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Abstract

In this thesis, we investigate how to perform inference in settings in which the data

consist of different modalities or views. For effective learning utilizing the information

available, data fusion that considers all views of these multiview data settings is needed.

We also require dimensionality reduction to address the problems associated with high

dimensionality, or “the curse of dimensionality.” We are interested in the type of infor-

mation that is available in the multiview data that is essential for the inference task. We

also seek to determine the principles to be used throughout the dimensionality reduction

and data fusion steps to provide acceptable task performance. Our research focuses on

exploring how these queries and their solutions are relevant to particular data problems

of interest.
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Chapter 1

Introduction

1.1 Data Settings

It is a challenge to perform a tractable analysis on data obtained from disparate

sources (such as multiple sensors). The increasing variety of sensor technologies and

the large number of sensors introduce challenges but also hold promise for effective in-

ference. One of our contributions is the development of well-defined simple settings that

provide intuition about the right approaches to data fusion and lead to the development

of inference methods that are useful in practice.

Our world view of data fusion from multiple sensors is depicted in Figure 1.1. We

refer to the entities of interest for pattern recognition as objects. These might be real

objects or abstract concepts. The data consist of measurements for a collection of these

objects.

1



CHAPTER 1. INTRODUCTION: MATCHED DATA AND DATA FUSION

ρ
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Figure 1.1: Multiple Sensor setting

We assume that these objects lie in some “object” space Ξ and that each sensor has

another “view” of the objects. The measurements recorded by the ith sensor lie in some

“measurement space” Ξi. The usual approach in pattern recognition is to use feature ex-

tractors on the spaces for a feature representation in Euclidean space and to use classical

pattern recognition tools for the exploitation task. The alternative approach is to acquire

the dissimilarities between the group of objects and use them either to find an embed-

ding in a low-dimensional Euclidean space for which classic statistical tools are available

for inference or to use dissimilarity-based versions of pattern recognition tools [1]. We

use the embedding approach so that we avoid the “curse of dimensionality” with the

low embedding dimension, allowing us to still use classic statistical tools. Additionally,

the embeddings of dissimilarities from different conditions need to be “commensurate”

so that sensor measurements can be compared in a meaningful way (i.e., the degree of

2



CHAPTER 1. INTRODUCTION: MATCHED DATA AND DATA FUSION

(dis)similarity can be inferred) or jointly used in inference. This is accomplished by maps

ρk, k = 1, . . . , K frommeasurement spaces Ξk to a low-dimensional commensurate space

X , visualized in Figure 1.1. Learning these maps from data is an important part of our

novel approach.

1.1.1 Exploitation Task

Data fusion is a very general concept, and here, we will clarify the specific meaning

of data fusion and the setting that we have in mind. The exploitation task in which

we are interested might involve (perhaps notional) complex objects or abstract entities

that are not practically representable. The objects are members of a (perhaps notional)

space called “object” space, Ξ in Figure 1.1. We will extract different “views”, “measure-

ments”, or “data modalities” from these objects (which we will refer to as “conditions”),

and these observations will be elements of the measurement space for those conditions

(Ξk for kth condition). Each of the objects will have an observation in each of the dif-

ferent conditions, and the corresponding observations across different conditions will

be “matched”. Given new observations from these different conditions, is it possible to

determine whether they are “matched”? If a group of observations from each condition

are “matched” to each other but the specific correspondences are unknown, is it possible

to find the true correspondences? Different approaches are proposed in this dissertation

to address these questions.

3



CHAPTER 1. INTRODUCTION: MATCHED DATA AND DATA FUSION

1.2 Dissimilarity representation

Significant progress been made in the theory and applications of pattern recognition,

particularly in problem settings in which the data are available or assumed to be avail-

able as vectors in metric spaces. There are still many problems for which, due to the

nature of the setting, one only has access to dissimilarities, proximities, or distances be-

tween measurements or a subjective assessment of the similarities of objects. While our

approach depends naturally on the representation, the inference task is agnostic about

this representation issue. The gap between the two kinds of representation of data can

be bridged using various techniques, such as different kinds of embedding methods, and

by computing dissimilarities between entities.

[1] is an excellent resource that compiles the research on learning from dissimilarity-

based representation. In the introduction, the authors clarify the distinction between

statistical and structural (syntactic) pattern recognition, which was discussed previously

in [2]. Statistical pattern recognition addresses the analysis of features, which are mea-

sured values for object attributes. Syntactic pattern recognition uses a relational view of

objects for representation. In both cases, the task of discrimination can rely on distances

(however they are defined). P¦kalska and Duin suggest that dissimilarity measures are

a natural bridge between these types of information, and their applicability to multi-

ple settings motivates our use of dissimilarity representation in information fusion. For

feature-based representation, the features are either raw or processed measurements from

4



CHAPTER 1. INTRODUCTION: MATCHED DATA AND DATA FUSION

sensors that observe the objects, and the representation of each object is a single point in

the representation space, each dimension corresponding to a feature. Dissimilarity-based

representation relies on a dissimilarity measure, a way of quantifying the dissimilarity,

proximity, or similarity between any two objects. Preferably, the dissimilarity is designed

for the inference task at hand. There are multiple ways of comparing entities (some more

natural than others), which is the basis for one of the arguments behind our approach to

information fusion from disparate data sources, including separate sources of the same

modality. When the data come from separate sensors that are of the same type, the same

measurements might have different dissimilarity representations according to subjective

judgments or different dissimilarity measures.

1.3 Match Detection

We will now provide a formal description of the problem that was mentioned in

subsection 1.1.1, which was the initial motivation for our investigations, along with a

few general remarks. We will describe this problem in more detail in chapter 4.

Consider n distinct objects, which are described with a finite number of measure-

ments. Each of the measurements xik lies in the corresponding space Ξk, and the mea-

5



CHAPTER 1. INTRODUCTION: MATCHED DATA AND DATA FUSION

surements xik are matched for the same k index.

Ξ1 · · · ΞK

Object 1 x11 ∼ · · · ∼ x1K

...
...

...
...

Object n xn1 ∼ · · · ∼ xnK

To each pair of measurements xik, xjk in the same space, we can assign a dissimilarity

value δijk = δ{xik, xjk}, which is dependent on the space Ξk. We assume the dissimilar-

ities are symmetric, are always non-negative and that they are positive and 0 according

as the two arguments xik, xjk are different or the same. We exploit this training set of

dissimilarities to perform inference on the following exploitation task:

Given the dissimilarities between K new measurements/observations (yk; k ∈ [K])

and the previous n objects under K conditions, we test the null hypothesis that “these

measurements are from the same object” against the alternative hypothesis that “they are

not from the same object” [3]:

H0 : y1 ∼ y2 ∼ · · · ∼ yK versus HA : ∃i, j, 1 ≤ i < j ≤ K : yi � yj

The null hypothesis can be restated as the case in which the dissimilarities are matched,

and the alternative can be restated as the case in which they are not matched.

We represent the dissimilarities between n objects in the form of n × n dissim-

ilarity matrices {∆k; k = 1, . . . , K} where the entries for the kth dissimilarity ma-

trix are {δ(k)ij ; i = 1, . . . , n; j = 1, . . . , n}. For the matching task, we are given

K vectors of new dissimilarities {Dk, k = 1, . . . , K} each of which has the entries

6
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{δ(k)i,new; i = 1, . . . , n; k = 1, . . . , K}, where δ(k)i,new is the dissimilarity between xik and

yk.

For the hypothesis testing problem, we are to compute the test statistics for the ob-

jects represented by the given dissimilarities. In order to compute the test statistics, it

is necessary to obtain a collection of mappings (one from each condition) to a lower-

dimensional space such that new observations from each condition are made commen-

surate when they are mapped to this space. These mappings do not need to be explicitly

defined; they can be the results of the embedding operation for a particular dataset. If the

embedding of the in-sample dissimilarities ({∆k; k = 1, . . . , K}) results in a unique map-

ping, out-of-sample (OOS) embeddings could be adjoined to the embedding of in-sample

dissimilarities.

A few points should be mentioned to distinguish our approach from related ap-

proaches and emphasize the specific challenges of the inference task.

Remark Because the data sources are “disparate”, it is not immediately obvious how a

dissimilarity between an object in one condition and another object in another condition

can be computed or even meaningfully defined. In general, these between-condition,

between-object similarities are not available.

Remark Whether the data are collected in dissimilarity representations for each condi-

tion or whether dissimilarities are computed for the observations that are feature ob-

servations at each condition is not relevant to our exploitation task. We assume that

dissimilarities for each condition are made available for inference purposes (perhaps by

7
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experts in the problem domain).

Remark The exploitation task under consideration is not an accurate reconstruction of

these feature observations, even if it does exist. If the embeddings are considered good

enough to be useful for the inference task, the quality of the embeddings are considered

acceptable. Therefore, the quality of our representation will be dependent on the bias-

variance tradeoff, where, by choosing a low-dimensional representation, we might be

introducing more model bias, but the representation will be more robust with respect to

noise, which might result in smaller errors in the inference task.

We will use this inference problem to elucidate two concepts that we introduce in

chapter 5. Our novel solution to this matching problem will use those concepts as two

error criteria to be minimized. We seek the mappings from each condition to the com-

mon low-dimensional space that minimize these error criteria and are most appropriate

for the inference task.

8



Chapter 2

Related Work

2.1 Multiple View Learning

When data are collected using a multitude of sensors or under significantly different

environmental conditions, we refer to the data setting as a multiple view setting, in which

each “view” provides possibly complementary information about the observed objects1.

Multiple view learning seeks to exploit these views simultaneously to be more successful

in the learning task.

In data settings for multiview learning, the data are observations from K ≥ 2 views,

where both the relationship between the features from different views and the relation-

ship between the features and the quantity to be predicted are unknown. The objective
1We use the term “object” loosely because the observed objects could be topics or concepts and the

collected data could be text documents about those topics or images that are related to a concept, for
example.

9



CHAPTER 2. RELATED WORK

is to train the best predictor. It is possible to use all of the features in different views

(i.e., concatenate the observation vector from each view) and perform feature selection

without considering from which view a feature is obtained. However, this ignores the

fact that the modalities can be quite diverse and that combining features from different

modalities is not always meaningful. Consider features extracted from an image and an

audio segment as features from different modalities. A classifier that treats these features

in the same way without considering their modalities is unlikely to perform well. It is

more reasonable to use the prior information that the features in the same modality are

much more likely to be correlated or commensurate with each other than features in dif-

ferent views and use predictors more suited to each modality if the different modalities

are diverse.

Multiple View Learning is a burgeoning field, and there are many cases where one

has to leverage many different related datasets for an inference task. For example, for

learning tasks related to webpages (such as webpage categorization and ranking of rele-

vant webpages), both the content of the webpages and the hyperlink structure between

the webpages can be used.

For social networks, people have different relationships with other people in their

networks; networks may be based on similarity of interests, geographical proximity and

job relationships, among factors. Combining information from different social networks

would provide a more complete perspective of the underlying social life of the people in

the network, and one would expect a better performance for all kinds of inference based

10
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on the complete social network data compared with a social network based on a single

type of relationship (assuming one does not fall into the trap of overfitting due to having

more features in the complete social network data).

In addition, when it is necessary to collect more data, it is often easier to collect

data in different modalities than it is to collect more samples in a single modality. For

example, in medical studies, it is much easier to collect medical data from already re-

cruited patients compared with recruiting new patients. Data from different modalities

might provide complementary information and could result in much more effective pre-

dictors, as opposed to data from a single modality that provides diminishing returns with

increasing sample size.

Some of the well-studied subfields of machine learning, such as dimensionality re-

duction, are also relevant to our multiple view setting. As more data are collected, a

low-dimensional representation of the data is necessary to be learned to avoid the curse

of dimensionality. An interesting question is how dimensionality reduction can be per-

formed in a multiple view setting: is it better to perform dimensionality reduction sep-

arately for each modality and concatenate the resulting low-dimensional representations

or to find a joint low-dimensional representation for all of the modalities simultaneously?

This is a question that we attempt to answer for the data settings we discuss in this thesis.

In the case of missing data, observations of features in the same view could be missing

altogether. In the case of such structurally missing data, it makes sense to train an ensem-

ble of predictors that use features from different views independently, so that accurate

11
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predictions can be made even if observations from some of the views are missing.

In [4], the authors discuss an example of multiview learning problems: classification

of a multi-lingual document corpus. They co-train classifiers for single-language data that

jointly minimize the loss in each single language along with the disagreement between

classifiers on training examples. Their findings support the intuition that classifiers based

on multiview learning perform better than classifiers trained with data from only a single

view.

In [5], the inference task is classification. Features from multiple modalities are fused

via canonical correlational analysis, a classical statistical method which computes max-

imally correlated projections of data. This fusion leads to better classification perfor-

mance compared with the original set of features in a typical classification problem.

A popular approach to multiview learning is multiple kernel learning, which is the

task of learning a kernel matrix for each modality and combining these kernels in an

optimal way (with respect to the inference task). For K views, let the ith datum for

the kth view be represented as Xik, i ∈ {1, . . . n}, k ∈ {1, . . . , K}. For the data in

the same kth view, let Kk be kernel matrix defined for that view, whose (i, j)th entry is

κk(Xik, Xjk) where i, j ∈ 1, . . . , n. Because any convex combination of the kernels, 2

is also a kernel, it is possible to compute a joint kernel κ that uses all of the multiview

data by a convex combination of the kernels in each view. Assuming that a kernel can

be defined for each view, the learning problem is to find the optimal (for the inference

2 A convex combination of the kernels is
K

k′=1 αk′κk′ such that
K

k′=1 αk′ = 1 and αk′ ≥ 0, k′ ∈
{1, . . . ,K}.
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task) set of coefficients {αk}. These parameters are usually estimated using training data.

Denoting the optimal {αk} by {α̂k}, K̂ =


k α̂kKk is the optimal kernel whose (i, j)th

entry is


k α̂kκk(Xik, Xjk). Given a new datum x = [x1 . . . xk] which consist of K

views, the kernel function for each view, κk, along with {α̂k} is used to compute the

inner product for the joint kernel:

κ(x, .) =

i


k

α̂kκk(xk, Xik).

There are many papers on “Multiple Kernel Learning” in the literature [6–8], which

are reviewed in a comprehensive survey [9]. Choi et al. [10] use the Markov random

walk interpretation of multiple kernel matrices to find a single kernel matrix that de-

pends on the joint probability of the random walks in different views. [11] is another

work that uses the randomwalk interpretation to deal with multiview data. The learning

task in [11] is spectral clustering with multiple graphs.

2.2 Transfer Learning

Methods that utilize training data in one domain as auxiliary information for learning

in another domain are categorized as “transfer learning” [12]. Sometimes, the source

domain and the target domain are actually the same, but the distribution of the data is

different, due to the inherent differences between the way in which the training and test

data were collected. We call this phenomenon sample selection bias or covariance shift

(SSB/CS) [12, 13].
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According to [14], this SSB/CS phenomenon is commonly seen in real-life data anal-

ysis problems and is usually understated by practitioners. To evaluate novel classifiers,

the classifiers are trained on a portion of the available data and tested on the held-out

data. Therefore, in the evaluations of classifiers, the assumption that training and test

data come from the same distribution is usually valid. However, any performance im-

provements that a new classifier model has over the baseline would be overwhelmed by

the sample selection bias. Thus, one should be skeptical about improving accuracy scores

for benchmark datasets in machine learning and treating them as evidence of progress.

We now clarify the differences between transfer learning and SSB/CS problems. Let

y denote the random variable for the class label for classification or the dependent vari-

able for regression and X denote the random variates that we use for the learning task.

We use the common assumption that the data are iid. Suppose we have two domains

Ds and Dt from which the training data and test data, respectively, are collected. These

are called the source and target domains, respectively. The training data (Xi, yi) ∈ Ds

and are drawn from the joint distribution P(X, y). The test data (X ′
i, y

′
i) ∈ Dt and

are drawn from the joint distribution P′(X, y). The most common objective is to infer

P′(X, y) given an iid sample of (Xi, yi) ∈ Ds. The learning task is usually to minimize

E[`(y, argmaxy P̂′(y|X))], with respect to P̂′(y|X) where `(·, ·) is the loss function cho-

sen for the task, P̂′(y|X) is an approximation to P′(y|X) based on the training and the

test data. Basically, we require an inference method for the data distribution of the target

domain P̂′(y|X) that minimizes the expected loss for prediction in the target domain.
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In the classical supervised learning setting, the source and target domains are the

same, and P(X, y) is assumed to be the same as P′(X, y). In the covariate shift problem

setting, the target domain is the same as the source domain,Ds = Dt = D, and P(y|X) ≈

P′(y|X), whereas P(X) 6= P′(X). When we cannot make either of the assumptions

P(X) = P′(X) or P(y|X) = P′(y|X), we have the sample selection bias problem [13].

In some learning problems, the source and target domains are different Ds 6= Dt,

and all or a considerable portion of the labels {y′i} in (X ′
i, y

′
i) ∈ Dt are missing. In

this case, domain adaptation methods allow for the exploitation of both the data in the

source domain {(Xi, yi)} and the data in the target domain {(X ′
i, y

′
i)} (where some y′i

might be missing) to construct a good predictor for the target domain [15–18].

Various “domain adaptation” approaches [18, 19] assume the existence of mappings

to a common latent space Dcom, Ψs : Ds → Dcom and Ψt : Dt → Dcom such that the class

conditional distributions P(Ψs(X)|y) ≈ P(Ψt(X
′)|y′ = y). If these mappings to the

commensurate space can be inferred, then they can be used to predict y′ given Ψt(X
′),

even if no (X ′
i, y

′
i) ∈ Dt pairs exist. In [18], for example, the distance between the

conditional distributions P(Ψs(X)|y) P(Ψt(X
′)|y′ = y) is computed using the Maxi-

mum Mean Discrepancy measure, and the mappings Ψs and Ψt are inferred using the

minimization of the MMD measure.
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2.3 Manifold Alignment

Many efforts have been made toward solving “manifold alignment”, which is a prob-

lem related to both our data fusion problem and the transfer learning problem (sec-

tion 2.2). “Manifold alignment” seeks to find correspondences between observations

from different “conditions”. The setting that is most similar to ours is the semi-supervised

setting, in which a set of correspondences are given and the task is to find correspon-

dences between a new set of points in each condition. In contrast, our hypothesis testing

task is to determine whether any given pair of points is “matched”. The proposed solu-

tions follow a common approach in that they look for a common commensurate space

such that the representations (possibly projections or embeddings) of the observations

in the commensurate space match.

Note the similarity of the description of “manifold alignment” to the latent space

approach for domain adaptation. For both domain adaptation and manifold alignment,

the objective is to find mappings to a common space so that the data in one domain can

be used for inference in the other domain.

Wang and Mahedavan [20] suggest an approach that uses embedding followed by

Procrustes Analysis to find a map to a commensurate space. Given a paired set of points,

Procrustes Analysis [21] finds a transformation from one set of points to another in

the same space that minimizes the sum of squared distances, subject to some constraints

on the transformation (see chapter 7). In the problem mentioned in [20], the paired
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set of points correspond to low-dimensional embeddings of kernel matrices. For the

embedding step, Laplacian Eigenmaps were used, though their algorithm allows for any

appropriate embedding method.

Zhai et al. [22] find two projection matrices to minimize three terms in an energy

function similar to our Joint Optimization of Fidelity and Commensurability ( JOFC)

approach (see chapter 5). One of the terms is the correspondence-preserving term, which is

the sum of the squared distances between corresponding points and is analogous to our

commensurability error term. The other two terms are manifold regularization terms

and consist of the reconstruction error for a Locally Linear Embedding of the projected

points. These terms, which are analogous to fidelity terms, ensure that the projections

in the lower dimension retain the structure of the original points by preserving the

local neighborhood of points. For fidelity error terms in our setting, the preservation

of the structure is accomplished by preserving the dissimilarities. Ham and Lee [23]

solve the problem in a semi-supervised setting using a similar approach: minimizing a

cost function of three terms, with two terms for fidelity of embedding and one term for

commensurability.

In a paper by Baumgartner et al. [24], the joint embedding of kernel matrices is for-

mulated as the optimization of a single objective function that combines Fidelity and

Commensurability terms. They use Local Linear Embedding Method for the joint em-

bedding and introduce a tradeoff parameter between inter-dataset and intra-dataset error

(corresponding to commensurability and fidelity, respectively) into the objective func-
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tion. This approach could be used as another tool for the investigation of the tradeoff

between Fidelity and Commensurability .

Three-way Multidimensional Scaling [25, 26] assumes that the different “conditions”

of the data are linear transformations of a single configuration and aims to find this single

configuration and the linear transformation. In this approach, the mappings {ρk} that

we define in Figure 1.1 and Figure 1.1 are assumed to be embeddings followed by linear

transformations (see also subsection 3.2.7).

18



Chapter 3

Variants of Multidimensional Scaling

and Principal Components Analysis

3.1 Multidimensional Scaling

Multidimensional Scaling (MDS) [1, 26, 27] is the general term that is used to de-

scribe methods to embed dissimilarities as points in a Euclidean space. The embeddings

are a configuration of points in the Euclidean space with a chosen dimension d such that

the distances between the embeddings are as close as possible (in various senses) to the

respective original dissimilarities. Different criterion functions can be used to measure

how close the distances are to the given dissimilarities, thereby leading to different em-

bedded configurations. These different variants of MDS can be described using a single

formulation, which are introduced in section 3.2.
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Consider a set of n objects. Let us denote the set {1, . . . , n} by [n]. For each pair of

objects with indices i, j ∈ [n], the dissimilarity value, denoted by δij , is a nonnegative

real number that quantifies how dissimilar those two objects are. The collection of these

values form the matrix ∆, which is an nxn dissimilarity matrix.

