistently estimates the latent positions. ASE is widely used in graph inference.

In Chapter 3, we will present a vertex classification framework, which does not re-

quire the knowledge of the model dimensions. This framework is robust to data

contamination whose effect results in a changed model dimension. In Chapter 4, our

proposed vertex clustering algorithms are motivated by adjacency spectral embed-

ding techniques. In Chapter 5, one of our proposed vertex nomination schemes – the

spectral partitioning vertex nomination scheme – also incorporates adjacency spectral

embedding in its procedure.
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Chapter 3

Robust Vertex Classification

One interesting graph inference task is vertex classification, which is to determine

the class label of the vertices. For example, we may wish to classify whether a neuron

is a motor neuron or an inter-neuron or whether a person in a social network is liberal

or conservative. In many applications, measured edge activity can be inaccurate. This

inaccuracy may be caused by either missing edges or wrongly-recorded edges, which

leads to contaminated datasets. When the edge activities among a collection of ver-

tices are not visible, occlusion contamination occurs. When the edge activities among

a collection of vertices are wrongly observed, linkage reversion contamination occurs.

In this chapter, we propose a sparse representation vertex classifier for stochastic

blockmodels. Our proposed classifier does not require knowledge of the embedding

dimension, is more robust to model misspecification than spectral embedding-based

vertex classifiers, and maintains good performance for empirical graph inference [17].
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The adjacency spectral embedding introduced in Chapter 2.5 has been shown to

be a valuable tool for performing inference on stochastic blockmodels ([85], [41], [84],

[86]). One major issue is that the method assumes knowledge of model dimension

d, which is often unknown in practice. Occlusion in graphs degrades performance

of spectral embedding methods. Other contamination such as linkage reversion in

graphs may also degrade the inference performance.

The sparse representation classifier was originally developed for face recognition

([95], [96]), and has exhibited robustness to occlusion contamination. We extend

and modify the sparse representation classifier for vertex classification. Our classifier

maintains low misclassification error under both occlusion and linkage reversion con-

tamination. We compare its performance with two spectral embedding-based vertex

classifiers: applying classifiers (nearest neighbor and linear discriminant analysis) fol-

lowing adjacency spectral embedding. Our proposed method outperform the other

two methods in real data inference.

This chapter is organized as follows. In Section 3.1, we introduce the framework

of vertex classification. In Section 3.2, we describe the motivation for proposing a

robust vertex classifier. In Section 3.3, we propose two contamination scenarios and

prove several theoretical properties of the contaminated models. In Section 3.4, we

examine the contamination effect on adjacency spectral embedding methodology. In

Section 3.5, we present the sparse representation vertex classification algorithm. In

Section 3.7, we demonstrate the effectiveness and robustness of the proposed classifier
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on simulated and real data.

3.1 The Problem of Vertex Classification

In this section, we describe the classical setting of classification and extend this

setting to vertex classification. Define the notation [K] := {1, ..., K} for any positive

integer K. Let (X, Y ) ∼ FXY , where the feature vector X is an Rd-valued random

variable, Y is a [K]-valued class label, and FXY is the unknown joint distribution of

X and Y . Denote πk = P(Y = k) as the class priors. Let g : Rd → [K] be a classifier

which maps d-dimensional data point X to the assigned label Y . The mapping g

provides one’s guess of Y given X. The task of classification intends to estimate the

label Y of a test observation X via g(X).

The probability of error is denoted by L(g) = P(g(X) 6= Y ). The Bayes classifier

g∗, is defined by g∗ = arg ming:Rd→[K] P(g(X) 6= Y ). The Bayes classifier is optimal,

because it has the smallest possible probability of error L∗. In the classical setting of

classification, we observe training data Tn = {(X1, Y1), ..., (Xn, Yn)} iid∼ FXY . Denote

the classifier on the training data by gn. The performance of gn is measured by the

conditional probability of error defined by

Ln = L(gn) = P(gn(X; Tn) 6= Y |Tn).

A sequence of classifiers {gn, n ≥ 1} is universally consistent if limn→∞ Ln = L∗ with

probability 1 for any distribution FXY [29].
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In the setting of latent position graphs, we observe the adjacency matrix A of

G = G(X1, ..., Xn−1, X) on n vertices, and the first n− 1 vertices have known labels

(Y1, ..., Yn−1). We do not and cannot observe the latent positions X1, ..., Xn−1, X;

otherwise, we are back in the classical setting of classification. Let vX denote the test

vertex associated with latent position vector X and unobserved class label Y . We

desire to construct a classifier g so that misclassification error P(g(X;X1, . . . , Xn) 6=

Y ) is small.

Recent developments in vertex classification for latent position graphs have fo-

cused on the universal consistency of vertex classifiers. Sussman et al. [85] show that

estimating (X1, ..., Xn−1, X) via adjacency spectral embedding, and then employing a

k-nearest neighbor (kNN) classifier on the represented data is universally consistent.

Tang et al. [86] show that a class of linear classifiers applied after adjacency spectral

embedding are universally consistent for latent position graphs. Athreya et al. [6]

show that the adjacency spectral embedding of stochastic blockmodels is distributed

as a mixture of multivariate normal distributions. This would imply that a subse-

quent linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA)

[32] on the represented data of stochastic blockmodels are asymptotic Bayes plug-in

classifiers.
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3.2 Motivation

Inference methodologies, which are unduly affected by outliers, or rely heavily

on model assumptions, often have poor performance in practice, as real data do not

follow the same model assumptions. When the model dimension d is known, ASEd

consistently estimates the latent positions for RDPG [84]. When model assumptions

do not hold, how well can vertex classifiers perform? An example of ASEd, where

vertices from two classes are well separated in the embedded space is seen in Figure

3.1. A subsequent nearest neighbor (NN) classifier on ASEd is universally consistent

for RDPG [85]. That means regardless of what distribution the latent positions are

drawn from, NN◦ASEd achieves the Bayes error L∗ asymptotically. In particular, for

stochastic blockmodels, 1NN◦ASEd is asymptotically Bayes optimal.

Athreya et al. [6] proved for d = 1-dimensional RDPG, X̂1 via ASE1 is distributed

as a mixture of normal distributions as the number of vertices goes to infinity. They

also proved that for a K-block and d-dimensional (d ≥ 2) SBM, X̂d via ASEd is dis-

tributed as a K mixture of d-variate normals in the limit. This implies that quadratic

discriminant analysis (QDA) on X̂d achieves the Bayes error L∗ asymptotically. If the

covariance matrices of each of the d-variate normals are the same, linear discriminant

analysis (LDA) achieves the Bayes error L∗ asymptotically [33]. In the case of SBMs,

the covariance matrices are of order 1
n
, so both QDA and LDA are asymptotically

Bayes optimal, while LDA requires a fewer number of parameters to fit [1]. Hence in

our analysis, we employ two classifiers 1NN◦ASEd and LDA◦ASEd for vertex classi-
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Figure 3.1: We simulate a stochastic blockmodel, whose parameters B and π are

chosen the same as in Eq 3.37 with 500 vertices. (Left) Spectral norm difference

between the theoretical covariance matrix and the empirical covariance matrix for

Block 1. (Right) Spectral norm difference between the theoretical covariance matrix

and the empirical covariance matrix for Block 2. We see that as the number of vertices

n increases, the spectral norm differences between the empirical and the theoretical

covariance matrix become smaller.

fication of stochastic blockmodels.

Importantly, having information on the model dimension d is critical to adja-

cency spectral approaches. When d is given, ASEd is consistent, and 1NN◦ASEd,

LDA◦ASEd asymptotically achieve the Bayes error. When d is not known, Sussman

et al. [84] estimate d via a consistent estimator

d̂ = max{i : σi(A) > 31/4n3/4 log1/4 n}, (3.1)
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where σ(A) is the singular value of A. However, the number of vertices necessary for

the consistent estimator to be usable in practice will depend on the the sparsity of

the graph. The number of vertices increases rapidly as the expected graph density

decreases. Fishkind et al. [41] showed that ASER is consistent as n→∞, if a positive

integer R is known with d ≤ R. However, for a finite number of samples, 1NN◦ASER

and LDA◦ASER degrade significantly in performance compared to 1NN◦ASEd and

LDA◦ASEd. Moreover, embedding to the wrong dimension, especially d̂ < d degrades

the classification performance greatly. Here we focus on developing a method which

does not critically rely on the model dimension d compared to adjacency spectral

embedding approaches, while still maintaining low misclassification error. Such a

vertex classification procedure is robust to model misspecification and suitable for

real graph data inference.

3.3 Two Contamination Models

We propose two scenarios of contamination procedures that change the dimension

of the uncontaminated model. For the rest of the paper, we assume the uncon-

taminated graph model Gun is an element of the family of stochastic blockmodels

G = {G ∼ SBM([n], B, π)}. Hence, Gun , (Bun, πun) ∼ SBM([n], Bun, πun).
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3.3.1 Contamination I: the Occlusion Model

Let po ∈ [0, 1] denote the occlusion rate. We randomly select 100%po vertices out

of the n vertices and set the probability of connectivity among the selected vertices

to be 0. In this scenario, the probability of connectivity between the contaminated

vertices and the uncontaminated vertices remains the same as in Gun.

3.3.1.1 The Contamination Procedure

Let ε = (1−po, po)T ∈ R2 be the contamination proportion vector and po the con-

tamination proportion, in this case, the occlusion rate. We randomly select 100%po

vertices out of the n vertices and set probability of connectivities among the selected

vertices to be 0. In this scenario, the probability of connectivity between the contam-

inated vertices and the uncontaminated vertices remains the same as in Gun. Figure

Figure 3.2: An example of the occlusion contamination. (Left) Original model.

(Right) Occlusion contamination.

3.13 presents an example of the occlusion contamination. This occlusion procedure
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can be formulated as a stochastic block model Gocc with the following parameters:

Bocc =

 Bun Bun

Bun 0K×K

 ∈ R2K×2K , (3.2)

πocc = [(1− po)πTun, poπ
T
un]T ∈ R2K . (3.3)

The operator⊗ is the Kronecker product. The number of memberships in the contam-

inated model Gocc rises to 2K, where K memberships correspond to the class prior

(1−po)πun and K memberships correspond to the class prior poπun. If rank(Bun) = d,

then rank(Bocc) = 2d. This is due to its Gaussian elimination form

Bocc ∼

 Bun Bun

0K×K Bun

 . (3.4)

Furthermore, Bun Bun

Bun 0K×K

 =

 1K×K 0K×K

1K×K 1K×K


 Bun 0K×K

0K×K −Bun


 1K×K 0K×K

1K×K 1K×K


T

.

(3.5)

This shows that Bun is congruent to the symmetric matrix S :=

 Bun 0K×K

0K×K −Bun

.

In the next section, we show these two real congruent symmetric matrices have the

same numbers of positive, negative and zero eigenvalues. If B is positive semi-definite,

then B has d positive eigenvalues. Hence, Bocc has d positive eigenvalues and d

negative eigenvalues, where the negative eigenvalues are due to contamination. Then

the largest 2d eigenvalues in magnitude of the probability matrix Pocc ∈ Rn×n has
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exactly d positive eigenvalues and d negative eigenvalues. For small choices of po, as po

increases, the d negative eigenvalues grow in magnitude. As po continues to increase

to 1, all eigenvalues get closer to 0, and the size of contaminated vertices approaches

n, indicating that the majority of the edges are sampled from the contamination

source 0K×K . As a result, the adjacency matrix A becomes sparser and sparser and

eventually all zeros.

3.3.1.2 Theoretical Results on the Occlusion Stochastic Block-

model

We now present several theoretical properties of the occlusion stochastic block-

model. Suppose rank(Bun) = d. Let ν ∈ RK×d such that Bun = ννT . Let σi(M) be

the i-th largest singular value of a matrix M and let λi(M̃) be the i-th largest eigen-

value of a square matrix M̃ . Let ni be the size of Block i. We define the following

constants which are not dependent on n:

• α > 0 such that α ≤ minλi(νν
T )

• β > 0 such that β ≤ mini6=j ‖νi − νj‖

• γ > 0 such that γ ≤ mini∈[K] πun,i.

Note that an event occurs “almost always”, if with probability 1, the event occurs for

all but finitely many n ∈ {1, 2, . . . , n}.

Theorem 3.1. It always holds that σ1(Pocc) ≤ σ1(Pun) ≤ n.
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Proof. Suppose the set of the contaminated vertices is I := {i1, i2, . . . , il}. Let P ′s

denote the principal submatrix of Pun ∈ R|I|×|I| obtained by deleting the V \I columns

and the corresponding V \ I rows. P ′s is symmetric.

Note that Pun = Pocc + Ps, where Ps is symmetric, Ps = P ′s at {i1, i2, . . . , il}-th

columns and {i1, i2, . . . , il}-th rows, and Ps = 0 everywhere else. By Weyl’s Theorem

[51], σ1(Pocc) + minσ σ(Ps) ≤ σ1(Pocc + Ps) = σ1(Pun). Thus, σ1(Pocc) ≤ σ1(Pun).

Since Pun ∈ [0, 1]n, PunP
T
un = PunPun is a non-negative and symmetric matrix

with entries bounded by n. Then each row sum is bounded by n2. Thus, σ2
1(Pun) =

σ1(P 2
un) = σ(PunP

T
un) ≤ n2, giving σ1(Pun) ≤ n.

Theorem 3.2. It always holds that σ2d+1(Pocc) = 0. It almost always holds that

σ2d(Pocc) ≥ min(p0, 1− p0)αγn. rank(Pocc) = 2d.

Proof. The Guassian elimination of Bocc is given by

Bocc ∼

 Bun Bun

0K×K Bun

 . (3.6)

Since rank(Bun) = d, rank(Bocc) = 2d. Then there exist µ =

 ν 0K×K

ν −ν

 ∈ R2K×2d

and µ̃ =

 ν 0K×K

ν ν

 ∈ R2K×2d such that Bocc = µµ̃T . Let Xocc ∈ Rn×2d and X̃occ ∈

Rn×2d with row u given by X̃occ,u = µ̃Yu . By the parametrization of SBM as RDPG

model, Pocc = XoccX̃ T
occ. Since Xocc, X̃occ are at most rank 2d, then σ2d+1(Pocc) = 0.
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Since the following holds:

µµT = µ̃µ̃T =

 ννT ννT

ννT 2ννT

 =

 ννT ννT

ννT ννT

+

 0K×K 0K×K

0K×K ννT

 , (3.7)

by Weyl’s theorem [51],

minλi(µµ
T ) = minλi(µ̃µ̃

T ) ≥ minλi

 ννT ννT

ννT ννT

+minλi

 0K×K 0K×K

0K×K ννT

 ≥ γ+0 = γ.

(3.8)

Moreover, we have

min
i∈[2K]

(πocc,i) = min(poπun,i, (1− po)πun,i) ≥ min(po, 1− po)γ. (3.9)

The eigenvalues of PoccP
T
occ are the same as the nonzero eigenvalues of X̃ T

occX̃occX T
occXocc.

it almost always holds that ni ≥ min(po, 1− p0)γn for all i ∈ [2K] so that

X T
occXocc =

2K∑
i=1

niµiµ
T
i = min(po, 1− po)γnµTµ+

2K∑
i=1

(ni −min(po, 1− po)γn)µiµ
T
i .

(3.10)

The first term has minλi bounded below by αmin(po, 1−po)γ. This means λ2d(X T
occXocc) ≥

αmin(po, 1− po)γ. For the exact same argument, λ2d(X̃ T
occX̃occ) ≥ αmin(po, 1− po)γ.

X̃ T
occX̃occX T

occXocc is the product of two positive semi-definite matrices. Then,

λ2d(X̃ T
occX̃occZ

T
occZocc) ≥ λ2d(X̃ T

occX̃occ)λ2d(X T
occXocc) ≥ (αmin(p0, 1− p0)γn)2. (3.11)

This gives

λ2d(Pocc) ≥ αmin(p0, 1− p0)γn = min(p0, 1− p0)αγn. (3.12)
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Since λ2d(Pocc) ≥ 0 almost always and σ2d+1(Pocc) = 0 always, then rank(Pocc) =

d.

Theorem 3.3. Bocc has d positive eigenvalues and d negative eigenvalues.

Proof. Let the consider the eigen-decomposition of Bun given by ΞΨΞT , where Ξ ∈

RK×K is orthogonal and Ψ = Diag(ψ1, ..., ψk) ∈ RK×K is diagonal. We have the

following congruent relation: Bun Bun

Bun 0K×K

 =

 IK×K 0K×K

IK×K IK×K


 Bun 0K×K

0K×K −Bun


 IK×K 0K×K

IK×K IK×K


T

=

 Ξ 0K×K

Ξ Ξ


 Ψ 0K×K

0K×K −Ψ


 Ξ 0K×K

Ξ Ξ


T

. (3.13)

Hence, Bocc and

 Ψ 0K×K

0K×K −Ψ

 are congruent. By Sylvester’s law of Inertia

[51], they have the same number of positive, negative and zero eigenvalues. Ψ has d

positive diagonal entries since rank(Bun) = d. Similarly, −Ψ has d negative diagonal

entries. Hence, Bocc has d positive eigenvalues and d negative eigenvalues.

Lemma 3.1. Let M1 ∈ Rn×m and M2 ∈ Rm×n be two matrices. The number of

nonzero eigenvalues of M1M2 equals the number of nonzero eigenvalues of M2M1.

Proof. Let λ be a nonzero eigenvalue of M1M2. If v is an eigenvector of M1M2

then M1M2v = λv 6= 0. Then M2M1M2v = λM2v 6= 0. Thus, λ is also a nonzero

eigenvalue for M2M1. By symmetry, if λ is a nonzero eigenvalue of M2M1, then λ
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is also a nonzero eigenvalue of M1M2. Thus, the number of nonzero eigenvalues of

M1M2 equals the number of nonzero eigenvalues of M2M1.

Theorem 3.4. Assuming |λ1(Pocc)| ≥ |λ2(Pocc)| ≥ · · · ≥ |λ2d(Pocc)|, then |{i :

λi(Pocc) < 0}| = |{i : λi(Pocc) < 0}| = d. That is, the number of positive eigen-

values of Pocc is the same as the number of negative eigenvalues of Pocc, and it equals

d.

Proof. Let Z ∈ {0, 1}n×2K denote the matrix, where each row i is of the form

(0, . . . , 1, 0, . . . , 0), where 1 indicates the block membership of vertex i in the oc-

clusion stochastic blockmodel. Then Pocc = ZBoccZ
T . By Lemma 3.1, Pocc has the

same number of nonzero eigenvalues as ZTZBocc. Let DZ := ZTZ ∈ N2K×2K and

note that DZ is a diagonal matrix with nonnegative diagonal entries, where each di-

agonal entry denotes the number of vertices belonging to block k ∈ [K]. With high

probability, D is positive definite, as the number of vertices in each block is positive.

Then the number of nonzero eigenvalues of Pocc is the same as the number of nonzero

eigenvalues of ZTZBocc = DBocc =
√
DZ

√
DZBocc =

√
DZBocc

√
DZ . By Sylvester’s

law of Inertia [51], the number of positive eigenvalues of
√
DZBocc

√
DZ is the same as

the number of positive eigenvalues of Bocc, and the number of negative eigenvalues of

√
DZBocc

√
DZ is the same as the number of negative eigenvalues of Bocc, thus proving

our claim.

31



CHAPTER 3. ROBUST VERTEX CLASSIFICATION

Next we examine, in the spectral embedded space, how distinct the rows of the

latent positions are. Since Pocc has d negative eigenvalues that are among the 2d

largest eigenvalues in magnitude, we consider the singular value decomposition (SVD)

of Pocc, so that the eigenvalues are ordered in their absolute values. The SVD of Pocc

is given by UPoccΣŨ
T
Pocc

. Denote the matrix consisting of the first 2d columns of UPocc

by UPocc,2d. For a given matrix M , denote Mu as the u-th row of M .

Theorem 3.5. For all u, v such that Xocc,u 6= Xocc,v, it almost always holds that

‖UPocc,2d,u − UPocc,2d,v‖ ≥ min(po, 1− po)3/2β
√
αγ/
√
n, (3.14)

‖ŨPocc,2d,u − ŨPocc,2d,v‖ ≥ min(po, 1− po)3/2β
√
αγ/
√
n. (3.15)

Proof. Let X̃ T
occX̃occ = MΛM2, where M ∈ R2d×2d is orthogonal and Λ ∈ R2d×2d

is diagonal. Define Φ = XoccM , Θ = ΦΛ, U ′ = UoccΣ. Let u, v be such that

Xocc,u 6= Xocc,v.

We have the following equalities and inequalities,

‖Φu − Φv‖ = ‖Xocc,uM −Xocc,vM‖

= ‖(Xocc,u −Xocc,v)M‖

= ‖Xocc,u −Xocc,v‖. (3.16)

‖U ′u − U ′v‖ = ‖UPocc,2d,uΣ− UPocc,2d,vΣ‖
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By Theorem 3.1,

σ1(Pocc) ≤ n

‖U ′u − U ′v‖ ≤ n‖UPocc,2d,u − UPocc,2d,v‖. (3.17)

‖Θu −Θv‖ = ‖ΦuΛ− ΦvΛ‖

= ‖(Φu − Φv)Λ‖ (3.18)

By Theorem 3.2,

min
i
|Λii| ≥ αmin(po, 1− po)γn,

‖Θu −Θv‖ ≥
√
αmin(po, 1− po)γn‖Φu − Φv‖

ΘΘT = ΦM2ΦT = XoccMΛ2MTZT
occ = XoccX̃ T

occX̃occXocc

= UPocc,2dΣŨ
T
Pocc,2dŨPocc,2dΣU

T
Pocc,2d = UPocc,2dΣ

2UT
Pocc,2d

= U ′U ′T . (3.19)

Let e = [0, 0, . . . ,−1, . . . , 1, . . . , 0] ∈ Rn be a vector of all zeros except 1 at the u-th

entry and −1 at the v-th entry. Then the following holds,

‖Θu −Θv‖2 = eTΘΘT e = eTU ′U ′T e = ‖U ′u − U ′v‖2

‖Θu −Θv‖ = ‖U ′u − U ′v‖. (3.20)
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Combining Eq 3.16 - 3.20, the following holds,

‖Xocc,u −Xocc,v‖ = ‖Φu − Φv‖

≤ 1√
min(po, 1− po)αγn

‖Θu −Θv‖

=
1√

min(po, 1− po)αγn
‖U ′u − U ′v‖

≤
√
n√

min(po, 1− po)αγ
‖UPocc,2d,u − UPocc,2d,v‖. (3.21)

Since β ≤ mini6=j ‖νi−νj‖, then minu6=v ‖Xu−Xv‖ ≥ β and minu6=v ‖Xocc,u−Xocc,v‖ ≥

min(po, 1− po)β. Hence, we have shown

‖UPocc,2d,u − UPocc,2d,v‖ ≥ min(po, 1− po)3/2β
√
αγ/
√
n. (3.22)

For a symmetric argument, we can show

‖ŨPocc,2d,u − ŨPocc,2d,v‖ ≥ min(po, 1− po)3/2β
√
αγ/
√
n. (3.23)

When there is no contamination, it holds that ‖UP,d,u − UP,d,v‖ ≥ β
√
αγ/
√
n,

where U is the matrix of the eigenvectors of P [84]. Since min(po, 1 − po) ≤ 1, after

contamination, the rows of the spectral embedding of the occluded communication

matrix are not as distinguishable, because the lower bound of the row difference

becomes smaller.

Recall that the adjacency spectral embedding with model dimension d is given

by UA,dS
1
2
A,d. We prove an upper bound of how different the occluded adjacency
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matrix Aocc is from the occluded probability matrix Pocc via spectral embedding with

specified embedding dimension 2d. We first cite a proposition from [84].

Proposition 3.1. It almost always holds that ‖A2 − P 2‖F ≤
√

2n3 log n.

It follows immediately that ‖A2
occ − P 2

occ‖F ≤
√

2n3 log n holds almost always.

We first prove that the spectral embedding of the occluded adjacency matrix

UAocc,2d is close to that of the occluded probability matrix UPocc,2d.