The dissimilarities have to satisfy δij ≥ 0, δij = 0 if and only if i = j, and δij =

δji, ∀i, j ∈ [n]. Therefore, ∆ is nonnegative, hollow, symmetric and its only zero

entries appear on the diagonal. If, in addition, each triplet of dissimilarities δij , δik and

δik, i, j, k ∈ [n] satisfies the triangle inequality, then ∆ is called a distance matrix.

3.2 Different criteria for MDS

Multidimensional Scaling methods find a configuration of points {xi; i ∈ [n]} in

a finite-dimensional Euclidean space, whose interpoint distances approximate the given

dissimilarities {δij; i, j ∈ [n]}. There are various variants of MDS that use different mea-

sures of error for this approximation. In general, the criteria minimize the discrepancy

between f(δij) and d(xi,xj) ∀i, j ∈ [n], with respect to {xi} where d(·, ·) is the Eu-

clidean distance function and f(·) is a monotonically increasing function that depends

on the MDS variant. Depending on whether the MDS variant is “metric” or “non-

metric”, f(·) is either a linear or nonlinear transformation. Specific variants of MDS are

defined by f(·) and the measure of discrepancy between f(·) and d(·, ·). We call the lat-

ter the criterion function, which is optimized with respect to the embedding coordinates.
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We represent these coordinates in a ntimesd configuration matrix X ∈ Mntimesd, whose

ith row is xi. We also represent the n × n distance matrix whose entries are interpoint

distances between the rows of X with the matrix-valued function, D(X) and the (i, j)th

entry of the distance matrix (the distance between ith and jth rows of X) with Dij(X).

3.2.1 Metric MDS

For metric MDS, transformations of the form f(z) = az+b are allowed where a > 0

and b are scalars.

3.2.1.1 Stress Criterion

Setting f(z) = z and choosing the discrepancy measure between the dissimilarities

and distances of embedded points to be `2, the criterion of the resulting MDS variant is

called the raw stress criterion. Additionally, weights ({wst, s, t ∈ [n]}) can be intro-

duced for each discrepancy term. Denoting the matrix composed of the weights by W ,

and the configuration matrix X that represent the embedded points, we write

σW (X) =

s,t∈[n]

wst(Dst(X)− δst)
2 (3.1)

Subtypes of the Stress criterion are identified by different choices for {wst, s, t ∈ [n]}

that depend on the original dissimilarities δst. For example, choosing all wst to be
k,l∈[n] δ

2
kl

−1

, ∀s, t ∈ [n] normalizes the stress so that the stress value is always be-

tween 0 and 1. One can compare different configurations by this standardized stress
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value and determine whether a configuration is a good fit based on this value.

Another related criterion is the S-Stress criterion, which involves squares of dissim-

ilarities and distances:

σSSTRESS(X) =

s,t∈[n]


D2

st(X)− δ2st
2
.

3.2.1.2 Sammon Mapping Criterion

This is a specific case of the Stress criterion in which the weights {wst, s, t ∈ [n]}

are set to be δ−1
st


k<l δkl

−1. These weights normalize the squared discrepancies in the

stress criterion by the magnitude of the original dissimilarities so that the discrepancy

terms for the larger dissimilarities do not dominate the optimization of the criterion

function. As a result, small δst are preserved just as well as large δst.

3.2.2 Ordinal (Nonmetric) MDS

For Nonmetric MDS, f(·) is allowed to be any monotonic transformation. Specif-

ically, in psychometric applications of MDS, the assumption that the dissimilarities are

a scaled-shifted version of the “true” dissimilarity is an unwarranted assumption. Even,

the existence of a “true” dissimilarity is questionable. Even if the dissimilarities are phys-

ical distances, humans tend to have biased estimates of those distances [28]. (i.e. long

distances are usually underestimated.) The Nonmetric variant of MDS is also called

“ordinal”, because what is preserved is the rank of dissimilarities, not their magnitude.
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3.2.3 Classical MDS and the Strain Criterion

An n× n matrix ∆ = [δst] is a distance matrix iff

• δst = δts, ∀s, t ∈ [n] ,

• δss = 0, ∀s ∈ [n],

• δst > 0, ∀s, t ∈ [n], s 6= t and

• if it obeys the triangle inequality δsr + δrt ≥ δst for any triple s, r, t ∈ [n].

∆ is Euclidean if there exists a configuration of points xi ∈ Rd such that for any pair

s, t ∈ [n], δst = d(xs,xt).

Consider the case in which ∆ is Euclidean. Note that if {xi}, i ∈ [n] satisfy δst =

d(xs,xt) for any pair (s, t), then, for any constant vector u and any rotation/reflection

matrix R, the same group of points transformed using R and u, i.e. {Rxi + u}, also

satisfy the same distance constraints. To remove the translational ambiguity, we setn
i=1 xi to 0. How can we recover the original configuration {xi, i ∈ [n]} from ∆

(perhaps up to rotation/reflection)?

The relation between the entries of ∆ and {xi} can be written as

δ2st = d(xs,xt)
2 = ‖xs‖2 + ‖xt‖2 − 2xs · xt (3.2)
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for s, t ∈ [n]. Summing (3.2) over s, over t, and then over s and t, we obtain the

following identities


s′

δ2s′t =

s′

‖xs′‖2 + n‖xt‖2 − 2

s′

xs′ · xt t ∈ [n] (3.3)


t′

δ2st′ =

t′

‖xt′‖2 + n‖xs‖2 − 2

t′

xs · xt′ s ∈ [n] (3.4)


s′,t′

δ2s′t′ = 2n

t′

‖xt′‖2 − 2

s′

xs′ ·

t′

xt′ (3.5)

.

Dividing each equality by 1
n
, 1
n
and 1

n2 , respectively, and using the fact that
n

i=1 xi =

0,

1

n


s′

δ2s′t =
1

n


s′

‖xs′‖2 + ‖xt‖2 t ∈ [n] (3.6)

1

n


t′

δ2st′ =
1

n


t′

‖xt′‖2 + ‖xs‖2 s ∈ [n] (3.7)

1

n2


s′,t′

δ2s′t′ =
2

n


t′

‖xt′‖2. (3.8)

Reorganizing terms, we obtain

‖xt‖2 =
1

n


s′

δ2s′t +
1

n


s′

‖xs′‖2 t ∈ [n] (3.9)

‖xs‖2 =
1

n


t′

δ2st′ +
1

n


t′

‖xt′‖2 s ∈ [n] (3.10)

0 = − 2

n


t′

‖xt′‖2 +
1

n2


s′,t′

δ2s′t′ . (3.11)

Summing the three equations, (3.9), (3.10), and (3.11) and replacing ‖xs‖2 + ‖xt‖2

in the original equation (3.2) with this sum, we obtain
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δ2st =
1

n


s′

δ2s′t+
1

n


s′

‖xs‖2+
1

n


t′

δ2st′+
1

n


t′

‖xt′‖2−
2

n


t′

‖xt′‖2+
1

n2


s′,t′

δ2s′t′−2xsxt

for all s, t ∈ [n].

This expression is simplified to

δ2st =
1

n


s′

δ2s′t +
1

n


t′

δ2st′ +
1

n2


s′,t′

δ2s′t′ − 2xsxt.

for all s, t ∈ [n].

Rearranging terms, we obtain the dot product of xs and xt:

xsxt =
−1

2
{δ2st −

1

n


s′

δ2s′t −
1

n


t′

δ2st′ +
1

n2


s′,t′

δ2s′t′}.

Some of the sums in the above expression can be written in matrix notation as fol-

lows:

1

n
1T∆2 =

1

n


s′

δ2s′t

1

n
∆21 =

1

n


t′

δ2st′

where∆2 is the n×nmatrix whose entries are the squares of the respective entries of∆.

Using the above expressions and placing {xi} row-wise into an n × d matrix X, we

can write all of the terms in matrix notation:

XXT =
−1

2
{∆2 − 1

n
11T∆2 − 1

n
∆211T +

1

n2
11T∆211T}.

The final expression is

XXT =
−1

2
{(In −

1

n
11T )∆2(In −

1

n
11T}.
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Therefore, the configuration matrix X can be recovered using a eigenvalue decompo-

sition of Z = −1
2
(H∆2H), where H = (In − 1

n
11T ). If the eigenvalue decomposition of

Z is Z = UDUT , the solution for X is X̂ = UD
1
2 where D 1

2 is the entrywise square-root

of D. Also, X̂ = XR for some rotation matrix R, i.e. the solution has a rotation ambi-

guity. Note that because∆ is Euclidean, all diagonal elements ofD are nonnegative, and

the entries of D 1
2 are real numbers.

Here it is useful to make the following definition:

Definition 1. A n× nmatrix∆ is d-Euclidean Distance Matrix (d-EDM) iff it is Euclidean

for embedding dimension d, but not d− 1.

For dimensionality reduction, we require a lower-dimensional configuration in Rd′ ,

where d′ < d whose interpoint distances approximate ∆ (a d-EDM) . For classical MDS,

we seek the configuration Xd′ that minimizes ‖XXT −Xd′XT
d′‖2F . This criterion function

is called the “strain” criterion. The minimizer of the strain is found by using the d′ largest

diagonal elements of D (which are the eigenvalues of Z ) as the diagonal elements of Dd′

and the corresponding eigenvectors as the columns of Ud′ . These matrices yield an n×d′

configuration matrix, X̂d′ = Ud′D
1
2

d′ .

If ∆ is not Euclidean, Z is not positive semidefinite and has negative eigenvalues. In

this case, these eigenvalues would be replaced by zeros. We would then proceed with

choosing d′ largest eigenvalues of Z.

Note also that the classical MDS solution is nested, i.e., if the n × d′ matrix, Xd′ , is

the cMDS solution of the d′ dimensional configurations, the first d′ − 1 columns of Xd′
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comprise the solution for d′ − 1 dimensional configurations (assuming that the diagonal

entries of Dd′ are sorted in descending order.)

3.2.4 Relationship with other embedding methods

Note that Tang et al. [29] note another connection between embedding methods by

showing that the spectral embedding for an unnormalized Laplacian matrix, L (subject

to an appropriate scaling of dimensions), is equivalent to the classical MDS solution with

the inner product matrix Z = L†, where L† is the pseudo-inverse of L [29]. Therefore,

for any d-dimensional spectral embedding of the Laplacian L with Laplacian Eigenmaps,

there exists an omnibus dissimilarity matrix M , the (d-dimensional) cMDS embedding

of which would give the same configuration.

3.2.5 Effect of Perturbations

To determine how robust the embeddings are to error in dissimilarity measurements,

perturbation analysis is necessary. Two papers by Sibson [30] investigate how small

changes in the dissimilarity matrix change the configuration matrix obtained by classical

MDS embedding. The main result in [30] says the following:

“Let E = ∆2 for a Euclidean distance matrix ∆ and B = −1
2
HEH. Let λ be a

simple eigenvalue of B with unit-length eigenvector e. Let F be a symmetric matrix

whose diagonal entries are zeros. Let E(ε) = E + εF + O(ε2) be the perturbed version
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of E . Then, the eigenvalue and eigenvector of E(ε) (the perturbed versions of λ and e )

are λ(ε) = λ + ευ + O(ε2), where υ = (−1
2
eTFe) and e(ε) = e + ε(1

2
(B − λI)† Fe +

1
2
(λn)−1 (1TNFe)1N) + O(ε2) .” Because υ, the first-order perturbation of λ, is linear

with respect to F , we can conclude

E[υ] = −1

2
eTE[F ]e.

This result provides us with intuition about howmuch the eigenvalue λwould change

according to a perturbation of ε. Specifically, the magnitude of change denoted by υ in

the eigenvalue λ is upperbounded by the maximum eigenvalue of F . This change in the

eigenvalue leads to the scaling of the particular dimension of the cMDS embedding λ

corresponds to.

3.2.6 Maximum Likelihood MDS and MULTISCALE

Various probabilistic MDS methods with specific error assumptions have been pro-

posed. In [31], Mackay assumes that the “original” coordinates have normally distributed

errors that are independent in each dimension in the embedded space (the correlated er-

ror case can be simplified to the independent error case). As a result, the individual

dissimilarities have the same distribution as a weighted sum of independent chi-square-

distributed random variables. The embedding coordinates can be estimated using the

maximum likelihood method. This method is implemented in an MDS program named

MULTISCALE [26, 32].
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3.2.7 Three-way MDS

Three-way MDS refers to a variant of MDS that is used to analyze many different

dissimilarity matrices on the same collection of n objects. The different dissimilarity

matrices can consist of dissimilarities judged by different people or different dissimilarity

measures applied to the same group of observations. We say that these different dissimi-

larity matrices are from different “conditions”, as mentioned in chapter 1, and we denote

them by {∆k, k ∈ {1, . . . , K}}, where k indexes the conditions. The three-way array in

which the third “way” is indexed by k can be interpreted as a tensor and comprises the

stack of the two-dimensional dissimilarity matrices.

There are two ways of dealing with such three-way data. One can compute a separate

MDS solution for each condition and match the configuration matrices by transforma-

tions. The second step in this two-step approach is similar to Generalized Procrustes

Analysis section 7.3 of chapter 7. The general approach assumes that there is a common

configurationG (n points in Rd) andK d×d transformation matricesTk such that each

dissimilarity matrix∆k is obtained from the transformed configurationGk = GTk. The

inference problem then involves computing Tk, k ∈ {1, . . . , K}.

Another approach mentioned in [26] involves mapping the dissimilarities (or prox-

imities) into one distance matrix (which is the idea behind Multiple Kernel Learning

2.1).
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3.3 Principal Components Analysis

LetX be a random vector of d dimensions and µ and Σ be its mean vector and covari-

ance matrix, respectively. Then, for a given dimension d′ ≤ d, consider the successive (as

i goes from 1 to d′) maximization of

V ar[uT
i (X − µ)] = E[uT

i (X − µ)(X − µ)Tui] = uT
i Σui

with respect to ui, where ui is a d-dimensional unit vector (uT
i ui = 1) and ui ⊥ uj, 1 ≤

j < i1. The maximizers {ui, 1 ≤ i ≤ d′} are the principal directions and the projections

of X via {ui} yield the principal components of X . These principal components capture

the maximum variance possible from X , subject to the orthogonality constraints of all

pairs of directions.

Another way of understanding PCA is considering the principal directions jointly.

Consider d′×d-matrixU whose rows are ui, i ∈ {1, . . . , d′}which forms an orthonormal

basis. UTU is the projection matrix that captures the maximum variance from X . That

is, the elements of the random vector UX are uncorrelated and have the highest amount

of “total variance” for any orthogonal projection ofX . The term “total variance” should

be interpreted as the sum of the variances of the variates in the principal directions which

is equal to the trace of the covariance matrix of UX .

PCA also yields the best linear approximation of X in a least-squares sense for a

particular projection dimension, d′. The matrix U , composed of the principal directions
1Due to the orthogonality constraints, the projections of X to the different dimensions are uncorre-

lated. i.e., E[uT
i (X − µ)(X − µ)Tuj ] = 0, 1 ≤ j < i.
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of X , minimizes V ar[X − (ΓTΓX)] with respect to Γ, when Γ is constrained to be a

d′ × d matrix.

For a sample of size n drawn from the same distribution as X , consider the sam-

ple estimates µ̂, Σ̂. The sample principal components are computed by replacing the

distribution parameters with the sample estimates

ûi = arg max
uT
i ui=1,ui⊥uj , j<i

uT
i Σ̂ui.

for the ith principal component.

Suppose X is an n × d configuration matrix, representing the sample of X (n i.i.d.

realizations of X ). For simplicity of notation, suppose that the configuration is zero-

centered, i.e., 1TX = 0. Additionally, suppose that X has a singular value decomposition

X = V ΛUT , where the singular values on the diagonal of Λ are sorted in descending

order and V and U are orthogonal n × n and d × d matrices, respectively. The PCA

solution is given by the eigenvalue decomposition of Σ̂ estimate, 1
n
XTX = U


1
n
Λ2


UT .

The columns of U , {ui} are the principal directions. Note that we have U in the SVD of

X, so we do not need to compute XTX.

The principal coordinates are the projections of the samples ofX along the principal

directions. For example, the first principal coordinates of the n samples would be given

by uT
1XT . The first d′ principal coordinates can be represented with the n × d′ configu-

ration matrix Xd′ = XUd′ . Therefore, using the SVD decomposition of X, the principal
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coordinates are found to be

Xd′ = V ΛUTUd′ (3.12)

= V Λ

 Id′

0

 (3.13)

= V Λd′ (3.14)

where Λd′ consist of the first d′ columns of Λ.

3.3.1 Principal Components Analysis and

Classical Multidimensional Scaling

The Principal Components Analysis method results in the same solution as classical

Multidimensional Scaling (cMDS) when the dissimilarity matrix is ∆ = D(X). For

cMDS, the eigenvalue decomposition of the n × n matrix XXT is used for embedding,

while for PCA, the eigenvalue decomposition of the d×dmatrixXTX is used to compute

the principal directions (assuming X is a zero-centered configuration).

In the case of cMDS,

∆2 = 1ny + y1n − 2XXT (3.15)

where y =

XXT


(d)

is an n-dimensional vector that consists of the diagonal of XXT .

For the classical MDS procedure, given the entrywise-squared distance matrix ∆2, we
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compute

Z = −1

2
H∆2H. (3.16)

Substituting∆2 with (3.15) in (3.16) gives Z = XXT , which has the same non-zero eigen-

values as the PCA solution. The MDS solution, which is computed by the eigenvalue

decomposition of Z, is given by the n× d′ configuration matrix V Λd′ . For the same em-

bedding dimension, d′, the two methods would yield the same configuration of n points

in d′-dimensional space.
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Chapter 4

An expository problem for Multiview

Learning : Match detection

We are interested in problems in which the data sources are disparate and the in-

ference task requires that observations from different data sources can be judged to be

similar or dissimilar.

Consider a collection of English Wikipedia articles and French articles on the same

topics. A pair of documents in different languages on the same topic are said to be

“matched”. The “matched” wiki documents are not necessarily direct translations of

each other, and therefore, we do not restrict “matchedness” to be a well-defined bijection

between documents in different languages. However the matched “documents” provide

examples of “similar” observations coming from disparate sources, and we assume that

the training data consist of a collection of “matched” documents.
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The inference task that we consider is match detection, i.e., determining whether a

new English article and a new French article have the same topic. Whereas a document in

one language, say English, can be compared with other documents in English, a French

document cannot be represented using the same features and therefore cannot be directly

compared with English documents. It is necessary to derive a data representation in

which the documents from different languages can be compared (are commensurate).

We will use a finite-dimensional Euclidean space for this commensurate representation

in which standard statistical inference tools can be used.

The label “disparate data” means that the observations are from different “condi-

tions”; for example, the data might come from different types of sensors. Formally, the

original data reside in a heterogeneous collection of spaces. In addition, the data might

be structured and/or might reside in infinite-dimensional spaces. Therefore, it is possi-

ble that a feature representation of the data is not available or that inference using such

a representation is fraught with complications (e.g., feature selection, non-i.i.d. data,

infinite-dimensional spaces). This motivates our dissimilarity-centric approach.

Because we proceed to inference starting from a dissimilarity representation of the

data, our methodology may be applicable to any scenario in which multiple dissimilar-

ity measures are available. Some illustrative examples include pairs of images and their

descriptive captions, the textual content and hyperlink graph structure of Wikipedia ar-

ticles, and photographs taken under different illumination conditions. In each case, we

have an intuitive notion of “matchedness”: for photographs taken under different illu-
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mination conditions, “matched” means that they are photographs of the same person.

For a collection of linked Wikipedia articles, the different “conditions” are the textual

content and hyperlink graph structure, “matched” means a text document, and a vertex

corresponds to the same Wikipedia article.

The problem can be formally described as follows:

Let (Ξ,F ,P) be a probability space, i.e., Ξ is a sample space, F is a sigma-field, and

P is a probability measure. Consider K measurable spaces Ξ1, · · · ,ΞK and measurable

maps πk : Ξ → Ξk. Each πk induces a probability measure Pk on Ξk. We wish to identify

a measurable metric space X (with distance function d) and measurable maps ρk : Ξk →

X , inducing probability measures Pk on X , so that for [x1, · · · , xK ]
′ ∈ Ξ1 × · · · × ΞK ,

we may evaluate distances d(ρk1(xk1), ρk2(xk2)) in X .

Given ξ1, ξ2
iid∼ P in Ξ, we may reasonably hope that the random variable d(ρk1 ◦

πk1(ξ1), ρk2◦πk2(ξ1)) is stochastically smaller than the random variable d(ρk1◦πk1(ξ1), ρk2◦

πk2(ξ2)). That is, matched measurements πk1(ξ1), πk2(ξ1) representing a single point ξ1

in Ξ are mapped closer to each other than unmatched measurements πk1(ξ1), πk2(ξ2) are

in Ξ. This property allows for inference to proceed in the common representation space

X .

As the inference proceeds from dissimilarities, we cannot directly observe the object

ξ ∈ Ξ, and the measurements xk = πk(ξ) ∈ Ξk cannot be represented directly. Fur-

thermore, we do not have knowledge of the maps πk. We have well-defined dissimilarity

measures δk : Ξk × Ξk → R+ = [0,∞) such that δk(πk(ξ1), πk(ξ2)) represents the “dis-
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Figure 4.1: Maps πk induce disparate data spaces Ξk from “object space” Ξ. Manifold

matching involves using matched data {xik} to simultaneously learn maps ρ1, . . . , ρK

from disparate spaces Ξ1, . . . ,ΞK to a common “representation space” X , for subsequent

inference.

similarity” of the mappings of ξ1 and ξ2 under map πk. The data we have consist of

dissimilarities between a sample of n objects using {δk}k=1,...,K . We propose to use sam-

ple dissimilarities for matched data in the disparate spaces Ξk to simultaneously learn

maps ρk that allow for a powerful test of matchedness in the common representation

space X . This setting is visualized in Figure 4.1.
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4.1 Problem Description

In the problem setting considered here, n different objects are measured under K

different conditions (corresponding to, for example,K different sensors). We begin with

dissimilarity measures. These will be represented in matrix form as K n × n matrices

{∆k, k = 1, . . . , K}. In addition, for each condition, dissimilarities between a new ob-

ject and the previous n objects {Dk, k = 1, . . . , K} are available in the form of n-length

vectors. Under the null hypothesis, “these new dissimilarities represent a single new ob-

ject compared with the previous n objects”, measured under K different conditions (the

dissimilarities are matched). Under the alternative hypothesis, “the dissimilarities {Dk}

represent separate new objects compared with the the previous n objects”, measured un-

der K different conditions (the dissimilarities are unmatched) [3].

In the case of the English-French Wikipedia example mentioned in the beginning of

the chapter, dissimilarities between the new English article and n other English articles

(D1) are available, as they are for the new French article and other n French articles (D2)

1. The null hypothesis is that the new English and French articles are on the same topic,

whereas the alternative hypothesis is that they are on different topics.

To derive a data representation in which dissimilarities from disparate sources ({Dk})

can be compared, the dissimilarities must be embedded in a commensurate metric space

in which the metric can be used to distinguish between “matched” and “unmatched”

observations.
1In addition to the dissimilarities between articles in the same language ({∆k})
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To embed multiple dissimilarities {∆k} into a commensurate space, an omnibus dis-

similarity matrix M 2 is constructed. Consider, for K = 2,

M =

 ∆1 L

LT ∆2

 (4.1)

where L is a matrix of imputed entries.

Remark For the purposes of exposition, we will consider K = 2; the generalization to

K > 2 is straightforward.

Remark The imputation of the entries of L is an important detail. The entries corre-

spond to dissimilarities between different conditions. We have clarified that we do not

assume that these dissimilarities are available in our approach 1.3. Assuming that the

dissimilarities are not strongly disparate, which means that the dissimilarities between a

pair of objects in two different conditions are strongly correlated, the dissimilarities in L

can be imputed as the average of the corresponding dissimilarities in ∆1 and ∆2:

L =
∆1 +∆2

2
.

For example, the dissimilarity between the ith and jth objects under the first and sec-

ond conditions, respectively, ( [L]ij ), can be imputed as the average of the dissimilarities

between the ith and jth objects under the first condition ( [∆1]ij ) and between the same

objects under the second condition ( [∆2]ij ), i.e., [L]ij = ([∆1]ij + [∆2]ij) /2. Note that

this imputation would also make [L]ii = 0 (the dissimilarities between the same object
2an nk × nk partitioned matrix whose diagonal blocks are given by {∆k}
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under the first and second conditions). This is consistent with our idea of matchedness,

because we want the representations of “matched” observations to be highly similar.

Therefore, 0 is a reasonable value for these dissimilarities between measurements of the

same object. A more detailed reasoning for this choice is provided in 5.1.

Another imputation strategy is to treat nondiagonal elements of L as missing data

(NA) and to set the diagonal entries ( [L]ii) to 0. We are then required to use an MDS

embedding method that can deal with dissimilarity matrices that have NA entries. This

is one of the justifications for our use of weighted raw stress 3.1 as the MDS criterion

function. We mention this point along with other justifications in section 5.2.

We define the commensurate space to be Rd, where the embedding dimension d is

prespecified. The selection of d – a model selection problem – is a task that requires a

great deal of attention. We will consider the effect of d on the performance; however,

the general question of model selection requires detailed analysis, and we do not claim

to have settled this question for our multiview data setting.

We use multidimensional scaling (MDS) [26] to embed the omnibus matrix in this

space and obtain a configuration of 2n embedded points {x̂ik; i = 1, . . . , n; k = 1, 2}

(which can be represented as X̂ , a 2n × d matrix). The discrepancy between the inter-

point distances of {x̂ik} and the given dissimilarities inM is made as small as possible (as

measured by an objective function σ( X) 3). In matrix form,

X̂ = argmin
X̃

σ(X̃).

3σ( X) that implicitly depends on the omnibus dissimilarity matrix M

40



CHAPTER 4. MATCH DETECTION TASK

Remark We will use xik to denote the – possibly notional – observation for the ith

object in the kth condition, x̃ik to denote an argument of the objective function, and

x̂ik to denote the argmin of the objective function, which are the coordinates of the

embedded point. The notation for matrices (X, X̃, X̂ ) follows the same convention.

Given the omnibus matrix M and the 2n× d embedding configuration matrix X̂ in

the commensurate space, the OOS extension [33] for MDS will be used to embed the test

dissimilarities D1 and D2. Once the test similarities are embedded as two points ( ŷ1, ŷ2)

in the commensurate space, it is possible to compute the test statistic

τ = d (ŷ1, ŷ2)

for the two “objects” represented byD1 andD2. For large values of τ , the null hypothesis

will be rejected. If dissimilarities between matched objects are smaller than dissimilarities

between unmatched objects with a large probability, and the embeddings preserve this

stochastic ordering, we could reasonably expect the use of the test statistic to provide

high statistical power.

4.2 Definition of an optimal embedding weight

parameter: w∗

We have noted that we use the the weighted raw stress criterion function, σW ( X;M)

3.1, for the joint embedding the omnibus matrix M . Rather than consider how each
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entry of W separately effects the embedding, we will assume there is a single parameter

w ∈ (0, 1) which determines all of the entries of W , and consider its effect on the em-

bedding, and its effect indirectly on the inference task. We will refer to this choice of the

embedding weights as the simple weighting scheme. We do not provide details on how

W is determined by w until chapter 5, because we first need to introduce fidelity and

commensurability concepts.

Remark In our notation for this section, (.) in superscript represents either one of the

two hypotheses, either (m) or (u). In the former case, the expression refers to values

under a “matched” hypothesis; in the latter, the expression refers to values under an

“unmatched” hypothesis.

Let us denote the test dissimilarities (D1, D2) by (D(m)
1 , D(m)

2 ) under the “matched”

hypothesis and by (D(u)
1 , D(u)

2 ) under the alternative. The OOS embedding of (D(m)
1 ,

D(m)
2 ) involves the augmentation of the omnibus matrixM , which consists of nmatched

pairs of dissimilarities, with (D(m)
1 , D(m)

2 ). The resulting augmented (2n+ 2)× (2n+ 2)

matrix has the following form:

∆(m) =


M

D(m)
1

~DNA

~DNA D(m)
2

D(m)T
1

~DT
NA 0 DNA

~DT
NA D(m)T

2 DNA 0


(4.2)
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where the scalarDNA and ~DNA (an n-length vector ofNAs) represent dissimilarities that

are not available. In our JOFC procedure, these unavailable entries in ∆(m) are either

imputed using other dissimilarities that are available, in the way described in equation

(3.1), or ignored in the embedding optimization. The former imputation method will

result in a simpler notation, and thus, from now on, it will be assumed that the missing

dissimilarities are imputed. Additionally, note that ∆(u) has the same form as ∆(m),

where D(m)
k is replaced by D(u)

k . Therefore, we will use (.) in place of (m) and (u) to

represent the two expressions under the two hypotheses with one expression.

We define the dissimilarity matrices {∆(m),∆(u)} which are of size (2n+2)×(2n+2)

to be matrix-valued random variables.

Remark Suppose the objects in the kth condition can be represented as points in a mea-

surable space Ξk, and the dissimilarities in the kth condition are given by a dissimilarity

measure δk acting on pairs of points in Ξk. Assume that P(m) is the joint probability

distribution over matched objects, whereas the joint distribution of unmatched objects

{k = 1, . . . , K} is P(u). Assuming that the data are i.i.d., under the two hypotheses

(“matched” and “unmatched”, respectively), the n+1 pairs of objects are governed by the

product distributions {P(m)}n×P(m) and {P(m)}n×P(u). The distributions of∆(m) and

∆(u) are the induced probability distributions of these product distributions (induced by

the dissimilarity measure δk applied to objects in kth condition {k = 1, . . . , K}).
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We now consider the embedding of ∆(m) and ∆(u) with the weighted raw stress

criterion function σW ( X; ∆(.)). The arguments of the function are

X =


T
y(.)1

y(.)2


where T is the argument for the in-sample embedding of the first n pairs of matched

points, y(.)1 and y(.)2 are the arguments for the embedding coordinates of the matched or

unmatched pair, and the omnibus dissimilarity matrix ∆(.) is equal to ∆(m) (or ∆(u)) for

the embedding of the matched (unmatched) pair. Note that we use the simple weighting

scheme; with a slight abuse of notation, we rewrite the criterion function as σw( X; ∆(.)),

where w ∈ (0, 1) is a scalar parameter. The embedding coordinates for the matched or

unmatched pair ŷ(.)1 , ŷ
(.)
2 are given by

ŷ
(.)
1 , ŷ

(.)
2 = arg miny(.)1 ,y(.)2

minT σw




T
y(.)1

y(.)2

 ,∆(.)



 .

Remark Note that the in-sample embedding of T is necessary but irrelevant for the

inference task; hence, the minimization with respect to T is denoted by min instead

argmin. It can be interpreted as a nuisance parameter for our hypothesis testing task.

Remark Note also that all of the random variables following the embedding, such as

{ŷ(.)k }, are dependent on w; for the sake of simplicity, this will be suppressed in the

notation.
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Under reasonable assumptions, the embeddings ∆(m) → {ŷ(m)
1 , ŷ

(m)
2 } and ∆(u) →

{ŷ(u)1 , ŷ
(u)
2 } are measurable maps for all w ∈ (0, 1) [34]. Then, the distances between the

embedded points are random variables and the test statistic τ is defined as the distance

between the embedded points for a dissimilarity matrix sample of∆(m) or∆(u) (depend-

ing on whether the null or alternative hypothesis is true). Under the null hypothesis,

the distribution of the statistic is governed by the distribution of ŷ(m)
1 and ŷ

(m)
2 ; under

the alternative, it is governed by the distribution of ŷ(u)1 and ŷ
(u)
2 .

Then, the statistical power as a function of w is given by

β (w, α) = 1− F
d

ŷ
(u)
1 ,ŷ

(u)
2

F−1

d

ŷ
(m)
1 ,ŷ

(m)
2

(1− α)


,

where FY denotes the cumulative distribution function of Y . The area under the curve

(AUC) as a function of w is defined as

AUC(w) =

 1

0

β (w, α) dα . (4.3)

Although we might care about the optimal w with respect to β (w, α) (with a fixed Type

I error rate α), it will be more convenient to define w∗ in terms of the AUC function.

Finally, we define

w∗ = argmax
w

AUC (w).

Some important questions about w∗ pertain to the nature of the AUC function.

Although finding an analytical expression for the value of w∗ is intractable, an estimate

ŵ∗ based on estimates of AUC(w) can be computed. For the Gaussian setting described
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in section 6.1.1, a Monte Carlo simulation is used to find the estimate of AUC(w) for

different values of w.

4.2.1 Continuity of AUC(·)

Let T0(w) = d(ŷ
(m)
1 , ŷ

(m)
2 ), and Ta(w) = d(ŷ

(u)
1 , ŷ

(u)
2 ) denote the value of the test

statistic under the distributions for the null and alternative hypotheses for the embedding

with the simple weighting w. The AUC function can be written as

AUC(w) = P [Ta(w) > T0(w)] ,

where Ta(·) and T0(·) can be considered stochastic processes whose sample paths are

functions of w. We will prove that AUC(w) is continuous with respect to w. We start

with this lemma from [35].

Lemma 1. Let z be a random variable. The functional g(z; γ) = P [z ≥ γ] is upper semi-

continuous in probability with respect to z. Furthermore, if P [z = γ] = 0, g(z; γ) is contin-

uous in probability with respect to z.

Proof. Suppose zn converges to z in probability. Then, by definition, for any δ > 0 and

ε > 0, ∃N ∈ Z+ such that for all n ≥ N

P [|zn − z| ≥ δ] ≤ ε.

The functional g(z; γ) is non-increasing with respect to γ. Therefore, for δ > 0,

g(zn; γ)− g(z; γ) ≥ g(zn; γ)− g(z; γ − δ). Furthermore, g(z; γ) is left-continuous with
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respect to γ, and therefore, the difference between the two sides of the inequality can be

made as small as desired.

g(zn; γ)− g(z; γ − δ) = P [zn ≥ γ]− P [z ≥ γ − δ] (4.4)

≤ P [{zn ≥ γ}\{z ≥ γ − δ}] (4.5)

≤ P [{{zn ≥ γ}\{z ≥ γ − δ}} ∩ {zn ≥ z}] (4.6)

= P [{zn − z ≥ δ}] ≤ ε. (4.7)

Because ε and δ are arbitrary, lim supn→∞(g(zn; γ)− g(z; γ)) = 0 for any δ > 0, i.e.,

g(z; γ) is upper semi-continuous.

By arguments that are symmetric to (4.4)-(4.7), we can show that

g(z; γ + δ)− g(zn; γ) ≤ ε. (4.8)

In addition, assume that P [z = γ] = 0. Then, g(z; γ) is also right-continuous with

respect to γ. Therefore, g(zn; γ) − g(z; γ) ≤ g(zn; γ) − g(z; γ + δ), and the difference

between the two sides of the inequality can be made as small as possible. Along with

(4.8), this means that

lim inf
n→∞

(g(zn; γ)− g(z; γ)) = 0.

Therefore, limn→∞ g(zn; γ) = g(z; γ), i.e., g(z; γ) is continuous in probability with re-

spect to z.
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Theorem 1. Let T (w) be a stochastic process indexed by w in the interval (0,1). Assume that

the process is continuous in probability (stochastic continuity) at w = w0, i.e.,

∀a > 0 lim
s→w0

P [|T (s)− T (w0)| ≥ a] = 0 (4.9)

for w0 ∈ (0, 1). Furthermore, assume that P [T (w0) = 0] = 0.

Then, P [T (w) ≥ 0] is continuous at w0.

Proof. Consider any sequence wn → w0. Let zn = T (wn) and z = T (w0) and choose γ =

0. Because T (w) is continuous in probability atw0 and P [T (w0) = 0] = 0, conditions for

Lemma 1 hold, i.e.,as wn → w0, zn converges in probability to z = T (w0). By Lemma

1, we conclude that g(T (wn); 0) = P [T (wn) ≥ 0] converges to g(T (w0); 0). Therefore,

g(T (w); 0) is continuous with respect to w.

Corollary 1. If P[Ta(w)−T0(w) = 0] = 0 and Ta(w), T0(w) are continuous in probability

for all w ∈ (0, 1), then AUC(w) = P [Ta(w)− T0(w) > 0] is continuous with respect to w

in the interval (0, 1).

Proof. Let T (w) = Ta(w)− T0(w). Then, Theorem 1 applies everywhere in the interval

(0,1).

In any closed interval that is a subset of (0, 1), the AUC function is continuous and

therefore attains its global maximum in that closed interval.

We do not have closed-form expressions for the distributions under the null and

alternative hypotheses of the test statistic τ (as a function of w), and therefore, we cannot
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provide a rigorous proof of the uniqueness of w∗. However, for various data settings, the

simulations described in chapter 10 always resulted in unimodal estimates for the AUC

function, which indicates a unique w∗ value.

We should also mention that the stochastic continuity of the test statistics T (w) as a

function of w is a reasonable assumption. Discontinuity in the test statistic can arise as a

result of discontinuity of the embedded configurations with respect to the w parameter.

The embedded configurations, which are the global minimizers of the criterion function,

can have discontinuities if there exist multiple local minima, and infinitesimal changes

in w will change the ordering of the “distinct” local minima. Although we present an

example in which multiple local minima of the criterion function lead to a discontinuity

of the embedded configuration with respect to w in chapter 9, other than such carefully

constructed examples, we do not expect such discontinuities in the embedded configu-

rations to occur for data generated from continuous case probability distributions. One

can conclude that the stochastic continuity of the test statistic with respect to w is a valid

assumption.
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Fidelity and Commensurability

5.1 The concepts of Fidelity

and Commensurability

For the sake of argument, assume that the source of dissimilarities are actually ob-

servations that are vectors in Euclidean space. In general, MDS with raw stress will not

result in a perfect reconstruction of the original observations. Note that this point is not

relevant to our work, as the objective of the (joint) embedding is not perfect reconstruc-

tion, but rather the best embedding for the inference task. What is considered a “good”

representation will be dependent on how well the original dissimilarities that are rele-

vant to the inference task are preserved. “Fidelity” and “Commensurability” quantify

this preservation of information.
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Regardless of the inference task, to expect reasonable performance from the embed-

ded data in the commensurate space for the inference task at hand, it is necessary to pay

heed to these two error criteria:

• Fidelity describes how well the mapping to commensurate space preserves the orig-

inal dissimilarities. The loss of fidelity can be measured using the within-condition

fidelity error, given by

εf(k) =
1
n
2

 
1≤i<j≤n

(d(xik, xjk)− δijkk)
2.

Here, δijkk is the dissimilarity between the ith object and the jth object when both

objects are in the kth condition, and xik is the embedded representation of the ith

object for the kth condition; d(·, ·) is the Euclidean distance function.

• Commensurability describes how well the mapping to commensurate space pre-

serves the matchedness of matched observations. The loss of commensurability can

be measured by the between-condition commensurability error, which is given by

εc(k1,k2) =
1

n


1≤i≤n;k1<k2

(d(xik1 , xik2)− δiik1k2)
2

for conditions k1 and k2; δiik1k2 is the dissimilarity between the ith object under

conditions k1 and k2. Although the between-condition dissimilarities of the same

object, δiik1k2 , are not available, it is reasonable to set these dissimilarities to 0 for

all i, k1, k2. These dissimilarities correspond to diagonal entries of the submatrix

L in the omnibus matrix M in equation (4.1). Setting these diagonal entries to 0
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forces matched observations to be embedded close to each other. It is possible that

this choice for between-condition dissimilarities is not optimal. However, seeking

optimal values for these unknown dissimilarities would only serve to distract us

from the problem of interest, namely, how much fidelity and commensurability

are to be preserved for the inference task.

When the between-condition dissimilarities of the same object are imputed with zeros,

the commensurability error term becomes

εck1k2 =
1

n


1≤i≤n;k1<k2

(d(xik1 , xik2)))
2

The between-condition separability error is given by

εsk1k2 =
1
n
2

 
1≤i<j≤n;k1<k2

(d(xik1 , xjk2)− δk1k2(xik1 ,xjk2))
2.

The between-condition dissimilarities of different objects, δijk1k2 , i 6= j, in the ”sep-

arability” criterion are also not available. Ignoring them in the embedding by setting

the associated weights in the raw stress function to be 0 is a reasonable choice. 1 We

prefer these choices for between-condition dissimilarities to restrict our attention to the

fidelity-commensurability tradeoff. An alternative solution would be to impute these dis-

similarities using other available dissimilarities. This imputation approach is discussed in

4.1.

While the expressions for fidelity and commensurability errors are specific to the joint

embedding of disparate dissimilarities, the concepts of fidelity and commensurability are
1These dissimilarities correspond to off-diagonal entries of the submatrix L in the omnibus matrix M

in equation (4.1).
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general enough to be applicable to other dimensionality reduction methods for multi-

view data. For example, if the dissimilarities between different conditions were available,

or imputed, a joint embedding could be performed using classical MDS. This joint em-

bedding would also jointly optimize fidelity and commensurability, but we would have

no control over which dissimilarities are prioritized for preservation in the embedding.

We could thus not control the fidelity and commensurability tradeoff. This tradeoff is

important for the inference task: we use simulations to show that there are significant

improvements in statistical power when commensurability is prioritized compared with

the baseline uniform-weighting case.

In general, we note that the omnibus embedding approach using any variant of MDS

attempts to jointly optimize fidelity and commensurability by minimization of some

measure of discrepancy between the given dissimilarities (which are either between-

condition or within-condition dissimilarities) and the distances of the embedded con-

figuration. This is most obvious in the raw stress version of MDS, because the individual

terms can be separated according to whether they are contributing to the fidelity or

commensurability error.

Consider the weighted raw stress criterion σW (·) with a weighting matrix W , given

in equation (3.1). The omnibus matrix M (4.1) is a partitioned matrix consisting of

matrices from two different conditions (k = 1, 2). The entries of the matrix will be

indexed by a 4-tuple, i, j, k1, k2, which refers to the entry in the ith row and jth column of

the block matrix in the kth
1 row partition and the kth

2 column partition. For example, the
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entry M2n,n will have the indices {i, j, k1, k2} = {n, n, 2, 1} in the new 4-tuple indexing

scheme. The matrix-valued function D(·) and the weight matrix W , which are of the

same size as M , follow the same 4-tuple indexing. Then, the weighted raw stress for the

joint embedding with the weight matrix W is

σW (·) =


i,j,k1,k2

wijk1k2(Dijk1k2(·)−Mijk1k2)
2

=


i=j,k1<k2

wijk1k2(Dijk1k2(·)−Mijk1k2)
2

  
Commensurability

+


i<j,k1=k2

wijk1k2(Dijk1k2(·)−Mijk1k2)
2

  
Fidelity

+


i<j,k1<k2

wijk1k2(Dijk1k2(·)−Mijk1k2)
2

  
Separability

. (5.1)

Because δk1k2(xik1 ,xik2) are set to 0, the corresponding entries of the matrixM which

appear in the commensurability terms of the sum will be 0.