Theorem 3.6. It almost always holds that there exists an orthogonal matrix R ∈

R2d×2d such that

‖UAocc,2dR− UPocc,2d‖F ≤
√

6 log n

min(po, 1− po)2α2γ2
√
n
. (3.24)

Proof. Theorem 3.2 showed that the eigengap δ for P2
occ is greater than min(po, 1 −

po)
2α2γ2n2. The eigenvectors of Aocc and Pocc equal to the eigenvectors of A2

occ and

P2
occ. Using Proposition 3.1 and applying Davis-Kahan Theorem [28],

‖UAocc,2dR− UPocc,2d‖ ≤
√

2

δ
‖A2

occ − P 2
occ‖F (3.25)

≤
√

2

δ

√
3n3 log n (3.26)

≤
√

6 log n

min(po, 1− po)2α2γ2
√
n
. (3.27)

It follows that the spectral embedding of the occluded adjacency matrix UAocc,2dS
1
2
Aocc,2d

is close to the spectral embedding of the occluded probability matrix Xocc = UPocc,2dS
1
2
Pocc,2d

.
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That is, ASE2d is close to the latent positions under occlusion. An easy adaption from

Theorem 1 in [84] shows that it almost always holds that there an orthogonal matrix

R ∈ R2d×2d such that

‖UAocc,2dS
1
2
Aocc,2d

R−Xocc‖F ≤
4d√

min(po, 1− po)

√
3 log n

α3γ3n
. (3.28)

Note that this bound in Equation 3.28 is weaker than the bound in [84] due to our

add-in occlusion contamination.

3.3.2 Contamination II: The Linkage Reversion Model

Besides missing edge information, we could also be handling absolutely wrong edge

information. This leads us to design a linkage reversion contamination procedure in

order to assess whether error rate is maintained low when edge information is wrong.

Let pl ∈ [0, 1] denote the linkage reversion rate. We randomly select 100%pl ver-

tices out of the n vertices and reverse the connectivity among all the selected vertices.

The probability of connectivity between the contaminated vertices and the uncontam-

inated vertices remains the same as in Gun. The linkage reversion contamination can

be formulated as a stochastic blockmodel Grev with the following parameters:

Brev =

 Bun Bun

Bun JK×K −Bun

 ∈ R2K×2K , (3.29)

πrev = [(1− pl)πTun, plπ
T
un]T ∈ R2K . (3.30)
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The matrix JK×K ∈ RK×K is of all ones. Denote the communication probability

matrix of Grev by Prev. To see that the contamination source is JK×K − Bun, let E1

denote the event that an edge exists between vertices v and w, E2 the event that v

and w are selected to be contaminated, and E3 the event of no edge between v, w

given Y (v), Y (w) as in the uncontaminated model Gun. Then,

P (E1|E2) = P (E1|E2|E3)P (E3) + P (E1|E2|Ec
3)P (Ec

3)

= 1× P (E3) + 0× P (Ec
3)

= JK×K −B. (3.31)

If rank(Bun) = d, then it almost always holds that d+ 1 ≤ rank(Brev) = rank(Prev) ≤

2d. The negative eigenvalues of Prev are due to the linkage reversion contamination.

The number of blocks in the contaminated model Grev is 2K, where K blocks corre-

spond to (1−pl)πun and K blocks correspond to plπun. Although the number of blocks

in the model changes to 2K due to contamination, the number of classes in the vertex

classification problem remains K. Clearly, as pl → 1, we recover the complement of

SBM([n], Bun, πun)– that is, SBM([n], JK×K −Bun, πun).

3.4 The Contamination Effect

When a stochastic blockmodel is contaminated by the two procedures described

in Section 3.3, the model parameters and the model dimension are changed. Sup-

pose the original model dimension d and knowledge of the contamination are known,
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Figure 3.3: An example of the linkage reversion contamination. (Left) No contami-

nation. (Right) Linkage reversion contamination.

we naturally know the contaminated model dimension docc or drev. Then ASEdocc

and ASEdrev are consistent asymptotically. Subsequent 1NN is asymptotically Bayes

optimal, and LDA will exhibit great performance. However, if we know only d but

not the contamination procedure, then we will consider d as the default embedding

dimension.

Let us look at an example of how contamination affects the spectral embedding

and subsequently the estimation of latent positions. Figure 3.4 and Figure 3.5 show

an example of the scree plots obtained from the contaminated adjacency matrices Aocc

and Arev. In this example, the model dimension is known to be d = 2. We inspect

the scree plots based on the principle of statistical parsimony, and use an automatic

elbow-selecting procedure based on profile likelihood proposed in [102]. The selected

elbows suggest that choosing d̂ = 2 is reasonable in both cases of contamination.

Despite the results in [84] and [41], we cannot be guaranteed to successfully choose
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the embedding dimension in practice. Consequently, the performance of ASEd̂occ
and

ASEd̂rev
will degrade.

Figure 3.6 and Figure 3.7 demonstrate that, as the contamination proportions

po and pl increase – that is, the data gets heavily contaminated, latent positions

change as reflected in the estimated latent positions X̂d̂occ
and X̂d̂rev

. In this plot, the

embedding dimensions d̂occ and d̂rev are selected from the scree plots of Aocc and Arev

respectively using a profile likelihood method [102]. In particular, as the occlusion

rate po increases, more vertices from different classes are embedded closer to each

other. Subsequent vertex classification on the contaminated X̂d̂ using 1NN or LDA

will degrade in performance. Indeed, knowing the model dimension is critical to

the success of vertex classification using the ASE procedures, whereas in practice,

the model dimension is often unknown. This motivates us to seek a robust vertex

classifier which does not depend heavily on the model dimension, but still maintains

good classification performance.
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Figure 3.4: Scree plot of the occlusion contaminated adjacency matrix. Scree plot

of the occlusion contaminated adjacency matrix Aocc at occlusion rate po = 0.74

with n = 200. The parameters Bun and πun are given in Equation 3.37. The red

dots are the negative eigenvalues of Aocc due to occlusion contamination. The green

dots are the positive eigenvalues of Aocc. If no information about d or no knowledge

of contamination is available, the principle of statistical parsimony suggests that

choosing the estimated dimension d̂ = 2 is reasonable in this case [102].
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Figure 3.5: Scree plot of the linkage reversion contaminated adjacency matrix. Scree

plot of the linkage reversion contaminated adjacency matrix Arev at linkage reversion

rate pl = 0.74 with n = 200. The parameters Bun and πun are given in Equation

3.37. The red dots are the negative eigenvalues of Arev due to linkage reversion

contamination. The green dots are the positive eigenvalues of Arev. If no information

about d or no knowledge of contamination is available, the principle of statistical

parsimony suggests that choosing the estimated dimension d̂ = 2 is reasonable in this

case [102].
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Figure 3.6: The occlusion contamination effect on estimated latent positions. A

depiction of the occlusion effect on the latent positions as reflected in the estimated

latent positions X̂d̂=2 with n = 200. The parameters Bun and πun are given in Equation

3.37. The four-panel displays the contamination effect on latent position estimation

for different increasing values of the occlusion rate po. As po increases, vertices from

different blocks become close in the embedded space. For po close to 1, ASEd̂=2

will eventually yield only one cloud at 0. We see the obvious deleterious effects on

classification.
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Figure 3.7: The linkage reversion contamination effect on estimated latent positions.

A depiction of the linkage reversion effect on the latent positions as reflected in the

estimated latent positions X̂d̂=2 with n = 200. The parameters Bun and πun are

given in Equation 3.37. The four-panel displays the contamination effect on latent

position estimation for different increasing values of the linkage reversion rate pl. As

pl increases, vertices from different blocks become close in the embedded space. For

pl = 1, ASEd̂=2 will yield two clouds corresponding to SBM(200, J2×2 − Bun, πun).

We see the obvious deleterious effects on classification for some choices of pl.
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3.5 Sparse Representation Classifier

3.5.1 The Algorithm

In this section, we present our proposed sparse representation classifier (SRC) for

vertex classification, and explain the main steps. Instead of employing adjacency

spectral embedding, and then applying classifiers such as the linear discriminant

analysis or the nearest neighbor classifier on the embedding representation X̂d̂, we

recover a sparse linear combination of a test vertex expressed in terms of the vertices

in the training set, and use the recovered sparse representation coefficients to classify

the test vertex.

The setting for SRC is formulated as follows. We observe the adjacency matrix A

on n vertices {v1, . . . , vn−1, v}, where the first n−1 vertices are associated with known

vertex labels Yi ∈ [K] out of K classes. Suppose there are nk training vertices in each

class k ∈ [K], so that the size n− 1 of the training set is given by n− 1 =
∑

k∈[K] nk.

Let ak,1, ..., ak,nk
denote the columns in A corresponding to the nk training vertices in

class k. Define Ak := [ak,1, ..., ak,nk
] ∈ {0, 1}(n−1)×nk and normalize each column of Ak

to have unit L2 norm, i.e., dk,j =
ak,j
‖ak,j‖2

for 1 ≤ j ≤ nk. The notations of A1, . . . , AK

are now normalized. We concatenate A1, . . . , AK such that D := [A1, . . . , AK ] ∈

R(n−1)×(n−1)
>0 . The matrix D is called the dictionary. We present SRC in Algorithm 2.
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Algorithm 2 Robust vertex classification.

Goal: Classify the vertex v.

Input: Adjacency matrix A ∈ {0, 1}n×n on vertices {v1, . . . , vn−1, v}, where the

first n vertices are associated with observed labels Yi ∈ [K]. Let φ ∈ {0, 1}n−1

be the n-th row (or equivalently column) of A, removing the zero in the n-th

coordinate.

1. Arrange the training vertices: Let ak,1, ..., ak,nk
denote the columns in A

corresponding to the nk training vertices in class k. Define Ak := [ak,1, ..., ak,nk
] ∈

R(n−1)×nk and normalize each column of Ak to have unit L2 norm, i.e., dk,j =
ak,j
‖ak,j‖2

for 1 ≤ j ≤ nk. We concatenate A1, . . . , AK such that D := [A1, . . . , AK ] ∈

R(n−1)×(n−1).

2. Solve the minimization problem:

L0 −minimization: x̂ = argmin
x
‖x‖0 subject to ‖φ−Dx‖2 ≤ ε,

or

L1 −minimization: x̂ = argmin
x
‖x‖1 subject to ‖φ−Dx‖2 ≤ ε.

3. Compute the distance of φ to each class k: rk(φ) = ‖φ − Dx̂k‖2, where

x̂k = [0, ..., 0, x̂k,1, ..., x̂k,nk
, ..., 0]T ∈ Rn−1 is the recovered coefficients corresponding

to the k-th class.

4. Classify test vertex: Ŷ = argmink rk(φ).
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3.5.2 The Test Vertex Expressed as a Sparse Rep-

resentation of the Training Vertices

We remove the test vertex’s connectivity with itself. Let φ ∈ {0, 1}n−1 be the n-th

row (or column) of A, removing the zero in the n-th coordinate. Hence, the vector φ

is represented in terms of its connectivity to the training vertices.

3.5.3 L0 or L1 Minimization

Formally, the optimization problem is set up as

L0 −minimization: argmin
x
‖x‖0 subject to ‖φ−Dx‖2 ≤ ε, (3.32)

where ‖·‖0 equals the number of nonzero entries or sparsity level of x. Directly solving

the L0 minimization problem is NP-hard [67], that is, the complexity of the search

in L0 minimization grows exponentially with n. One may solve the L0 minimization

problem in a greedy manner (see, e.g., [91], [26], [36]). The coefficient vector x can

also be solved via the L1 minimization problem

L1 −minimization: argmin
x
‖x‖1 subject to ‖φ−Dx‖2 ≤ ε. (3.33)

See [30], [31] [46], [13], [35], [79] and [90] for the equivalence of solving L0 and L1

minimization problems. The model consistency of the LASSO in sparse recovery is

proved in [101]. The augmented Lagrangian multiplier technique for solving the L1
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minimization problem is studied in [97].

In this work, we use the orthogonal matching pursuit (OMP), a greedy approx-

imation of L1 minimization. OMP is an iterative greedy algorithm that selects the

columns most correlated with the residual in order to find the sparsest solution x̂ [71],

[91], [12], [54]. The major advantage of OMP in solving sparse recovery problem is

that the algorithm is simple to implement and fast to compute [90]. This algorithm

is presented in Algorithm 3.

Algorithm 3 Orthogonal Matching Pursuit

Input: Training vertices D ∈ R(n−1)×(n−1), test vertex φ, a specified sparsity level

s and/or a specified tolerance error ε.

Output: recovered sparse coefficient x̂ with ‖x̂‖0 = s.

Initialize the residual r0 = φ, iteration t = 1, index set Λ0 = ∅.

while t < s or rt < ε do

Step 1: Find the index it such that it = argmaxj=1,2,...,n−1| 〈it−1, d·,j〉 |. If there

are multiple it’s, break the tie deterministically.

Step 2: Λt ← Λt−1 ∪ {it}. Denote the corresponding submatrix as Dt ←

[Dt−1d·,it ].

Step 3: Solve for the least-square problem x̂t = argminx ‖Dtx − φ‖2, and

update the residual rt = φ−Dtx̂t.

end while

One can also use other L0 greedy methods or L1 solvers [26, 36] to solve the
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minimization problem in Algorithm 2.

3.5.4 Classification

Let x̂ be the recovered sparse vector of coefficients solved by Equation 3.32 or

Equation 3.33. We also express x̂ as

x̂ =
K∑
k=1

x̂k, (3.34)

where each x̂k = [0, ..., 0, x̂k,1, ..., x̂k,nk
, ..., 0]T ∈ Rn−1 is the recovered coefficients

corresponding to class k. We compute the distance between φ and the recovered

vector Dx̂k in the class k by

rk(φ) = ‖φ−Dx̂k‖2. (3.35)

The label Y of the test vertex v is estimated using the minimum L2 distance

Ŷ = argminkrk(φ). (3.36)

3.6 Robustness of Sparse Representation

Classifier for Vertex Classification

When the true model dimension d is unknown, ASEd̂ may not be consistent. When

contamination results in a changed model dimension, the performance of subsequent

classifiers composed with ASEd̂ could degrade. We consider a classifier robust, if it
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maintains relatively low error rate under data contamination. Our proposed sparse

representation classifier (SRC) for vertex classification does not require knowing the

embedding dimension, and SRCs classification performance is much more stable with

respect to sparsity levels s than 1NN◦ASEd̂ and LDA◦ASEd̂ with respect to embed-

ding dimensions d̂.

3.7 Numerical Experiments

3.7.1 Simulation

3.7.1.1 No Contamination

We simulate the probability matrix for an uncontaminated stochastic blockmodel

Gun with K = 2 blocks (Y ∈ {1, 2}) and parameters

Bun =

 0.7 0.32

0.32 0.75


πun = (0.4, 0.6)T . (3.37)

We first assess the performance of all classifiers on the uncontaminated graph under

the assumption that the model dimension d = 2 is known. The experiment is done via

leave–one–out cross validation. For large number of vertices n, all classifiers perform

well, with an error rate of almost 0 as seen in Fig 3.8. LDAoASEd=2 performs the

best for all choices of vertices. In this ideal setting, SRC5 does not outperform
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Figure 3.8: Vertex classification performance for uncontaminated model. For the

uncontaminated model, when the model dimension d = 2 is known, for small num-

ber of vertices, SRC5 does not outperform 1NN◦ASEd=2 or LDA◦ASEd=2. When

the number of vertices n is large, all three classifiers exhibit perfect performance.

LDA◦ASEd=2 exhibits the best performance. The chance line is at 0.4. The number

of Monte Carlo replicates is 500.

NN◦ASEd=2 or LDA◦ASEd=2. Then we fix the number of vertices n = {40, 100}

and vary the sparsity level s and embedding dimension d̂. Figure 3.9 demonstrates

the three classifiers’ performance. The true model dimension is d = 2, so when

embedded to d̂ = 1, NN◦ASE1 or LDA◦ASE1 perform very badly. For n = 40, as we

increase the embedding dimension d ∈ {1, 2, . . . , 25}, the performance of NN◦ASEd̂

and LDA◦ASEd̂ improve and then degrade. This phenomenon is due to the bias-

variance tradeoff. 1NN◦ASEd̂ degrades more than LDA◦ASEd̂ in performance when
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Figure 3.9: Vertex classification on the uncontaminated data with fixed n. (Left)

n = 40. (Right) n = 110. For both cases, SRCs demonstrates relatively stabler

performance with respect to sparsity level s compared to 1NN◦ASEd̂ and LDA◦ASEd̂

with respect to embedding dimension d̂.

we increase d̂. This is due to the nonparametric nature of NN but parametric nature

of LDA. In this example, SRCs does not outperform NN◦ASEd̂ and LDA◦ASEd̂ for all

s, but it demonstrates its relatively stabler performance with respect to s compared to

1NN◦ASEd̂ and LDA◦ASEd̂. Moreover, choosing s > 10 may not be suitable for SRC,

since the sparsity ratio s
n
> 10

40
= 0.25 makes the recovered coefficient not sparse. For

n = 110, we see that SRCs and LDA◦ASEd̂ perform well, while 1NN◦ASEd̂ degrades

for larger embedding dimensions. SRCs demonstrates very stable performance for all

s ∈ {1, 2, . . . , 25}.

Next we examine how block dissimilarity affects classification performance on

uncontaminated data. For this experiment, we select s = 5 for SRC. We consider the
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block probability matrix B having a symmetric form,

Bun =

 α + β β

β α + β

 ,

where the block dissimilarity ∆ is defined as

∆ = |α|. (3.38)

We assume α > 0. Hence, Gun is an affinity SBM. High values of ∆ in the stochas-

tic blockmodels imply strong block structures. In our experiment, we choose the

parameters β = 0.3, α ∈ {0.15, 0.17, 0.19, . . . , 0.65}, n ∈ {100, 150, . . . , 350} and

πun = (0.4, 0.6)T . We see that SRC performs better at larger ∆ values as seen in Fig

3.10. The relative performances between SRC and NNoASE, SRC and LDAoASE

are measured by the classification error differences SRCerr−NNoASEerr and SRCerr−

LDAoASEerr respectively. For small values of ∆, the differences are positive for both

comparisons as seen in Fig 3.11 and 3.12. SRC does not outperform NNoASE and

LDAoASE for weak block signals.

3.7.1.2 Under Contamination

Now we assess the robustness of SRCs, 1NN◦ASEd̂ and LDA◦ASEd̂ under con-

tamination. If the model dimension d = 2 is known and the exact contamination

is known, then embedding to docc = 4 or drev = 4 is correct. If d is known, but no

contamination information is available, or if d is unknown, one could select d̂ = 2
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Figure 3.10: Surface plot of SRC error rate with respect to block dissimilarity ∆ and

number of vertices n. In this case, the graph is not contaminated, and the embedding

dimension d = 2 is known. Larger ∆ values imply stronger block structures. The

error rate is high for small values of ∆ when the block structures are weak. The

number of Monte Carlo replicates is 30.

Figure 3.11: Heatmap of the performance difference SRCerr−NNoASEerr with respect

to block dissimilarity ∆ and number of vertices n. For weak block structures at

smaller values of ∆s, SRC does not outperform NNoASE. As ∆ gets larger, indicating

stronger block structures, the performance difference becomes smaller and eventually

zero. The number of Monte Carlo replicates is 30.
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Figure 3.12: Heatmap of the performance difference SRCerr − LDAoASEerr with re-

spect to block dissimilarity ∆ and the number of vertices n. We see that for weak

block structures at smaller values of ∆s, SRC does not outperform LDAoASE. As ∆

increases, indicating stronger block structures, the performance difference becomes

smaller and eventually zero. The number of Monte Carlo replicates is 30.
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based on the scree plots of the contaminated adjacency matrices as seen in Figure 3.4

and Figure 3.5.

Figure 3.13 presents the misclassification error of SRCs=5, 1NN◦ASEd̂ and LDA◦ASEd̂

under occlusion contamination for d̂ = 2, 4. All classifiers degrade as the occlusion

rate po increases above 0.4. LDA◦ASEd=4 performs amongst the best for all values

of po. Both LDA◦ASEd=4 and 1NN◦ASEd=4 degrade in performance for po > 0.75.

The degradation is due to more severe occlusion contamination in the sampled graph.

Both LDA◦ASEd̂=2 and 1NN◦ASEd̂=2 degrade in performance as early as po > 0.45.

The degradation is due to occlusion contamination and embedding dimension mis-

specification. In this case, SRCs=5 outperforms LDA◦ASEd̂=2 and 1NN◦ASEd̂=2, in-

dicating strong robustness to contamination. For each occlusion rate po ∈ [0.45, 0.93],

the Wilcoxon signed rank test is applied with the null hypotheses that the error dif-

ferences SRCerror− 1NN◦ASEd̂=2 error and SRCerror− LDA◦ASEd̂=2 error come from a

distribution with zero median respectively. All the p-values are less than 0.005.

Next, we vary the sparsity level s and embedding dimension d̂, and compare the

classification performance under occlusion contamination with fixed occlusion rate

po ∈ {0.6, 0.7, 0.9}. As seen in Figure 3.14, SRCs demonstrates its stable performance

with respect to various sparsity level s, compared to 1NN◦ASEd̂ and LDA◦ASEd̂ with

respect to embedding dimension d̂.

Figure 3.15 shows the misclassification error of SRCs=5, 1NN◦ASEd̂ and LDA◦ASEd̂

under linkage reversion for d̂ = 2, 4. LDA◦ASEd=4 performs the best for all val-
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Figure 3.13: Classification performance on the occlusion contaminated data. Per-

formance of the five classifiers when po-proportion of the vertices are chosen to have

occluded connections for po ∈ {0, 0.03, . . . , 0.93}. We simulate 100 SBMs with Bun,

πun given in Eq. 3.37 and n = 200, and average the misclassification error for the five

classifiers over the 100 Monte Carlo replicates. All classifiers degrade as the occlusion

rate po increases. Both LDA◦ASEd=4 and 1NN◦ASEd=4 degrade in performance for

po > 0.75. The degradation is due to higher sparsity level in the sampled graph.

Both LDA◦ASEd̂=2 and 1NN◦ASEd̂=2 degrade in performance as early as po > 0.45.

The degradation is due to higher sparsity level and embedding dimension misspeci-

fication. SRC has much lower misclassification rate compared to 1NN◦ASEd̂=2 and

LDA◦ASEd̂=2 for all values of po > 0.4, where d̂ = 2 is chosen based on the scree plot

of the occluded adjancecy matrix Aocc. LDA◦ASEd=4 performs the best for all values

of po. The standard errors are small compared to the differences in performance. Not

requiring information on the model dimension, SRC outperforms LDA◦ASEd̂=2 and

1NN◦ASEd̂=2, indicating robustness to occlusion contamination.
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Figure 3.14: Vertex classification on the occluded data with fixed occlusion rate po.

(Left) po = 0.6. (Middle) po = 0.7. (Right) po = 0.9. For all cases, SRCs demonstrates

relatively stabler performance with respect to sparsity level s compared to 1NN◦ASEd̂

and LDA◦ASEd̂ with respect to embedding dimension d̂.

ues of pl. Both LDA◦ASEd=4 and 1NN◦ASEd=4 degrade in performance for pl ∈

[0.75, 0.95]. The degradation is due to a weaker block signal in the sampled graph.

Both LDA◦ASEd̂=2 and 1NN◦ASEd̂=2 degrade in performance for pl ∈ [0.4, 0.95]. The

degradation is due to a weaker block signal and embedding dimension misspecifica-

tion. As pl → 1, all classifiers perform well since the reversed block signal becomes

stronger. For pl = 1, the sampled graph is distributed according to the complement

of the original SBM. SRCs=5 outperforms LDA◦ASEd̂=2 and 1NN◦ASEd̂=2, indicating

strong robustness to contamination. For each linkage reversion rate pl ∈ [0.4, 0.95],

the Wilcoxon signed rank test is applied with the null hypotheses that the error dif-

ferences SRCerror− 1NN◦ASEd̂=2 error and SRCerror− LDA◦ASEd̂=2 error come from a

distribution with zero median respectively. All the p-values are less than 0.005.

Next, we vary the sparsity level s and embedding dimension d̂, and compare the
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Figure 3.15: Classification performance on the linkage reversion contaminated data.