Because the separability error is ignored, the weights for separability terms are chosen

to be 0. Thus, the off-diagonal elements of L in equation (4.1) can also be ignored. When

the separability terms are removed from equation (5.1), the resulting equation is the sum

of the fidelity and commensurability error terms:

σW (·) =


i=j,k1<k2

wijk1k2(Dijk1k2(·))2  
Commensurability

+


i<j,k1=k2

wijk1k2(Dijk1k2(·)−Mijk1k2)
2

  
Fidelity

.

This motivates our reference to the omnibus embedding approach as JOFC.
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5.2 Fidelity and Commensurability Tradeoff

The weights in the raw stress function allow us to address the question of the optimal

tradeoff of fidelity and commensurability. Let w ∈ (0, 1). Setting the weights ({wijk1k2})

for the commensurability and fidelity terms to w and 1−w, respectively, will allow us to

control the relative importance of fidelity and commensurability terms in the objective

function. Let us denote the raw stress function with these simple weights by σw( X;M).

With simple weighting, when w = 0.5, all terms in the objective function have the same

weights. We will refer to this weighting scheme in the rest of this dissertation as uniform

weighting. The alternative scheme, w 6= 0.5, is called nonuniform weighting.

The initial expectation in the investigation of fidelity and commensurability was that

there is a w∗ that is optimal for the specific match detection task 4 (the w value, which

yields the best statistical power for hypothesis testing) . In fact, the exploratory simu-

lations presented in 10.1 confirm that the power of the tests varies with w and indicate

the range in which the optimal w∗ lies, assuming it exists. We show that w exists under

certain conditions for the match detection task. Although we cannot provide a rigorous

proof of the uniqueness of w∗, for various data settings, simulations in section 10.1 al-

ways resulted in unimodal estimates for the AUC function, which indicates a unique w∗

value. Specifically, for the match detection task, we provide evidence in section 10.1 that

uniform weighting does not necessarily yield the best fidelity-commensurability tradeoff

in terms of subsequent inference and that one should consider nonuniform weighting
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for better performance in the inference task [36].
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Chapter 6

Data Models for the Match Detection

Task

6.1 Two data settings for Match Detection

In this chapter, we present two generative data models that illustrate the idea of

matchedness. We will use the Multivariate Normal and Dirichlet probability distri-

butions, with the parameters p,r,q,c to generate matched dissimilarity data in K = 2

conditions.

6.1.1 Gaussian setting

Let Ξ1 = Rp and Ξ2 = Rp. Let αi ∼iid MultivariateNormal(0, Ip) represent n

“objects”. Let Xik ∼iid MultivariateNormal(αi,Σ), i ∈ {1, . . . , n}, k ∈ {1, 2} rep-
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1
r

αi
Xi1

αi

Xi2

Ξ2 = R2Ξ1 = R2
1
r

Figure 6.1: For the Gaussian setting (Section 6.1.1), the αi are denoted by black points,

and the Xik are denoted by red and blue points.

resent K = 2 matched measurements (each under a different condition). Σ is a positive-

definite p× pmatrix such that the maximum eigenvalue of Σ 1
r
and other eigenvalues are

drawn from the uniform distribution between 0 and 1
r
(see Figure 6.1).

The parameter r controls the variability between “matched” measurements. If r is

large, it is expected that the distance between matched measurements Xi1 and Xi2 is

stochastically smaller than Xi1 and Xi′2 for i 6= i′; i, i′ ∈ {1, . . . , n} ; if r is small, then

“matched” is not informative in terms of the similarity of measurements. Smaller r

values will make the decision problem harder and will lead to higher rates of errors or

tests with smaller power for a fixed type I error rate α.
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1
r

αi
Xi1

αi

Xi2

Ξ2Ξ1
1
r

Figure 6.2: For the Dirichlet setting (Section 6.1.2), the αi are denoted by black points,

and the Xik are denoted by red and blue points .

6.1.2 Dirichlet setting

Let Sp = {x : x ∈ R(p+1),
p

l=1 xl = 1} be the standard p-simplex in Rp+1. Let

Ξ1 = Sp and Ξ2 = Sp. Denote a p + 1-length vector of ones by 1p+1 ∈ R(p+1). Let

αi ∼iid Dirichlet(1p+1) represent n “objects”, and let Xik ∼iid Dirichlet(rαi + 1p+1)

represent K measurements (Figure 6.2).

The parameter r controls the variability between “matched” measurements.

6.1.3 Noise

Measurements {Xik} carry the signal that is relevant to the exploitation task. Noise

dimensions can be introduced to the measurements by concatenating a q-dimensional

error vector whose magnitude is controlled by the parameter c. The noisy measurements
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will be represented by the random vectors

Xik = [(1− c)Xik cEik] (6.1)

where

Eik ∼iid Dirichlet(1(q+1)) (6.2)

for the Dirichlet setting and

Eik ∼iid MultivariateNormal(0, (1 +
1

r
)Iq+1) (6.3)

for the Gaussian setting. Xik will be used instead of Xik to compute dissimilarities in the

“noisy” version of the problem. These noisy measurements allow for the comparison of

different methods applied to the problem with respect to their robustness.
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Procrustes Analysis for Data Fusion

7.1 Procrustes Analysis

Given two configurations of n points in d-dimensional Euclidean space, Procrustean

methods fit one configuration to the other so that the points align as well as possible

in the `2-sense. Let us denote the configurations by two n × d matrices: X1, X2. The

most general version of this method seeks an affine transformation with ρ only rotation,

reflection, scaling and translation components that transforms the points in the config-

uration X2 to align with the target configuration X1. The transformation ρ is chosen

such that the sum of squares of the distances from each ρ-transformed point of X2 to its

corresponding point is minimized. For notational convenience, let %ρ : Mn×d → Mn×d

be the mapping applied to a configuration matrix such as X1 whose rows correspond to

the point coordinates, when each point is mapped by ρ. That is, %ρ applies the ρ trans-
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formation to every point in the configuration. For example, if ρ is the identity map,

%ρ(X1) = X1.

It is also possible to introduce extra constraints on the affine transformation, such

as requiring the translation component to be a zero vector (if both of the point con-

figurations are zero-centered) or setting the scaling component to 1 (if only rigid trans-

formations are allowed). First, let us consider the general case where ρ(z) = szQ + t,

where Q ∈ Md×d, s ∈ (0,∞), t ∈ Rd. For configuration matrices, the mapping is

%ρ(X2) = sX2Q + 1tT . We will derive the components of the Procrustean transforma-

tion, s, Q and t, following [26].

We seek to minimize

L(s,Q, t) = ‖X1 − (sX2Q+ 1tT )‖2F

= trace

X1 − (sX2Q+ 1tT )

T 
X1 − (sX2Q+ 1tT )


.

Setting the gradient ∂L
∂t

= 2

XT

1 1− (sQTXT
2 1+ nt)


to 0 , we solve for t̂:

t̂ = n−1

XT

1 1− sQTXT
2 1


.

Putting t̂ into L(s,Q, t), we obtain

L(s,Q, t̂) = trace


(In −

11T

n
)X1 − (sX2Q)

T 
(In −

11T

n
)X1 − (sX2Q)


.

Let us denote the centering matrix

In − 11T

n


withH . Setting ∂L

∂s
= 2 trace sX2

THX2−

2 traceX1
THX2Q = 0, we obtain ŝ = traceX1

THX2Q

traceX2
THX2

. Putting ŝ into L(s,Q, t̂), we ob-

tain L(ŝ,Q, t̂) = traceXT
1HX1 −

(traceXT
1 HX2Q)

2

traceXT
2 HX2

.
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The final step is computing Q. Note that the only term in L(ŝ,Q, t̂) that de-

pends on Q is

trace


XT

1HX2Q
2. Subject to QQT = QTQ = In, minimizing

−

trace


XT

1HX2Q
2 is equivalent to minimizing− trace


XT

1HX2Q

(Because ŝ > 0,

minimizing −x is the same as minimizing −x2 given a constraint on x). Thus,

Q̂ = arg min
QTQ=In

− trace

XT

1HX2Q

. (7.1)

Therefore, the solution for Q in the general Procrustes problem is equivalent to the

solution of the orthogonal Procrustes problem.

For the orthogonal Procrustes problem, we seek an orthonormal matrix Q∗ that

minimizes the sum of squared distances between the target configuration X1 and the

configuration X2 transformed byQ∗, i.e.,Q∗ = argminQTQ=In ‖X1−X2Q‖2F , where ‖ ·

‖F is the Frobenius norm onmatrices. Simplifying the norm expression, we obtain ‖X1−

X2Q‖2F = trace (X1 − X2Q)T (X1 − X2Q) = trace (XT
1X1 + XT

2X2)− 2 trace (XT
1X2Q).

Because the first term is independent of Q, we can ignore that term. The second term

is equivalent to (7.1) when XT
1 1 = XT

2 1 = 0. Then, the solution for Q∗ is the d × d

orthogonal matrix that maximizes trace (XT
1X2Q).

Consider the singular value decomposition XT
1X2 = UΣV T . The expression to be

minimized can be written as traceUΣV TQ, which is equal to traceV TQUΣ due to

the circular invariancy of the trace operation.

Note that for an orthogonal matrix T and a diagonal matrix Λ with non-negative

entries (Λii ≥ 0),

traceTΛ ≤ traceΛ
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with equality if T = I .

Note that Σ is diagonal with nonnegative entries and that Z = V TQU is also or-

thogonal. To see why Z is orthogonal, consider

ZZT = V TQUUTQTV

= V TQInQ
TV

= V TInV

= In

Each step is justified by the fact that the SVD of XT
1X2 results in matrices U and V with

orthogonal columns, and R is already known to be orthogonal. Therefore,

traceV TQUΣ ≤ traceΣ

with equality if V TQU = In. The solution that achieves the bound is Q̂ = V UT .

7.2 Procrustes Analysis for Manifold Matching

Because separate condition dissimilarities are available, a straightforward approach is

to embed each conditional dissimilarity matrix, ∆1 and ∆2, separately in d-dimensional

Euclidean space (we denote these embedded configurations by the configuration matrices

X1 and X2, respectively) and then find a mapping function ρ∗ : Rd → Rd, that maps each

point in X2 approximately to its corresponding point in X1. This approach can be con-

sidered a specific example of the general setting in Figure 6.1 in which the commensurate
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space is d-dimensional Euclidean space, ρ1 is the identity map, and ρ2 = ρ∗.

The mapping ρ∗ is estimated by using Procrustes Analysis on the training data. This

estimate, ρ, makes the separate MDS embeddings as commensurate as possible. Once

such a mapping is computed, one can OOS embed new dissimilarities for each con-

dition (separately) and use ρ to make the embeddings commensurate. One can then

compute the test statistic τ (the distance between commensurate embeddings) for the

hypothesis testing problem in chapter 4. This approach will be referred to as P◦M –

Procrustes◦MDS.

Note that the Procrustes transformation ρ is limited to an affine transformation con-

sisting of rotation and reflection and possibly also scaling components. The optimal

mapping might very well be nonlinear. If a larger class of mappings is considered, this

would result in a smaller model bias but also in a larger variability for the mapping func-

tion. By only considering the class of linear transformations, it is possible to learn ρwith

the limited sample size.

7.2.1 Relation of P◦M and JOFC

In this section, we explain where Procrustes◦MDS stands in relation to the Fidelity--

Commensurability tradeoff view of multiview dissimilarities.

Suppose, in equation (5.1), that the weights are chosen to be wijk1k2 = w for com-

mensurability terms and wijk1k2 = 1 − w for fidelity terms. For the resulting weight
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matrix W , define

fw(D(·),M) = σW (·) (7.2)

whereM is the omnibus matrix obtained from a given pair of dissimilarity matrices, ∆1

and ∆2, as in equation (4.1). As w goes to 0, the configuration embedded by JOFC con-

verges to a configuration equivalent to (up to rotation and reflection) the configuration

embedded by P◦M.

Theorem 2. Define σ(·) = σW=1(·) (unweighted raw stress), where 1 is a matrix of 1’s.

Let X1 and X2 be the corresponding n × p configuration matrices with column means of 0

(obtained from separately embedding ∆1 and ∆2 by minimizing the raw stress σ(·) ). Let

Q = argminPTP=PPT=I ‖X1 −X2P‖2F , X̃2 = X2Q, and letX =

 X1

X̃2

.

For w > 0, let Yw =

 Y1

Y2

 be a 2n × p configuration matrix obtained by the

minimization of f(Y ,M) = (1 − w) (σ(Y1) + σ(Y2)) + w‖Y1 − Y2‖2F with respect to

Y =

 Y1

Y2

 with the constraint that Y1 and Y2 are two n× p configuration matrices with

column means 0. Then,

limw→0Yw = XR

for a p× p orthogonal matrixR. (R is a transformation matrix with a rotation and possibly

a reflection component.)
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7.3 Generalized Procrustes Analysis (K > 2)

The Generalized Procrustes analysis is the extension of Procrustes analysis to more

than two configurations of points. This extension has been studied in [37]. Suppose we

have K configurations: X1,X2, . . .XK . We wish to find K Procrustean transformations

τk(Xk) = skXkQk + tk such that


kl

‖τk(Xk)− τk(Xk)‖2F

is minimized. This problem does not have a single-step analytical solution for all of the

components, similar to the original Procrustes analysis problem. The translation com-

ponents, tk, of the transformations can be solved by subtracting the column sums of Xk

(1Xk ). The rotation/reflection components,Qk, can be solved iteratively by minimizing

the error function with respect to Xk and keeping all other Xl, l 6= k constant for each k

in turn. After the convergence of iterative solutions for Qk, the scaling components, sk,

can be solved for analytically.

Using Generalized Procrustes Analysis (GPA), we can obtain estimates for K map-

ping functions ρk depicted in 4.1 when K > 2. Given K dissimilarity matrices ∆k, k =

1, . . . , K, we would compute separate MDS embeddings of {∆k} followed by GPA of all

the embeddings. The separate embeddings mapped via {τk} would give us a single com-

mensurate representation in which the disparate dissimilarities can be compared. New

dissimilarities {Dk} can be OOS embedded and mapped by the same Procrustean trans-

formations {τk} to the commensurate space. We will use this approach for the match
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testing test presented in chapter 4, whenK > 2. Simulation results are presented in 10.3.

68



Chapter 8

Canonical Correlation Analysis for

Data Fusion

8.1 Canonical Correlational Analysis on

Multidimensional Scaling embeddings

Canonical Correlational Analysis is another method for addressing the incommensu-

rability of dissimilarities from different conditions. We will refer to the match detection

task in chapter 4 and the data settings in section 6.1 to explain this alternative approach.

For the CCA approach, MDS is used to compute embedding configurations, X1 and

X2 from the disparate dissimilarity matrices ∆1 and ∆2. For the data settings in sec-

tion 6.1, it is desirable to perform the embedding into the highest-possible dimensional
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space (Rs, where s = p + q for the Gaussian and Dirichlet settings) to preserve as many

of the signal dimensions as possible (at the risk of possibly including some noise dimen-

sions). CCA [38], then, yields two mappings U1 and U2 that map these embeddings in

Rs to the low-dimensional commensurate space (Rd).

While embedding the dissimilarities in the highest dimension possible is a good idea

for preserving the signal dimensions, in the presence of noise dimensions (6.1.3), the

noise will be incorporated into the embeddings. Even if the dissimilarities are errorless

representations of measurements of a particular dimension d∗, for the sake of inference, it

is preferable to embed at a lower dimension d < d∗ because of the bias-variance tradeoff.

We call this variant of the CCA approach regularized CCA. Regularized CCA, for which

the embedding dimension choice is s such that d < s < (p + q), is expected to yield a

better performance than the CCA approach by introducing more bias for the sake of

removing variance. We expect to see a difference between CCA and regularized CCA in

our data settings because we introduce noise into the dissimilarities 6.

8.2 Canonical Correlational Analysis

Let X and Y be two s-dimensional random vectors. If we want to find the pair of

linear projection operators U1 : Rs → R, U2 : Rs → R that maximize the correlation

between the projections of X and Y , CCA provides the solution to this problem by
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optimizing the objective function

( ˆ(u)1,
ˆ(u)2) = arg max

u1∈Rs,u2∈Rs

E[uT
1XY Tu2]

E[uT
1XXTu1]E[uT

2 Y Y Tu2]

with the constraints E[uT
1XXTu1] = 1, E[uT

2 Y Y Tu2] = 1 for removing ambiguities.

The constraints simplify the objective function to

max
u1∈Rs,u2∈Rs

E[uT
1XY Tu2].

Then, the projection operators are U1(x) = (û1)
Tx and U1(y) = (û2)

Ty.

Remark X and Y can be of different dimensions s1 and s2, but for the sake of simplicity,

we will assume they have the same dimension s.

In general, the projections map to a pair of d-dimensional linear subspaces, that is, U1 :

Rs → Rd, U2 : Rs → Rd. The projection matrices that represent the mappings are U1

and U2, and their rows are the direction vectors u1(i), u2(i), i = 1, . . . , d. These additional

pairs of projection vectors can be computed sequentially, with the constraints that the

projections along the new directions are uncorrelated with the projections along previous

directions. That is, the ith pair of directions that maximize correlation is computed by

ˆ(u)1(i),
ˆ(u)2(i) = arg max

u1(i),u2(i)∈Rs
E[uT

1(i)XY Tu2(i)]

subject to constraints E[uT
1(i)XXTu1(i)] = 1, E[uT

2(i)Y Y Tu2(i)] = 1, E[uT
1(i)XXTu1(j)] =

0, E[uT
2(i)Y Y Tu2(j)] = 0 ∀ j = 1, . . . , i − 1. These directions are called “canonical”

directions. The projections X ˆ(u)1(i), i = 1, . . . , d are called “canonical” variates.
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For sample CCA, E[XXT ],E[Y Y T ] and E[XY T ] are replaced with their sample

estimates.

Note that s, the dimension of X and Y , is the embedding dimension s we use in the

CCA approach. So we use MDS to separately embed the dissimilarities in ∆1 and ∆2 in

Rs, and then use CCA to project the embeddings to the d-dimensional Euclidean space.

CCA◦MDS provides the complete mapping from dissimilarities to the commensurate

space.

As in P◦M, new dissimilarities are OOS embedded and mapped to a commensurate

space by maps provided by CCA. The test statistic τ , which is the distance between the

points in the commensurate space that correspond to the OOS dissimilarities, can now

be computed, and the null hypothesis is rejected for “large” values of the test statistic τ ,

as in Section 7.

8.3 Geometric Interpretation of

Canonical Correlational Analysis

To complement CCA, we should also consider Canonical Variate Analysis (CVA).

In CVA, the projections are also maximally correlated; however, one is concerned with

the variates ai = uT
1(i)X and bi = uT

2(i)Y , in contrast to the canonical directions u1(i) and

u2(i). CVA is to CCA what Principal Coordinate Analysis is to Principal Component

Analysis.
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We should also define canonical angles as follows:

Definition 2. For two subspaces V and W of Rd, the first canonical (or principal) an-

gle between them is arccosmaxv∈V,w∈W
<v,w>
‖v‖‖w‖ . Other (ith) canonical angles are defined as

arccosmaxvi∈V,wi∈W,vi⊥vj ,wi⊥wj ,∀j<i
<vi,wi>
‖vi‖‖wi‖ . The vectors vi and wi that maximize <vi,wi>

‖vi‖‖wi‖

are called canonical vectors.

For two n×s configuration matrices X and Y, consider the column spaces of the two

matrices LX = {Xu : u ∈ Rs} and LY. Note that these spaces are subspaces of Rn, not

of Rs (the n points of the configuration lie in Rs). We already know that CCA/CVA

maximizes the correlation of the variates. Let us we borrow terminology from pattern

recognition and call any one-dimensional subspace of LX (and LY) a “feature”. Each

u ∈ Rs define a feature. Therefore, any linear combination of the the original feature

vectors (rows of X and Y) is also a feature. The (sample) correlation of the variates

(defined by the canonical directions u1(i) and u2(i)) in CCA is also the cosine of the angle

between the features defined by the same directions. The uncorrelatedness condition

of two canonical variates of X correspond to the perpendicularity of the corresponding

feature vectors of X. Thus, CCA/CVA for d variates solves the problem of finding the

first d canonical angles and the corresponding canonical directions of LX and LY.
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8.4 Relationship between

Canonical Correlational Analysis and

Commensurability

Theorem 3. Let X1 and X2 be two n × s (configuration) matrices that represent pairs of

points that are perfectly “matched” (there exists a matrix Q such that ‖X1Q − X2‖ = 0).

Suppose, for the joint embedding procedure, that the embedded configurations are constrained

to be of the form X1 = X1U1 and X2 = X2U2 for some U1 ∈ U and U2 ∈ U , where U be the

set of all orthogonal d-frames (ordered set of d linearly independent vectors) of Rs. Elements

of U correspond to the unique projection operators to d-dimensional linear subspaces of Rs.

The commensurability error is defined as it is in equation (5.1).

Canonical Correlational Analysis on the i.i.d. sample of points represented by X1 and X2

gives U1 ∈ U and U2 ∈ U , the two elements of U that maximize commensurability, subject

to UT
1 XT

1X1U1 = Id, and UT
2 XT

2X2U2 = Id (Id is the d× d identity matrix).

Proof. Consider 5.1 and its simplified form when δij = 0, as we assumed that there exists

a perfect matching.

εc(k1=1,k2=2)
=

1

n


1≤i≤n;k1=1,k2=2

(d(U1xik1 , U2xik2))
2. (8.1)

Equation (8.1) can be written as
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εc12 =
1

n

d
j=1

n
i=1

[((uj1xi1 − uj2xi2))]
2

=
1

n

d
j=1

n
i=1

(uj1 xi1)
2 + (uj2 xi2)

2 − 2(uj1xi1uj2xi2),

where uj1 and uj2 are the rows of U1 and U2.

Because UT
1 XT

1X1U1 = Id (and UT
2 XT

2X2U2 = Id), for any j, uj1XT
1X1u

T
j1 = 1

(uj2XT
2X2u

T
j2 = 1 ).

Consider the sum of the first terms, S1 =
1
n

n
i=1

d
j=1 (uj1xi1)

2. It is easier to show

this sum is constant, if we use the the probabilistic definition of CCA in section 8.2 .

Assume X1 and X2 represent n-sized sample of X and Y , respectively. As n → ∞, the

sum S1 =
d

j=1
1
n

n
i=1 (uj1xi1)

2 converges to
d

j=1E[uj1X]. Each term of this limit

sum is constrained to be 1 in the definition of CCA 8.2. Therefore the sum S1 converges

to d. By the same line of reasoning, we can conclude the sum of the second terms is also

constant. The sum of the third terms can be written in the form of (−2 × ξ), where ξ

is the sum of the products of dot products uj1xi1 and uj2xi2. Thus, maximizing ξ under

the linearity constraints is maximizing the commensurability.

Note that

ξ =
1

n

n
i=1

d
j=1

(uj1xi1uj2xi2) =
1

n


traceUT

1 XT
1X2U2 −


1≤j≤d


1≤i<l≤d

uj1xi1x
T
l2u

T
j2



where the dot products uT
j1xi1 and xT

l2uj2 are uncorrelated because xi1,xl2, i 6= l are

independent samples. Therefore, as n → ∞, the second sum vanishes, and only the trace

term remains. Thus, ξ = 1
n
traceUT

1 XT
1X2U2, which is the objective function optimized
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with respect to U1 and U2 in the canonical correlational analysis. Subject to constraints,

CCA maximizes commensurability with respect to U1 and U2.

8.5 Spectral Embedding Generalization of CCA

Another way to view the connection between CCA and JOFC embedding (using

classical MDS) is via connections to spectral embedding. Jagarlamudi et al. [39] show

that CCA is a special case of Spectral Embedding with the restriction that the joint em-

bedding coordinates are linear projections of the original multiview data, X1 and X2.

First, we define “Spectral Embedding” as follows: Given a k× k weight matrixW , Spec-

tral Embedding embeds k points in d-dimensional Euclidean space by minimizing the

cost function


i,j∈{1,...,k}Wij (ui − uj)
2, where ui, uj ∈ Rd are the embedded coordi-

nates.

Assume that CCA is applied to X1 and X2, which yields two n× d matrices, X1 and

X2, the embedded configuration matrices.

For the same multiview data, X1 and X2, let

Z =

 X1 0

0 X2

 .

LetW =

 0 In

In 0

 be a 2n×2n weight matrix. We can assume thatW is an adjacency
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matrix that represents a graph that is bipartite, and the only edges lie between the ith

and (n + i)th vertices (which correspond to matched pairs in earlier chapters) for i ∈

{1, . . . , n}. The degree matrix for this graph is then D = I2n. The graph laplacian is

L = D − W . Assume the constraint that the embedding coordinates of the ith point

Zi = pTZi are introduced for some p ∈ Rd, i.e., p is a projection vector. We call this

constraint the linearity condition. Then, the embedding of the ith point of the 2n points

via Spectral Embedding for the weighted adjacency matrix L is Zi, where Zi =
X1i 0


or Zi =


0X2i


and X1i and X2i are the ith rows of X1 and X2 yielded by CCA. As the

authors note in [39], from W , we can take intra-view similarities into account (which

means preserving more fidelity) and choose the diagonal block matrices in W to be

nonzero. This would be akin to a JOFC-type embedding because the commensurability

criterion is accounted for by using an identity matrix as the off-diagonal block matrix in

W , and the fidelity criterion is accounted for by the nonzero diagonal block matrices in

W .

As mentioned in 3.2.4, the joint embedding of a dissimilarity matrix via cMDS is

equivalent to spectral embedding under certain conditions. Consider to the spectral

embedding generalization of CCA we have just presented, using the multiview data Z

and weight matrix W obeying the linearity condition. There is an equivalent classical

MDS embedding with an omnibus dissimilarity matrixM for which τ(M) = −1
2
JMJT

corresponds to the pseudo-inverse of L = D −W .
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8.6 Generalized CCA: K > 2

Whereas CCA is defined forK = 2 conditions, multiple generalizations are available

because the correlation between more than two configurations can be defined in multiple

ways [40]. Let X1, . . . , XK be random vectors for which a generalized CCA represen-

tation will be computed. Consider the first set of canonical variates to be computed,

Z
(1)
1 , . . . , Z

(1)
K . Denote the correlation matrix of Z(1)

1 , . . . , Z
(1)
K by Φ(1). The following

three criteria are proposed in [40]:

• SUMCOR. Maximize the sum of the elements of Φ(1) : 1T (Φ(1))1,

• MAXVAR. Maximize the largest eigenvalue of Φ(1) : λ(1)
1 ,

• MINVAR. Minimize the smallest eigenvalue of Φ(1) : λ(m)
1 .

One can interpret all of these criteria as different norms on the correlation matrix. An in-

teresting question that will not be addressed here is whether one of these generalizations

is more appropriate for HA1 or HA2. We chose to use HA1 as the alternative hypothesis

and the SUMCOR criterion as the generalization of CCA.
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Multiple Minima in Multidimensional

Scaling

We previously considered configurations embedded via optimization of the MDS

criterion functions, but we have not mentioned the difficulties that might rise in op-

timization, such as the lack of convergence or the existence of multiple local minima.

Because raw stress minimization is solved using the iterative majorization algorithm, the

MDS embedding method is prone to these global optimization problems. Their sever-

ity depends on the value of the original dissimilarities. We are particularly interested

in the multiple local minima problem, as the configuration yielded by the optimization

of MDS criterion might be a local minimum instead of the global minimum. In fact, a

unique global minimum of the MDS criterion might not exist. In [41], the multiple local

minima problem is discussed for raw stress. A simple example is constructed, which is
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shown to have multiple local minima, one of which is the global minimum.

We focus our attention not on providing evidence of the existence of multiple local

minima in our matched data settings but on investigating how multiple local minima

might be related to w, when they do exist. We know the weighted raw stress function

is continuous with respect to w. As w changes, the weighted raw stress function will

change continuously, and the value of w might have an effect the local minimum in

which the iterative algorithm1 might terminate. As a result of a change in w, another

local minimum can become the global minimum. In the latter case, the argmin of the

MDS criterion function jumps from one local minimum (a particular configuration) to

another minimum/configuration with an infinitesimal change in w. In this case, the

embedded configuration, X, viewed as a matrix-valued function of w, has a point discon-

tinuity. Because AUC(w) = auc(X(w)) is a function of the embedded configuration,

the discontinuity of the configuration X(w) at w = wd might also cause AUC(w) to be

discontinuous at that w = wd. To investigate these issues, following the approach of [41],

we design a simple example that is as informative as it is instructive.
1Because we are using raw-stress embedding, we are using iterative majorization to find the MDS

solution.
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X1 = (0, 0) X2 = (1, 0)

X3 = (1, 1)
X4 = (0, 1)

X6 = (1, 0)

X7 = (0, 1)

Figure 9.1: True configuration of Xi, i ∈ 1, . . . , 7

9.1 Discontinuity in weighted raw stress OOS

configurations

It is possible to construct an example in which the weight parameter w controls

which of the local minima is the global minimum among the configurations of X̂..

Consider five in-sample points in R2 with locations X1 = (0, 0), X2 = (1, 0), X3 =

(1, 1), X4 = (1, 0), and X5 = (.5, .5) and two OOS points with coordinates X6 = (1, 0)

and X7 = (0, 1). We assume that X6 is matched with X2 and that X7 is matched with

X4. Therefore, the weights for the dissimilarities between X6 and X2 (also X7 and X4)

are w. The weights of other dissimilarities are 1− w.
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Denote the Euclidean distance matrix by D. Suppose, due to noise, or due to dissim-

ilarities corresponding to a non-Euclidean distance, the dissimilarity matrix is

D′
ij =


Dij − 1.4 if (i, j) ∈ {(4, 6), (6, 4), (2, 7), (7, 2)}

Dij otherwise

.

The approximate values of the dissimilarity matrix is shown in Table 9.1.

1 2 3 4 5 6 7

1 0.00 1.00 1.41 1.00 0.71 1.00 1.00

2 1.00 0.00 1.00 1.41 0.71 0.00 0.01

3 1.41 1.00 0.00 1.00 0.71 1.00 1.00

4 1.00 1.41 1.00 0.00 0.71 0.01 0.00

5 0.71 0.71 0.71 0.71 0.00 0.71 0.71

6 1.00 0.00 1.00 0.01 0.71 0.00 1.41

7 1.00 0.01 1.00 0.00 0.71 1.41 0.00

Table 9.1: The entries of the dissimilarity matrix (rounded to two decimal digits)

Remark This data setting does not exactly fit the data setting that we use for the match

detection task because one of each matched pair is an in-sample point and there are not

any multiple conditions. As we have noted, our aim is to just set up a simple setting with

the weighted raw stress criterion function that still demonstrates interesting behavior.

The MDS criterion function is optimized with the iterative majorization algorithm

82



CHAPTER 9. MULTIPLE MINIMA IN MULTIDIMENSIONAL SCALING

starting with different initial configurations. Depending on the initial configuration, the

final embedding coordinates of X̂6 might be closer toX4 than toX2 because the iterative

majorization algorithm terminates in that local minimum in the configuration space.

BecauseD46 ≈ 0 andD27 ≈ 0, the configurations that place X̂6 andX4 together (and X̂7

and X2 together) would have raw stress close to the original configuration that has X̂6

and X2 together (and X̂7 and X4 together). We therefore have at least two local minima

for this data setting.

We distinguish between these two types of local minima, one in which the embedded

OOS points X̂6 and X̂7 end up on the same side as their respective matched points X2

and X4 (named “true” or real config.) and the other in which they end up on the sides

opposite to their matched points (named “alternative” local min.).

For initial configurations in which the initial coordinates of X̂6 lie on the X4 side of

the y = x line in R2 and X̂7 is on theX2 side, the iterative majorization might terminate

in an “alternative” local minimum. Assume that we start from such an initial configura-

tion, interpreting the steps of iterative majorization as points moving toward low-stress

configurations, X̂6 has to cross paths with the embeddings of X1, X3, X5. However, em-

bedding X̂6 close to these points would result in a high-stress configuration because it

has nonzero dissimilarities with those points. The same argument can be made for X̂7.

To qualitatively describe the situation, the three points X1, X5, and X3 form a barrier

that the OOS points need to cross to reach their matched counterparts.

The “alternative” local minima correspond to the case in which the OOS points are
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unable to cross the “barrier”. Other configurations such as those in which X̂6 and X̂7

are on the same side of y = x line are not local minima because the original dissimilarity

between X6 and X7) is large (
√
2) compared with dissimilarities between other pairs

of points (the dissimilarity values are 0, 1, and
√
2
2
) and because embedding them close

would increase the raw stress significantly.

Whether it is easier or harder to get out of the “alternative” local minimum is based

on the value of w. In addition, depending on w, these “alternative” configurations can

have a lower stress than the “true” (real) configuration and result in a global minimum.

That is, if w is small enough, the configuration in which X̂6 stays on the side of X4

instead of that ofX2 might have a lower stress than the configuration in which X̂6 is near

its matched pointX2 because the contribution ofDij−d(Xi, Xj) to the raw stress where

(i, j) = (4, 6) is multiplied by 1 − w, whereas every other dissimilarity is multiplied by

w.

For our simulation, we chose a grid of starting points for X6 with the x-coordinates

ofX6x ∈ {−0.5, 0.4, . . . , 1.5} and the y-coordinatesX6y ∈ {−0.2,−0.1, 0, . . . , 1.6}. For

X7, the corresponding starting points were (1 − X6x, 1 − X6y). We embedded the pair

of OOS points by minimizing raw stress with the IM algorithm starting from a pair of

corresponding points from the grid.

Starting from a small enough value for w and increasing it until w is arbitrarily close

to 1, there are two w values for which important changes in embedding configurations

occur and final stress values are obtained.
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The plots in Figures 9.3, 9.4, 9.5, 9.6, and 9.7 show the embedding configurations of

X6 (in red circles) andX7 (in blue pluses). Each point in the plots is a point at which the

IM algorithm terminates after starting from different initial configurations (one red and

one blue point for each initial configuration). The point pairs plotted in the left box for

each figure pair are those configurations in which X6 and X7 end up on the side of their

matched points (“true” final configuration). The configurations on the right are those

in which the points end up on the opposite side of their matched points. For the last

four w values, (0.82, 0.83, 0.84, 0.85), there are no initial configurations that end up in

“alternative”-type configurations. Both types of configurations (“true” and “alternative”)

for selected w values are plotted in Figure 9.2.

We are also interested in which type of local minima has lower stress and contains

the global minimum solution. We compute the minimum stress value among each type

of local minima and compare these final stress values. The final stress values of the final

configurations listed in Table 9.2 and plotted in figure 9.8 indicate that around w =

0.5, the “true” local minimum, begins to have a lower stress value compared with the

“alternative” local minimum. This is the first w value that corresponds to an important

change. This transition provides evidence that different local minima might become

global minima, depending on the value of w.

It is also noteworthy that starting around w = 0.8 in Figure 9.5, all of the X̂6 and X̂7

pairs are on the verge of passing through the barrier and ending up on the side of their

matched points because the barrier starts to become negligible and there are no separate
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local minima. When w > 0.8, all of the point pairs end up in the “real” configuration

9.6. This is the other w value at which important changes in configurations and stress

values occur. Further increasing w changes the final stress value, and the final embedding

configuration moves closer to the original locations of Xi in 9.1 9.7.
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w =  0.1 w =  0.5

w =  0.51 w =  0.52

w =  0.8 w =  0.81

w =  0.84
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Figure 9.2: Embedded Point Pairs (X̂6 and X̂7) for all initial configurations for different

w values
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Figure 9.3: Final configurations for different initial configurations, w = 0.1
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Figure 9.4: Final configurations for different initial configurations, w = 0.5
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Figure 9.5: Final configurations for different initial configurations, w = 0.8
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Figure 9.6: Final configurations for different initial configurations, w = 0.81
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Figure 9.7: Final configurations for different initial configurations, w = 0.84
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This example was constructed carefully using a symmetric configuration of points.

Under reasonable probability distributions for point configurations, it is unexpected that

such a symmetry will appear with nonzero probability. Thus, we conjecture that such

discontinuities with respect to w in the embedded configuration have a zero measure.

Because the test statistic is a continuous function of the embedded configuration, the

events for which the test statistic has discontinuities with respect to w also have a zero

measure. This result suggests that the assumption of stochastic continuity of the test

statistic that is used to show the continuity of the AUC function in subsection 4.2.1 is a

reasonable assumption.
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Chapter 10

Simulations and Experiments

10.1 Simulation Results

To compare the different approaches, training data of matched pairs of measurements

were generated according to the Dirichlet and Gaussian settings with parameters p, q, r

and c 6. Dissimilarity representations (1.2) were computed from pairwise Euclidean

distances of these measurements. A set of matched pairs and unmatched pairs of mea-

surements were also generated for testing using the same distributions. Following the

OOS embedding of the test pairs (computed via the P◦M 7, CCA 8, regularized CCA

8.2, or JOFC 4 approach), test statistics for matched and unmatched pairs (correspond-

ing to null and alternative hypothesis, respectively) were used to compute power values

at a set of fixed type I error rate α values. By using the same generated data for all of the

approaches, we can compare the performance of different approaches using either the

94



CHAPTER 10. SIMULATIONS AND EXPERIMENTS

area under the curve (AUC) measure or the statistical power at a desired α value.

Additionally, to consider the relative robustness of the methods, “noisy” measure-

ments were created from the original measurements by concatenating randomly gener-

ated independent noise vectors (subsection 6.1.3). This setting will be referred to as the

“noisy case”. The magnitude of noise is controlled by the parameter c in equation (6.1)).

The original setting, with c = 0, will be referred to as the “noiseless case”. If the magni-

tude of noise is small enough and the embedding dimension is not larger than the signal

dimension, the embeddings provided by PCA and MDS should not be affected signif-

icantly by the noise. However, if the number of noise dimensions (controlled by the

parameter q in the distribution of Eik as defined in equation (6.1) ) is large enough, it is

expected that embeddings via CCA will be affected due to spurious correlations between

noisy dimensions.

We will now describe the steps of our Monte Carlo simulation in detail. Given the

setting (“Gaussian”,“Dirichlet”), the steps for each Monte Carlo replicate are as follows:

• A training set (Tmc), which consists of n pairs of matched measurements, is gen-

erated. If c = 0, the “noiseless” data setting is being simulated, and the mea-

surements are p-dimensional vectors; otherwise, the “noisy” setting is being used

to generate data and measurement vectors that are (p + q)-dimensional. Tmc =

X11 . . . X1K

· · · · · · · · ·

Xn1 . . . XnK

where eachXik is a random vector of dimension (p+q×I(c > 0))
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and the conditional distribution Xi.|αi is specified as an appropriate Multivariate

Normal or Dirichlet distribution. The data generation is also described in detail

in chapter 6.

• Dissimilarities are computed from Xik, [∆k]ij = d(Xik, Xjk) for each condition k.

We use the Euclidean Distance for both Gaussian and Dirichlet settings.

• Dissimilarities are embedded in Euclidean space via MDS. For the P◦M approach,

the embedding falls onto Rd, followed by a transformation from Rd to Rd. For

CCA, the embedding falls onto Rp+q, followed by projection onto Rd. For reg-

ularized CCA, the embedding falls onto Rs, where s = (p + q)/21, followed by

projection onto Rd. The final embeddings fall onto Rd. We denote this in-sample

embedding configuration as T̂. For the JOFC approach, the embedding is per-

formed using the weighted raw stress function σW (·) = fw(D(·),M) in equation

(7.2) with a common weight w for commensurability terms and another common

weight 1 − w for fidelity terms. We try different values of w in our simulations.

For P◦M, CCA and regularized CCA, an unweighted raw stress function (σ(·)) is

used as a criterion function for embedding the dissimilarities.

• m pairs of matched measurements are generated that are treated as OOS, and

– we compute the dissimilarities between these OOS points and the points in

Tmc,
1s could be chosen as any integer between d and p + q. This particular choice was a sensible one for

the values of p, q, andd in our simulations.
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– we embed the OOS dissimilarities as pairs of embedded points via the OOS

extension:

(ỹ
(1)
1 , ỹ

(2)
1 ), . . . , (ỹ

(1)
m , ỹ

(2)
m ), and

– we compute the test statistic τ for each pair, τi = d(ỹ
(1)
i , ỹ

(2)
i ); i = 1, . . . ,m

The values of the statistic τ = taui, i = 1, . . . ,m are used to compute the empirical

cumulative distribution function under the null hypothesis.

• Identical steps for m pairs of unmatched measurements result in the empirical

cumulative distribution function of τ under the alternative hypothesis.

• For any fixed α value, a critical value for the test statistic and the corresponding

power is computed.

For p = 5, q = 10, d = 2, and c ∈ {0, 0.01} and for n = 150 and m = 150,

the average of the power values for nmc = 150 Monte Carlo replicates are computed

at different αs and are plotted in Figure 10.3 against α for the Gaussian setting. The

plot in Figure 10.3 shows that for different values of w, the β-α curves vary significantly.

The conclusion is that the match detection tests with JOFC embedding using specific

w values perform better than other w values in terms of power. In Figure 10.3, β(w) is

plotted against w for fixed values of α. It is interesting that the optimal value of w seems

to be in the range of (0.85, 1) for all settings, which suggests that a significant emphasis

on commensurability might be critical for the match detection task.

The value of w that results in the highest AUC measure is different for each Monte
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Figure 10.1: Power (β ) vs Type I error (α) plot for different w values for the Gaussian

setting (noisy case)
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Figure 10.2: Power (β ) vs Type I error (α) plot for different w values for the Gaussian

setting (noiseless case)
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Figure 10.3: Power (β ) vs w plot for different Type I error (α) values for the Gaussian

setting (noisy case)
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Figure 10.4: Power (β ) vs Type I error (α) plot for different w values for the Dirichlet

setting (noisy case)

101



CHAPTER 10. SIMULATIONS AND EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

β

0.5
0.8
0.85
0.9
0.925
0.95
0.99
0.999
pom
cca
bound

Figure 10.5: Power (β ) vs Type I error (α) plot for different w values for the Dirichlet

setting (noiseless case)
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Figure 10.6: Power (β ) vs w plot for different Type I error (α) values for the Gaussian

setting (noisy case)

103



CHAPTER 10. SIMULATIONS AND EXPERIMENTS

Carlo replicate. The number of replicates for which a particular w value resulted in the

highest AUCmeasure is shown in the bar chart in Figure 10.7. Only the non-zero counts

are shown in the plot. The estimate ŵ∗ can be chosen to be 0.925 because it is the mode

of the w∗ estimates from all of the replicates.

For each MC replicate, the estimate of w∗ (the value of w that results in the highest

AUC measure) might have a different value. This is hinted at by the fact that the β(w)

vs w plots exhibit a plateau near the maximum. The number of replicates for which

a particular w value resulted in the highest AUC measure is shown in the bar chart in

Figure 10.7 for 400 MC replicates. Figure 10.7 clearly shows that w∗ should be estimated

based on multiple MC replicates. The mode of the w∗ values from each MC replicate is

an appropriate estimator. For the results plotted in Figure 10.7, the estimate ŵ∗ can be

chosen as 0.925.

Note that in Figure 10.3 for α = 0.05, βα=0.05(w = 0.99) ≥ βα=0.05(w = 0.5).