Performance of the five classifiers when pl-proportion of the vertices are chosen to

have reversed connections for pl ∈ {0, 0.03, . . . , 1}. We simulate 100 SBMs with Bun,

πun given in Eq. 3.37 and n = 200, and average the misclassification error for the five

classifiers over the 100 Monte Carlo replicates. Both LDA◦ASEd=4 and 1NN◦ASEd=4

degrade in performance for pl ∈ [0.75, 0.95]. The degradation is due to a weaker

block signal in the sampled graph. Both LDA◦ASEd̂=2 and 1NN◦ASEd̂=2 degrade in

performance for pl ∈ [0.4, 0.95]. The degradation is due to a weaker block signal and

embedding dimension misspecification. As pl → 1, all classifiers perform well since the

reversed block signal becomes stronger. SRCs=5 has much lower misclassification rate

compared to 1NN◦ASEd̂=2 and LDA◦ASEd̂=2 for all values of pl ∈ [0.4, 0.95], where

d̂ = 2 is chosen based on the scree plot of the linkage reversed adjancecy matrix Arev.

LDA◦ASEd=4 performs the best for all values of pl.
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Figure 3.16: Vertex classification on the data contaminated by linkage reversion.

(Left) pl = 0.6. (Middle) pl = 0.7. (Right) pl = 0.8. For all cases, SRCs demonstrates

relatively stabler performance with respect to sparsity level s compared to 1NN◦ASEd̂

and LDA◦ASEd̂ with respect to embedding dimension d̂.

classification performance under linkage reversion contamination with fixed occlu-

sion rate pl ∈ {0.6, 0.7, 0.8}. As seen in Figure 3.16, SRCs demonstrates its stable

performance with respect to various sparsity level s, compared to 1NN◦ASEd̂ and

LDA◦ASEd̂ with respect to embedding dimension d̂.

3.7.2 Enron E-mail Network

We apply the sparse representation classifier to the e-mail communication network

consisting of 184 Enron executives as actors from November 1998 to June 2002 [53, 73].

The communication matrix A is symmetrized, binarized and made hollow, yielding

2097 edges. The matrix sparsity level is 2097

(184
2 )

= 12.46%. To acquire the class labels,

we applied adjacency spectral embedding on A, where the embedding dimension d̂ = 9

is selected at the first elbow of the scree plot of A [102]. We then applied a clustering
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algorithm (Mclust [42]) on ASEd̂=9 to obtain class labels of each actor.The proportion

of Class 1 actors is 45.11% and the proportion of Class 2 actors is 54.89%. The chance

error for this classification task is 45.11%. Figure 3.17 is the adjacency matrix with

actors sorted according to their class memberships. The estimated block matrix

B̂ =
(

0.2451 0.0746
0.0746 0.1286

)
is diagonally dominant. The Enron actors communicate relatively

more frequently with members in their own block than with the other block.

The true model dimension for the Enron communication network is unknown. We

first choose the embedding dimension d̂ = 2 because of the two class labels and the

fairly strong two-block signals. Figure 3.18 shows the misclassification errors of SRCs,

1NN◦ASEd̂ and LDA◦ASEd̂ as we vary the embedding dimension d̂ ∈ {1, 2, . . . , 80}

and sparsity level s ∈ {1, 2, . . . , 80} respectively. As d̂ increases to 28, LDA◦ASEd̂

improves in performance, since more signal is included in the embedded space. As

d̂ continues to increase, LDA◦ASEd̂ degrades in performance, since more noise is

included. 1NN◦ASEd̂ improves in performance as d̂ increases to 8, since more signal

is included in the embedded space. As d̂ continues to increase, the performance of

1NN◦ASEd̂ gradually degrades. SRCs performance is more robust with respect to

various sparsity level compared to 1NN◦ASEd̂ and LDA◦ASEd̂ with respect to d̂.

This demonstrates SRC robustness to contamination and its practical advantage in

random graph inference.
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Figure 3.17: Adjacency matrix of the Enron communication network. A

fairly strong two-block structure is reflected in the adjacency matrix.

3.7.3 Adjective and Noun Network

This dataset, collected in [68], is a network of common adjective and noun ad-

jacency matrices from the novel “David Copperfield” by Charles Dickens. In the

network, the vertices are the 60 most frequently used adjectives and 60 most fre-

quently used nouns in the book. The edges are present if any pair of words occur in

adjacent position in the book. We apply SRCs, 1NN◦ASEd̂, and LDA◦ASEd̂ on this

dataset, and vary the embedding dimension and sparsity level d, s ∈ {1, 2, . . . , 50}.

The chance error is 50%. The performance of the three classifiers is seen in Figure

3.17. SRCs outperforms 1NN◦ASEd̂, and LDA◦ASEd̂, and exhibits stable perfor-

mance with respect to various sparsity level s.
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Figure 3.18: Classification performance on the Enron network. We show the perfor-

mance of SRCs, as we vary the sparsity level s ∈ {1, 2, . . . , 80}, and the performance of

1NN◦ASEd̂ and LDA◦ASEd̂, as we vary the embedding dimension d̂ ∈ {1, 2, . . . , 80}.

LDA◦ASEd̂ improves in performance as d̂ increases to 28, since more signal is included

in the embedded space. As d̂ continues to increase to 80, LDA◦ASEd̂ degrades in per-

formance, since more noise is included. 1NN◦ASEd̂ improves in performance as d̂

increases to 8, since more signal is included in the embedded space. As d̂ continues to

increase to 80, the performance of 1NN◦ASEd̂ gradually degrades. SRC demonstrates

stable performance with respect to various sparsity levels.
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Figure 3.19: Vertex classification performance on the adjective and noun network.

SRCs demonstrates superior and stable performance compared to 1NN◦ASEd̂, and

LDA◦ASEd̂.

3.7.4 Political Blog Sphere

The political blog sphere was collected in February 2005 [3]. The vertices are

blogs during the time of the 2004 presidential election, and edges exist if the blogs

are linked. There are two classes of the blogs: liberal and conservative. We apply

SRCs, 1NN◦ASEd̂, and LDA◦ASEd̂ on this dataset. Figure 3.20 demonstrate the

performance. Again, we see that SRCs has stable performance with respect to vari-

ous sparsity level. For all selections of sparsity levels/embedding dimensions, SRCs

outperforms 1NN◦ASEd̂, and LDA◦ASEd̂.
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Figure 3.20: Vertex classification performance on the political blog network. SRCs

demonstrates stable performance with respect to various sparsity levels s and outper-

forms 1NN◦ASEd̂ and LDA◦ASEd̂.

3.7.5 TheCaenorhabditis Elegans Neural Connec-

tome

We apply SRC to the Caenorhabditis elegans (C.elegans) neural connectome ([47],

[45]). The C.elegans nervous system consists of 302 neurons, which include 20 neurons

of the pharyngeal nervous system and 282 neurons of the somatic nervous system. Our

analysis is particularly restricted to the 279 somatic neurons ([93]). Those neurons are

classified into 3 classes: motor neurons (42.29%), interneurons (29.75%) and sensory

neurons (27.96%). See Chapter 7 for the history and research background for this

worm. Here we particularly consider classification on the electric connectome.

Figure 7.3 (in Chapter 7) presents the adjacency matrix of the electric connectome
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Figure 3.21: Scree plots of the C.elegans electric connectome. The red dots mark the

first three elbows.

Ag, where a three-block structure is seen. Figure 3.21 displays the connectome’s eigen-

structures, which is demonstrated to be approximately low rank. The red dots are

the identified “elbows” using an automatic dimension selection method [102].

We vary the embedding dimension d̂ ∈ {1, 2, . . . , 100} and examine the perfor-

mance of SRCs, 1NN◦ASEd̂ and LDA◦ASEd̂, as seen in Figure 3.22. As d̂ increases

to 60, LDA◦ASEd̂ improves in performance since more signal is included in the em-

bedded space. As d̂ continues to increase, LDA◦ASEd̂ degrades in performance since

more noise is included. 9NN◦ASEd̂ improves in performance as d̂ increases, since more

signal is included in the embedded space. As d̂ continues to increase, the performance

of 1NN◦ASEd̂ gradually degrades but at much slower rate than LDA◦ASEd̂. The ex-

hibited phenomenon is due to the nonparametric nature of 9NN but parametric nature

65



CHAPTER 3. ROBUST VERTEX CLASSIFICATION

Figure 3.22: Classification performance on C.elegans electric connectome. SRCs

maintains much lower error rate and is stable against various sparsity level s.

of LDA. For all sparsity level s, SRCs exhibits superior and stable performance. This

demonstrates that SRCs is robust to data contamination and its practical advantage

in random graph inference.

3.7.6 Political Book Graph

In this graph, the vertices are the 105 books about US politics and sold by Ama-

zon.com [68]. The edges exist if any pairs of books were purchased by the same

customer. There are 3 class labels on the books: liberal (46.67%), neural (40.95%)

and conservative (12.28%). The performance of the three classifiers is seen in Figure

3.23. SRCs outperforms 1NN◦ASEd̂, and LDA◦ASEd̂.
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Figure 3.23: Classification performance on the political book graph. SRCs demon-

strates superior to 1NN◦ASEd̂ and LDA◦ASEd̂.

3.7.7 Wikipedia Graphs

The Wikipedia dataset contains 1382 English articles on “algebraic geometry” and

the corresponding 1382 French articles. For each language, a graph is made using the

document hyperlinks. All articles are partitioned into five disjoint topics. We apply

SRCs, 9NN◦ASEd̂, and LDA◦ASEd̂ on both the English and the French graphs. The

superior performance of SRCs is seen in Figure 3.24.

3.8 Discussion

Adjacency spectral embedding is a feature extraction approach for latent position

graphs. When feature extraction is composed with simple classifiers such as NN or

LDA, the choice of feature space or embedding dimension is crucial. Given the model
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Figure 3.24: Classification performance on the Wikipedia (Left) English graph,

(Right) French graph. Again, SRCs demonstrates superior than 9NN◦ASEd̂, and

LDA◦ASEd̂. Moreover, its performance is more stable with respect to different spar-

sity levels s, compared to the performance of 9NN◦ASEd̂ and LDA◦ASEd̂ with respect

to the embedding dimension d̂.
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dimension d for a stochastic blockmodel, ASEd is consistent and the exploitation task

of vertex classification via 1NN◦ASEd and LDA◦ASEd is Bayes optimal or Bayes

plug-in. The success of ASE procedures depends heavily on the knowledge of d.

Otherwise, for finite samples, the performance of ASE degrades significantly when

the estimated embedding dimension is not the model dimension of the stochastic

blockmodel. Therefore ASE is not robust to model dimension misspecification.

Nonetheless, in practical inference tasks, the model dimension d is unknown. In

this chapter, we present a robust vertex classifier via sparse signal representation for

latent position graphs. The sparse representation classifier does not need information

on the embedding dimension of the stochastic blockmodels, but it still maintains good

classification performance. As seen in the simulation studies, when d is known, SRC

does not outperform 1NN◦ASEd and LDA◦ASEd. When d is estimated using the

scree plot of the adjacency matrix, it does outperform 1NN◦ASEd̂ and LDA◦ASEd̂.

In real data experiments, the true model dimension d is unknown. SRCs outperforms

1NN◦ASEd̂ and LDA◦ASEd̂, as the embedding dimension d̂ and the sparsity level s

vary. We see that SRCs demonstrates stable performance for various sparsity levels.

We followed [64] and [80], which suggest imputing the diagonal of the adjacency

matrix to improve performance. The increase in prediction accuracy is shown in

the ASE approaches. However, the improvement is not enough to surpass the good

performance by SRC in the real data experiments. All the numerical studies strongly

indicate the robustness of SRC to contamination.
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Our findings indicate a variety of directions for future work. In the following

subsections, we briefly discuss some major and interesting aspects worthy of further

investigation.

3.8.1 L0 or L2 Sparsity Approach

Sparse representation allows us to use all the information observed from the graph

directly, and proceed inference in the graph space with L0 sparsity. This sparsity is

encouraged through the whole procedure. Adjacency spectral embedding represents

graphs in a transformed Euclidean space with L2 sparsity, and we usually truncate

the dimension, which may eliminate noise and/or useful information. This sparsity is

not present in the original graph, but only introduced after the transformation. The

choice of inference methodology depends not only on whether enough information is

given regarding the model dimension, but also on whether one wants to work in the

original graph space or the embedded Euclidean space.

3.8.2 L2 Normalization

In Algorithm 2, we normalize the columns of the dictionary D so that each column

has L2 unit norm. Empirically, we see improvement in SRC performance under L2

normalization for a finite number of vertices, as seen in Figure 3.25. Research on

whether L2 normalization on D in SRC has theoretical impact in the asymptotics
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deserves investigation.

Figure 3.25: Examination of SRC performance with or without L2 normalization on

columns of D. We compare SRC performance when columns of D are L2 normalized

and when columns of D are not L2 normalized. The parameters B and π are given

in Equation 3.37 with n ∈ {10, 11, . . . , 100} and we run 100 Monte Carlo replicates

for each n. We see an improvement in SRC performance when L2 normalization is

applied. The Wilcoxon signed rank test reports a p-value less than 0.05 under the

the null hypothesis that the error difference SRCerror,L2− SRCerror,no L2 comes from a

distribution with zero median.

3.8.3 Consistency of SRC

In our recent work [81], we have shown that SRC is consistent under a principal

angle condition. The principal angle condition extends beyond the L1 minimization
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and subspace assumption. We expect to extend the principal angle condition for

stochastic blockmodels, and prove theoretical performance guarantees.

3.8.4 Other Implementations of SRC

In the previous experiments, our SRC procedure is implemented using the orthogo-

nal matching pursuit (OMP). We have recently proposed two alternative implementa-

tions in [81]: L1 homotopy and marginal regression. We apply these implementations

to non-graph datasets, and see their superior performance over spectral-embedding

based classifier. We have also seen their superior performance on graphs. See 3.26

for examples. The best implementation in terms of accuracy and runtime is worth

investigating.

3.8.5 Extensions to Similarity Matrices

Our recent work [81] further extends SRC to similarity matrices, compares the

classification performance of SRC to classical embedding techniques. We present

one numerical example on the Wikipedia text similarity experiment. The Wikipedia

dataset contains 1382 English documents obtained from Wikipedia, and their French

language corresponding documents. Each document belongs to exactly one of the

five classes. We apply Latent Semantic Indexing (LSI) for text processing [34], and

then subsequently calculate the cosine similarity to obtain two 1382 × 1382 similarity
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Figure 3.26: We compare three implementations of SRC: OMP, L1 homotopy, and

marginal regression, with 9NN◦ASEd̂ and LDA◦ASEd̂. We see that all three imple-

mentations of SRC demonstrates stable and superior performance than 9NN◦ASEd̂

and LDA◦ASEd̂. This simulation experiment is performed in collaboration with

Cencheng Shen.
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Figure 3.27: The classification error against sparsity level/neighborhood

choice/embedding dimension. (Left) English text similarity. (Right) French text

similarity. For d ∈ {1, 100}, all three implementations of SRCs outperform

9NN◦Embedding and LDA◦Embedding. As d increases, LDA◦Embedding outper-

forms SRCs. This may be caused by the choice of the cosine similarity measure,

which is suitable for text data. This allows LDA to perform better within a proper

projection dimension range. This simulation experiment is performed in collaboration

with Cencheng Shen.

matrices for both English and French documents respectively. The superior perfor-

mance of SRCs is shown in Figure 3.27. We see that all three implementations of

SRC perform well on similarity data. It is worth answering the question of what type

of transformation can improve SRC performance.
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Vertex Clustering

In this chapter, we propose a vertex clustering approach, which employs adjacency

spectral embedding followed by a model-based clustering technique. We assume the

graphs are realized from a stochastic blockmodel SBM([n], π, B). For unsupervised

learning on SBMs, see [15], [57], [20] and [8]. This chapter mainly focuses on demon-

strating the usefulness of our proposed approach in the field of online advertising

[16]. We describe our proposed model-based vertex clustering approach in Section

4.2, illustrate its effectiveness via simulation in Section 4.4, and apply it to a case

study in online advertising Section 4.5. We will explain the basic concept of online

advertising and the business motivation of using our approach in Section 4.5.
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4.1 The Problem of Vertex Clustering

In the classical setting for unsupervised learning, we observe independently identi-

cally distributed feature vectors X1, X2, . . . , Xn, where each Xi : Ω→ Rd is a random

vector for some probability space Ω. Here we consider the case when the feature

vectors X1, X2, . . . , Xn are unobserved. Instead we observe a latent position random

graph G(X1, X2, . . . , Xn) on n vertices. We intend to cluster the vertices using the

observed graph.

4.2 The Algorithm

For stochastic blockmodels with K blocks and a known model dimension d, Suss-

man et al. [84] and Rohe et al. [78] respectively have shown that adjacency spectral

embedding and Laplacian spectral embedding are consistent estimates of the latent

positions. The resulted embedding is a K-mixture and D-variate Gaussian distribu-

tions asymptotically. Such results motivate us to propose a model-based clustering

approach on the embedded space of the stochastic blockmodel. The optimal number

of clusters and covariance structure correspond to the model selection criterion by

the Bayesian information criterion (BIC). Our approach is presented in Algorithm 4.

We denote the algorithms by ASE and LAP respectively, if M is either the adjacency

matrix or the Laplacian matrix.

We compare ASE and LAP with the integrated classification likelihood (ICL)
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Algorithm 4 The Bayesian information criterion based vertex clustering approach

Input: Matrix M ∈ Rn×n, an integer K ≥ 1, and an embedding dimension d.

Step 1 : Compute the first d orthonormal eigenpairs of M , denoted by (UM , SM) ∈

Rn×d × Rd, where SM contains the d largest eigen-values in absolute value.

Step 2: Define the d-dimensional embedding of M to be M̂ := UMS
1/2
M .

Step 3:

for k in 1 : K do

Fit Gaussian mixture models with different covariance types and k clusters to

M̂ , and compute the BIC.

end for

Step 4: Cluster the vertices using the optimal model selected via the maximum

Bayesian information criterion (BIC).

method [27], which is a likelihood maximization method for stochastic blockmod-

els, and the Louvain algorithm [9], which optimizes graph modularity and performs

efficiently for large graphs.

4.3 Clustering Validation

Various clustering algorithms differ in their measurements of quality of partitions,

and hence result in a different notion of what constitutes a cluster. For the simulation

analysis, we measure the similarity between a clustering partition and the true block
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memberships using the adjusted rand index (ARI) [52] defined as

ARI =
RI − E(RI)

max(RI)− E(RI)
∈ [0, 1], (4.1)

where RI is the rand index [76] and E(RI) is the expected rand index. The higher

ARI indicates a better clustering performance. For our case study, one challenge for

clustering validation is the lack of ground truth. We examine the significance of the

clusters using external datasets pertaining to business metrics in online advertising.

4.4 Simulation

In this section, we apply our proposed approach using both adjacency and Lapla-

cian matrices, and compare the clustering performance with the integrated classifi-

cation likelihood method, and the Louvain method. We simulate 100 independent

stochastic blockmodels with K = 2 blocks and parameters B =

0.12 0.05

0.05 0.08

 and

π = [0.4, 0.6]T . We assess the performance of the four clustering algorithms on the

100 graphs under the assumption that the model dimension d = 2 is known.

The simulation result is shown in Figure 4.1. ASE and LAP methods respectively

are able to select the correct number of blocks with an average ARI above 90%. As

the number of blocks increases from 2 to 6, the ARI of ASE and LAP decrease. This

is due to the phenomenon of bias-variance tradeoff. ICL tends to select higher number

of blocks. Louvain clustering algorithm optimizes the graph modularity. Thus, its
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Figure 4.1: Vertex clustering performance on simulation. (Left) Density approxima-

tion of adjacency spectral embedding. We fit a bivariate Gaussian to the embedded

data after adjacency spectral embedding. (Right) The error plot of ARI against the

number of blocks. We present the performance of four vertex clustering methods.

ASE and LAP methods respectively are able to select the correct number of blocks

with an average ARI above 90%.

performance is constant with respect to the number of blocks. All three clustering

algorithms outperform the Louvain clustering algorithm.
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4.5 A Vertex Clustering Case Study: On-

line Advertising

Online advertising is market communication over the internet. This form of adver-

tising has proven its importance in the golden digital age. It has become an important

and huge industry. Having knowledge of the website attributes can contribute greatly

to business strategies for ad-targeting, content display, inventory purchase or revenue

prediction.

4.5.1 The Online Advertising Business

There are three major components in the online advertising business: the adver-

tisers, the ad network and the publishers. The business flow of an ad network is shown

in Figure 4.2. Advertisers intend to brand or advertise the products or promotional

activities using campaigns. Each campaign constitutes various advertisements. An

ad network acts like a middle man, and helps advertisers to post ads on various web-

sites. The ad network receives payments from advertisers as revenue, and pays the

publishers to purchase inventories. Inventories, such as websites or banners, publish

ads. Different websites, based on their popularity, charge different amounts of money

to hold ads. When many online users surf the websites and view the ads, the cam-

paign is considered effective. A campaign is even more effective, when many online
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users click or subsequently take an action such as registering or making a purchase1

Figure 4.2: The business flow of an ad network. Advertisers pay the ad network, who

finds publishers to publish ads on various websites. Each campaign constitutes many

ads, which are placed in various online web sites. When many online users view the

ads, the campaign is considered effective. When many online users click on the ads

or take an action such as making a purchase after viewing the ads, the campaign is

even more effective.

The field of online advertising is incredibly complex. Auction theory, bidding sys-

tem, supervised learning, real time feed back systems are all useful in the analytics of

this business. Here we tackle the problem of effectively targeting a wider variety of

online users via discovering the intrinsic structures of websites. The business motiva-

tion comes in two aspects: save cost to purchase inventories, and reach a larger online

audience. To tackle this problem, we intend to find “similar” websites to post the

ads, so that we can selectively choose websites which cost less but has similar online

1Here we do not differentiate the metrics for evaluating the effectiveness of ads. In online adver-
tising, different types of ads have different business metrics. For example, for a cost-per-impression
ad, the number of views measures the ad effectiveness. For a cost-per-click ad, the number of clicks
measures the ad effectiveness. For a cost-per-action ad, the number of actions measures the ad
effectiveness.
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Figure 4.3: The data generating mechanism.

users. We also intend to find dissimilar groups of ads, so that we can post the ads

on these dissimilar groups to reach more diverse audience. This can serve as a basic

guidance for website inventory acquisition in an ad network. We believe our approach

is the first step towards understanding and attempting such a business problem.

4.5.2 Data Description

The dataset for our analysis is obtained under a family-event campaign during

the day of July 1, 2014. We use the relational events of online users who visit all

the websites, which show an ad under this campaign. Our graph is built with the

websites as vertices, and an edge exists between websites i and j, if they share at least

one common online user. After removing the isolated vertices, the resulted adjacency

matrix is symmetrized, binarized, hollow and of size 1569 × 1569. In addition to

the website network, we obtain the data the website topics, revenue generated per
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website, impressions (the volume of ad display) per website, and number of clicks on

ads per website.

4.5.3 Results

We compare the results of the four vertex clustering algorithms on the website

network. In practice, the true model dimension d of the stochastic blockmodel is un-

known. Again, we select the“elbow” using a profile likelihood maximization method

proposed in [102]. The low rank eigen-structures of the network is shown in Figure

4.4. The first elbow is 25. In this work, we select the first elbow 25 as the embedding

dimension. We denote the algorithms as ASE1 and LAP1 respectively using the ad-

jacency matrix and the Laplacian matrix in Algorithm 4, with embedding dimension

selected at the first elbow.

As we pointed out before, in practice, the ground truth is often unavailable. Hence

the number of blocks is detected using the optimization criterion of each clustering

method. Figure 4.5 presents the model selection result by the four clustering algo-

rithms. We examine the intrinsic block structures detected by the four clustering

algorithms. The adjacency matrices with vertices sorted according to the partitions

of the four clustering method as seen in Figure 4.6. The block structure detected by

ASE1 reflects the clearest block signal compared to the block structures detected by

the other three algorithms. Next, we compare the ARIs of the 6 pairs of methods.

The ARIs, as shown in Table 4.1, indicate that the partitions by ASE and LAP are
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Figure 4.4: The eigen-structure of the one-day website network. The low eigen-

structure is shown in the red dots. The first elbow is 25 as selected using a profile

likelihood based dimension selection method [102]. In our experiment, we will use

d̂ = 25 as the embedding dimension.

most similar. The partitions by ICL and Louvain are least similar.

Besides using intrinsic metrics, we evaluate the clusters using external datasets.

In terms of website topics, Cluster 1 discovered by ASE mainly contains references

and popular sites. Cluster 5 discovered by ASE mainly contains websites on politics,

baby, teen, gallery. See Table 4.2. The clusters discovered by the other clustering

algorithms do not correspond to any significant topic clusters.

In addition, we evaluate the clusters using business metrics: revenue, clicks and

impressions. For each clustering algorithm, we apply pairwise two-sided Wilcoxon

rank sum test with the null hypothesis that the revenue/clicks/impressions are the
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Figure 4.5: Selecting the number of blocks using different clustering criteria. (Left):

The BIC plot of ASE1. The optimal number of blocks is 5 corresponding to the

largest BIC. (Middle): The BIC plot of LAP1. The optimal number of blocks is 9

corresponding to the largest BIC. (Right) The ICL plot of the goodness-of-fit method.

The optimal number of blocks is 5. Louvain, not shown here, selects 72 clusters when

optimizing the graph modularity.

same for the two clusters. At a significance level of 5%, ASE discovers 3 statistically

significant clusters based on the external data metrics.

4.6 Discussion

In this chapter, we propose a Bayesian information criterion based vertex clus-

tering approach for stochastic blockmodels, and apply this approach to a case study

in online advertising. We demonstrate in simulation that our proposed algorithms

are able to detect the correct number of blocks. In the online advertising web graph
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(ASE, LAP) 0.232 (ASE, ICL) 0.097 (ASE, Louvain) 0.038

(LAP, ICL) 0.101 (LAP, Louvain) 0.058 (ICL, Louvain) -0.015

Table 4.1: The ARIs between the 6 pairs of clustering algorithms. The partition

detected by ASE is most similar to LAP. The partition detected by ICL and Louvain

is least similar.

Cluster 1 references, mainstream sites.

Cluster 2 engines, video games, computer review.

Cluster 3 engines, computer, TV, gossip, national news, design.

Cluster 4 engines, job search, local news, stocks, weather.

Cluster 5 baby, politics, shopping, gallery, teen.

Table 4.2: A presentation of the dominant website topics in each cluster discovered

by the ASE1.

experiment, our proposed algorithm ASE is able to detect significant website clusters

validated using website topics, impressions, revenue and number of clicks. The appli-

cations of our approach not only extend to further cluster-based inference, but also

can serve as a simple and basic guidance for website inventory acquisition. While

our proposed approach is presented for undirected and unweighted graphs, it adapts

to directed and weighted graphs. Our approach requires the knowledge of the model

dimension of the stochastic blockmodel. Recall that as mentioned in Chapter 3, in
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practice the true embedding dimension is unknown. The work presented in Chapter

3 [17] on avoiding selecting the embedding dimension and robustly perform vertex

classification may motivate a robust vertex clustering approach. We are optimistic

that random graph framework is valuable for online advertising research.
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Figure 4.6: Adjacency matrices sorted according four clustering algorithms. The

positions of the vertices are corresponding to ASE, LAP, ICL and Louvain. We can

see that ASE reflects the clearest block structure.
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Vertex Nomination

Assume that a graph is realized from a stochastic blockmodel such that one of the

blocks is of interest. Further suppose that a subset of vertices are already observed

as interesting or uninteresting. Among the remaining unobserved vertices, we want

a prioritization for the vertices to be in the interesting block. The task is to create

a nomination list with an abundance of interesting vertices near the top of the list.

For example, in a financial network, suppose we know a subset of traders who have

committed fraud. Our task is to nominate the remaining people in a list such that

the people at the top of the list are fraudsters.

In this chapter, we present several vertex nomination schemes: the canonical ver-

tex nomination scheme, the canonical sampling vertex nomination scheme, the like-

lihood maximization vertex nomination scheme, and the spectral partitioning vertex

nomination scheme. In particular, our main contribution is the canonical sampling
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vertex nomination scheme, which not only approximates the best possible canon-

ical nomination scheme, but also scales to big graph data. We prove a theoretic

performance guarantee for the canonical sampling vertex nomination scheme, and

demonstrate its scalability to large graphs, nomination performance and runtime in

both simulated and real data.

The problem of vertex nomination was dealt with in [23], where the authors con-

sidered a likelihood model based on the context and content statistics. Marchette

et al. [64] extended vertex nomination to the random dot product graph [98], a gen-

eralization of the stochastic blockmodel. Lee and Priebe [55] formulated a Bayesian

model framework incorporating the context and content statistics. We proposed sev-

eral vertex nomination schemes and proved their theoretical performance guarantees

[40]. The canonical vertex nomination scheme is the “gold standard”. In that, using a

mean average precision metric, the canonical vertex nomination scheme outperforms

all other vertex nomination schemes. Note that our definition of mean average preci-

sion is slightly different from the definition commonly used in information retrieval.

We will discuss this difference in Section 5.1.2. Our most recent work presents a

canonical sampling vertex nomination scheme, which approximates the “gold stan-

dard” of the canonical vertex nomination scheme, and scales to large graphs [19].
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5.1 The Vertex Nomination Problem

5.1.1 The Stochastic Blockmodel in the Vertex Nom-

ination Setting

Our vertex nomination is set up within the framework of stochastic blockmodels

SBM(~n,L, B) as defined in Definition 2.6. Here we slightly modify this definition due

to our task-specific purpose. Assume the vertex set V = [n] := {1, 2, . . . ,m,m +

1, . . . , n} is partitioned into V = S ∪ U , where S := [m] = {1, 2, . . . ,m}, and

U := {m + 1, . . . , n}. The set S consists of m non-ambiguous vertices, whose block

memberships have been observed. The set U consists of n −m ambiguous vertices,

whose block memberships have not been observed, and the vertex nomination task

is to order the ambiguous vertices into a nomination list such that an abundance of

vertices of interest are at the beginning of the list. Define ~n := (n1, . . . , nK) ∈ NK

such that nk denotes the number of vertices in V that belongs to block k. Note that∑
k∈[K] nk = n. Define ~m := (m1, . . . ,mK) ∈ NK such that mk denotes the number

of vertices in S that belongs to block k. Note that
∑

k∈[K] mk = m. Hence, ~m ≤ ~n

componentwise. The entries of the vector ~n − ~m are the cardinalities of the blocks

among the n−m ambiguous vertices in U .

Let L denote the set of all possible block assignment functions l : V → [K] such

that |{v ∈ V : φ(v) = k}| = nk. Note that l is deterministic on S, since we know
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the values of l on the non-ambiguous vertices in S. We reparametrize the stochas-

tic blockmodel as SBM(~n, ~m,B) by including vector ~m into the parametrization.

This definition SBM(~n, ~m,L, B) is not stochastically different from the definition of

SBM(~n,L, B), and is suitable for the scenario of vertex nomination.

Under the SBM(~n, ~m,L, B) framework, we assume that only the vertices from the

first block V1 are interesting. We define the vertex nomination scheme as follows:

Definition 5.1. Vertex Nomination Scheme The vertex nomination scheme Φ

on a stochastic blockmodel is a mapping such that, to each graphG ∼ SBM(~n, ~m,L, B),

associates a linear ordering of the ambiguous vertices in V , denoted as a list

(ΦG(1),ΦG(2), . . . ,ΦG(n−m)).

5.1.2 The Evaluation Criterion

The metric to evaluate a vertex nomination scheme Φ is mean average precision

of Φ, which we define here. For simplicity and without loss of generality, suppose the

block we are interested in is U1, which has cardinality n1−m1. For any graph G with

vertex set V , and for any integer j ∈ [n−m], the precision at depth j of Φ for G is

defined as

PD :=
|{ΦG(i) : i ∈ [j]} ∩ U1|

j
. (5.1)

The precision at depth j denotes the fraction of the first j vertices on the nomination

list that are in U1.
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We also define the pure average precision of Φ as

AP(Φ) =
1

n1 −m1

n1−m1∑
j=1

(
|{ΦG(i) : i ∈ [j]} ∪ U1|

j
). (5.2)

The pure average precision is the average precision among the “foremost” positions in

the list – “foremost” in the sense that these would be precisely the positions having

vertices of U1, if the list had all ambiguous vertices of U1 at the top of the list.

The mean average precision MAP(Φ) ∈ [0, 1] is defined as the expected value of

AP(Φ) over the probability space associated with the underlying stochastic block-

model. The higher MAP(Φ) indicates better performance of the vertex nomination

scheme. A nomination scheme, which uniformly at random selects an ordering, has

MAP n1−m1

n−m . This is the chance MAP.

Note that our definition of average precision, which is a pure average precision,

is slightly different from the definition used in the information retrieval community;

they define the average precision as below,

AP’(Φ) =
1

n1 −m1

n−m∑
j=1

(1ΦG(j)∈U1

|{ΦG(i) : i ∈ [j]} ∪ U1|
j

), (5.3)

where 1 is the indicator function. This definition of average precision can be consid-

ered as an integral of the precision over recall.

Here, the mean average precision (MAP) we use is the expected value of the pure

average precision in Definition 5.2, because this metric adapts our proof for theoretical

performance guarantees.
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5.2 The Canonical Vertex Nomination Scheme

In this section, we define the canonical vertex nomination scheme. Let
(

U
n1−m1,n2−m2,...,nK−mK

)
denote all possible

(
n−m

n1−m1,n2−m2,...,nK−mK

)
partitions of vertices in U partitioned into

sets {U1, U2, . . . , UK}, with respective cardinalities {n1−m1, n2−m2, . . . , nK −mK}.

Define the following constants: for all i 6= j, let eG,li,j denote the number of edges in G

with one endpoint in {w ∈ V : l(w) = i} and the other endpoint in {w ∈ V : l(w) =

j}. Define the constant cG,li,j := ninj − eG,li,j . Let eG,li,i denote the number of edges in G

with both endpoints in {w ∈ V : φ(w) = i}. Define the constant cG,li,i :=
(
ni

2

)
− eG,li,i .

Note that the underlying sample space Θ for our vertex nomination task is a

bivariate sample space Θ = (G,L). Let L(i) denote the set of all possible partitions

such that the i-th ambiguous vertex is interesting: L(i) := {l ∈ L|l(i) ∈ V1}. For

canonical vertex nomincation scheme, we are interested in the conditional probability

of the i-th vertex belonging to U1

P(L(i)|G), (5.4)

given a graph G ∼ SBM(~n, ~m,L, B). We can further simplify Equation 5.4 as

P(L(i)|G) =
P(G,L(i))

P(G)
=

∑
l∈L(i) P(G, l)∑
l∈L P(G, l)

(5.5)

=

∑
l∈L(i)

∏K
i=1

∏K
j=i (Bi,j)

eG,l
i,j (1−Bi,j)

cG,l
i,j∑

l∈L
∏K

i=1

∏K
j=i (Bi,j)

eG,l
i,j (1−Bi,j)

cG,l
i,j

. (5.6)

Equation 5.6 can be directly computed, since we assume the parameters B, ~n and ~m

are known.
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The canonical vertex nomination scheme ΦC nominates the ambiguous vertices in

decreasing order of the conditional probability via

P(ΦC
G(1)|G) ≥ P(ΦC

G(2)|G) ≥ · · · ≥ P(ΦC
G(n−m)|G). (5.7)

We show that the canonical nomination scheme ΦC is proven to be the best pos-

sible nomination scheme using the mean average precision.

Theorem 5.1. (Fishkind et al. [40])

For every vertex nomination scheme Φ, MAP(ΦC) is greater than or equal to MAP(Φ).

Proof. For i = 1, 2, . . . , n1 −m1, let γi := 1
n1−m1

∑n1−m1

j=i
1
j
. For each i = n1 + 1, n1 +

2, . . . , n, let γi := 0. The sequence {γi}ni=1 is nonnegative and non-increasing. Then

if {κi}ni=1 is any non-increasing and non-negative sequence, and let {κ′i}ni=1 be any

permutation of {κi}ni=1. The following holds:

n∑
i=1

γiκ
′

i ≤
n∑
i=1

κiγi. (5.8)

Recall the definition of mean average precision of Φ.

MAP(Φ) = E(
n∑
i=1

γi1L(i)) =
n∑
i=1

γiP(L(i)) (5.9)

=
n∑
i=1

γi(
∑
G∈G

P(G)P(L(i)|G)) (5.10)

=
∑
G∈G

P(G)(
n∑
i=1

γiP(G)P(L(i)|G))) (5.11)

≤
∑
G∈G

P(G)(
n∑
i=1

γiP(Π
(i)

ΦC |G)) (5.12)

=
n∑
i=1

γiP(L{(i),C}) = E(
n∑
i=1

γi1L(i)

ΦC
) (5.13)
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Indeed the canonical vertex nomination provides the best possible performance

for nomination. Its role is analogous to the role of Bayes classifier, which provides

the lowest possible error in supervised classification framework.

5.3 The Likelihood Maximization Vertex

Nomination Scheme

One popular and principled nomination scheme is the likelihood maximization

vertex nomination scheme ΦL proposed in [40]. This approach consists of two main

steps: estimate the maximum likelihood estimator of the unknown parameter l with

a prior uniform distribution over L, and compute a geometric mean of a collection of

numbers in order to nominate. Using the same notation as above, let L denote the set

of all possible block assignments l : V → {1, 2, . . . , K}, where l agrees with b on S, i.e.,

l(S) = b(S), and |vi ∈ V : l(i) = k| = nk for k ∈ [K]. For any l ∈ L, define ek,q(l) to

be the number of edges in graph G with one endpoint in {wi ∈ V : l(i) = k}, and the

other endpoint in {wi ∈ V : l(i) = q}, for k = 1, 2, . . . , K and q = k+ 1, k+ 2, . . . , K.

Define the constant ck,q(l) := nknq − ek,q(l). Define ek,k(l) to be the number of edges

in G with both endpoints in {wi ∈ W : l(wi) = k}, and ck,k(l) :=
(
nk

2

)
− ek,k(l).

With the constants defined as above, we can construct the likelihood function of
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the variate (l, G) as follows:

P(l, G) :=
1

|L|
P(G|l) =

1

|L|

K∏
k=1

K∏
q=k

(Bk,q)
ek,q(l)(1−Bk,q)

ck,q(l). (5.14)

Our goal is to find the maximum likelihood estimator l̂ ∈ L, such that the likelihood

function in Equation 5.14 is maximized. Since 1
|L| is a constant, we only concern

ourself with the part
∏K

k=1

∏K
q=k(Bk,q)

ek,q(l)(1 − Bk,q)
ck,q(l). Taking the logarithms of

the likelihood function, and omit terms which do not contain l, we have:

l̂ := arg max
l∈L

P(l, G) = arg max
l∈L

K∑
k=1

K∑
q=k

ek,q(l) log

(
Bk,q

1−Bk,q

)
(5.15)

= arg max
l∈L

∑
{wi,wj}∈(V

2)

1{wi andwj are adjacent} log

(
Bl(i),l(j)

1−Bl(i),l(j)

)
(5.16)

Equation 5.16 is solved using seeded graph matching algorithm [39].

The second main step of the likelihood maximization vertex nomination scheme

ΦL is to compute a geometric mean of a collection of numbers. For any pair of two

vertices vi, vj ∈ V such that l̂(i) = 1 and l̂(j) 6= 1. Define l̂vi→vj ∈ L such that l̂vi→vj

agrees with l̂ for all vertices except that l̂vi→vj(j) = 1 and l̂vi→vj(i) = ĵ. We consider

the geometric mean of ratio of likelihoods ∏
vj∈V :l̂(j)6=1

P(l̂vi→vj , G)

P(l̂, G)

 1
n−n1+m1

(5.17)

as a measure for ordering that b(i) = 1. The geometric mean ∏
vj∈V :l̂(j)6=1

P(l̂vi→vj , G)

P(l̂, G)

 1
n1−m1

(5.18)

is a measure for ordering that l(i) 6= 1.
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The likelihood maximization vertex nomination scheme ΦL satisfies

ΦL
G(1),ΦL

G(2), . . . ,ΦL
G(n1−m1) with l̂(i) = 1 in increasing order of the geometric mean

in Equation 5.17, and ΦL
G(n1−m1 +1),ΦL

G(n1−m1 +2), . . . ,ΦL
G(n−m) with l̂(j) 6= 1

in decreasing order of the geometric mean in Equation 5.18.

Empirically the likelihood maximization vertex nomination scheme achieves good

performance in terms of accuracy. While likelihood maximization vertex nomination

scheme ΦL is practical to implement for graph inference, it is limited on the order of

a thousand of vertices, since the state-of-the-art SGM algorithm in solving Equation

5.16 has complexity O(n3).

5.4 The Spectral Partitioning Vertex Nom-

ination Scheme

The spectral partitioning vertex nomination scheme ΦS incorporates the tech-

nique of adjacency spectral embedding introduced in Chapter 2.5, and nominates the

ambiguous vertices based on the increasing order of the Euclidean or Mahalonobis

distance away from a cluster centroid. The spectral partitioning vertex nomination

scheme ΦS does not assume that the block communication probability matrix B and

the block size {n1, n2, . . . , nK} are known. It only assumes the knowledge of the num-

ber of blocks K and the rank d of the block communication probability matrix B.

This scheme consists of two steps. The first step uses adjacency spectral embedding
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to transform the graph into d-dimensional Euclidean embedding X̂ ∈ Rn×d. The

second step is to cluster the rows of X̂ into K clusters. Suppose c is the centroid of

the cluster that is associated with the most vertices known to be in the block of inter-

est V1. The spectral partitioning vertex nomination scheme ΦS satisfies the ordering

of vertices ΦS
G(1),ΦS

G(2), . . . ,ΦS
G(n −m) in increasing order of the distance between

c and their corresponding rows in X̂ . The metric (for example, Euclidean or Ma-

halonobis distance) used to rank the vertices depends on which clustering algorithm

is employed. The K-means clustering algorithm nominates the vertices based on

the Euclidean distance to the centroids, while the model-based clustering algorithm

(Mclust) nominates the vertices using the Mahalonobis distance to the centroids. In

Section 5.6, we use the Mclust algorithm for simulation and real data experiments

due to its empirical improvement over the K-means algorithm.

Theoretically, the spectral partitioning vertex nomination scheme ΦS scheme is

shown to cluster vertices perfectly in the limit [63]. It follows that MAP(ΦS) converges

to 1, and it thus nominates perfectly asymptotically [40]. The spectral partition-

ing vertex nomination scheme ΦS is also computationally tractable for large graphs.

However, it usually does not perform well on small-sized graphs with tens of vertices.

Recall in Chapter 3 that the success of adjacency spectral embedding requires the

knowledge of the embedding dimension, thus the spectral partitioning vertex nomina-

tion scheme also requires knowing the embedding dimension. In practice, this piece

of information is often unknown.
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5.5 The Canonical Sampling Vertex Nom-

ination Scheme

So far we have introduced several vertex nomination schemes: the canonical nom-

ination scheme ΦC , the likelihood maximization nomination scheme ΦL, and the

spectral partitioning nomination scheme ΦS, for graphs realized from a stochastic

blockmodel SBM(~n, ~m,L, B). The above schemes possess theoretical performance

guarantees in terms of the mean average precision as shown in [40]. In this section,

we propose the canonical sampling nomination scheme.

5.5.1 Motivation

The canonical vertex nomination scheme, denoted by ΦC , is the optimal ver-

tex nomination scheme, because its MAP is better than or equal to that of any other

vertex nomination scheme Φ [40], and we therefore term it the “gold standard”. How-

ever ΦC is computationally intractable, because current computation methods seem

to have complexities to grow exponentially with the number of ambiguous vertices.

Hence ΦC is not practical for graph inference. Consider the conditional probability

space of L|G. For each l ∈ L, we may try to sample directly from the conditional

space L|G under the following probability

P(l|G) =

∏K
i=1

∏K
j=i (Bi,j)

eG,l
i,j (1−Bi,j)

cG,l
i,j∑

l′∈L
∏K

i=1

∏K
j=i (Bi,j)

eG,l′
i,j (1−Bi,j)

cG,l′
i,j

. (5.19)
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Then we can use this proportion to estimate the conditional probability in Equation

5.4. Note that the denominator in Equation 5.19 is intractable to calculate.

The likelihood maximization vertex nomination scheme ΦL, although not the best

possible scheme, achieves great performance. It uses the state-of-the-art algorithm for

solving the seeded graph matching (SGM) problem. Empirically the likelihood max-

imization vertex nomination scheme ΦL performs reasonably well, and it is practical

to implement for graph inference. However, it is limited on the order of a thousand

of vertices, since the state-of-the-art SGM algorithm has complexity O(n3).

The spectral partitioning vertex nomination scheme ΦS, incorporating the tech-

nique of adjacency spectral embedding and clustering, achieves perfect nomination

in the limit. Moreover, this scheme is computationally tractable for big graph data.

However, ΦS is usually not applicable for small-sized graphs on few tens of vertices.

In the age of big data, scalable methodologies with performance guarantee are

in high demand. Here, we propose a canonical sampling vertex nomination scheme

ΦCS, which not only preserves the “gold standard” property of the canonical vertex

nomination scheme ΦC in the limit, but also scales to big graph data.
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5.5.2 The Canonical Sampling Vertex Nomination

Scheme

Our goal is to extend the canonical vertex nomination scalable for big graph

data, and preserve the optimal performance guarantee of this scalable version to the

nomination scheme. While direct calculating Equation 5.4 is not feasible, a natural

approach is to approximate the conditional probability in Equation 5.4 via Markov

Chain Monte Carlo (MCMC) approaches. The Metropolis-Hastings algorithm is an

MCMC method for approximating a distribution that is difficult to directly sample

from ([66], [21], [48], [82]).

The classical setting of MCMC allows us to sample from the distribution of

P(L|G). However, in the vertex nomination setting, we intend to generate samples

from P(L(i)|G). We next describe how to approximate the canonical vertex nomina-

tion scheme. Let {lt}t=0,1,2,... denote the stochastic process of the partition on the

ambiguous vertices at time t. Let l′ denote the candidate partition. Let Burnin

denote the number of burn-in in the Metropolis-Hastings algorithm. Let T denote

the total number of samples. We present our proposed canonical sample vertex nom-

ination in Algorithm 5.

Our proposal candidate of block assignment l′ is created by selecting and swapping

two vertices. The first vertex vi is selected uniformly at random from U1 and the

second vertex vj is selected uniformly at random from U\U1. Then we exchange the
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Algorithm 5 Canonical Sampling Vertex Nomination ΦCS

Uniformly at random select partition l−Burnin ∈ Π . Initialization

for t = −Burnin+ 1 to T do

Select a vertex vi ∈ U1 and vj ∈ U\U1 . Generate candidate by swap

l′ ← lt−1(vi, vj)

Compute a = P[G,l′]
P[G,lt−1]

Perform a Bernoulli trial with parameter min{1, a}

if Success then

lt ← l′ . Accept new block assignment

else Failure

lt ← lt−1 . Reject new block assignment

end if

end for
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memberships of vi and vj. The act of exchanging two vertices in a partition is called a

swap, which we denote by l(vi, vj). Hence the candidate block assignment at time t is

generated via a swap of the block assignment at time t− 1, i.e., l′ := lt−1(vi, vj) ∈ L.

Abusing notations a little bit, we use l to denote the state of the block assignment

at time t − 1, and l′ denote the candidate at time t. We repeatedly swap vertices

to generate candidates of block assignment. Then we perform a Bernoulli trial with

parameter min

{
1, a :=

∏K
i=1

∏K
j=i(Bi,j)

e
G,l′
i,j (1−Bi,j)

c
G,l′
i,j∏K

i=1

∏K
j=i(Bi,j)

e
G,l
i,j (1−Bi,j)

c
G,l
i,j

}
, which is our acceptance-

rejection regime. If it is a success then the Markov chain transitions from state l to

state l′, and if it is a failure then the Markov chain transition is to just remain at state

l. We repeat this procedure until some convergence criterion is met or a predetermined

number of iterations T is reached. At last, we estimate the conditional probability

P(L(i)|G) as

P̂((L(i)|G)) :=
NT (L(i))

T
,

where NT (L(i)) is the number of times the i-vertex is accepted to be in V1.

5.5.3 Performance Guarantee

For any l, l′ ∈ L, denote the Markov transition probability from state l to state

l′ by P(l → l′). We define this transition probability as follows: If l and l′ differ by

more than two vertices, then P(l→ l′) := 0. If l and l′ differ on exactly two vertices,
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then

P(l→ l′) :=
1(

n−m
2

)
−
∑K

i=1

(
ni−mi

2

) ·min

 1,

∏K
i=1

∏K
j=i (Bi,j)

eG,l′
i,j (1−Bi,j)

cG,l′
i,j∏K

i=1

∏K
j=i (Bi,j)

eG,l
i,j (1−Bi,j)

cG,l
i,j

 ;

(5.20)

Also set the transition probability of remaining at the state l as P(l → l) := 1 −∑
l′′∈L P(l→ l′′).