However, for α = 0.3, βα=0.3(w = 0.99) ≤ βα=0.3(w = 0.5). This justifies our comment

that w∗ must be defined with respect to the AUC measure or a specific α value.

Note that for all of the settings, the estimate of the optimal w∗ has higher power

than w=0.5 (the unweighted case). To test the statistical significance of this observation,

we consider the following hypothesis test: the null hypothesis that H0 : βα(ŵ
∗) ≤

βα(w = 0.5) is tested against the alternative hypothesis HA = βα(ŵ
∗) > βα(w = 0.5).

The least favorable null hypothesis is that H0 : βα(ŵ
∗) = βα(w = 0.5).

McNemar’s test will be used to compare the two predictors (referred to as C1 and C2
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Figure 10.7: Histogram of w∗ values for the Gaussian setting
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with w=0.5 and w=w∗ at a fixed α value.

10.1.1 McNemar’s Test

Using the previous notation, the test statistic will be denoted by Ta(w) under the

alternative hypothesis and by T0(w) under the null hypothesis. For a fixed α value, one

can compute two critical values:

c0.5 = maxl{P [T0(0.5) > l] < α}, cw∗ = maxl{P [T0(w
∗) > l] < α}

. These critical values determine two binary classifiers if we interpret the hypothesis test-

ing as deciding whether a new pair is “matched” or not and the test statistic as a score.

Hypothesis testing is more nuanced than a binary decision problem, but for the sake of

comparing the two tests, we can treat it as such. To compare the two statistical tests with

w = 0.5 and w=w∗, simulation results are used to compute 2 × 2 contingency tables of

correct decisions and incorrect decisions made by each statistical test (or, equivalently,

true and false classifications made by two classifiers). Let D (i) denote the test dissimilar-

ities for the ith new test pair, let τ(D (i)) denote the test statistic for the oos-embedding

of that pair, and letmD(i) denote a binary variable whose value is 1 if the pair is matched

and 0 otherwise. We denote the decision outcome (whether the true or false decision is

made) for the ith test pair by two binary variables gi1 and gi2,respectively. If gi1 = 1 and

gi2 = 0 for the lth MC replicate, the first test made the correct decision and the second
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test made the incorrect decision with regard to the null and alternative hypotheses.

gi1 = I(I(τ(D (i)) > c0.5) = mD(i)) for the first statistical test

gi2 = I(I(τ(D (i)) > cw∗) = mD(i)) for the second statistical test

Consider the contingency table for any Monte Carlo replicate given by

G(l) =
e
(l)
00 e

(l)
10

e
(l)
01 e

(l)
11

where e(l)uv =


i I({gi1 = u}&&{gi2 = v}) is equal to the number of instances at which

the true hypothesis was identified correctly (gi1 = 1) or incorrectly (gi1 = 0) by the first

test and correctly (gi2 = 1) or incorrectly (gi2 = 0) by the second test in the lth MC

replicate.

Under the null hypothesis that the two predictors have the same power at α,

P[

{gi1 = 1}&&{gi2 = 0}


] = P[


{gi1 = 0}&&{gi2 = 1}


].

Thus, a one-sided sign test is appropriate, in which the test statistic e
(l)
01 is distributed

according to the binomial distribution, B(e(l)10 + e
(l)
01 , 0.5).

We consider simulated data with the noisy version of the Gaussian setting for this Mc-

Nemar’s test. The critical values c0.5 and cw∗ were computed with type I error α = 0.05

for the two tests. When comparing the null hypothesis that H0 : βα(ŵ
∗) = βα(w = 0.5)

against the alternative HA = βα(ŵ
∗) > βα(w = 0.5), the p-value is p < 1.09E − 24,

which indicates that the power obtained using the estimate of the optimal w∗ is signifi-

cantly greater than the power obtained when using w = 0.5.
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Under the null distribution, we expect the p-values for each MC replicate to be uni-

formly distributed. We find that the distribution of p-values from McNemar’s tests is

skewed, and we reject H0 for 55% of the Monte Carlo replicates.

10.2 Effects of the parameters of the data model

Another topic to be investigated is how the parameters of the distribution of data,

such as p, q, r, c, and d, affect the results. We speculated that as q, the number of

noise dimensions, increases, the performance of the CCA approach would suffer due to

spurious correlations. We tested our speculation using simulated data in the Gaussian

Setting with q = 90. The results are visualized in the bundle of ROC curves in Figure

10.8. Both CCA and regularized CCA are not competitive with the JOFC approach

with the appropriate w values. In fact, the ROC curve for CCA is not very distinct from

a random guess. We conclude that the CCA approach is not robust with respect to a

large number of noise dimensions, no matter what the magnitude of the noise is (which

is controlled by the parameter c).
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Figure 10.8: Large Noise Dimension Behavior of JOFC, P◦ M and CCA approaches
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10.3 Match Testing when the number of con-

ditions, K is larger than 2

We noted previously that all of the approaches are generalizable toK > 2 conditions,

although an ambiguity needs to be resolved. The alternative hypothesis could be defined

as the case in which at least one of the K new dissimilarities are pairwise unmatched

(HA1 : ∃i, j, 1 ≤ i < j ≤ K : yi � yj ) or could be defined as the case in which absolutely

none of the K dissimilarities are pairwise matched (HA2 : ∀i, j, 1 ≤ i < j ≤ K : yi � yj

). We chose the alternative HA1 for our simulations.

To adapt the P◦M approach to this setting, one can use Procrustes Analysis general-

ized to more than two configurations. Generalized Procrustes Analysis [37] is described

in section 7.3.

We have also described generalized CCA in section 8.6. Of the different choices for

the generalization of CCA, the SUMCOR criterion was chosen.

To test whether the P◦M, JOFC, and generalized CCA approaches are appropriate

for this setting, the simulations in section 10.1 were repeated withK-condition data that

were generated by a multivariate normal model with K = 3 conditions.

We investigate the “noisy” case for this setting, i.e., q-dimensional noise vectors of

magnitude c were added to the matched measurements, and the “signal” vectors were

multiplied by 1− c.

The ROC curves for these simulations are shown in 10.9.
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Figure 10.9: Power (β ) vs Type I error (α) plot for different w values for the Gaussian

setting with K = 3 conditions (noisy case)
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The results indicate behavior that is similar to that of the K = 2 case. Different

values of w have significantly different ROC curves. JOFC is thus a suitable approach

for match detection when either two (K = 2) conditions or more than two (K > 2)

conditions are used.

10.4 Experiments on Wiki Data

To test the JOFC approach with real data with different conditions, we used a col-

lection of online Wikipedia articles. Based on the hyperlinks between Wikipedia arti-

cles, the directed 2-neighborhood of the document “Algebraic Geometry” were collected

from the English Wikipedia site. This collection of 1382 articles and the correspon-

dence of each article to the French Wikipedia site is our real-life dataset. It is possible

to utilize both the textual content of the documents and the hyperlink graph struc-

ture. The textual content of the documents is summarized by the bag-of-words model.

Dissimilarities between documents in the same language are computed using the Lin-

Pantel discounted mutual information [42, 43] and cosine dissimilarity k(xik;xjk) =

1− (xikxjk)/(‖xik‖2‖xik‖2). The dissimilarities based on the hyperlink graph of the col-

lection of the articles are, for each pair of vertices i and j, the number of vertices one

must travel to go from i to j. Further details about this dataset are available in [44].

Only dissimilarities based on the textual content will be considered for our experiments

presented here.
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The exploitation task is still testing for the matchedness of vertices between different

conditions, which, in this case, are wiki articles on the same topic in different languages.

For hypothesis testing, four randomly held-out documents – one matched pair and one

unmatched pair – are used to compute the empirical type I error α and estimate of

power based on the critical value computed from the distribution of the test statistic for

the remaining 1380 matched pairs. The test statistic is computed using one of the three

mentioned approaches: CCA, P◦M, or JOFC. The two sets of held-out matched pairs

are embedded as ỹ1 and ỹ2, via OOS embedding, to estimate the null distribution of the

test statistic T0 = d(ỹ1; ỹ2). This allows us to estimate critical values for any specified

Type I error level. Then, the two sets of held-out unmatched pairs are embedded as ỹ(u)1

and ỹ
(u)
2 via OOS embedding. Ta = d(ỹ

(u)
1 ; ỹ

(u)
1 ) will give us an empirical distribution

of the test statistic under the alternative hypothesis. The distribution under the null

hypothesis and under the alternative hypothesis can be used to estimate the power. The

target dimensionality d is determined by the Zhu and Ghodsi automatic dimensionality

selection method [45], resulting in d = 6 for this data set.

The results show that fidelity is prioritized more compared with the Gaussian and

Dirichlet simulations presented in section 10.1. Our conclusion is that there is no uni-

versal w∗ because its value depends on the data distribution and the inference task.
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Figure 10.10: Match detection using the Wikipedia dataset. Different w values listed in

the legend correspond to different ROC curves.
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10.5 Model Selection

For the simulations presented until now, the embedding dimension d was set to 2.

This was a convenient choice that allowed us to investigate various aspects of the JOFC

and competing approaches. However, more care is required in the selection of this pa-

rameter because it plays such a large role in performance in general learning settings.

To investigate the performance of the JOFC approach as d changes, we ran the usual

Gaussian setting simulations. The signal dimension was set to p = 10, and different

d = 2, 5, 7, 10, 15 values were used to test the JOFC approach.

The ROC curve plots in 10.11 and 10.12 show the effect of the d parameter on the

performance of different methods for the Gaussian setting for the noisy case.

The results show the difference in sensitivity of the different approaches to the embed-

ding dimension. For larger d, CCA and regularized CCA exhibit a serious degradation

in performance. We expect that this degradation is again due to a spurious correlation

phenomenon, where more noise dimensions appear in the embedding as the embedding

dimension increases. At the same time, the performances of P◦M and and JOFC with

w = 0.5 improve with increasing embedding dimension, and they are the approaches that

have the best performing test statistic. JOFC with the highest w values 0.95, 0.99, 0.999

perform slightly worse, whereas the ROC curves for the other w values are more or

less the same. Increasing the embedding dimension seems to push w∗ toward the fi-
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Figure 10.11: Effect of the d parameter on the ROC curves
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Figure 10.12: Effect of the d parameter on the ROC curves,d=15
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delity end (w = 0) of the fidelity-commensurability tradeoff. These results require more

investigation before we can provide a rigorous explanation as to how the embedding di-

mension affects the different approaches ( JOFC and P◦M). Specifically, how the null and

alternative distributions of the test statistic for the different approaches change with the

embedding dimension d should be investigated.

118



Chapter 11

Seeded Graph Matching and

Fast Approximate Quadratic

Programming

11.1 Introduction to Graph Matching

Another application of the JOFC approach is a variant of the graph matching prob-

lem. First, we define the general graph matching problem.
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11.1.1 Graph Matching

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) such that |V1| = |V2|. Let

(u, v) denote the edge between vertices u and v. Suppose there exists a bijection f between

V2 and V1 such that

(f(u2), f(v2)) ∈ E1 iff (u2, v2) ∈ E2 ∀u2, v2 ∈ V2.

Then, the exact graph matching problem is to determine f. No efficient algorithms are

known to exist to solve this problem for general graphs [46]. Determining the existence

of such an isomorphism between the two graphs is an easier decision problem referred

to as graph isomorphism. Graph isomorphism is not only of unknown complexity, it is

also a strong candidate for representing an intermediate complexity class between P and

NP , assuming P 6= NP .

Regardless of the existence of an isomorphism between the two graphs, we are inter-

ested in the bijections {f : V2 → V1} such that the graph (G′
1) consisting of V1 and the

edges (f(u2), f(v2))∀u2, v2 ∈ V2 is a good approximation of G1. The approximate graph

matching problem1 is defined as the task of finding such a bijection f that minimizes “the

degree of mismatch” between G′
1 and G1 . We measure this degree of mismatch with a

function denoted by τ(f ;G1, G2). In unweighted graphs, this degree of mismatch is the
1We will refer to this problem as the graph matching problem in this document.
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number of edge disagreements.

τ(f ;G1, G2) = |(u2, v2) ∈ E2 : (f(u2), f(v2)) /∈ E1|

+ |(u1, v1) ∈ E1 : (f
−1(u2), f

−1(v2)) /∈ E2| (11.1)

In weighted graphs, the degree of mismatch would be a function of the difference of the

weights of the corresponding edges, such as:

τ(f ;G1, G2) =


u2,v2∈V2

|w(u2, v2)− w(f(u2), f(v2))| (11.2)

where w(a, b) is the weight of the edge between vertices a and b . If the existence and

nonexistence of an edge between two vertices in an unweighted graph correspond to an

edge weight of 1 and 0, respectively, for a weighted graph, then the degree of mismatch

defined for the unweighted graph case is a special case of that defined for the weighted

graph. 2

The approximate graph matching problem is an important research topic, and has

many practical applications [46, 48–51]. We will propose two approaches to solve this

problem. In this chapter, we present the optimization based approach; in chapter 12, we

will present the approach based on the JOFC embedding.

Assume that G1 and G2 are unweighted graphs. 3 We consider a specific version of

the approximate graph matching problem in which part of a bijection between V1 and V2

are given, and the task is to complete the bijection minimizing number of disagreements.
2The τ function could depend on another function of the weights [47]. We choose to use the absolute

difference between the weights to maintain the connection between the weighted and unweighted cases.
3We should note that most of the notation and methods carry over to the weighted case.
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For 1 ≤ r < n = |V1|, let S be a set containing r tuples with each tuple containing a

unique element each from V1 and V2. Then, given the two graphs G1, G2 and the tuple

set S, the objective function for the seeded graph matching problem is

τsgm(f ;G1, G2, S) := τ(f ;G1, G2) (11.3)

subject to the constraint ∀ (v1, v2) ∈ S, f(v2) = v1.

The tuples of vertices are referred to as “seeds” and we will refer to this variant of the

graph matching problem as the “seeded graph matching” (SGM) problem.

Remark Although in the definition of the problem, we have not assumed any relation

between the two graphs or between the seed tuples, there is an implicit understanding

that there is some correlation between the connectivity of the two graphs and the seed

tuples provide some of the true correspondences. It is possible the correlation between

the two graphs is weak and the seed tuples contain false correspondences. However, if

there is an underlying correspondence between the vertices of the two graphs and the

seed tuples contain a portion of the corresponding vertices, we could hope to recover a

considerable part of the true correspondences and judge our performance with respect

to the ground truth of true correspondences.

It will be convenient to formulate the SGM problem with the adjacency matrices as

follows:

Suppose A,B ∈ M(m+l)×(m+l) are adjacency matrices for graphs G1 and G2 parti-
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tioned as (m rows and then l rows, m columns and then l columns):

A =

 A11 A12

A21 A22

 B =

 B11 B12

B21 B22

 .

Without loss of generality, suppose that V1 = [m + l], V2 = [m + l] and S = {(i, i) :

i ∈ [m]}, i.e., the first m vertices of G1, correspond to the first m vertices of G2, respec-

tively in the given part of the bijection. We wish to complete the bijection by matching

the remaining l pairs of vertices. That is, we seek a permutation matrix P ∈ Ml×l

such that the permutation represented by (Im×m ⊕ P ) is the bijection f that minimizes

τsgm(f ;G1, G2, S).

It is obvious that P and the seed tuples in S determine f : V2 → V1, the bijection

between the two graphs. So given the seeding S, we define FS(·), a one-to-one mapping

from the set of l× l permutation matrices denoted by Πl to the set of bijections from V2

to V1 denoted by BV2→V1 = {g : V2 → V1, g is one-to-one } :

FS(P ) : Πl → BV2→V1 .

Solving for a l × l permutation matrix that minimizes τsgm(FS(P );G1, G2, S) is equiva-

lent to solving for a bijection that minimizes τsgm(f ;G1, G2, S).

So we formulate the seeded graph matching problem as an optimization problem:

we seek P that minimizes h(P ) over all permutation matrices of size l × l, where the

function h(P ) = τsgm(FS(P );G1, G2, S) measures the mismatch between G1 and the

resulting graph when the permutation represented by P is applied to the vertices of

G2. For unweighted graphs, the degree of mismatch is characterized by the number
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of adjacency disagreements, which is conveniently represented in terms of P and the

adjacency matrices of G1 and G2:

h(P ) = ‖A− (Im×m ⊕ P )TB(Im×m ⊕ P )‖1

subject to P being a permutation matrix. h(P ) is written in terms of the partition block

matrices as
 A11 A12

A21 A22

−

 Im×m 0m×l

0l×m P


 B11 B12

B21 B22


 Im×m 0m×l

0l×m P T



1

.

It is possible to state the seeded graph matching problem as the minimization of

various different functions over all permutation matrices P . Note that P = Im×m⊕P is

a permutation matrix, and both the columns and rows of B are permuted when it is left-

multiplied and right-multiplied with P (which yields PBPT ). Instead of permuting

both rows and columns of B, we can permute the columns of A (right-multiply by P )

and the rows of B ( left-multiply by P ). Because the norm of the matrix difference is

independent of the ordering of the rows and columns, ‖AP − PB‖1 would yield the

same value as the original objective function, ∀P ∈ Πl.

For the set of permutation matrices, the objective function with the `2-norm, ‖A −

PBPT‖2, is equivalent to the original objective function ‖A−PBPT‖1, because the

entries of the matrix difference between A and PBPT are either 0, 1 or -1 . Another

`2 objective function ‖AP − PB‖2 can be shown to be equivalent to ‖A− PBPT‖2

using the permutation argument we used in the previous paragraph for the `1 norm.
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The minimization of h(P ) over the set of all permutation matrices can also be shown

to be equivalent to the maximization of

trace

AT (Im×m ⊕ P )B(Im×m ⊕ P T )


(11.4)

by expanding out ‖A − PBPT‖22 = ‖A‖22 + ‖B‖22 − 2 · trace(ATPBPT ) and ig-

noring the constant terms. Note that this simplified `2 formulation is a special case of

the quadratic assignment problem (QAP). The quadratic assignment problem minimizes
i,j∈[p] θijωπ(i)π(j) with respect to a permutation π of p elements, given a collection of

weights {θij; i, j ∈ [p]} and distances {ωij; i, j ∈ [p]}. The objective function can

be written in matrix form as trace(ΘPΩP T ), where P is a permutation matrix and Θ

and Ω are the matrices of weights {θij} and distances {ωij} , respectively. Thus, the

`2 formulation in (11.4) is equivalent to the the special case of QAP, when weights and

distances are constrained to be 0 or 1.

The different formulations are equivalent for the set of permutation matrices, i.e.,

their global extrema are the same. We will consider relaxations of each formulation,

where we remove the integrality constraint of P and optimize the objective function

over the set of l× l doubly stochastic matrices,DS l. For example, for the `1 formulation,

Givenm seeds, minimize h(P ) = ‖A−(Im×m⊕P )TB(Im×m⊕P )‖1 with

respect to a permutation matrix P ∈ Πl, i.e.

1TP = 1, P1 = 1, and

[P ]ij ∈ {0, 1}, ∀i, j ∈ [l]

is relaxed to
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Givenm seeds, minimize h(P ) = ‖A−(Im×m⊕P )TB(Im×m⊕P )‖1 with

respect to a doubly stochastic matrix P ∈ DS l, i.e.

1TP = 1, P1 = 1 and

[P ]ij ≥ 0, ∀i, j ∈ [l]

by relaxing the integrality constraint of the entries of P to non-negativity. After this

relaxation, the feasible region is expanded to the set of doubly stochastic matrices, which

is the convex hull of permutation matrices. This means we have a feasible region that is

a polyhedral set.

We can apply the same relaxation to different formulations, as the original feasible

regions for all of the formulations are P ∈ Πl. To show equivalencies between different

objective functions we used the fact that P is a permutation matrix. Since this fact does

not hold after the feasible region is expanded to DS l, different relaxations are not nec-

essarily equivalent (see subsection 11.2.3). In fact, the different relaxation formulations

might have different solutions, or might have different convergence behaviour as we find

out during our investigations presented in subsection 11.2.4.
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11.2 Fast Approximate

Quadratic Programming for the Seeded

Graph Matching problem

Consider the formulation (11.4) and its relaxation by expanding the feasible region

to the set of doubly stochastic matrices. Solutions to this relaxation can be found via an

iterative nonlinear optimization algorithm, the Frank-Wolfe Method. The idea of this

method is to successively solve local linearizations of the objective function, using the

solution of previous iteration as the location of the linearization in the current iteration.

For the graph matching problem, the subproblem of solving the local linearization is

equivalent to solving the linear assignment problem for which polynomial time algo-

rithms exist. Most notable of these is the Hungarian algorithm [52].

Once the algorithm terminates due to a stopping criteria, the output of the algorithm

is an approximation to the solution of the relaxed problem. The algorithm might termi-

nate in a local minimum, and a common solution for this issue is multiple randomized

initializations of the algorithm. Also the solution found by the Frank-Wolfe algorithm

is possibly a non-integer solution. Since we must provide a permutation matrix as the

solution to the seeded graph matching problem, we must choose a permutation matrix

that is close to the solution of the Frank-Wolfe algorithm. This final step of projecting

to the set of permutation matrices is also equivalent to the linear assignment problem
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which can be solved via the Hungarian algorithm [52].

To summarize, the three steps of the FAQ algorithms are:

• Initialize the doubly stochastic l × l matrix P .

• Find a tentative solution P̂ to the formulation in (11.4) (which is aQAP problem)

• Find the permutation matrix that is closest to P̂ .

We provide details of the FAQ algorithm for SGM in the following sections.

11.2.1 Frank-Wolfe algorithm

A brief review of the Frank-Wolfe algorithm is necessary before we further describe

the FAQ method for Seeded Graph Matching. The F-W algorithm provides a solution

for the minimization of a differentiable function, denoted by h(x), over a bounded and

convex domain S.