Note that for any l ∈ L, there are exactly
(
n−m

2

)
−
∑K

i=1

(
ni−mi

2

)
members of L

that differ from l on V by exactly two elements, thus these transition probabilities

are nonnegative and sum to 1. Note that for all l, l′ ∈ L it holds

P(l→ l′) · P(l|G) = P(l′ → l) · P(l′|G),

thus the limiting distribution of the Markov chain is as desired, P(l|G) for each l ∈ L

[5].

Hence, we have the following two theorems.

Theorem 5.2. Regardless of the initialization of lt, the limiting distribution of the

Markov chain lt converges to the desired distribution P(·|G).

Hence, in the limit, the canonical sampling vertex nomination scheme ΦCS gen-

erates samples from the distribution P(L(i)|G). Consequently it naturally follows

that the canonical sampling vertex nomination scheme ΦCS converges to the nom-

ination order of the canonical vertex nomination scheme ΦC . Hence the canonical

sampling vertex nomination scheme ΦCS approximates the best possible vertex nom-

ination scheme. Theorem 5.2 naturally implies that the canonical sampling vertex

105



CHAPTER 5. VERTEX NOMINATION

nomination scheme ΦCS achieves optimal MAP= 1 with sufficient number of samples.

Indeed, our proposed vertex nomination scheme ΦCS is the “gold standard” for

big graph data.

Theorem 5.3. The MAP of the canonical sampling vertex nomination scheme con-

verges to the MAP of the canonical vertex nomination scheme, MAP(ΦCS)→ MAP(ΦC)

given enough number of samples. Hence the canonical sampling vertex nomination

scheme approximates the best possible vertex nomination scheme.

5.6 Numerical Experiments

5.6.1 Simulation

5.6.1.1 Number of Samples in ΦCS

In this experiment, we first explore the nomination performance and run time

against the number of samples needed in the canonical sampling vertex nomination

scheme ΦCS. The parameters for the stochastic blockmodel of K = 3 blocks are

n−m =


200

150

150

 , m =


20

0

0

 , B =


.50 .44 .47

.44 .59 .53

.47 .53 .44

 ,
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Number of samples 1000 10000 100000 500000

MAP 0.80 0.875 0.923 0.945

Runtime 9.5 12.8 45.6 191

Table 5.1: MAP and runtime of ΦCS for different numbers of samples S ∈

{1000, 10000, 100000, 50000}. The MAP and runtime are averaged over 200 inde-

pendent Monte Carlo replicates. The runtime in this table is in seconds.

where n − m = (n1 − m1, n2 − m2, n3 − m3) ∈ N3 denotes the number of the am-

biguous vertices in U in each block, M = (m1,m2,m3) ∈ N3 denotes the number of

non-ambiguous vertices in S in each block, and B is the block connectivity probability

matrix. The task is to nominate vertices in the first block V1. We vary the number of

samples Samp ∈ {1000, 10000, 100000, 500000}, and examine the nomination perfor-

mance and run time. For each choice of Samp, we select 25000 samples for burn-in,

and run 200 independent Monte Carlo replicates. We evaluate the performance via

MAP. The chance MAP for this experiment is 0.4.

Figure 5.1 demonstrates that the nomination performance improves, as we in-

crease the number of samples Samp ∈ {1000, 10000, 100000, 500000} to approximate

P(L(i)|G). This is expected due to Theorem 5.2 and Theorem 5.3. The MAP and

runtime for each Samp ∈ {1000, 10000, 100000, 500000} are seen in Table 5.1.
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Figure 5.1: Performance of ΦCS using Samp ∈ {1000, 10000, 100000, 50000} number

of samples. For each Samp ∈ {1000, 10000, 100000, 50000}, the first 25000 samples

are burn-in, and we simulate 200 independent Monte Carlo replicates. This plot

demonstrates the increase in performance with more samples. The simulation was

performed in collaboration with Henry Pao. This figure also appears in Henry Pao’s

thesis [70].
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5.6.1.2 Comparison of Performance on Graphs at Three Scales

For small sized graphs, ΦC is computationally feasible, while ΦS performs almost

as chance. For mid-sized graphs, ΦC is no longer feasible, ΦL performs well, and

so does ΦS. For large-sized graphs, neither ΦC or ΦL are computationally feasible.

Our proposed canonical sampling vertex nomination scheme ΦCS is computationally

feasible for graphs of all small, medium and large scales. In this experiment, we

compare ΦCS with the other three theoretically guaranteed nomination schemes on

graphs of different scales. For ΦCS, we use 25000 samples for burn-in, and 500000

samples after burn-in.

These simulation experiments are designed to compare the schemes at various

scales. Again we have K = 3 blocks in a stochastic blockmodel. Define the block

connectivity matrix as

B(α) = α


.5 .3 .4

.3 .8 .6

.4 .6 .3

+ (1− α)


.5 .5 .5

.5 .5 .5

.5 .5 .5

 ,

which can be thought of as a mixture model between a three-block stochastic block-

model and an Erdos-Renyi model with p = 0.5, and larger α reflects more block sig-

nal. We define the block size containing the ambiguous vertices to be (~n− ~m)(β) =
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β[4; 3; 3]. For the three-scaled experiments, we have the following parameters:

~n− ~m = (~n− ~m)(1) =


4

3

3

 , ~m =


4

0

0

 , B = B(1) =


.5 .3 .4

.3 .8 .6

.4 .6 .3

 ;

~n− ~m = (~n− ~m)(50) =


200

150

150

 , ~m =


20

0

0

 , B = B(.3) =


.50 .44 .47

.44 .59 .53

.47 .53 .44

 ;

~n− ~m = (~n− ~m)(1000) =


4000

3000

3000

 , ~m =


40

0

0

 , B = B(.13) =


.500 .474 .487

.474 .539 .513

.487 .513 .474

 .

where ~n− ~m = (n1−m1, n2−m2, n3−m3) ∈ N3 denotes the number of the ambiguous

vertices in V in each block, and M = (m1,m2,m3) ∈ N3 denotes the number of the

vertices in U in each block. For each small, medium and large sized graph, we ran

50000, 200, and 100 independent Monte Carlo replicates respectively. The chance

MAP for all three experiments are 0.4.

Figure 5.2 compares vertex nomination schemes ΦC , ΦCS, ΦL, and ΦS on small

sized graphs. Note that ΦCS performs slightly better than ΦC , but the performance

is within 1 standard error. The MAP and run time averaged over 50000 independent

Monte Carlo replicates are shown in Tables 5.2 and 5.3. Our canonical sampling vertex

nomination scheme ΦCS has the longest run time, because we use 500000 samples to

approximate the conditional probability. 500000 is over-sampling, since the number
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Figure 5.2: Vertex nomination scheme comparison on small graph simulation. We

compare four nomination schemes: ΦC (red), ΦCS (black), ΦL (blue), and ΦS (green)

on the small scale graph. The simulated graphs have 4 observed vertices and 10 am-

biguous vertices. ΦC , ΦCS, and ΦL perform similarly and much better than chance,

while ΦS performs as chance. The simulation experiment was performed in collab-

oration with Donniell Fishkind and Henry Pao. This figure also appears in Henry

Pao’s thesis [70].

of all possible partition is
(

10
4,3,3

)
= 4200. If we reduce the number of samples, the run

time of ΦCS will improve.

Figure 5.3 compares the performance of ΦCS, ΦL, and ΦS on mid-sized graphs,

while ΦC is not applicable in this experiment. The MAP and run time averaged

over 200 independent Monte Carlo replicates are shown in Tables 5.2 and 5.3. All

three schemes perform significantly better than chance. ΦCS outperforms ΦL, and is
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Figure 5.3: Vertex nomination scheme comparison on medium graph simulation. We

compare three nomination schemes: ΦCS (black), ΦL (blue), and ΦS (green) on mid-

sized graphs. ΦC is not applicable in this experiment, because of its exponential-

growth complexity. All three schemes perform significantly better than chance. ΦCS

outperforms ΦL, and is significantly superior to ΦS. The simulation experiment was

performed in collaboration with Donniell Fishkind and Henry Pao. This figure also

appears in Henry Pao’s thesis [70].

significantly superior to ΦS. Moreover, ΦCS is more than 30% faster than ΦL.

Figure 5.4 compares the performance of ΦCS and ΦS on large-sized graphs. ΦC

and ΦL are not applicable in this experiment, because of the exponential-growth

complexity and O(n3) complexity respectively. The MAP and runtime averaged over

100 independent Monte Carlo replicates are shown in Tables 5.2 and 5.3. Both ΦCS

and ΦS perform significantly better than chance. ΦS outperforms ΦCS by about 5%
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Figure 5.4: Vertex nomination scheme comparison on large graph simulation. We

compare two nomination schemes: ΦCS (black) and ΦS (green) on large-sized graphs.

Both ΦCS and ΦS perform significantly better than chance, and ΦS outperforms ΦCS.

The simulation experiment was performed in collaboration with Donniell Fishkind

and Henry Pao. This figure also appears in Henry Pao’s thesis [70].

in terms of MAP. Both schemes have similar run time.

5.6.2 Real Data

We apply our proposed canonical sampling vertex nomination scheme ΦCS on

real datasets, and compare its performance with ΦL and ΦS. The canonical vertex

nomination ΦC is only feasible for small-sized graphs, so it is not suitable for the

real data experiments. The vertex nomination setting assumes that the connectivity

matrix Λ and the size of the ambiguous vertices in each block {n1, n2, . . . , nK} are
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MAP ΦC ΦL ΦCS ΦS

Small 0.6948 0.6515 0.6993 0.3991

Medium N\A 0.9303 0.9452 0.7330

Large N\A N\A 0.9281 0.9859

Table 5.2: MAP of simulation experiments at three graph scales.

Runtime ΦC ΦL ΦCS ΦS

Small 1.4 .04 138 .02

Medium N\A 286 191 .8

Large N\A N\A 546 534

Table 5.3: Runtime (in seconds) of simulation experiments at three graph scales.
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known. Recall that ΦCS and ΦS use the knowledge of such parameters. In the

real data experiments, we estimate the connectivity matrix Λ using the unambiguous

vertices in S which are already observed to be interesting or uninteresting. In addition,

we also compare the vertex nomination performance with a community detection

methodology for mixed membership stochastic blockmodel [4], where we modify it

for the task of vertex nomination [40] and denote it by ΦM . Its performance is

plotted in pink in the following figures.

5.6.2.1 The Political Blog Sphere

The political blog sphere was created from web blogs during the 2004 US pres-

idential election [3]. In this dataset, the blogs are the vertices, and are connected

if there is a web-link between any pair of blogs. The original dataset contains 1490

blogs with There are non-isolated 1224 blogs in this graph. Each blog belongs to a

category of either conservative (636) or liberal (588). We binarize, symmetrize and

make the blog graph hollow. The graph is visualized in Figure 5.5. The block signal

is strong, as shown in the adjacency matrix in Figure 5.6.

Our objective is to nominate liberal blogs. For each Monte Carlo replicate, we

randomly select ~m = [80, 80]T vertices from the conservative and liberal categories

respectively, and estimate the connectivity matrix B using those vertices. We repeat

this experiment over 1000 independent Monte Carlo replicates. The chance MAP for

this data set is 0.4774.
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Figure 5.5: The political blog sphere data. The vertices are the web-blogs, and the

edges exist if there is a web-link connecting two blogs. Each blog is either conservative

(red) or liberal (blue). Our vertex nomination task here is to nominate the liberal

blogs. The experiment was performed in collaboration with Henry Pao. This figure

also appears in Henry Pao’s thesis [70].
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Figure 5.6: The adjacency matrix of the political blog graph with vertices sorted

according to their political orientations. A strong two-block signal is reflected in the

adjacency matrix. The red block corresponds to the conservative blogs, and the blue

block corresponds to the liberal blogs.

Blog Sphere ΦCS ΦL ΦS ΦM

MAP 0.9317 0.8922 0.7856 0.5429

Table 5.4: MAP of the blog sphere experiment. The chance MAP is 0.4774.

Figure 5.7 presents the performance of ΦCS (black), ΦL (blue), ΦS (green), and ΦM

(pink) on the blog sphere. All nomination schemes outperform chance significantly.

ΦCS performs the best. The MAP and runtime averaged over 1000 independent

Monte Carlo replicates for three nomination schemes are presented in Table 5.4.
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Figure 5.7: We compare the performance of ΦCS (black), ΦL (blue), ΦS (green), and

ΦM (pink) on the blog data. ΦCS outperforms all other nomination schemes. All

schemes perform better than chance. The experiment was performed in collaboration

with Henry Pao. This figure also appears in Henry Pao’s thesis [70].
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5.6.2.2 The Movie Network

The movie network is created via scrapping movie info-boxes from Wikipedia (see

[40] for detail). This netwrok consists of 619 non-isolated movies as vertices, and the

edges exist if any two movies share a common director producer or actor. Each movie

belongs to exactly one category: comedies (227), action thrillers (157) and dramas

(235). We binarize, symmetrize and make the movie network hollow. The movie

network is visualized in Figure 5.8.

This network is not exactly a stochastic blockmodel, since it has a weak block

signal, as reflected in Figure 5.9. Our objective is to nominate the comedy movies.

For each Monte Carlo replicate, we randomly select ~m = [30, 30, 30]T vertices from

each movie category respectively, and estimate the connectivity matrix B using those

vertices. We repeat this experiment over 1000 independent Monte Carlo replicates.

The chance MAP for this data set is 0.3724.

Figure 5.10 demonstrates the performance of ΦCS, ΦL, ΦS and ΦM on the movie

network. ΦL slightly outperforms ΦCS, and both perform significantly better than

chance, while ΦS and ΦM perform just as chance. The MAP and runtime averaged

over the 1000 independent Monte Carlo replicates are displayed in Table 5.5. The

movie network is not exactly from a stochastic blockmodel generating mechanism.

However the superior performance of ΦCS indicates its robustness to model misspec-

ification, and thus its practical value for real data inference.
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Figure 5.8: The movie network. The vertices are movies, and the edges exist if any

two movies have a common director producer or actor. Each movie is categorized

as comedies (black), action thrillers (green) or dramas (red). Our vertex nomination

task here is to nominate comedies. The experiment was performed in collaboration

with Henry Pao. This figure also appears in Henry Pao’s thesis [70].

Figure 5.9: The adjacency matrix of the movie network with vertices sorted according

to their movie categories. This network does not have a strong block signal. The black

block corresponds to the comedies, the red block corresponds to the dramas, and the

green block corresponds to the action thrillers.
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Figure 5.10: We compare the performance of ΦCS (black), ΦL (blue), ΦS (green) and

ΦM (pink) on the movie data. ΦCS is almost as good as ΦL. The movie data is not a

stochastic blockmodel as seen in its adjacency structure. All schemes perform better

than chance. However the superior performance of ΦCS indicates its robustness to

model misspecification and practical value for real data inference. The experiment

was performed in collaboration with Henry Pao. This figure also appears in Henry

Pao’s thesis [70].

Movie Network ΦCS ΦL ΦS ΦM

MAP 0.5707 0.5814 0.3764 0.3766

Table 5.5: MAP of the movie network experiment. The chance MAP is 0.3724.
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5.7 Discussion

In this chapter, we propose a scalable canonical sampling vertex nomination

scheme, explain its sampling procedure, and prove its theoretical guarantees [19]. We

also compare the canonical sampling vertex nomination scheme with several other ver-

tex nomination schemes: the canonical vertex nomination scheme, the likelihood max-

imization likelihood vertex nomination scheme, and the spectral partitioning vertex

nomination scheme proposed from our recent work in [40]. All the nomination schemes

are constructed within the framework of the stochastic blockmodel SBM(~n, ~m,L, B).

This model assumption allows the principled development of the schemes and guar-

antees their theoretical performance.

The canonical vertex nomination scheme is the best possible scheme applicable

to graphs of a few tens of vertices. The likelihood maximization vertex nomination

scheme employs the state-of-the-art seeded graph matching algorithm of complexity

O(n3), and empirically demonstrates to have superior nomination performance. The

spectral partitioning vertex nomination scheme is simple and effective, applicable on

very large graphs. The canonical sampling vertex nomination scheme, inspired by the

canonical vertex nomination scheme, not only preserves the “gold standard” property

of the canonical vertex nomination scheme, but also scales to big graph data. It uses

the Metropolis-Hastings algorithm to approximate a conditional probability that is

the essence of the canonical vertex nomination scheme.

The effectiveness in terms of the mean average precision and run time of the
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likelihood maximization scheme and the canonical sampling scheme are evidently

demonstrated in both simulation studies and real data experiments. The canon-

ical sampling vertex nomination scheme is our first step towards making effective

vertex nomination schemes scalable for big graphs. Some open questions such as:

how many samples are needed to guarantee convergence, or when does convergence

happen, are worth pondering and investigating. Statistical inference on big graph

data is of incredible importance nowadays. It is also worth noting that the likeli-

hood maximization vertex nomination scheme, which uses the state-of-the-art seeded

graph matching algorithm, demonstrates to perform well on simulation and real data.

However due to its O(n3) complexity, the likelihood maximization vertex nomination

scheme is limited to be practical on mid-sized graphs. Recent work on scaling the

seeded graph matching algorithm to big graphs [59] may motivate a scalable version of

the likelihood maximization vertex nomination scheme. We are confident that a new

generation of efficient and scalable vertex nomination schemes will greatly contribute

to the research of pattern recognition on random graph.
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Chapter 6

Seeded Graph Matching and Large

Seeded Graph Matching

Joint graph inference considers using information from multiple graphs, and pro-

ceeds with inference in the joint space of the graphs. In this dissertation, we are

particularly concerned about joint graph inference simultaneously on two graphs.

Under the joint graph inference framework, we are concerned with the problem of

seeded graph matching. The seeded graph matching problem seeks a bijection, which

minimizes the number of edge disagreements between two graphs with additional

constraint that the correspondence between a subset of vertices is known. Recent ad-

vances in developing theories and applications of seeded graph matching are gaining

increasing attention from fields such as statistics, neuroscience, computer vision, and

text analysis.
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Currently, the state-of-the-art seeded graph matching has a cubic complexity in

the number of vertices. In the age of big data, the computational limitation hinders

the applicability of seeded graph matching for large graphs. This motivates us to pro-

pose a scalable seeded graph matching algorithm for large graphs, namely the large

seeded graph matching algorithm. This algorithm utilizes a divide-and-conquer ap-

proach to parallelize graph matching, and is feasible on graphs of over 10000 vertices.

This chapter starts with introducing and describing the problem of graph matching

and seeded graph matching in Sections 6.1 and 6.2. Section 6.3 discusses the moti-

vation, proposes large seeded graph matching algorithm, and proves the theoretical

performance guarantee. Section 6.4 presents simulation and real data experiments

of seeded graph matching and large seeded graph matching. Section 6.5 investigates

future directions for research in seeded graph matching.

6.1 Introduction

The problem of graph matching aims to find an alignment between the vertices

across two graphs such that the number of edge disagreements is minimized. The

complexity of determining if two graphs are isomorphic is unknown. The generalized

(loopy, weighted) graph matching is known to be NP-hard. For an excellent survey

on the problem of graph matching, see “30 Years of Graph Matching in Pattern

Recognition” [22]. Ever since the graph matching problem was first posed in the late
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1970s, a wave of graph matching algorithms have emerged and proved their practical

values in various fields including statistics, neuroscience, computer vision, pattern

recognition, text processing, and image analysis.

The problem of seeded graph matching was posed in [39]. It is the graph matching

problem with the additional constraint that a subset of vertices have their correspon-

dence known a priori. The seeded graph matching problem has received increasing

attention and has demonstrated its effectiveness in the random graph inference frame-

work. However its feasibility is limited for matching graphs with less than 1500 ver-

tices. In the age of big data, scalable algorithms are in high demand. We demonstrate

our proposed algorithm of seeded graph matching for large graphs works well on large

real and synthetic graph data.

6.2 Seeded Graph Matching

In this section, we first formulate the problem of graph matching (GM), then

discuss seeded graph matching (SGM), and present the SGM algorithm. Given two

graphs, G1 = (V1, E1) and G2 = (V2, E2), GM seeks an alignment between the vertex

sets V1 and V2 such that the topological structure is best preserved across the graphs.

There are two categories of graph matching approaches: bijective and non-bijective.

In a bijective graph matching setting, we assume that |V1| = |V2| = n, and GM seeks

a one-to-one correspondence between V1 and V2. In a non-bijective setting, we do not

126



CHAPTER 6. LARGE SEEDED GRAPH MATCHING

require the assumption of |V1| = |V2| = n, and GM seeks a (possibly) many-to-many

or many-to-one correspondence between V1 and V2.

In this dissertation, we focus on the bijective graph matching setting, where the

vertex sets V1 = V2 = V . In such a setting, one seeks a bijection ψ : V → V such

that ψ minimizes the number of induced edge disagreements. The edge disagreement

objective can be written as follows:

d(ψ) = |{(i, j) ∈ V ×V : [i ∼G1 j, ψ(i) �G2 ψ(j)] or [i �G1 j, ψ(i) ∼G2 ψ(j)]}|. (6.1)

Assume that the adjacency matrices for G1 and G2 are A1 and A2 respectively. Let

P (n) be the set of all permutation matrices of order n. Let P be the corresponding

permutation matrix of the permutation ψ. Then we can rewrite the objective in

Equation 6.1 as the following objective:

min
P∈P (n)

‖A1 − PA2P
T‖F , (6.2)

where ‖ · ‖F is the Frobenius norm. Denote the trace of a matrix by tr. Equation 6.2

can be rewritten as:

‖A1 − PA2P
T‖2

F = tr((A1 − PA2P
T )T (A1 − PA2P

T ))

= tr(AT1A1 − AT1 PA2P
T − PA2P

TA1 + PA2P
TA2P

T )

= tr(AT1A1)− tr(AT1 PA2P
T )− tr(PAT2 P TA1) + tr(PA2P

TPA2P
T )

= ‖A1‖2
F − tr(AT1 PA2P

T )− tr(PAT2 P TA1) + tr(P TAT2A2P
T )

= ‖A1‖2
F − 2tr(AT1 PA2P

T ) + ‖A2‖2
F . (6.3)
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The first and last two terms in Equation 6.3 do not depend on P . Thus the problem

in Equation 6.2 is equivalent to

argminP∈P (n)‖A1−PA2P
T‖F = argminP∈P (n)−2tr(AT1 PA2P

T ) = argmaxP∈P (n)2tr(A
T
1 PA2P

T ).

(6.4)

If the graph is directed, weighted and loppy, then the graph matching problem is

NP-hard. Hence, currently there are no efficient algorithms known for exact graph

matching.

The seeded graph matching (SGM) problem is related to the graph matching

problem. We assume that a partial correspondence between the vertices is known.

Those vertices are called “seeds”, and the word “seeded” refers to the information

known about the partial alignment of the seeds. The addition of seeds improves the

performance of many graph matching algorithms [39]. In practice, it is reasonable

to have seed vertices. For instance, in neural connectomics, locational information of

the partial brain alignment is an example of seeding.

SGM has the same objective as GM (Equation 6.2), except that we partially

observe the permutation ψ. Let S1 be the subset of vertices for which we know the

correspondence across two graphs, and S2 := {ψ(v) : v ∈ S1} contain the vertices

whose corresponding vertices are in S1. The vertices in S1 and S2 are called seeds,

whose alignment is known. Without loss of generality, let S1 = S2 = [m], and the

alignment between S1 and S2 be the identity function. Thus, ψ is observed on [m].

Assume that the adjacency matrices for G1 and G2 are A1 and A2 respectively.
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We can split the adjacency matrices into four submatrices as follows:

A1 =

 A11
1 A12

1

A21
1 A22

1

 A2 =

 A11
2 A12

2

A21
2 A22

2

 , (6.5)

where A11
1 and A11

2 ∈ Rm×m, A12
1 and A12

2 ∈ Rm×(n−m), A21
1 and A21

2 ∈ R(n−m)×m, A22
1

and A22
2 ∈ R(n−m)×(n−m). We substitute the matrix decompositions in Equation 6.5

into the objective of Equation 6.3. Denote the m×m identity matrix by Im×m, and

let ⊕ denote the direct sum of matrices. Then the objective of SGM is equivalent to

f(P ) = argmin
P∈P (n−m)

tr(AT1 (Im×m ⊕ P )A2(Im×m ⊕ P T )) (6.6)

= argmin
P∈P (n−m)

tr


 A11

1 A12
1

A21
1 A22

1


T  Im×m 0m×(n−m)

0(n−m)×m P


 A11

2 A12
2

A21
2 A22

2


 Im×m 0m×(n−m)

0(n−m)×m P T




= argmin
P∈P (n−m)

tr


 A11

1 A12
1

A21
1 A22

1


T  A11

2 A12
2 P

T

PA21
2 PA22

2 P
T




= argmin
P∈P (n−m)

tr((A11
1 )TA11

2 ) + tr((A21
1 )TPA21

2 ) + tr((A12
1 )TA12

2 P
T ) + tr((A22

1 )TPA22
2 P

T )

= argmin
P∈P (n−m)

tr((A21
1 )TPA21

2 ) + tr((A12
1 )TA12

2 P
T ) + tr((A22

1 )TPA22
2 P

T ).

Currently no efficient algorithm is known to exist for solving SGM. Hence, we seek

an approximated solution to SGM.
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6.2.1 Relaxation and the Frank-Wolfe Algorithm

We work with a relaxation of the objective function in Equation 6.2, and look

for an approximate solution to seeded graph matching problem. We first consider a

relaxation of the seeded graph matching problem. We relax P (n −m) in Equation

6.7 to D(n −m) the set of doubly stochastic matrices such that P ∈ R(n−m)×(n−m)

with P1n−m = 1n−m, P T1n−m = 1n−m and P ≥ 0(n−m)×(n−m) coordinatewise, where

0(n−m)×(n−m) is the (n −m) × (n −m) zero matrix, and 1(n−m) is a length-(n −m)

vector of all ones.

Given m seeds, the relaxed objective of seeded graph matching is:

f(P ) = argmin
P∈D(n−m)

tr(P TA21
1 P (A21

2 )T ) + tr(P T (A21
1 )TA12

2 ) + tr((A22
2 )TPA22

2 ). (6.7)

After this relaxation, the feasible region is a convex hull of the permutation matri-

ces. Solutions to this relaxation are achieved using the Frank-Wolfe Algorithm [43],

an iterative nonlinear optimization algorithm. The general optimization setup where

the Frank-Wolfe algorithm is applicable is

min
x∈S

f(x), (6.8)

where S is a bounded and convex domain, and f : S → R is continuously differen-

tiable. The main idea of this algorithm is to solve local linearizations of the objective

function iteratively by using the solution from the previous step as the location of

the linearization in the current step. The Frank-Wolfe Algorithm is presented in

Algorithm 6.
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Algorithm 6 Frank-Wolfe Algorithm

t← 1, α = 1 . Initialization

Randomly select x0 ∈ S or an initial estimate of x∗.

while xt has not converged do

st ← arg mins∈S s
T 5 f(xt) . Linearization: 1st Order Approximation

αt ← arg min0≤α≤1 f(xt + α(st − xt)) . Line Search

xt+1 ← xt + αt(st − xt) . Update

t← t+ 1

end while

Output: x∗ = xt+1.

Remark 6.1. When the function f(x) is quadratic, α can be found analytically.

The steps of Direction-Finding and Line Search continue to repeat until termination

conditions are met.

6.2.2 Solving the Approximated Seeded Graph Match-

ing Problem

While there is no hope in solving the exact SGM problem efficiently, one seeks

an approximate efficient solution for SGM. Fishkind et al. [39] modified the Fast

Approximate Quadratic Assignment (FAQ) algorithm [94] to approximately solve the

relaxed seeded graph matching algorithm. The seeded FAQ algorithm is the state-of-
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the-art seeded graph matching algorithm, and it employs the Frank-Wolfe algorithm

to solve the relaxed SGM problem. Let us first present the derivation of the steps of

the seeded FAQ algorithm.

Recall the objective for SGM in Equation 6.7, which has gradient ∇P (f),

∇P (f) := A21
1 (A21

2 )T + (A12
1 )TA12

2 + A22
1 P (A22

2 )T + (A22
1 )TPA22

2 . (6.9)

We initialize the Frank-Wolfe algorithm at the barycenter P0 = 1
n−m1n−m1Tn−m. We

choose this initialization for simplicity, but other doubly stochastic matrices are suit-

able. For instance, one can also use the reversed Cuthill-McKee ordering as an ini-

tialization [58] or a convex initialization [61]. Recall in the Frank-Wolfe linearization

step, we maximize tr(QT∇P0) over all doubly stochastic matrices Q ∈ R(n−m)×(n−m).

The function tr(QT∇P0) is linear in Q, and we can use the Hungarian Algorithm

to find the optimal Q, which will be denoted by Q̃. The complexity for this step

is O(n3). The next step of applying the Frank-Wolfe algorithm is to maximize the

one-dimensional objective function f(αP̃ + (1 − α)Q̃), where α ∈ [0, 1], over all line

segments from Pt to Q̃. Define the following constants:

c := tr((A22
1 )T P̃A22

2 P̃
T ), (6.10)

d := tr((A22
1 )T P̃A22

2 Q̃
T + (A22

1 )T Q̃A22
2 P̃

T ), (6.11)

e := tr((A22
1 )T Q̃A22

2 Q̃
T ), (6.12)

u := tr(P̃ TA21
1 (A21

2 )T + P̃ T (A12
1 )TA12

2 ), (6.13)

v := tr(Q̃TA21
1 (A21

2 )T + Q̃T (A12
1 )TA12

2 ). (6.14)
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Based the definitions of c, d, e, u, v, the step of line search is simplified as

f(αP̃ + (1− α)Q̃) = (c− d+ e)α2 + (d− 2e+ u− v)α + (e+ v). (6.15)

We differentiate Equation 6.15 with respect to α to get the critical point α̃ =

−d+2e−u+v
2(c−d+e)

. Because of the [0, 1]-constraint of α, we set α̃ := min(1, −d+2e−u+v
2(c−d+e)

). If

α > 1−ε, for some tolerance ε, then the seeded FAQ algorithm terminates. Otherwise,

we repeat the procedure.

6.2.3 Projection

The Frank-Wolfe algorithm converges to a local optimum P̃ , which may not be a

permutation matrix, and thus a projection step is needed. Denote P (n −m) as the

space of all permutation matrices of order n−m. In this case, we seek a permutation

matrix Q̃ such that

Q̃ = argmin
Q∈P (n−m)

‖Q− P̃‖1. (6.16)

When Q is a permutation matrix, Equation 6.16 can be simplified to 2n− 2tr(QT P̃ ).

Hence, we can again minimize tr(QT P̃ ) using the Hungarian Algorithm with complex-

ity O(n3). Hence, for a bounded number of iterations in the Frank-Wolfe algorithm,

we have efficiently approximated the solution to the SGM problem.
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6.2.4 Performance Evaluation Criterion

Assume the total number of vertices is n. The number of seeds is m. The per-

formance of seeded graph matching solution is measured by the matching accuracy

δ(m), defined as the number of correctly matched non-seeded vertices divided by the

total number of non-seeds n −m. The matching accuracy for chance is 1
n−m . More

information regarding the partial correspondence between vertices is available, and

we expect the matching accuracy to increase [39]. Examples of an evaluation of the

seeded graph matching performance is shown in Figure 7.6.

6.3 Large Seeded Graph Matching

With advanced technologies, data sets are collected in enormous volumes and com-

plex structures. The emerge of big data poses high demands for scalable algorithms.

In this section, we propose a bijective scalable version of the state-of-the-art seeded

graph matching algorithm for big graphs. We explore the possibility of making the

seeded graph matching algorithm scalable for big graphs, present our proposed Large

Seeded Graph Algorithm (LSGM), verify its theoretical guarantees, and demonstrate

its effectiveness in simulation and real data experiments. Our real data example

indicates the applicability of LSGM for matching scale-free large graphs.
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6.3.1 Motivation

Growing volume and complexity of big graph data are posing significant chal-

lenges in graph inference. Among the developed approximated GM algorithms, the

current state-of-the-art nonseeded matching algorithms are PATH [100], GLAG [37],

and FAQ [94]. However they are not applicable for large graphs due to their O(n3)

complexity. The current existing scalable bijective graph matching algorithm, the

Umeyama’s spectral approach (U) [92], has faster run time, but its performance de-

grades greatly compared to seeded FAQ. Furthermore, PATH, GLAG, FAQ and U do

not leverage the information contained in a partial correspondence between vertices

by incorporating seeds information. Our goal is to propose a bijective graph matching

algorithm, which not only has lower computational cost than the state-of-the-art GM

algorithms, but also leverages the information from seeds to enhance the matching

performance.

6.3.2 The Large Seeded Graph Matching Algorithm

Our approach to make the SGM algorithm scalable is divide-and-conquer. The

main three procedures in the LSGM algorithm are: joint spectral embedding, vertex

clustering, and seeded graph matching within the clusters. In the last step, we achieve

parallelization when SGM is done within the clusters. We present our proposed Large

Seeded Graph Matching (LSGM) algorithm in Algorithm 7, and explain the steps in
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detail. A depiction of the LSGM algorithm is seen in Figure 6.1.

Algorithm 7 Large Seeded Graph Matching Algorithm (LSGM)

Input: Adjacency matrices A1, A2 ∈ {0, 1}n×n, number of seeds m ∈ N, seed

bijection φ : [m]→ [m].

Output: Matching ψ of the vertices of G1 and G2.

Step 1: Joint spectral embedding.

Step 2: (Divide) Joint clustering on the embedding.

Step 3: (Conquer) For each cluster, in parallel:

for i = 1 to K do

Match within cluster i across the graphs using state-of-the-art SGM algorithm

in Section 6.2, yielding matching ψ(i).

end for

Output: Matching ψ on the entire two graphs is the direct sum of the matching

within each cluster: ψ = ⊕Ki=1ψ
(i).

6.3.2.1 Joint Embedding and Clustering the Graphs

Step 2 and Step 3 in Algorithm 7 are described in detail in Algorithm 8.

Note that the Step 1 and Step 2 in Algorithm 8 are exactly adjacency spectral

embedding (ASE) introduced in Algorithm 1 applied on each adjacency matrix re-

spectively. ASE can be computed in O(n2d) steps for d ≤
√
n [11].

Since the embedded vertices of G1 and G2 are most likely not in two spaces which
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Algorithm 8 Jointly embedding and clustering on G1 and G2

Input: Adjacency matrices A1, A2 ∈ {0, 1}n×n, number of seeds m ∈ N, seed

bijection φS : [m] → [m], the embedding dimension d ∈ N, number of clusters

K ∈ N.

Output: Obtain K clusters of the 2n jointly embedded vertices.

Step 1: Compute the first d orthonormal eigenpairs of A1 and A2, namely

(UA1 , SA1) and (UA2 , SA2) respectively.

Step 2: Estimate the latent positions via adjacency spectral embedding X̂A1 :=

UA1S
1/2
A1

, X̂A2 := UA2S
1/2
A2

.

Step 3: Align the embedded seeds via the orthogonal Procrustes fit problem

X̂A1,m := X̂A1([m], :), X̂A2,m := X̂A2([m], :), Q := argminW∈W (d)‖X̂A1,mW−X̂A2,m‖F ,

where W (d) := {W ∈ Rd×d : W TW = I}.

Step 4: Align the two embedded adjacency matrices via applying the Procrustes

transformation Q to X̂A1 obtaining the aligned embedding X̂A1Q of A1;

Step 5: Cluster the 2n embedded points

X̂A1Q

X̂A2

 ∈ R2n×d into K clusters via

the K-means clustering procedure.
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Figure 6.1: A depiction of the large seeded graph matching algorithm. The algorithm

consists of four steps: adjacency spectral embedding, subspace alignment, clustering

and seeded graph matching.

do not have the same orientation, we intend to align the 2n embedded vertices via the

orthogonal Procrustes fit problem. Here we utilize the seeds whose alignment across

the two graphs is known to find the Procrustes transformation, as seen in Step 3. In

Step 4, we align the two sets of embedded vertices via the Procrustes transformation

Q obtained via aligning the seeds. Hence the transformed and aligned embedding is

X̂A1Q. In Step 5, we apply K-means clustering algorithm on the 2n vertices in the

d-dimensional concatenated data frame

X̂A1Q

X̂A2

 ∈ R2n×d.

6.3.2.2 The Low Computational Cost of Joint Embedding

and Joint Clustering

Our proposed LSGM algorithm mainly focuses on the parallelization of the match-

ing step, because the other two main steps – joint embedding via ASE, and joint
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clustering via K-means are not computationally expensive. For large n, we are only

interested in the first d << n eigenpairs of A1 and A2. The step of ASE can be

achieved using efficient singular value decomposition (SVD) algorithms. The SVD

step can be calculated in O(n2d) steps for d <<
√
n [7, 11]. The K-means algo-

rithm has complexity O(Kdn) for each iteration. Note that we do not implement

parallelized versions of the SVD algorithms or the K-means clustering algorithms.

The approximate SVD algorithm and the approximate clustering algorithm used in

the LSGM algorithm are efficiently implementable. As we will see in Section 6.4,

the matching step is the most time intensive step, while the non-parallized SVD and

K-means take sufficiently small portion of the runtime.

6.3.2.3 Model Selection on Embedding Dimension

The embedding dimension d is often unknown in practice. In the simulation

experiment in Section 6.4, we assume that d is given. In the real data experiment in

Section 6.4, we estimate d using the partial scree plot of the two graphs, suggested

in [14]. Recall in Chapter 3 and 4, we use an automatic profile likelihood procedure

[102] to estimate d. This procedure, however, is not suitable for big graphs, as it

requires knowing the full spectrum.
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6.3.2.4 Model Selection on Number of Clusters

The number of clusters K is often unknown in practice, and usually dictated by

the data. In the K-means clustering procedure, a specified K is required. In other

clustering algorithms such as Mclust [42], the number of clusters K is selected using

the Bayesian information criterion (BIC). In the simulation experiments in Section

6.4, we assume K is given. In the human brain connectome experiment, we set an

upper bound on the maximum number of vertices in a cluster. We want to point out

that our LSGM algorithm is insensitive to misspecification of K as in the simulation

experiment illustrating its robustness to misspecified K.

6.3.2.5 Ensure Cluster Sizes Suitable for Bijective Seeded

Graph Matching

After the joint embedding, we utilize seeded graph matching within the clusters.

Our seeded graph matching is under the bijective framework so that the cluster sizes

need to be consistent across two graphs. That is, for each pair of clusters across the

two graphs, the number of vertices from G1 must be equal to the number of vertices

from G2. However, the K-means algorithm cannot ensure this.

Suppose that for each i = 1, 2, . . . , K, cluster i has ci total vertices (from both

graphs combined) with c1 ≥ c2 ≥ · · · ≥ cK . Within cluster i, suppose there are c
(1)
i

vertices from G1 and c
(2)
i vertices from G2. The ideal cluster size for cluster i would be
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2

⌈
c
(1)
i +c

(2)
i

2

⌉
with

⌈
c
(1)
i +c

(2)
i

2

⌉
vertices from G1 and G2 respectively. However, it could

happen that
∑

i

⌈
c
(1)
i +c

(2)
i

2

⌉
≥ n, though it always holds that

∑
i

⌈
c
(1)
i +c

(2)
i

2

⌉
≤ n+ 2K.

Let {c̃i}Ki=1 denote the resized cluster size. In order to solve this issue, we first set

the cluster i to be of size 2c̃i = 2

⌈
c
(1)
i +c

(2)
i

2

⌉
. Then starting from the smallest cluster,

we remove 2 vertices: 1 vertex from each graph until
∑K

i=1 c̃i = n. This procedure is

mathematically formulated in Equation 6.17.

c̃i = 2

⌈
c

(1)
i + c

(2)
i

2

⌉
− 2 · 1

{ K∑
j=1

⌈
c

(1)
j + c

(2)
j

2

⌉
≥ i+ n

}
. (6.17)

6.3.2.6 Assign Vertices to Clusters

Once the issue of cluster sizes is resolved, we re-assign the vertices in the clusters.

For each cluster i with centroid Ci,
c̃i
2

vertices which are closest to Ci are selected

from each graph. Subsequently, we can match the two graphs within a cluster using

bijective matching algorithms.

We view our resizing procedure described above as a refinement of the original K-

means procedure, and not as providing a new clustering of the vertices. Empirically

we see that our reassigned clusters are very similar to the original K-means clusters,

often differing in only a few vertices. Other clustering algorithms such as Mclust is

also applicable for the clustering task.
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6.3.2.7 LSGM Modifications

Empirically, imputing the diagonal of the adjacency matrices can improve infer-

ence performance. We can follow the suggestions of [80] and [64] to perform diagonal

augmentation via imputing the diagonal entries aii = deg(i)
n−1

, where deg(i) denotes the

degree of vertex i. In addition, projecting the embedded vertices X̂ onto the sphere

has also shown to empirically improve clustering performance. Furthermore, within

each cluster, seeded graph matching algorithm with different initializations such as

barycenter or convex initialization may also influence the matching performance. Of

course, whether these adjustments on the LSGM algorithm will improve matching

performance heavily depends on the empirical graph structures.

6.3.3 Complexity of LSGM

We first consider the computational cost of each step in the LSGM algorithm.

As noted before, for very large graphs, d << n; the computational step for eigen-

decomposition on the adjacency matrix is O(n2d) when d ≤
√
n. The orthogonal

Procrustes fit problem has complexity at most O(nd2). As mentioned in Section 6.2,

the state-of-the-art SGM algorithm has complexity O(n3) on the entire graph. In

LSGM, note that SGM is not executed on the entire two graphs with size n. Rather,

SGM proceeds within each cluster i of size c̃i. If SGM is executed in parallel, then the

complexity of the matching step is O((c̃max +m)3), where c̃max denotes the maximum
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cluster size after resizing (as seen in Section 6.3.2.5). If SGM is executed in sequence,

then the complexity of the matching step is O(K(c̃max +m)3).

Assume there exists an α > 0 such that m = o(n1−α), K = Ω(nα) and each cluster

size is bounded by c̃max = O(n1−α). If α ≤ 1
3
, the computational cost of LSGM is

O(n2d), when the matching step is fully parallelized. If α > 1
3
, the computational cost

of LSGM is O(n3(1−α)), when the matching step is fully parallelized. When α ≈ 1
3
,

which denotes a modest number of modestly sized clusters, the computational cost

of LSGM is O(n2d).

6.3.4 Theoretical Guarantee Under the Stochastic

Blockmodel Framework

In this section, we prove a theoretical guarantee for LSGM under the stochastic

blockmodel framework, where we assume that G1 and G2 are realized from stochastic

blockmodels with parametrization SBM(~n, b, B). Recall the definition of correlated

stochastic blockmodels in Definition 2.8. If G1 and G2 are ρ-correlated, then there

is a natural latent alignment between the vertices of the two graphs – the identity

function idn. Again, as in Chapter 5, let ~m ∈ NK denote the vector whose entry is

the number of seeds (non-ambiguous vertices) in each block. Then the m seeds have

known correspondence across the two ρ-correlated graphs G1 and G2.

Let A1 and A2 be the adjacency matrices of G1 and G2 respectively. Let bA1 and
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bA2 be the block assignment function of G1 and G2 respectively. Without loss of

generality, let the true alignment function be idn and let b := bA1 = bA2 . We define

the clustering criterion for clustering the rows of [X̂ T
A2
|(X̂A1Q)T ]T into K clusters via

(Ĉ, b̂) := argminC∈RK×d, b: [2n]→[K]

2n∑
i=1

∥∥∥∥

 X̂A2

X̂A1Q


 (i, :)− C(b(i), :)

∥∥∥∥2

2

, (6.18)

In the next theorem, we prove that under mild assumptions, for all but finitely

many n, the estimated memberships b̂ = b, and all of the vertices are perfectly clus-

tered across the two graphs, and thus it implies that the joint clustering procedure

yields a canonical matching of the vertices given the clustering. Note that the asymp-

totic result on the graph means that we consider a sequence of growing random graph

models G1, G2, . . . , Gn with n = 1, 2, . . . vertices. Although this result is asymptotic

in nature, it guarantees that LSGM will be effective in approximating the the true

but unknown alignment for SBMs.

Theorem 6.1. Let λi(M) denote the i-th largest eigenvalue of matrix M . If the

following assumptions hold:

i. There exist constants ε1, ε2 > 0 such that K = O(n1/3−ε1) and mini ~n(i) =

Ω(n2/3+ε2);

ii. Define the eigen-gap

δd := min
i,j≤d+1,i6=j

|λi(XX T )− λj(XX T )|/n, (6.19)
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and

β := β(n, d, δd) =
260d log(n)

δdn1/2
, (6.20)

if i, j ∈ [n] are such that X (i, :) 6= X (j, :) then ‖X (i, :)−X (j, :)‖2 > 6n1/6β;

iii. Let {X (i, :)}mi=1 be the latent positions corresponding to the seeded vertices,

then we assume there exists an α satisfying α > 4β and
√
nβ/α = o(nε2/2d/δd)

such that

min
v : ‖v‖2=1

‖X ([m], :)vT‖2 ≥ α
√
m; (6.21)

then for all but finitely many n, the b̂ satisfies b̂ = b, and LSGM finds the true

alignment almost always.

Recall for a matrix M , the norm ‖M‖2→∞ := maxi ‖M(i, :)‖2. We first cite a

lemma proved in [84] and [63].

Lemma 6.1. Let X̂A1 and X̂A2 denote the resulted adjacency spectral embedding on

A1 andA2. LetWA1 = argminW∈W (d) ‖X̂A1−XA1W‖F andWA2 = argminW∈W (d) ‖X̂A2−

XA1W‖F . If d = o(
√
n), then it holds with probability one that for all but finitely

many n that

‖X̂A1 −XA1WA1‖2→∞ ≤ β and ‖X̂A1 −XA1WA2‖2→∞ ≤ β. (6.22)

Now we prove the following.

Lemma 6.2. Let Q := argminW∈W (d) ‖X̂A1([m], :)W − X̂A2([m], :)‖F . For all but

finitely many n it holds that ‖X̂A1Q− X̂A2‖2→∞ ≤ 8β/α + 2β.
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Proof. Define Q̃ := W>
A1
WA2 . It follows from Equation 6.22 that

‖X̂A1Q̃− X̂A2‖2→∞ ≤ ‖X̂A1 −XA1WA1‖2→∞ + ‖X̂A1 −XA1WA2‖2→∞ ≤ 2β. (6.23)

It is also easy to see that

‖X̂A1([m], :)Q− X̂A2([m], :)‖F ≤ ‖X̂A1([m], :)Q̃− X̂A2([m], :)‖F ≤ 2β
√
m. (6.24)

Going from the other direction, we have,

‖X̂A1([m], :)Q− X̂A2([m], :)‖F ≥ ‖X̂A1([m], :)Q− X̂A1([m], :)Q̃+ X̂A1([m], :)Q̃− X̂A2([m], :)‖F

≥ ‖X̂A1([m], :)(Q− Q̃)‖F − ‖X̂A1([m], :)Q̃− X̂A2([m], :)‖F

≥ ‖X̂A1([m], :)(Q− Q̃)‖F − 2β
√
m. (6.25)

Hence,

‖X̂A1([m], :)Q− X̂A2([m], :)‖F ≤ 4β
√
m. (6.26)

Define the singular value decomposition on Q− Q̃ := V1SV
>

2 .

‖X̂A1([m], :)(Q− Q̃)‖F = ‖XA1([m], :)WA1(Q− Q̃)−XA1([m], :)WA1(Q− Q̃)

+ X̂A1([m], :)(Q− Q̃)‖F

≥ ‖XA1([m], :)WA1(Q− Q̃)‖F − ‖
(
X̂A1([m], :)−X([m], :)WA1

)
(Q− Q̃)‖F

≥

(
m∑
i=1

d∑
j=1

〈XA1(i, :),WA1V1(:, j)〉S(j, j)2

)1/2

− 2β
√
m‖Q− Q̃‖F

≥ (α− 2β)
√
m‖Q− Q̃‖F (6.27)
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Recall that Equation 6.21) states min‖v‖2=1 ‖X([m], :)v‖2
2 ≥ α2m and by Equation

6.26, we have,

(α− 2β)
√
m‖Q− Q̃‖F ≤ ‖X̂A1([m], :)(Q− Q̃)‖F ≤ 4β

√
m. (6.28)

Cancelling
√
m on both sides, and divide by (α− 2β),

‖Q− Q̃‖F ≤
4β

α− 2β
. (6.29)

Since ‖X̂A1‖2→∞ ≤ 1 and α > 4β as stated in Assumption iii in Theorem 6.1, we

have

‖X̂A1Q− X̂A2‖2→∞ = ‖X̂A1(Q− Q̃) + XA1Q̃− X̂A2‖2→∞ (6.30)

≤ ‖X̂A1(Q− Q̃)‖2→∞ + ‖X̂A1Q̃− X̂A2‖2→∞

≤ ‖X̂A1‖2→∞4β/(α− 2β) + 2β ≤ 8β/α + 2β ≤ 8β

α
+ 2β.