In each iteration of the F-W algorithm, in the first step, a linear approximation of the

function h(x) ≈ h(xi)+(∇h(xi))
T
(x−xi) is minimized. In the second step, the original

function is minimized with the domain restricted to the line segment between ŷ and xi.

When h(x) is quadratic, a α̂ can be found analytically. The two steps are repeated until

termination conditions are met.
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Result: x∗

i = 1;

α = 1;

x(1) = Random element of S or initial estimate of x ∗ ;

while i < imax and (α̂ > ε or ‖∇h(x(i))‖ > ω) do

Solve ŷ = argminy ∇h(x(i))
T
y with respect to y ;

Solve α̂ = argminα h(x
(i) + α ∗ (ŷ − x(i))) over α ∈ [0, 1];

x(i+1) = x(i) + α̂ ∗ (y − x(i));

i = i+ 1;

end

x ∗ = x(i+1);
Algorithm 1: Frank-Wolfe algorithm

11.2.2 rQAP1 formulation of the Seeded

Graph Matching problem

and the FAQ Algorithm

Let us now present the derivation of the steps of the FAQ algorithm. The objec-

tive function that we use for FAQ is traceAT (Im×m ⊕ P )B(Im×m ⊕ P T ) in (11.4). This

is a reformulation of the `2 norm of the matrix difference between A and (Im×m ⊕

P )B(Im×m⊕P )T when P is a permutation matrix. The feasible region for the optimiza-

tion is the set of permutation matrices, Πl. We relax this combinatorial optimization
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problem by expanding the feasible region to the set of double stochastic matrices (the

convex hull of the set of permutation matrices) of the same size. This yields our first

formulation for the seeded graph matching problem which we call the relaxed quadratic

assignment problem (rQAP1).

Remark When the graphs that are matched are undirected graphs, the adjacency matri-

ces A and B are symmetric matrices. Even though the symmetricity of A and B would

allow us to further simplify the expressions, we do not make that assumption in the

following derivation in order to make the results more general.

The objective function is

h(P ) = trace


 AT

11 AT
21

AT
12 AT

22


 Im×m 0m×l

0l×m P


 B11 B12

B21 B22


 Im×m 0m×l

0l×m P T




= trace


 AT

11 AT
21

AT
12 AT

22


 B11 B12P

T

PB21 PB22P
T




= traceAT
11B11 + traceAT

21PB21 + traceAT
12B12P

T + traceAT
22PB22P

T

= traceAT
11B11 + traceP TA21B

T
21 + traceP TAT

12B12 + traceAT
22PB22P

T

which has the gradient ∇P (h), presented as a matrix-valued function of P as

∇(P ) := A21B
T
21 + AT

12B12 + A22PBT
22 + AT

22PB22.

Note that h(P ) has a quadratic form with respect to P , which will help us with the

one-dimensional optimization subproblem in the second step of each F-W iteration.

130



CHAPTER 11. SEEDED GRAPH MATCHING AND FAST APPROXIMATE
QUADRATIC PROGRAMMING

In our experiments, the Frank-Wolfe Algorithm was initialized with P̃ = 1
l
1l1Tl .

(This initialization is arbitrary. A random P̃ can be chosen for initializations. Different

random initializations would alleviate the local minima problem.)

We now adapt the F-W algorithm to the minimization of h(P ). Consider iteration i

of the algorithm. In the first step, let P̃ (i) be the current estimate of P . We are supposed

to compute Q̂, which is the minimizer of −traceQT∇(P̃ (i)) over all l× l doubly stochas-

tic matrices Q ∈ DS l. Equivalently, trace

QT∇(P̃ (i))


is maximized with respect to

Q.

Q̂ can be assumed to be a permutation matrix. The Birkhoff-von Neumann theorem

[53] states that the set of doubly stochastic matrices is the convex hull of the permutation

matrices. Because trace

QT∇(P̃ (i))


is a linear function of Q, one of the extremum

points of the convex hull (which are permutation matrices) will be a maximizer.4 Thus,

Q̂ is a permutation matrix, and we can limit the feasible region to the set of permutation

matrices. Therefore, the Hungarian Algorithm is used to minimize−trace

QT∇(P̃ (i))


subject to the constraint Q is a permutation matrix and will yield the optimal Q, which

we denote by Q̂.

The next step in the Frank-Wolfe algorithm is maximizing the objective function over

the line segment from P̃ (i) to Q̂; i.e., maximizing the scalar-valued univariate function

z(α) := h(αP̃ + (1 − α)Q̂) over α ∈ [0, 1]. This one-dimensional optimization can be
4Although the maximizer is possibly non-unique, the Hungarian algorithm that solves this linear prob-

lem will return one of the extremum points as its output.
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solved with the quadratic formula once the coefficients have been computed. Denote

c := trace

AT

22P̃B22


P̃ T , d := trace


AT

22P̃B22Q̃
T + AT

22Q̃B22P̃
T


, e := trace

AT

22Q̃B22Q̃
T

and

u := trace

P̃ TA21B

T
21 + P̃ TAT

12B12


, v := trace


Q̃TA21B

T
21 + Q̃TAT

12B12


.

Then (ignoring the additive constant trace(AT
11B11) without loss of generality), we have

z(α) = cα2 + dα(1− α) + e(1− α)2 + uα + v(1− α),

which simplifies to z(α) = (c−d+e)α2+(d−2e+u−v)α+(e+v). Setting the derivative

of z to zero yields the potential critical point α̂ := −(d−2e+u−v)
2(c−d+e)

. Since P̃ (i+1) should

be inside the feasible region (the convex hull of permutation matrices), we want the

maximizer within the line segment from P̃ (i) to Q̂. So, we set α̂ := min(1, −(d−2e+u−v)
2(c−d+e)

).

If α̂ < ε, the algorithm terminates at that iteration because P̂ = P̃ (i) has reached a local

minimum. Otherwise, we set P̃ (i+1) = α̂P̃ (i) + (1 − α̂)Q̂ if α̂ > ε and repeat the steps

for the next iteration.

At the termination of the Frank-Wolfe algorithm, it is quite possible that P̂ is not

a permutation matrix. One way to obtain a permutation matrix solution is to find P̃ ∗

that is as close as possible to P̂ (in some sense). Assume that we require the closest

permutation matrix in the `2 sense (the minimizer of ‖P̂ − P̃ ∗‖22 where P̃ ∗ is a permu-

tation matrix). Note that in our discussion of the different formulations of the original

optimization problem 11.4, we showed that maximizing 2 ∗ trace (ST ) with respect to
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S was equivalent to minimizing ‖S − T‖22 when S was a permutation matrix. So, we

compute the maximizer of trace

P̂ P̃ ∗


instead of the `2 norm of the matrix difference.

We have also shown, in the discussion of the FAQ algorithm, that the minimization of

2 ∗ trace (ST ) is solved by the Hungarian algorithm when S is constrained to be a per-

mutation matrix. Therefore, we can use the Hungarian algorithm once more to obtain

the closest permutation matrix to P̂ in the `2 sense by minimizing trace

P̃ ∗P̂


with

respect to P̃ ∗. This permutation matrix minimizer is the output of the FAQ algorithm

for the SGM problem.

11.2.2.1 Demonstration of the FAQ algorithm on simulated data

We will demonstrate that the FAQ algorithm for SGM works by using graph data

generated via the following data model:

Let G1 = (V1, E1) be an Erdős-Renyi graph that consists of n vertices and let A be

its adjacency matrix. The probability of an edge between any two vertices in V1 is an

independent Bernoulli trial. Thus, [A]ij ∼ Bernoulli(0.5), ∀i < j, i, j ∈ [n], where

[A]ij is the (i, j)
th entry of the adjacency matrixA. BecauseA is symmetric, [A]ji = [A]ij .

Another adjacency matrix, B, is a entry-wise bit-flipped version of the adjacency matrix

of A, that is, {[B]ij | [A]ij = 0} ∼ Bernoulli(p10), ∀i < j, i, j ∈ [n] {[B]ij | [A]ij =

1} ∼ Bernoulli(p11), ∀i < j, i, j ∈ [n]. We will introduce a perturbation parameter

ppert that determines the probability of bit-flipping an edge, ppert = p10 = 1 − p11. B is

also symmetric, [B]ji = [B]ij .
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We define the second graph G2 = (V2, E2) with the adjacency matrix B. Note then,

there is a true correspondence between G1 and G2, given by the identity permutation.

From n pairs of vertices, m (0 ≤ m < n) seeds are randomly selected, yielding

the subsets of vertices which are the seeds in each graph: σm ⊂ V1 = V2 (because the

correspondence is given by the identity permutation, the seed pairs have the same vertex

labels) . The assignment problem for the remaining n − m pairs of vertices is solved

using FAQ. The quality of the solution , f̂m : V2 → V1 , to the assignment problem, is

evaluated by δ(m) = |{i∈V1−σm:f̂m(i)=i}|
n−m

.

The results of our simulations are plotted in the figures 11.1,11.2,11.3. For the graph

size, we chose n = 600. We generated pairs of random Erdős-Renyi graphs for different

number of seeds, m, and we solved the FAQ problem for the remaining n − m vertex

pairs. The probability of flipping an entry of the adjacency matrix is the perturbation

parameter ppert, which is the variable on the x-axis. The performance measure, the pro-

portion of true matches to the number of matches, is the variable on the y-axis. Note that

under chance, the expected number of true matches is 1. This means that for completely

random assignments of vertices, the performance measure of the assignments would be

1
n−m

, as shown with the dashed line. ppert varies from 0 to 1 in increments of 0.1.
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11.2.3 Relaxations of alternate formulations of

the approximate seeded graph matching problem

Another quadratic assignment problem formulation of the approximate seeded graph

matching problem, in which the objective function is minimized, is presented here,

which we call rQAP2. The objective function for rQAP2 is h(P ) = ‖AP − PB‖22,

where P = (Im ⊕ P ). Note that this function is convex.

For the unrelaxed problem, the feasible set for P is the set of permutation matrices.

P is a orthogonal matrix, i.e., ‖PX‖2 = ‖X‖2,∀X ∈ Ml×l . Using this norm-preserving

property of P , the rQAP2 objective function simplifies to -2 times the objective function

of rQAP1.

The objective function for rQAP2 can be simplified as follows:

h(P ) = ‖A(Im ⊕ P )− (Im ⊕ P )B‖2F

= ‖A21 − PB21‖2F  
Term (1)

+ ‖A12P −B12‖2F  
Term (2)

+ ‖A22P − PB22‖2F  
Term(3)

+ ‖A11 −B11‖2F  
Constant
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We now consider each term in turn. Consider term (1)

‖A21 − PB21‖2F = trace

(A21 − PB21)

T (A21 − PB21)


= trace

AT

21A21 −BT
21P

TA21 − AT
21PB21 +BT

21P
TPB21


= trace


AT

21A21 −BT
21P

TA21 − AT
21PB21 + P TPB21B

T
21


= trace


AT

21A21 − 2 ∗BT
21P

TA21 + P TPB21B
T
21


= trace


AT

21A21

  
(1.1)

− 2trace

BT

21P
TA21

  
(1.2)

+ trace

P TPB21B

T
21

  
(1.3)

,

where the simplification in the fourth line occurs because BT
21P

TA21 and AT
21PB21 are

transposes of each other. The three terms in the last line are referred to as (1.1), (1.2),

and (1.3).

We make a similar simplification for term (2):

‖A12P −B12‖2F = trace

(A12P −B12)

T (A12P −B12)


= trace

P TAT

12A12P −BT
12A12P − P TAT

12B12 +BT
12B12


= trace


PP TAT

12A12 −BT
12A12P − P TAT

12B12 +BT
12B12


= trace


PP TAT

12A12 − 2P TAT
12B12 +BT

12B12


= trace


PP TAT

12A12

  
(2.1)

− 2trace

P TAT

12B12

  
(2.2)

+ trace

BT

12B12

  
(2.3)

The three trace terms are referred to as (2.1), (2.2), and (2.3).
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Finally, for term (3),

‖A22P − PB22‖2F = trace

(A22P − PB22)

T (A22P − PB22)


= trace

P TAT

22A22P −BT
22P

TA22P − P TAT
22PB22 +BT

22P
TPB22


= trace


PP TAT

22A22 −BT
22P

TA22P − P TAT
22PB22 + PB22B

T
22P

T


= trace

PP TAT

22A22


− trace


BT

22P
TA22P


− trace


P TAT

22PB22


+ trace


PB22B

T
22P

T


= trace

PP TAT

22A22

  
(3.1)

− 2trace

P TAT

22PB22

  
(3.2)

+ trace

PB22B

T
22P

T
  

(3.3)

The three terms inside the brackets are referred to as (3.1), (3.2), and (3.3).

The gradient for rQAP2 with hard seeds (minimization problem) is ∇Pf(P ) =

−2A21B
T
21  

(1.2)

+2PB21B
T
21  

(1.3)

− 2AT
12B12  
(2.2)

+2AT
12A12P  
(2.1)

+2AT
22A22P  
(3.1)

+2PB22B
T
22  

(3.3)

− 4AT
22PB22  
(3.2)

.

The numbers below the underbraces indicate which term of h(P ) each gradient term

comes from.

For the second step of the F-W algorithm, we set P = (1−α)P̂ +αQ̂ and maximize

h(P ) with respect to α for Q̂ found in the first step. We will now derive a simplification

of this one-dimensional optimization problem.
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The function in terms of α is

g(α) = α2trace

P̂ T P̂


B21B

T
21 +B22B

T
22


(1.3 + 3.3)

+

AT

12A12 + AT
22A22


P̂ P̂ T (2.1 + 3.1)

−2P̂ TAT
22P̂B22


(3.2)

+ (1− α)2 trace

Q̂T Q̂


B21B

T
21 +B22B

T
22


(1.3 + 3.3)

+

AT

12A12 + AT
22A22


Q̂Q̂T (2.1 + 3.1)

−Q̂TAT
22Q̂B22


(3.2)

+ α (1− α) trace


Q̂T P̂ + P̂ T Q̂
 

B21B
T
21 +B22B

T
22


(1.3) + (3.3)

+

AT

12A12 + AT
22A22

 
Q̂P̂ T + P̂ Q̂T


(2.1) + (3.1)

−2P̂ T

AT

22Q̂B22


− 2Q̂T


AT

22P̂B22


(3.2)

+ αtrace

−2P̂BT

12A12 − 2P̂ TA21B
T
21


[−(2.2)− (1.2)]

+ (1− α) trace

−2Q̂BT

12A12 − 2Q̂TA21B
T
21


[−(2.2)− (1.2)]

where the numbers at the right end of each line refer to the terms corresponding to

‖A21 − PB21‖F ,‖A12P −B12‖2F and ‖A22P − PB22‖2F in the objective function. Writ-

ing g (α) in terms of α and (1-α),

g (α) = cα2 + e(1− α)2 + dα(1− α) + uα + v(1− α)
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c = trace

P̂ T P̂


B21B

T
21 +B22B

T
22


+

AT

12A12 + AT
22A22


P̂ P̂ T − 2P̂ TAT

22P̂B22


d = trace


Q̂T P̂ + P̂ T Q̂

 
B21B

T
21 +B22B

T
22


+

AT

12A12 + AT
22A22

 
Q̂P̂ T + P̂ Q̂T


− P̂ T


2AT

22Q̂B22


− Q̂T


2AT

22P̂B22


e = trace


Q̂T Q̂


B21B

T
21 +B22B

T
22


+

AT

12A12 + AT
22A22


Q̂Q̂T − 2Q̂TAT

22Q̂B22


u = trace


−2P̂BT

12A12 − 2P̂ TA21B
T
21


v = trace


−2Q̂BT

12A12 − 2Q̂TA21B
T
21


The coefficients of this polynomial in α in standard form are g(α) = aα2 + bα + c

equal a = c+ e− d, b = d− 2e+ u− v and c = e+ v .

Note that if this rQAP2 formulation is further simplified by the unitary/orthogonality

property of the permutation matrix, we obtain the first rQAP1 formulation. When

we use the constraints P TP = PP T = Il, terms (1.3), (2.1), (3.1), and (3.3) be-

come constant terms. The corresponding terms in ∇Pf(P ) vanish, and ∇Pf(P ) =

−2A21B
T
21 + 2PB21B

T
21 − 2AT

12B12 + 2AT
12A12P + 2(AT

22A22P + PB22B
T
22 − 2AT

22PB22)

becomes −2∗ (A21B
T
21+AT

12B12+A22PBT
22+AT

22PB22), which is the −2 times gradient

for the rQAP1 formulation. It is interesting how this extra constraint affects the con-

vergence properties of the Frank-Wolfe algorithm. This question is investigated in the

comparison of the rQAP1 and rQAP2 formulations.
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11.2.4 The comparison of the rQAP1 against

the alternative formulation rQAP2

Although the two formulations are equivalent in the domain of permutation ma-

trices and the global extrema of the two functions are the same, we expect different

convergence properties. In particular, the extra terms in the gradient of rQAP2, which

vanish only for orthogonal matrices, provide a constant source of perturbation. The

conclusion obtained from the literature on stochastic optimization [54] is that, under

some conditions, injecting noise to the gradient would help convergence by overcoming

local extrema. However, for the iterative algorithm to converge, the noise has to vanish

to negligible levels. We have no evidence that these extra terms are small, whenever P (i)

is in the neighborhood of the solution. Therefore, rQAP2 might have convergence prob-

lems due to the constant source of perturbation provided by the extra terms. rQAP1, on

the other hand, will converge to a local solution, that is not necessarily a permutation

matrix.

We make a performance comparison between rQAP1 and rQAP2, by matching the

same pairs of bitflipped graphs subsubsection 11.2.2.1. We consider both the true match-

ing ratios and number of iterations until convergence. The experiment in the subsubsec-

tion 11.2.2.1 was repeated with both rQAP1 and rQAP2. For the same pairs of graphs,

the fraction of non-seed vertices correctly matched were computed for both methods.

The results are plotted in Figure 11.4
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The distinction between the two formulations are most prominently visible for ppert =

0.35. Note that for a small number of hard seeds, the rQAP2 is slightly better, whereas

for a large number of hard seeds, the rQAP1 formulation is clearly better. This observa-

tions are valid for other ppert values, also, albeit to a smaller degree.

The average number of iterations of the Frank-Wolfe algorithm until termination for

the two formulation are shown in Figure 11.5.

Our conclusion is that our expectations for the two formulations are warranted: the

rQAP2 converges slower (or does not converge but stays within the neighborhood of the

extrema), whereas the rQAP1 converges in very few steps. When the number of hard

seeds is small (which corresponds to a lower number of constraints for P and a higher

incidence of local minima near the true solution), the rQAP2 formulation is slightly

better than the rQAP1 formulation.

A natural follow-up to the previous inquiry is whether one can have the best of both

worlds by forming a hybrid of the two formulations: first, we start by minimizing the

rQAP2 function until the current iterate of the solution is relatively close to the true

solution, and we continue by maximizing the rQAP1 function.

141



CHAPTER 11. SEEDED GRAPH MATCHING AND FAST APPROXIMATE
QUADRATIC PROGRAMMING

11.2.5 A hybrid formulation: FAQ programming with a

smooth transition from rQAP2 to rQAP1

For this hybrid form of the FAQ algorithm, we weight the terms that differ between

the gradients of rQAP2 and rQAP1 by a decreasing weight r. ∇Ph(P ) = r∗{2PB21B
T
21+

2AT
12A12P + AT

22A22P + PB22B
T
22} − 2A21B

T
21 − 2AT

12B12 − 4AT
22PB22. As r → 0,

the gradient expression at each step of the F-W algorithm approaches −2 ∗ (A21B
T
21 +

AT
12B12) + A22PBT

22 + AT
22PB22), which is -2 times the gradient in rQAP1. We let r =

0.5− tan((i−(iend/2)))
π

, and thus, as the iteration counter, i, goes from 1 to iend, r goes from

1 to 0. This hybrid formulation will behave like rQAP2 for the initial iterations of F-W

algorithm and will start to behave like rQAP1 as i approaches iend.

We find that the hybrid approach is always better than rQAP2 formulation and

mostly better than rQAP1. For large values of m(the number of seeds), and for large

values of ppert, rQAP1 may be slightly better than hybrid. This suggests some tuning

may be necessary for the hybrid approach and further investigations into why rQAP2 is

worse than rQAP1 for large number of seeds.
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Figure 11.1: δ(m) vs m for n = 600 vertices. The error bars represent two times the

standard error of the mean of the true match ratio. Different colors listed in the legend

correspond to different ppert values.
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Figure 11.2: δ(m) vs m for n = 300 vertices. The error bars represent two times the

standard error of the mean of the true match ratio. Different colored lines correspond

to different ppert values.
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Figure 11.3: δ(m) vs m for n = 300 vertices. This plot includes a portion of Figure 11.2,

which includes the x-axis fromm = 0 tom = 29. The error bars represent two times the

standard error of the mean of the true match ratio. Different colored lines correspond

to different ppert values.
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Figure 11.4: Fraction of correctly matched non-seed vertices for m seeds (x-axis). Differ-

ent colors correspond to different ppert. Solid and dashed lines correspond to rQAP1 and

rQAP2 solutions, respectively, for the matching problem.
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Figure 11.5: Number of Iterations for the rQAP1 and rQAP2 formulations to converge
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Figure 11.6: Fraction of correctly matched non-seed vertices for m seeds (x-axis). Dif-

ferent colors correspond to different ppert. Dashed and solid lines correspond to rQAP1

(FAQ) and the hybrid of the rQAP2 and rQAP1 (hybrid) solutions, respectively, for the

matching problem.
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Figure 11.7: Same plot as Figure 11.6 restricted to m < 30 seeds. Fraction of correctly

matched non-seed vertices for m seeds (x-axis) where m < 30. Different colors corre-

spond to different ppert. Dashed and solid lines correspond to rQAP1 (FAQ) and the

hybrid of the rQAP2 and rQAP1 (hybrid) solutions, respectively, for the matching prob-

lem.
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Chapter 12

The Joint Optimization of Fidelity and

Commensurability solution

to Seeded Graph Matching

12.1 Overview

We first explain the relevance of the JOFC approach to the graph matching problem.