Lemma 6.3. For all but finitely many n, it holds that∥∥∥∥∥∥∥∥
 X̂A2

X̂A1Q

−
XA1WA2

XA1WA2


∥∥∥∥∥∥∥∥

2→∞

≤ 8β

α
+ 3β.

Proof. Note that∥∥∥∥∥∥∥∥
 X̂A2

X̂A1Q

−
XA1WA2

XA1WA2


∥∥∥∥∥∥∥∥

2→∞

= max{‖X̂A2 −XA1WA2‖2→∞, ‖X̂A1Q−XA1WA2‖2→∞}.

(6.31)
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Note that ‖X̂A2−XA1WA2‖2→∞ ≤ β as shown in Lemma 6.1. By Lemma 6.2, we have

‖X̂A1Q−XA1WA2‖2→∞ = ‖X̂A1Q− X̂A2 + X̂A2 −XA1WA2‖2→∞ (6.32)

≤ ‖X̂A1Q− X̂A2‖2→∞ + ‖X̂A2 −XA1WA2‖2→∞ (6.33)

≤ 8β

α
+ 3β. (6.34)

Hence, ∥∥∥∥∥∥∥∥
 X̂A2

X̂A1Q

−
XA1WA2

XA1WA2


∥∥∥∥∥∥∥∥

2→∞

≤ 8β

α
+ 3β. (6.35)

With all the necessary ingredients ready, we proceed to prove Theorem 6.1 – the

theoretical performance guarantee of LSGM.

Proof. Let B1,B2, . . . ,BK be the L2-balls of radius r := n1/6β around the K distinct

rows of XA1WA2 . If XA1(i, :) 6= XA1(j, :), then by Assumption ii

6r = 6n1/6β ≤ ‖XA1(i, :)−XA1(j, :)‖2 = ‖(XA1(i, :)−XA1(j, :))WA2‖2, (6.36)

and all Bis are disjoint.

Define Ẑ :=

 X̂A2

X̂A1Q

 ∈ R2n×d, and define Z :=

XA1WA2

XA1WA2

 ∈ R2n×d. Let (Ĉ, b̂)

be the optimal clustering of the rows of Ẑ from the clustering criterion in Equation

6.18. We first prove by contradiction. Suppose there is an index i ∈ [2n] such that

‖Z(i, :)− Ĉ(i)‖ > 2r. Then by Lemma 6.1, we have

‖X̂A1 −XA1WA1‖2→∞ ≤ β and ‖X̂A1 −XA1WA2‖2→∞ ≤ β. (6.37)
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. Then using the triangle inequality, we have

‖Ẑ(i, :)− Ĉ(i)‖ ≥ ‖Z(i, :)− Ĉ(i)‖ − ‖Ẑ(i, :)− Z(i, :)‖ > 2r − β. (6.38)

Thus, we must have

|Ẑ − Ĉ‖F >
√

min
k
nk(2r − β). (6.39)

According to Assumption i,
√

mink nk = Ω(n2/3+ε2), and plug in back r = n1/6β, we

have

‖Ẑ − Ĉ‖F >
√

min
k
nk(2r − β) (6.40)

= Ω(
√
n2/3+ε2)(2n1/6β − β) (6.41)

= Ω

(
nε2/2d

δd

)
. (6.42)

By Lemma 6.3, we have

‖Ẑ − Z‖F ≤
√

2n

(
8β

α
+ 3β

)
= o

(
nε2/2d

δd

)
. (6.43)

This contradicts the clustering criterion in Equation 6.18. Hence, it must holds

‖Z(i, :)− Ĉ(i)‖ ≤ 2r for all i ∈ [2n].

Again by triangle inequality and Lemma 6.1, we have

‖Z − Ĉ‖2→∞ = ‖Z − Ẑ + Ẑ − X̂‖2→∞ (6.44)

≤ ‖Z − Ẑ‖2→∞ + ‖Ẑ − X̂‖2→∞ (6.45)

≤ 2r + β = (2 + o(1))r. (6.46)
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Assume i, j ∈ [n] such that Ĉ(i, :) 6= Ĉ(j, :). Then according to Assumption ii,

we have ‖Z(i, :)− Z(j, :)‖2 > 6r. Then, by triangle inequality and Equation 6.46, it

follows that

‖Ẑ(i, :)− Ĉ(j, :)‖2 = ‖Ẑ(i, :)− Z(i, :) + Z(i, :)− Ĉ(j, :)‖2 (6.47)

≥ ‖Ẑ(i, :)− Z(i, :)‖2 − ‖Z(i, :)− Ĉ(j, :)‖2 (6.48)

≥ 6r − β − 2r (6.49)

= 4r − β = (4 + o(1))r. (6.50)

It follows that for a sequence of SBM(~n, b, B), for all but finitely many n, the

clustering assignment b̂ =

b
b


T

∈ N2n. That is, the number of misclustered vertices

is 0. Then by Theorem 1 in [62], we have that for all but finitely many n, ψ(i) = {Iui}

for all i ∈ [K]. Hence, LSGM produces the perfect matching under the stochastic

blockmodel assumption.

6.4 Experiments

In this section, we apply Seeded FAQ and Large Seeded Graph Matching on

simulation and real datasets. When comparing across graph matching algorithms,

we measure effectiveness via the matching accuracy and runtime of the algorithms.

Across both runtime and accuracy, our algorithm achieves excellent performance:

achieving significantly better accuracy than existing state-of-the-art scalable bijective
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matching algorithms (Umeyama’s spectral approach [92]), and achieving significantly

better accuracy and runtime than the existing state-of-the-art (in terms of accuracy)

matching procedures (PATH [100], GLAG [37], FAQ [94]).

6.4.1 Comparison of Existing Graph Matching Al-

gorithms

This experiment compares the performance of available bijective matching algo-

rithms in terms of accuracy and run time. We consider two ρ-correlated SBM(~n, b, B)

random graphs with the following parameters: each of ρ = 0.6 and ρ = 0.9, B =0.6 0.3

0.3 0.6

 ∈ [0, 1]2×2, ~n = [n/2, n/2], for each of n = 100, 200, 300, 400. We clus-

ter the graphs into 2 clusters and run several graph matching algorithms on these

clusters in paired experiments.The algorithms for comparison are Seeded FAQ (de-

noted by SGM in the figure legend) [39], FAQ [94], the spectral matching algorithm

of Umeyama [92], the PATH algorithm [100], and the associated convex relaxation

PATH CR, which is solved exactly using Frank-Wolfe methodology [44], and the

GLAG algorithm [37].

We select a pair of high-low correlations and seeds: ~m = [3, 3] seeds for ρ = 0.9

and ~m = [5, 5] seeds for ρ = 0.6, all seeds chosen uniformly at random from the two

blocks. The seeds are always used in the embedding and clustering procedure.

Figure 6.2 presents the accuracy of the graph matching algorithms, and Tables 6.2
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and 6.1 present the runtime of these algorithms. Among all the matching algorithms,

SGM is the only algorithm to use seeded vertices when matching the clusters. Hence

it is not surprising that SGM achieves best performance.

In the ρ = 0.9 experiment, as we increase the size per block n ∈ {100, 200, 300, 400},

the graph matching problem is more difficult, thus resulting in a performance degra-

dation for the nonseeded matching algorithms. Among those nonseeded matching

algorithms, PATH and its associated convex relaxation achieve the best performance.

PATH CR algorithm scales very well in running time but performs worse as n in-

creases. PATH’s running time scales poorly (as does that of the GLAG algorithm),

as it has a significantly longer running time than SGM or PATH CR across all values

of n. While PATH and PATH CR achieve similar results to SGM for n = 100, 200, 300,

PATH requires significantly more runtime, and at n = 400, PATH CR degrades in per-

formance. Incorporating seeds for GLAG, the PATH algorithm and PATH CR may

yield significantly faster run time and less performance degradation as n increases.

The performance of SGM is stable, scaling well in run time and achieving excellent

matching performance across all n. This illustrates the importance of leverage infor-

mation from the seeds. Here the correlation ρ = 0.9 is very high, and the matching

problem becomes easier. For smaller n, PATH and PATH CR perform similarly as

SGM, suggesting that seeds are less important when matching very similar graphs.

All matching algorithms, except Umeyama, outperform chance.

We next examine the performance for lower correlated (ρ = 0.6) SBMs. SGM
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Table 6.1: Mean Runtime of Bijective Graph Matching Algorithms at ρ = 0.9

n = 100 200 300 400

SGM 0.14 0.78 2.13 4.49

FAQ 0.51 3.12 9.13 16.67

Umeyama 0.09 0.14 0.21 0.34

PATH CR 0.30 1.24 2.96 3.46

PATH 2.21 9.90 15.82 69.31

GLAG 8.53 33.83 109.48 261.72

yields average accuracy over 99% for all selected n, and significantly outperforms all

the other nonseeded graph matching algorithms. Note that we need more seeds to

achieve the same performance with the lower correlation. In summary, the nonseeded

graph matching algorithms PATH, PATH CR, FAQ and GLAG perform significantly

better than chance. However PATH and GLAG scale poorly in running time. On

the other hand, PATH CR and FAQ scale well in running time, but their matching

performance decrease significantly as n increases. In addition, all the algorithms,

except SGM, perform significantly worse as ρ decreases. As real data is, at best,

weakly correlated, this points to the importance of using seeds in matching graphs in

practice.
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Figure 6.2: Mean accuracy (top) and mean runtime (bottom) for graph matching

algorithms for ρ = 0.9 (left) and ρ = 0.6 (right). For each value of n, we ran 100

Monte Carlo replicates. We do not include the perfect accuracy results for SGM

for ρ = 0.6 here. When we increase the size per block n ∈ {100, 200, 300, 400},

the graph matching problem is more difficult. Hence a degradation in performance

is shown for the six nonseeded matching algorithms. PATH and PATH CR have

superior performance for small values of n, and their performance drops as n increases.

Note the difference in scales for the left and right accuracy plots. The accuracy of

the ρ = 0.6 experiment is lower than in the ρ = 0.9 experiment. This simulation

experiment was performed in collaboration with Henry Pao.
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Table 6.2: Mean Runtime of Bijective Graph Matching Algorithms at ρ = 0.6

n = 100 200 300 400

SGM 0.16 0.64 1.76 2.91

FAQ 0.58 3.05 9.09 15.56

Umeyama 0.13 0.19 0.27 0.41

PATH CR 0.42 1.25 2.73 2.36

PATH 3.70 27.00 83.60 142.63

GLAG 8.11 32.41 108.22 235.34

6.4.2 Comparison between SGM and LSGM

In this section, we compare the performance of SGM and LSGM. Theoretically

LSGM achieves perfect performance. However, for matching small graphs with n <

2000, SGM is preferred over LSGM. In its matching step, LSGM only considers the

connectivity structures within clusters, but not across clusters, while SGM considers

the overall connectivity structure. Of course, for matching big graphs, LSGM is the

only choice, as SGM has O(n3) complexity. The LSGM approach contains two main

steps: first embed and cluster the two graphs, and then match the subgraphs induced

by the clustering accordingly. In this experiment, we explore how much accuracy of

LSGM is practically lost for match mid-sized graphs.

We match across two 0.7-correlated SBMs with K = 3 blocks, ~n = (200, 200, 200),
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with block probability matrix B =


0.6 0.3 0.2

0.3 0.7 0.3

0.2 0.3 0.7

 , and the number of seeds m =

{3, 4, 5, 6, 7} drawn uniformly from the 600 vertices.

The performance is seen in Figure 6.3. The matching accuracy of SGM is depicted

in the pink curve, and the matching accuracy of LSGM is seen in the blue curve. Note

that with only 4 seeds, SGM perfectly matches across the graphs, though LSGM

requires 7 seeds for comparable performance.

6.4.3 Robustness to Misspecified K

As mentioned in Section 6.3.2.4, our LSGM algorithm is robustness to misspec-

ified K. To demonstrate this, we simulate two pairs of ρ-correlated SBMs with

ρ ∈ {0.6, 0.9}, K = 10, ~n = [100, 100, . . . , 100] ∈ N10, B ∈ {0.3, 0.6}10×10 with

0.3 on the diagonal and 0.6off-diagonal, and m = 20 randomly selected seeds from

the 100 × 10 = 1000 vertices. We vary the maximum allowed cluster size to be

{100, 200, 300, 400, 500}. The number of Monte Carlo replicates for this experiment

is 20. We also included the “oracle” accuracy, which is the maximum possible match-

ing accuracy given the clustering.

As seen in Figure 6.4, LSGM is robust to misspecified number of clusters K, as

its performance is stable for all numbers of maximum cluster sizes. Moreover, the

accuracy of SGM performed within each cluster is significantly better than all other
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Figure 6.3: The matching accuracy of SGM and LSGM. We simulate two 0.7-

correlated SBMs with K = 3, B =


0.6 0.3 0.2

0.3 0.7 0.3

0.2 0.3 0.7

, ~n = (200, 200, 200), and

m = 3, 4, 5, 6, 7 seeds randomly assigned to one of the three blocks. The matching

performance of SGM seen in the pink curve is higher than the matching performance

of LSGM for m = [3, 4, 5]. LSGM eventually has comparable performance as SGM for

m = [6, 7]. This simulation experiment was performed in collaboration with Henry

Pao. This figure also appears in Henry Pao’s thesis [70].
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graph matching algorithms. Indeed, its performance is almost as good as the oracle

accuracy.

6.4.4 LSGM Scalability

In this experiment, we examine the scalability of the large graph matching al-

gorithm, particularly the scalability of the matching step. The LSGM algorithm

contains three main steps: joint embedding, joint clustering and matching. The first

two procedures, as mentioned in Section 6.3.2.2 and Section 6.3.3, are computation-

ally much less costly than the the matching step. Here we explore how parallelization

helps LSGM to scale well to big graph data.

We apply the LSGM algorithm on three pairs of SBMs with varying levels of

correlations ρ = 0.3, 0.6, 0.9. Each SBM has K = 8 blocks with block probability

matrix B ∈ {0.3, 0.6}8×8 with 0.3 on the diagonal and 0.6 everywhere else, ~n =

[200, 200, . . . , 200] ∈ N8, and m = 20 uniformly selected from the total 200×8 = 1600

vertices. We vary the number of cores {1, 2, 3, 4}, and examine the run time. The

number of Monte Carlo replicates is 200 for this experiment.

Figure 6.5 presents the resulting wall times as compared to the theoretical best

possible scaling provided by Amdahl’s law (run on a Genuine Intel laptop: model

name: Intel(R) Xeon(R) CPU E31290 @ 3.60GHz with 4 processors). For each of

the three correlation levels ρ ∈ {0.3, 0.6, 0.9} and for each of 1 to 4 cores, we obtain

the average runtime of each step in LSGM: embedding, Procrustes, clustering and

159



CHAPTER 6. LARGE SEEDED GRAPH MATCHING

Cores Embedding Procrustes Clustering Matching

1 0.53 0.89×10−3 0.17×10−2 67

2 0.54 0.73×10−3 0.18×10−2 41

3 0.54 0.72×10−3 0.18×10−2 36

4 0.54 0.72×10−3 0.15×10−2 32

Table 6.3: Examine LSGM scalablity at ρ = 0.3. Mean runtime of each step for

ρ = 0.3 for each core over 200 Monte Carlo replicates. For each selection of cores,

the matching run time takes up > 90% of the total run time, and the run time for

embedding, Procrustes, and clustering respectively is not a major contribution to the

total run time. As the number of cores increases, the matching time decreases. This

indicates the scalability of the large graph matching algorithm.

matching, as seen in Tables 6.3, 6.4 and 6.5. Indeed matching is the time-consuming

aspect of the procedure, especially in the low correlation setting. Hence, as discussed

before in Section 6.3.2.2, parallelizing the other components of our algorithm would

gain less runtime improvements when compared to parallelizing the matching step.

In addition, we also examine the runtime as we vary the number of clusters.

We simulate two 0.9-correlated SBMs with K = 10, ~n = [100, 100, . . . , 100] ∈ N10,

B ∈ {0.3, 0.6}10×10 with 0.3 on the diagonal and 0.6 everywhere else, and m = 20

randomly selected from the 100× 10 = 1000 vertices. We vary the maximum allowed

cluster size to be {100, 200, 300, 400, 500}. The number of Monte Carlo replicates is
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Figure 6.5: Examine the scalability of large seeded graph matching. We consider three

pairs of SBMs with varying levels of correlations ρ = 0.3, 0.6, 0.9. Each SBM has K =

8 blocks with block probability matrix B as stated in the text, ~n = [200, 200, . . . , 200],

and m = 20 uniformly selected from the 1600 vertices. We vary the number of cores

{1, 2, 3, 4} and examine the runtime. For each selected number of cores, the number

of Monte Carlo replicates is 200. We plot the achieved runtime against the theoretical

maximum speedup possible when parallelizing as predicted by Amdahl’s law. We see

a significant decrease in runtime as we include additional cores for computation.
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Cores Embedding Procrustes Clustering Matching

1 0.53 0.89×10−3 0.19×10−2 14

2 0.53 0.73×10−3 0.18×10−2 8.9

3 0.54 0.72×10−3 0.19×10−2 8.0

4 0.54 0.73×10−3 0.19×10−2 7.1

Table 6.4: Examine LSGM scalablity at ρ = 0.6. Mean runtime of each step for

ρ = 0.6 for each core over 200 Monte Carlo replicates. For each selection of cores,

the matching run time takes up > 90% of the total run time, and the run time for

embedding, Procrustes, and clustering respectively is not a major contribution to the

total run time.

20, and the number of cores used for computation is 12. The mean runtime over 20

Monte Carlo replicates is presented in Table 6.6.

6.4.5 Human Brain Connectomes

We apply LSGM on the diffusion tensor MRI dataset. This dataset contains 42

brain graphs for 21 subjects, each of which has two brain graphs. For each subject,

the vertices in the connectomes correspond to voxels in the diffusion tensor MRI brain

mask. Edges between vertices are present if there exists at least one neural fiber bun-

dle connecting the voxels. We downsample the voxels by 4×4×4. Then the vertices in

the connectomes correspond to voxel regions in the diffusion tensor MRI brain mask,

162



CHAPTER 6. LARGE SEEDED GRAPH MATCHING

Cores Embedding Procrustes Clustering Matching

1 0.53 1.06×10−3 1.06×10−2 9.4

2 0.53 0.74×10−3 0.20×10−2 6.3

3 0.54 0.73×10−3 0.21×10−2 5.2

4 0.54 0.72×10−3 0.20×10−2 5.1

Table 6.5: Examine LSGM scalability at ρ = 0.9. Mean runtime of each step for

ρ = 0.9 for each core over 200 Monte Carlo replicates. For each selection of cores,

the matching run time takes up > 90% of the total run time, and the run time for

embedding, Procrustes, and clustering respectively is not a major contribution to the

total run time. As the number of cores increases, the matching time decreases. This

indicates the scalability of the large graph matching algorithm. The matching time

is lower than ρ = 0.6 and ρ = 0.3, because the graph matching problem is easier at

higher correlations.

Maximum cluster size 100 200 300 400 500

Mean runtime 10.2831 24.0464 41.2820 61.8609 86.1164

Table 6.6: We present the mean runtime of LSGM versus different maximum cluster

sizes {100, 200, 300, 400, 500}. We simulate two 0.9-correlated SBMs with K = 10,

~n = [100, 100, . . . , 100], B as stated in the text, and m = 20 randomly selected from

the 1000 vertices.
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and the edges between vertices are present if there exists at least one neural fiber

bundle connecting the voxel regions corresponding to the two vertices. The largest

connected components (LCC) of these 42 connectomes range from 20,000–30,000 ver-

tices. This dataset is downloadable from http://openconnecto.me/graphs. In this

experiment, the between-subject connectomes are Connectome 1 and Connectome 8,

and the within-subject connectomes are Connectome 8 and Connectome 29.

The LCC in Connectome 1 contains 22734 vertices, the LCC in Connectome 8

has 21891 vertices, and the LCC Connectome 29 has 22307 vertices. We match the

intersection of the LCC’s of Connectomes 1 and 8, and the intersection of Connec-

tomes 8 and 29 respectively. The embedding dimension is estimated from the scree

plots in both pairs, and it is estimated to be d̂ = 30. We set the maximum cluster

size to be 800. Hence, recursion of clustering will occur if at least one resulted cluster

size is over 800. We vary the number of seeds m ∈ {200, 1000, 2000, 5000}, and run

30 Monte Carlo replicates for this experiment.

Figure 6.6 shows that the matching accuracy of LSGM is significantly higher for

within-subject connectomes than between-subject connectomes. This illustrates the

usefulness of LSGM in detecting the similarity structures across large graphs.

We also record the runtime of the four procedures: embedding, Procrustes trans-

formation, clustering and Matching for the brain connectome experiment as seen

in Table 6.7. As expected, matching is the most time consuming step, and longer

matching time corresponds to higher matching accuracy.
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Figure 6.6: Performance of LSGM on the brain connectome. The matching accuracy for

Connectomes 8 and 29 (within–subject) and for Connectomes 1 and 8 (between–subject).

For the 8–29 pair, n = 20, 541, d = 30. For the 1–8 pair, n = 18, 694, d = 30, we cluster

using K-means, reclustering any clusters of size ≥ 800. We vary the number of seeds

m = 200, 1000, 2000, and 5000, and run 30 Monte Carlo replicates. The error bars are

within 2 standard errors.
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Runtime in seconds for connectome experiment

Graph Pair Number of seeds Embedding Procrustes Clustering Matching

08-29 200 777.11 1.94 18.16 569.97

08-29 1000 987.08 2.80 18.47 1019.73

08-29 2000 1096.84 3.26 19.29 1592.76

08-29 5000 890.89 2.90 15.19 2902.19

01-08 200 562.82 1.57 13.49 473.46

01-08 1000 754.84 2.44 15.79 883.58

01-08 2000 862.43 2.82 15.14 1495.26

01-08 5000 981.86 3.60 13.55 2698.32

Table 6.7: Runtime for LSGM on the human brain connectomes. For each of the four

steps of our procedure, and each combination of seeds and connectomes, we display

the average wall time measured in seconds. Matching is the most time intensive step.

Embedding to R30 is the second most time intensive step. Hence, parallelization of

the embedding step can also contribute to the efficiency of LSGM running speed.
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Figure 6.7: LSGM matching accuracy for within–subject and between–subject. Here we

examine the performance of various LSGM modifications. For the 8–29 pair, n = 20, 541,

d = 30. For the 1–8 pair, n = 18, 694, d = 30, we cluster using K-means, reclustering any

clusters of size ≥ 800. We vary the number of seeds m = 200, 1000, 2000, and 5000, and

run 5 Monte Carlo replicates. We see that including the step of projection onto the sphere,

i.e., spherical K-means, significantly improves the matching accuracy.

In Section 6.3.2.7 we discuss three different modifications in order to improve the

matching accuracy. Here we compare the performance of LSGM and three modifica-

tions of LSGM: LSGM with spherical K-means, LSGM with diagonal augmentation,

LSGM with convex initialization. We see that including the step of projection onto

the sphere, i.e., spherical K-means, significantly improves the matching accuracy,

while other modifications decrease in matching performance. The accuracy plot is

seen in Figure 6.7.

Although our theoretical framework is presented for SBMs, we would also like to

examine the empirical extendibility of LSGM to other types of graphs. The degree

distributions of the three connectomes 1, 8 and 29 on a log-log scale are presented
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in Figure 6.8. While our theory is proven in the setting of SBM random graphs,

this example shows the applicability of our method in matching graphs with heavy-

tailed degree distribution. The relationship between graph degree distribution and

discovering matching signals across graphs deserves further investigation.

≥

(a) Connectome 1

≥

(b) Connectome 8

≥

(c) Connectome 29

Figure 6.8: Degree distribution for connectomes 1, 8 and 29. The degrees are plotted

on a log-log scale, demonstrating strong evidence of a heavy-tailed degree distribution.

6.5 Discussion

In the age of big data, the ability to extract information from multiple big graph

data contributes greatly to joint graph inference. The state-of-the-art SGM algo-

rithm has complexity O(n3), which limits its feasibility to implement on big graph

data. We modify the state-of-the-art seeded graph matching algorithm and propose

a divide-and-conquer approach: large seeded graph matching (LSGM), to scale the

algorithm to big graph data. Our proposed algorithm LSGM has complexity O(n2d),
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a remarkable improvement over O(n3). We present the steps of our proposed algo-

rithm in detail, and prove that the LSGM algorithm performs perfectly under some

assumption in the stochastic blockmodel framework.

In the numerical experiments, we explore empirically how much accuracy is lost

when applying the LSGM algorithm instead of the SGM algorithm for matching small

graphs. We also illustrate the robustness of our algorithm to misspecified number of

clusters K, and examine the relationship between correlation, number of seeds and

LSGM matching accuracy. We also demonstrate the scalability of our proposed al-

gorithm, and illustrate that the most time intensive step, matching, is parallelizable

using our algorithm, which significantly decreases the run time over SGM. In real

data experiments, where LSGM is applied on two pairs of brain connectomes, LSGM

discovers connectomic similarities when matching across these connectomes. Further-

more, we investigate further changes such as diagonal augmentation, projection onto

the sphere, and convex initialization for SGM on the algorithm, in order to improve

the empirical matching accuracy. We see that LSGM with projection onto the sphere

has a significant improvement in matching accuracy compared to LSGM.

The large seeded graph matching algorithm is our first attempt to scale the seeded

graph matching algorithms to big graphs within the joint graph inference framework.

Here we present several research aspects worth investigating. In this chapter, we only

consider the bijective graph matching framework. Hence, in the LSGM algorithm,

we have to ensure that the number of vertices coming from each graph is the same.
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Our attempt as discussed in Section 6.3.2.5 solves this issue, but it may not be the

best way to allocate vertices. Further effort on designing an automatic clustering

algorithm that guarantees to be within the bijective framework, and intelligently

allocates the vertices, is worth researching. In addition, we might overcome this hurdle

by enabling non-bijective matching on clusters containing different numbers of vertices

from each graph. We can non-bijectively match within each cluster by padding the

adjacency matrices with empty vertices to make the graphs of commensurate size

([100]), and match the resulting graphs. Vertices matched to isolates could be treated

as unmatched, or we could iteratively remove the matched vertices in the larger graph

and rematch the graphs, yielding a many–to–many matching.

In Chapter 5, we have presented the inferential task of vertex nomination. The

problem of vertex nomination creates a nomination list so that the vertices of interest

are abundant at the top of the list. Although vertex nomination is formulated under

the single graph inference framework, one of our proposed nomination schemes: the

likelihood maximization vertex nomination scheme, borrows from the state–of–the–

art SGM algorithm to solve its maximum likelihood optimization. The likelihood

maximization vertex nomination scheme inherits the computational complexity O(n3)

from SGM, and thus it is limited to implement for graphs with vertices < 1500. Our

proposed LSGM has complexity O(n2d), which is a great improvement over SGM.

Employing LSGM in the likelihood maximization vertex nomination scheme may scale

this scheme to big graph data. This open question is also worth pondering.
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Chapter 7

A Joint Graph Inference Case

Study: the Caenorhabditis elegans

Neural Connectomes

In this chapter, we present our work [18] on a joint graph inference case study

for a pair of neural connectomes of the Caenorhabditis elegans. The C. elegans

connectomes consist of 253 non-isolated neurons with known functional attributes,

and there are two types of synaptic connectomes, resulting in a pair of graphs. We

formulate our joint graph inference from the perspectives of seeded graph matching

and joint vertex classification. Our results suggest that connectomic inference should

proceed in the joint space of the two neural connectomes, which is of independent

neuroscientific importance.
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7.1 Introduction

The Caenorhabditis elegans (C.elegans) is a non-parasitic, transparent round-

worm approximately one millimeter in length. The majority of C.elegans are female

hermaphrodites. [65] first described the worm in 1900 and named it Rhabditis ele-

gans. It was later categorized under the subgenus Caenorhabditis by [69], and then,

in 1955, raised to the generic status by Ellsworth Dougherty, to whom much of the

recognition for choosing C.elegans as a model system in genetics is attributed [77].

The long name of this nematode mixes Greek and Latin, where Caeno means recent,

rhabditis means rod-like, and elegans means elegant.

Research on C.elegans rose to prominence after the nematode was adopted as

a model organism: an easy-to-maintain non-human species widely studied, so that

discoveries on this model organism might offer insights for the functionality of other

organisms. The discoveries of caspases [99], RNA interference [38], and microRNAs

[56] are among some of the notable research using C.elegans.

Connectomes, the mapping of neural connections within the nervous system of an

organism, provide a comprehensive structural characterization of the neural network

architecture, and represent an essential foundation for basic neurobiological research.

Applications based on the discovery of the connectome patterns and the identification

of neurons based on their connectivity structure give rise to significant challenges and

promise important impact on neurobiology. Recently, there has been an increasing

interest in the network properties of C.elegans connectomes. The hermaphrodite
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C.elegans is the only organism with a fully constructed connectome [83], and has one

of the most highly studied nervous systems.

Studies on the C.elegans neural connectomes traditionally focus on utilizing one

single connectome alone [72, 83, 89, 93], although there are many connectomes avail-

able. Notably, Varshney et al. [93] discovered structural properties of the C.elegans

neural connectomes via analyzing the graph statistics of the neural connectomes.

Pavlovic et al. [72] estimated the community structure of the neural connectomes,

and their findings are compatible with known biological information on the C.elegans

nervous system.

Our new statistical approach of joint graph inference looks instead at jointly uti-

lizing the paired chemical and electrical connectomes of the hermaphrodite C.elegans.

We formulate our inference framework from the perspectives of seeded graph match-

ing and joint vertex classification, which we explain in Section 7.3. This framework

gives a way to examine the structural similarity preserved across multiple connec-

tomes within species, and make quantitative comparisons between joint connectome

analysis and single connectome analysis. We find that the optimal inference for the

information-processing properties of the connectome should proceed in the joint space

of the C.elegans connectomes, and using the joint connectomes predicts neuron at-

tributes more accurately than using either connectome alone.
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7.2 The Hermaphrodite C.elegans Con-

nectomes

The hermaphrodite C.elegans neural connectomes consist of 302 labeled neurons

for each organism. The C.elegans somatic nervous system has 279 neurons connecting

to each other across synapses. There are many possible classifications of synaptic

types. Here we consider two types of synaptic connections among these neurons:

chemical synapses and electrical junction potentials. These two types of connectivity

result in two synaptic connectomes consisting of the same set of neurons.

We represent the neural connectomes as graphs G = (V,E). In a neural con-

nectome, the vertices represent neurons, and the edges represent synapses. For the

hermaphrodite C.elegans worm, the chemical connectomeGc is weighted and directed.

The electrical gap junctional connectome Gg is weighted and undirected. This is con-

sistent with an important characteristic of electrical synapses – they are bidirectional

[75]. The chemical connectome Gc has 3 loops and no isolated vertices, while the

electrical gap junctional connectome Gg has no loops and 26 isolated vertices. Both

connectomes are sparse. The chemical connectome Gc has 2194 directed edges out of

279 · 278 possible ordered neuron pairs, resulting in a sparsity level of approximately

2.8%. The electrical gap junctional connecome Gg has 514 undirected edges out of(
279
2

)
possible unordered neuron pairs, resulting in a sparsity level of approximately

1.3%.
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In our analysis, we are interested in the 279 − 26 = 253 non-isolated neurons in

the hermaphrodite C.elegans somatic nervous system. Each of these 253 neurons can

be classified in a number of ways, including into 3 non-overlapping connectivity based

types: sensory neurons (27.96%), interneurons (29.75%) and motor neurons (42.29%).

We also assume that all graphs are undirected, unweighted and non-loopy. That is, the

adjacency matrices are symmetric, binary and hollow. Here we will work with binary,

symmetric and hollow adjacency matrices of the neural connectomes throughout. In

particular, we symmetrize A by A ← A + AT , then binarize A by threshholding the

positive entries of A to be 1 and 0 otherwise, and finally set the diagonal entries of

A to be zero. Indeed, we focus on the existence of synaptic connections, and the

occurrence of loops is low (3 loops in Gc and none in Gg) that we can ignore it.

An image of the C. elegans worm body is seen in Figure 7.1. The pair of the

neural connectomes are visualized in Figure 7.2. In the chemical connectome Gc,

the interneurons are heavily connected to the sensory neurons. The sensory neurons

are connected more frequently to the motor neurons and interneurons than amongst

themselves. In the electrical gap junction potential connectomeGg, the motor neurons

are heavily connected to the interneurons. The sensory neurons are connected more

frequently to the motor neurons and interneurons than among themselves. The con-

nectome dataset is accessible at http://openconnecto.me/herm-c-elegans. Figure

7.3 presents the adjacency matrices of the paired C.elegans connectomes.
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Figure 7.3: (Left): The adjacency matrix Ac of Gc sorted according to the neuron

types. (Right): The adjacency matrix Ag of Gg sorted according to the neuron types.

The red block corresponds to the connectivity among the motor neurons, the green

block corresponds to the connectivity among the interneurons, and the blue block

corresponds to the connectivity among the sensory neurons.
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7.3 Joint Graph Inference

We consider an inference framework in the joint space of the C. elegans neural

connectomes, which we refer to as joint graph inference. We focus on two aspects of

joint graph inference: seeded graph matching and joint vertex classification.

7.3.1 Seeded Graph Matching

See Chapter 6.2 for a detailed description of seeded graph matching. In the

following sub-section, we mainly introduce the problem of joint vertex classification.

7.3.2 Joint Vertex Classification

When we observe the adjacency matrix A ∈ {0, 1}n×n on n vertices and the class

labels {Yi}n−1
i=1 associated with the first (n − 1) training vertices, the task of vertex

classification is to predict the label Y of the test vertex v. In this case study, the class

labels are the neuron types: motor neurons, interneurons and sensory neurons. In this

work, we assume the correspondence between the vertex sets across the two graphs is

known. Given two graphs G1 = (V,E1) and G2 = (V,E2) where V = {v1, . . . , vn−1, v},

and given the class labels {Yi}n−1
i=1 associated with the first (n−1) training vertices, the

task of joint vertex classification predicts the label of a test vertex v using information

jointly from G1 and G2.

Fusion inference merges information on multiple disparate data sources in order
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to obtain more accurate inference than using only single source. Our joint vertex

classification consists of two main steps: first, a fusion information technique, namely

omnibus embedding methodology by [74]; and secondly, the inferential task of vertex

classification.

Omnibus embedding proceeds as follows. Given G1 and G2, we compute their

respective dissimilarity matrices DG1 ∈ Rn×n and DG2 ∈ Rn×n. Then we construct

an omnibus matrix M =

DG1 Λ

Λ DG2

 ∈ R2n×2n, where the off-diagonal block is Λ =

1
2
(DG1 + DG2). We consider classical multidimensional scaling (CMDS) embedding

[10, 25, 87, 88] of M as 2n points into Rd. Let U =

U1

U2

 ∈ R2n×d denote the resulted

joint embedding, where U1 ∈ Rn×d is the joint embedding corresponding to G1, and

U2 ∈ Rn×d to G2. Our inference task is vertex classification. Let Tn−1 := U1([n− 1], :

) ∈ R(n−1)×d denote the training set containing the first n − 1 vertices. We train

a classifier on Tn−1, and classify the test vertex v. The algorithm is presented in

Algorithm 9. A depiction of the joint vertex classification procedure is seen in Figure

7.4.

We demonstrate that fusing both pairs of the neural connectomes generates more

accurate inference results than using a single source of connectome alone. We consider

single vertex classification for comparison, which computes the dissimilarity matrix

DG ∈ Rn×n of one graph, embeds DG to Rd via CMDS, and classifies on the embedded

space. The algorithm is seen in Algorithm 10. A depiction of the single vertex
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Algorithm 9 Joint Vertex Classification

Goal Classify the test vertex vn whose label is Y using both graphs jointly.

Input Let G1 and G2 be two graphs on vertices {v1, v2, . . . , vn−1, vn}, where the

first (n − 1) vertices are associated with known labels. Let A1 ∈ {0, 1}n×n be the

adjacency matrix of G1. Let A2 ∈ {0, 1}n×n be the adjacency matrix of G2. Let D

be a specified dissimilarity measure. Let d be a selected embedding dimension.

Step 1: Dissimilarity. Compute the dissimilarity matrices DG1 and DG2 of G1

and G2 respectively using D.

Step 2: Omnibus. Compute the Omnibus matrix M

M =

DG1 Λ

Λ DG2

 ∈ R2n×2n, (7.1)

where Λ = 1
2
(DG1 +DG2).

Step 3: Embedding. Embed the ominibus matrix M into d-dimensional space

via CMDS. U =

U1

U2

 ∈ R2n×d. U1 ∈ Rn×d is the joint embedding corresponding

to G1, and U2 ∈ Rn×d to G2.

Step 4: Classification. Train on U1[1 : (n− 1), :] ∈ R(n−1)×d and classify vn.
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Figure 7.4: A depiction of joint vertex classification. An illustration of joint vertex

classification, which embeds the joint dissimilarity matrix – the omnibus matrix –

and classifies on the embedded space.

classification procedure is seen in Figure 7.5.

7.4 Discoveries from the Joint Space of

the Neural Connectomes

7.4.1 Finding the Correspondence between the Chem-

ical and the Electrical Connectomes

We apply seeded graph matching on the paired C.elegans neural connectomes,

and discover the underlying structure preserved across the chemical and the electrical

connectomes. Figure 7.6 presents the errorbar plot of the seeded graph matching
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Algorithm 10 Single Vertex Classification

Goal Classify the test vertex v whose label is Y using a single graph.

Input Let G be a graph on vertices {v1, v2, . . . , vn−1, vn}, where the first (n − 1)

vertices are associated with known labels. Let A ∈ {0, 1}n×n be the adjacency

matrix of G. Let D be a specified dissimilarity measure. Let d be a selected

embedding dimension.

Step 1: Dissimilarity. Compute the dissimilarity matrix DG of G.

Step 2: Embedding. Embed the dissimilarity DG matrix into d-dimensional

space via CMDS. U ∈ Rn×d.

Step 3: Classification. Train on U [1 : (n− 1), :] ∈ R(n−1)×d and classify vn.

Figure 7.5: A depiction of single vertex classification. An illustration of single ver-

tex classification, which embeds one single dissimilarity matrix, and classifies on the

embedded space.

182



CHAPTER 7. JOINT GRAPH INFERENCE CASE STUDY

accuracy δ(m), plotted in black, against the number of seeds m ∈ {0, 20, 40, . . . , 180}.

For each selected number of seeds m, we randomly and independently select 100

seeding sets S1. For each seeding set S1 at a given number of seeds m, we apply

the state-of-the-art seeded graph matching algorithm [39]. The mean accuracy δ(m)

is obtained by averaging the accuracies over the 100 Monte Carlo replicates at each

m. As m increases, the matching accuracy improves. This is expected, because more

seeds give more information, making the SGM problem less difficult. The chance

accuracy, plotted in brown dashed line, at each m is 1
n−m , which does not increase

significantly as m increases.

We must note two significant neurological implications based on our graph match-

ing result. First, SGM on the pair of connectomes indicate that the chemical and

the electrical connectomes have statistically significant similar neurological structure.

The second significant implication is more intriguing: If the performance of SGM on

the chemical and the electrical connections were perfect, then one should only need

to analyze one of the paired neural connectomes, and analysis on either connectome

should produce very similar results. If performance of SGM on the chemical and

the electrical connections were no better than random, then it suggests that further

analysis should proceed on the connectomes separately and individually. The seeded

graph matching result on the C. elegans neural connectome is much more significant

than chance but less than a perfect matching. This indicates that the subsequent in-

ference should be performed in the joint space of both the chemical and the electrical
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connectomes. This discovery is noted in [60].

7.4.2 Predicting Neuron Types from the Joint Space

of the Chemical and the Electrical Connec-

tomes

The result of SGM on the C.elegans neural connectomes demonstrates the advan-

tage of inference in the joint space of the neural connectomes, and provides a statistical

motivation to apply our proposed joint vertex classification approach. Furthermore,

the neurological motivation of applying joint vertex classification stems from illus-

trating a methodological framework to understand the coexistence and significance

of chemical and electrical synaptic connectomes.

We apply joint vertex classification and single vertex classification on the paired

C.elegans neural connectomes, and compare the classification performance. The val-

idation is done via leave-one-out cross validation. Here we do not investigate which

specific dissimilarity D, embedding dimension d or classifier are optimal for our clas-

sification task. In this experiment, we consider using three specific dissimilarities:

shortest path, Jaccard dissimilarity, and inverse log-weighted dissimilarity [2]. We

choose support vector machine classifier with radial basis [24] for the classification

step.

The three paired plots in Figure 7.7 present the misclassification errors against the
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Figure 7.6: For each selected number of seeds m ∈ {0, 20, 40, . . . , 180}, we randomly

select 100 independent seeding sets S1 and apply SGM. The SGM mean accuracy

δ(m), plotted in black, is obtained by averaging the accuracies over the 100 Monte

Carlo replicates. As the number of seeds m increases, the accuracy increases. The

chance accuracy, plotted in brown dashed line, is much lower than the SGM accuracy.

This suggests that a significant similarity exists between the two types of synapse

connections. The SGM performance on the C. elegans neural connectome is much

more significant than chance but less than a perfect matching, indicating the optimal

inference must proceed in the joint space of both neural connectomes.
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embedding dimensions d ∈ {2, 5, 8, . . . , 116, 119} for each choice of dissimilarity. For

all three selected dissimilarities and for all the embedding dimensions, the joint vertex

classification (plotted in black) outperforms the single vertex classification (plotted

in magenta). Jaccard dissimilarity has the lowest classification error among the three

selected dissimilarities.

The superior performance of the joint vertex classification over the single ver-

tex classification has an important neuroscientific implication. In many animals, the

chemical synapses co-exist with the electrical synapses. Modern understanding of co-

existence of chemical and electrical synaptic connectomes suggest such a coexistence

has physiological significance. We discover that using both chemical and electrical

connectomes jointly generates better classification performance than using one con-

nectome alone. This may serve as a first step towards providing a methodological

and quantitative approach towards understanding the coexistent significance.

7.5 Summary and Discussion

The paired Caenorhabditis elegans neural connectomes have become a fascinating

dataset for motivating a better understanding of the nervous connectivity systems.

We have presented the unique statistical approach of joint graph inference – inference

in the joint graph space – to study the worm’s connectomes. Utilizing jointly the

chemical and the electrical connectomes, we discover statistically significant similar-
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Figure 7.7: Classification performance of joint and single vertex classification for three

dissimilarities: (top) shortest path, (middle) Jaccard dissimilarity, (bottom) inverse

log-weighted dissimilarity. (Left) Classification on Ac. (Right) Classification on Ag.

For all embedding dimensions, the error rate of joint vertex classification (magenta)

is lower than the single vertex classification (black).
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ity preserved across the two synaptic connectome structures. Our result of seeded

graph matching indicates that the optimal inference on the information-processing

properties of the neural connectomes must proceed in the joint space of the paired

graphs.

The development of seeded graph matching provides a strong statistical motiva-

tion for joint vertex classification, where we predict neuron types in the joint space of

the paired connectomes. Joint vertex classification outperforms the single vertex clas-

sification against all embedding dimensions for our different choices of dissimilarity

measures. Fusion inference using both the chemical and the electrical connectomes

produces more accurate results than using one (either one) connectome alone, and

enhances our understanding of the C.elegans connectomes. The chemical and the elec-

trical synapses are known to coexist in most organisms. Our proposed joint vertex

classification provides a methodological and quantitative framework for understand-

ing the significance of the coexistence of the chemical and the electrical synapses.

Further development of joint graph inference is a topic of ongoing investigation in

both neuroscience and statistics.

188



Chapter 8

Conclusion

In this dissertation, we discuss two aspects of pattern recognition on random

graphs, namely single graph inference – inference on a single observed graph, and joint

graph inference – inference in the joint space of two graphs. We are mainly concerned

with the stochastic blockmodels, where we develop several inference methodologies for

vertex classification, vertex clustering, vertex nomination, scalable graph matching

and joint vertex classification.

In Chapter 2, we introduce several important random graph models which are

essential for our study of pattern recognition on graphs. Details of the latent position

graph, the random dot product graph, and the stochastic blockmodel are presented.

We prove reparameterization of the stochastic blockmodel into the random dot prod-

uct model, and present the adjacency spectral embedding method.

Under the single graph inference framework, we intend to extract information us-
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ing only one single graph. In Chapter 3, we present the task of vertex classification,

and propose sparse representation vertex classification. Our proposed sparse repre-

sentation vertex classifier represents the test vertex as a sparse linear combination of

the training vertices. This classifier is robust to data contamination, as demonstrated

in our proposed contamination stochastic models. We compare the performance of

sparse representation with two classifiers following adjacency spectral embedding.

Our proposed classifier outperforms the other two classifiers. For stochastic block-

models, when the model dimension is known, the nearest neighbor classifier following

adjacency spectral embedding and the linear discriminant analysis following adja-

cency spectral embedding are both Bayes optimal such that they achieve the lowest

possible misclassification error. However the model dimension is not known in practi-

cal graph inference. We see that the sparse representation classifier has superior and

stable performance over the other two embedding-based classifiers.

In Chapter 4, we propose a vertex clustering approach, which employs adjacency

spectral embedding and subsequently a model-based clustering algorithm. We focus

on illustrating the practical value of our proposed approach in online advertising. We

explain the basic concepts in online advertising and the business motivation for vertex

clustering approach. We utilize a real online campaign dataset, and demonstrate the

advantage of using our clustering algorithm to mining information that is valuable for

business. We use business metrics, such as revenue, ad impressions, or website topics

related to online advertising, to evaluate the clustering significance. We find that
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our approach discovers more significant clusters, indicating its advantage in online

advertising.

In Chapter 5, we present the inferential task of vertex nomination. Assume the

graph is a realization of a stochastic blockmodel. Suppose we are interested in a

block of vertices in a graph. The inferential task of vertex nomination is to cre-

ate a nomination list, where the interesting vertices are abundant at the top of the

list. We propose several vertex nomination schemes: canonical vertex nomination

scheme, likelihood maximiazation vertex nomination scheme, spectral partitioning

vertex nomination scheme, and canonical sampling vertex nomination scheme. The

canonical vertex nomination scheme is the best possible scheme measured using the

mean average precision. However it is limited to few tens of vertices. The likelihood

maximization vertex nomination achieves good nomination performance on graphs of

thousands of vertices. The canonical sampling vertex nomination scheme is a scal-

able version of the canonical vertex nomination, so it preserves the “gold standard”

property and scales to big graphs. This concludes our presentation of single graph

inference framework.

Under the joint graph inference, we discover information in the joint space of mul-

tiple graphs: in this dissertation, we consider two graphs. In Chapter 6, we present

the problem of seeded graph matching (SGM) and propose our scalable seeded graph

matching to large graphs. Our proposed large seeded graph matching (LSGM) algo-

rithm is a divide-and-conquer approach, which jointly embeds two graphs, transform
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them in the same space, cluster the verticces, and apply graph matching within the

clusters. We compare SGM with several existing state-of-the-art graph matching

algorithms, and illustrate the usefulness of seeds in improving graph matching per-

formance. We demonstrate the scalability, robustness and the performance trade-off

between SGM and LSGM in simulation. We also apply LSGM to large human brain

connectomes, and discuss the values of LSGM in neuroscience.

In Chapter 7, we present a joint graph inference case study on the paired Caenorhab-

ditis elegans neural connectomes. In this case study, we explore two aspects of joint

graph inference, namely seeded graph matching and joint vertex classification. The

result of seeded graph matching indicates that the optimal inference regarding the

information processing-properties must proceed in the joint space of the neural con-

nectomes. The result of joint vertex classification and its superior performance over

single vertex classification shows that joint connectome analysis produces more ac-

curate inference than single connectome analysis. Our proposed joint vertex classifi-

cation provides a methodological and quantitative framework towards understanding

the significance of the coexistence of the chemical and the electrical synapses.
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