The task of finding vertex correspondences is similar to detecting matched pairs4 in that

both of the tasks require the quantification of a distance between vertex pairs in different

graphs. A joint commensurate representation of the vertices of the two graphs can be

used to compute these distances between vertex pairs.

Following our dissimilarity-centric approach, a dissimilarity matrix can be computed
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for each graph using a dissimilarity measure for graph vertices. The choice of the dissim-

ilarity measure is an important issue and we will consider this issue during our investiga-

tions. If we treat the known corresponding vertices in the seeded graph matching prob-

lem as matched, we can form an omnibus matrix by using dissimilarity matrices from

the two graphs. We impute the off-diagonal matrix L in the omnibus matrix the usual

way (the matched dissimilarities are zeros, other between-condition dissimilarities are

missing). The joint embedding of the omnibus matrix yields the vertices of two graphs

in a commensurate space. Therefore, the JOFC approach can be used to determine the

pairwise distances in the commensurate space between the vertices of two graphs.

The next step is to use the pairwise distances as costs to find the optimal one-to-

one assignment using the Hungarian algorithm [52]. The Hungarian algorithm finds an

optimal matching between two sets of vertices such that the total cost, which is the sum

of the pairwise distances of matched nodes, is minimized. This matching provides the

bijection solution for the seeded graph matching problem.

12.2 Joint Embedding of Graphs via JOFC for

Seeded Graph Matching

Now, we describe in detail how we use JOFC embedding for seeded graph matching.

We begin by jointly embedding our two graphs, G1 and G2, into a common Euclidean

space. Let ∆1 ∈ Mn×n and ∆2 ∈ Mn×n be two dissimilarity matrices computed by the
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application of the dissimilarity measure to the vertices of the two graphs. Because we

have two separate graphs, we have two conditions, and the default assumption is that

we do not have between-graph (between-condition) dissimilarities. We will assume that

prior to embedding, the dissimilarities have been normalized to have the same scale of

magnitude.

Without loss of generality, we can assume that the vertices in both graphs are labeled

as integers from 1 to n and that the labeling is consistent with the true correspondence

of vertices from different graphs. Suppose that we have m, 0 ≤ m < n seeds. Again,

without loss of generality, let the seeded vertices be labeled as the firstm vertices in both

graphs, S1 = {1, 2, . . . ,m} and S2 = {1, 2, . . . ,m}, so that

∆(1) =


S1 Uin

S1 ∆
(1)
in,in ∆

(1)
in,oos

U1 ∆
(1)
oos,in ∆

(1)
oos,oos

, ∆(2) =


S2 U2

S2 ∆
(2)
in,in ∆

(2)
in,oos

U2 ∆
(2)
oos,in ∆

(2)
oos,oos

.

Note that the dissimilarities between seed vertices correspond to the matched in-

sample dissimilarities that we considered in the match detection task 4. Because these

seeds provide the known correspondences (matched observations in the match detection

task), we embed them using the in-sample JOFC embedding methodology we introduced

in 4.1. That is, we find a 2m× d configuration matrix

X =

 X1

X2


such that the 2m × 2m distance matrix D(X) is as close as possible to the omnibus
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dissimilarity matrix,

M =

 ∆
(1)
in,in L

LT ∆
(2)
in,in

 .

The remaining non-seed vertices are embedded using OOS embedding with respect to

the embedded seeds, i.e., we seek the configuration Ŷ consisting of 2(n−m) points inRd′

that correspond to the non-seed vertices ofG1 andG2. The n−m non-seed vertices ofG1,

with the embedded coordinates {ŷ(1)(m+1), . . . , ŷ
(1)
(n)}, and the n−m non-seed vertices ofG2,

with the embedded coordinates {ŷ(2)1 , . . . , ŷ
(2)
(n−m)}, where ŷ(k)i , 1 ≤ i ≤ (n−m), k ∈ 1, 2

minimize the stress function:
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σ(Y) =
m
s=1

n
t=m+1

W
(1)
in,oos(s, t−m)


d(X(1)

s , ŷ
(1)
t )−∆

(1)
in,oos(s, t−m)

2

(12.1)

+
n

s=m+1

m
t=1

W
(2)
oos,in(s−m, t)


d(X(2)

s , ŷ
(2)
t )−∆

(2)
oos,in(s−m, t)

2

(12.2)

+
n

s=m+1

m
t=1

W (2)
oos,oos(s−m, t−m)


d(ŷ(1)s , ŷ

(1)
t )−∆(1)

oos,oos(s−m, t−m)
2

(12.3)

+
n

s=m+1

m
t=1

W (2)
oos,oos(s−m, t−m)


d(ŷ(2)s , ŷ

(2)
t )−∆(2)

oos,oos(s−m, t−m)
2

(12.4)

+
n

s=m+1

m
t=1

W (1,2)
oos,oos(s−m, t−m)


d(ŷ(1)s , ŷ

(2)
t )− δ(ŷ(1)s , ŷ

(2)
t )

2

(12.5)

+
n

s=m+1

m
t=1

W
(1,2)
oos,in(s−m, t)


d(ŷ(1)s , X

(2)
t )− δ(ŷ(1)s , X

(2)
t )

2

(12.6)

+
m
s=1

n
t=m+1

W
(1,2)
in,oos(s, t−m)


d(X(1)

s , ŷ
(2)
t )− δ(X(1)

s , ŷ
(2)
t )

2

(12.7)

where W (k)
a,b and W

(k1,k2)
a,b (for a, b ∈ {‘in′, ‘oos′}) are the weights for dissimilarities be-

tween in-/out-of-sample observations in kth (or kth
1 and kth

2 ) conditions.

Note that 12.5, 12.6 and 12.7 involve dissimilarities δ(·(1), ·(2)) between different con-

ditions, which are generally not available. Whereas the dissimilarities in 12.6 and 12.7

can be imputed via known dissimilarities, the dissimilarities in 12.5 cannot be imputed

in any way. In fact, if these dissimilarities in 12.5 between OOS observations in different

conditions were known, we could provide a solution to the assignment task because we

would have the assignment cost of any two OOS observations in two different condi-
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tions. The solution of the linear assignment problem with these costs would give us the

matching of vertices from different graphs.

12.3 and 12.4 contain dissimilarities between OOS observations in the same condi-

tion. They can be used or ignored in the joint embedding, depending on whether one

wishes to embed OOS observations all together or one at a time. If between-condition

OOS dissimilarities are ignored, the OOS embedding function σ(Y) is separable with

respect to different ŷ(k)s , s ∈ {m + 1, . . . n}, k ∈ {1, 2}. Then, we would obtain the

same embedding configuration if the OOS observations ŷ(k)s are embedded one at a time

or all at once.

Once we find a minimum configuration Ŷ, we compute the pairwise distances be-

tween the points c(s−m)(t−m) = d(ŷ
(1)
s , ŷ

(2)
t ), s ∈ {(m + 1), . . . n}, t ∈ {(m + 1), . . . n},

which correspond to the entries of the off-diagonal block matrix of the distance ma-

trix, D(Ŷ). This block matrix provides the assignment cost matrix C (whose (i, j)th

entry is cij ) for the linear assignment problem, which is to minimize trace(ATC) =
i,j∈{(1),...n−m} aij ∗ cij with respect to the permutation matrix A ( whose (i, j)th entry

is aij ).

In summary, we provide a solution for the seeded graph matching problem by jointly

embedding the two graphs, followed by a solution of the linear assignment problem

where the assignment costs are the distances between embedded points.

While it is plausible that the JOFC approach can also be used to solve the seeded

graph matching (SGM) problem, it is not obvious that it can compete with the FAQ
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algorithm, which is specifically formulated to solve the seeded approximate graph match-

ing problem. Why, then, should one choose to use the JOFC approach for SGM? One

of the many problems with the analysis of real data is that the graph representation of

real data is not always well-defined and that the correspondence of vertices may be am-

biguous, one-to-many, or many-to-many. In such situations, we would prefer a robust

algorithm that would still match seeded graphs with satisfactory performance. The FAQ

algorithm, in the form that we have presented, cannot handle such pathologies, and sig-

nificant changes must be made to the FAQ algorithm before it can handle them.

Our simulations using the correlated Erdős-Renyi graphs and experiments with real

graph data are tailored for a comparison of the two approaches. Some of these results are

presented in section 12.3. If the true match ratios of the assignments given by the JOFC

approach is at least as high as the ones given by the FAQ algorithm, we can conclude that

JOFC is reasonably competitive with the FAQ algorithm for seeded graph matching. We

compared the algorithms whenever both of the approaches were feasible for the problem

size (the running times are acceptable).

This application of the JOFC approach for seeded graph matching is also presented

in [55] along with our experimental results.

12.2.1 Dissimilarity Measures for Vertices

One useful property of dissimilarity representation is that the structure of the data

is irrelevant once an appropriate dissimilarity function for the data is available. That is
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why the JOFC approach is directly applicable once an appropriate dissimilarity measure

has been chosen.

There are many dissimilarities that can be defined between vertices in graphs. We

assume that an appropriate dissimilarity measure between the vertices is available to us.

In our experiments, we will use five different dissimilarities/distances between vertices

in a graph:

• the shortest path on the unweighted graph whose adjacency matrix is available,

• the shortest path on a weighted version of the graph whose weight matrix is avail-

able,

• the diffusion distance between vertices on the (unweighted) graph,

• the weighted extension of the Czekanowski-Dice dissimilarity [56,57], which sim-

plifies to the original Czekanowski-Dice dissimilarity in the case of unweighted

graphs (the C-D dissimilarity quantifies the local similarity of two vertices in a

graph),

• the expected commute time for random walks on the graph.

Remark Note that these dissimilarities are defined between vertices of the same graph.

Because the dissimilarities between vertices of different graphs are not available, we must

resort to the same imputation workarounds as we did for the JOFC embedding in 4.1.

We would again choose 0 for the dissimilarities between matched vertices and then either

impute the remaining unknown dissimilarities or ignore them in the embedding.
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12.3 Demonstrations

We perform SGM simulations with graphs generated according to a paired Erdős-

Renyi graph model described in subsubsection 11.2.2.1 and experiments on real-life

graphs for both the FAQ algorithm and the JOFC approach. The performance mea-

sure that we consider is the true match ratio: the number of true matchings of vertices

divided by the number of pairs of vertices.

12.3.1 Simulations

We first present our exploratory simulations to test the JOFC approach and deter-

mine the reasonable choices for the dissimilarity measure and w (the parameter that

controls the Fidelity-Commensurability tradeoff ). We will also see how sensitive the

results are for different choices of the dissimilarity measure and different w values.

We consider the same Erdős-Renyi correlated graphs as in the FAQ simulations in-

troduced in subsubsection 11.2.2.1.

The probability of flipping an entry of the adjacency matrix is the perturbation pa-

rameter ppert, which is the variable on the x-axis. The performance measure is the pro-

portion of true matches to the number of matches. Note that under chance, the expected

number of true matches is 1, as shown with the dashed line. In this particular simulation,

we consider the JOFC approach with classical and raw stress variants and compare the

performance of each in small graphs. For JOFC with the weighted raw stress function,
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we set w = 0.8. The joint embedding with cMDS is compared with the JOFC approach

to figure out how the performance measure is sensitive to the Fidelity-Commensurability

tradeoff. ppert varies from 0 to 1 in increments of 0.1.

Our first observation from the plot is that for low amounts of perturbation, JOFC

performs satisfactorily, that is, most of the test vertices are matched correctly. Vari-

ous dissimilarity measures can be chosen for the dissimilarity matrix. The appropriate

dissimilarity measure might depend on the degree of the distribution and the size of the

graph. Figure 12.1 shows that some dissimilarity measures result in significantly different

behavior as ppert changes.

As the perturbation parameter becomes larger, (for all dissimilarity measures) the

performance of JOFC degrades until it is indistinguishable from random chance at

ppert = 0.5. For this ppert value, there is no edge correlation between the two graphs

because the mutual information between Aij and Bij is 0. At that ppert value, we ex-

pect, on average, the same number of true matches as that obtained by random chance.

Further, this ppert value means that the dissimilarity between truly matched vertices,

say with the shortest path distance as the dissimilarity measure, is even larger than you

would expect by chance, which means an even smaller number of true matches.

As ppert approaches 1, G2 approaches the complement of G1. An interesting feature

of the plot is the U-shape of the curve for some of the dissimilarities. This invariancy

with respect to the complement of the graph should be investigated further.

Other than the dissimilarity measure, the embedding methodology could also have
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Figure 12.1: The matching ratio for seeded graph matching via JOFC is different for

different dissimilarity measures. For n = 50 vertices andm = 30 seeds, the true matching

ratio is plotted against the perturbation parameter ppert. Note the U-shape of some of

the dissimilarities.
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Figure 12.2: The matching ratio for seeded graph matching via JOFC is compared with

classical MDS embedding with OOS extension. For n = 50 vertices and m = 30 seeds,

the true matching ratio is plotted against the perturbation parameter ppert.
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a large impact on performance. Our simulations indicate that the performance of the

JOFC embedding is significantly better than that of cMDS, as shown in Figure 12.2.

The graph in Figure 12.3 shows the effect of the weight parameter of stress w on the

probability of true matches. We note that in this graph matching, for the setting using

the shortest path distance as the dissimilarity measure and for the w values we tested,

there is no significant difference between the true matching ratios. The choice of the

parameter w is thus not necessarily critical for performance in all data settings.

There are a lot of interesting questions to ponder about the number of known corre-

spondences, such as the following:

• Howmany known correspondences are necessary for satisfactory performance for

graphs of a given size?

• Are there any “elbows” in the curve for the “match ratio” vs the number of known

correspondences, after which the cost of more correspondences is not justified by

the accompanying increase in “match ratio”?

. We attempt to answer these questions using the Erdős-Renyi graph pair model that we

introduced along with some real-world graphs.

Figure 12.4 shows the “match ratio” plotted against the number of “seeds” for the

bitflip simulations (the data are generated using the Erdős-Renyi graph pair model) us-

ing the Czekanowski-Dice dissimilarity measure. These results, along with the previous

simulations, suggest that even with the perturbation, when a portion of the correspon-
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Figure 12.3: Seeded Graph matching performance (The true matching ratio) via JOFC

for different w values (Fidelity-Commensurability tradeoff parameter). For n = 50 ver-

tices and m = 30 seeds, the true matching ratio is plotted against the perturbation pa-

rameter ppert.
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dences are known, it is possible to recover most of the remaining correspondences using

JOFC embedding of the pair of graphs. We note that the number of correspondences

that must be known before the proportion of true matches are satisfactory depends on

various factors, such as the size and average connectivity of the graphs, the connectivity

of the seed vertices, the dissimilarity measure, and the amount of perturbation between

the two graphs. Further investigations into these factors could be fruitful.

12.3.2 Experiments on real data

12.3.2.1 C. elegans connectome

We consider two connectivity graphs of 279 neurons of the nematode Caenorhabditis

elegans as an example of real-world graph data. The two conditions correspond to the two

ways of measuring connectivity among neuronsGc andGg. The connectivity in the first

connectome is defined by chemical synapses, a directed connection between two cells.

This connectome is represented by a weighted graph, where the weights correspond to

the number of synapses identified in images of C. elegans specimens. The weight matrix

for the first connectivity type isAc, which is not symmetric, has values between 0 and 37,

and is relatively sparse (has 2194 nonzero entries). The second connectivity type forms

an unweighted graph Gg with the adjacency matrix Ag and is defined by the existence of

gap junctions between neurons. Gg is even sparser (1031 nonzero entries) than Gc.

We remove isolated vertices from the two graphs and keep the vertices that are con-
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graph pairs of size n = 100. Fraction of correctly matched vertices among non-seeded
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nected in both graphs. This leaves n = 253 vertices. We consider both the original

weighted graph for the first connectome and a binarized version of the same graph. We

also consider symmetrized versions of each graph (which leads to directed and undirected

graphs, respectively). In the case of weighted graphs, we normalize the two graphs so that

they have approximately the same scale. For the JOFC approach, we use the weighted

DICE dissimilarity (which simplifies to the generic DICE dissimilarity in the case of

unweighted graphs) to compute ∆c and ∆g.

We compare the JOFC approach and the FAQ algorithm using the two connectomes.

Whereas the true matching ratio (δ(m)) of both approaches is enhanced by the number

of seeds, δ(m) are relatively low compared with the maximum possible value (1). The

correlation between the two connectomes is thus small, and we expect that there are

biological explanations for this conclusion. The first conclusion we can reach from the

comparison is that the two approaches are competitive. In fact, the JOFC approach

provides significant improvement over the FAQ algorithm. The FAQ algorithm is not

suitable for the situation when one graph is weighted and the other graph is unweighted

(as in the weighted case) or the number of nonzero entries are significantly different, as

in this case (as in both the weighted or unweighted cases). The JOFC approach works

much better in both the weighted and unweighted cases.
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Figure 12.5: Seeded Graph Matching performance for the C. elegans connectomes using

JOFC and FAQ algorithms. The true matching ratio is plotted against the number of

seeds.
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12.3.2.2 Enron communication graph

The Enron communication graph is extracted from the Enron email corpus, which

was made public during criminal investigations by the Federal Energy Regulatory Com-

mission. Though the number of actual users is approximately 150, each email alias is

considered a vertex in the communication graph. The original number of email aliases

is 184. The whole time interval is divided into 187 subintervals (each corresponding to

a week). The emails are grouped according to the time interval of their timestamps. We

then construct a time series of graphs G = {G(t) = (V,E(t))}, where E(t) correspond to

emails that were sent at the tth interval. We are interested in the intervals t = 130 and

t = 131 (and t = 132 for some experiments), as previous investigations of the corpus

found chatter anomalies at these time intervals [58]. When isolated vertices (and their

corresponding vertices in the other graph) are removed in these two graphs, the number

of vertices is reduced to 146. It is these pruned graphs that we match. The first two

results are from matching G(130) and G(131). We consider both the undirected and

directed versions of the two graphs.

We compare the performance of the modified-FAQ algorithm with the JOFC algo-

rithm 12.6. Here, the modified-FAQ algorithm is significantly better than JOFC. This

observation is valid for both directed and undirected versions of the graphs. With a

large number of seeds, the difference between the two approaches gets smaller. We also

note that the performance with the directed graphs is higher than that for the undirected

graph for the FAQ algorithm, while for the JOFC approach, the results are better with
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Figure 12.6: Seeded Graph Matching experiments on the Enron communication graphs

for FAQ and JOFC and for undirected and directed versions of the two graphs.
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the undirected graph.

For the plot in 12.7, we chose the embedding dimension d to be 20. These results are

better compared with those in Figure 12.6, which leads us to conclude that d is another

parameter that must be chosen with care.

The plot in Figure 12.8 is another result obtained from matching the Enron graphs

using the FAQ algorithm, showing a comparison of the three pairs from t = 130, 131,

and 132. As one would expect, the graph matching between G(130) and G(131) is much

more successful than is the graph matching between G(130) and G(132). We also note

that if enough seeds are available, even the matching between G(130) and G(132) can be

improved significantly. In fact, the improvement in the graph matching between G(130)

and G(132) is larger than that obtained for the graph matching of the other two pairs.

We are also interested in the chatter anomaly detected in [58]. This anomaly is de-

tected at t = 132. We also see from the graph matching results that the matching between

t = 130 and 131 is better than the matching between G(131) and G(132). If there is ex-

cessive change in the connectivity, we expect the graph matching performance to suffer.

This makes us wonder whether the true match ratio can be used to detect anomalies in

a time series of graphs. Graph matching can be performed for the graph instances at

consecutive time steps, and significant outliers would be labeled as outliers. The true

matching ratio for a fixed number of seeds would be a statistic for anomaly detection.
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Figure 12.7: Seeded Graph Matching experiments on the Enron communication graphs

for JOFC when the embedding dimension d = 20.
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12.3.2.3 Wikipedia hyperlink subgraph

Wikipedia is a free online encyclopedia created by volunteers around the world, con-

sisting of millions of article in hundreds of languages (30 million articles in 287 languages,

including over 4.3 million on the English Wikipedia site as of November 2013 [59]). Ar-

ticles contain text, links to other articles, and multimedia content. We interpret the links

as directed edges in a hyperlink graph, where vertices correspond to articles. A collection

of articles was obtained from the English Wikipedia site that consisted of the directed

2-neighborhood of the document “Algebraic Geometry” [60]. This collection of 1382

articles and the correspondence of each article on the French Wikipedia site is our real-

life dataset. For inference tasks, it is possible to utilize both the textual content of the

documents and the hyperlink graph structure. The textual content of the documents is

summarized by the bag-of-words model. Dissimilarities between documents in the same

language are computed by the Lin-Pantel discounted mutual information [42, 43] and

cosine dissimilarity k(xik;xjk) = 1 − (xikxjk)/(‖xik‖2‖xik‖2). The dissimilarities based

on the hyperlink graph are the shortest-path distances in the graph, or for each pair of

vertices i and j, the number of vertices one must travel to go from i to j. We consider

the connected neighborhood of the English “Algebraic Geometry” topic; the induced

graph for the French Wikipedia site of the 2-neighborhood from the English Wikipedia

site might be a disconnected graph. Therefore, the shortest path dissimilarities from the

French Wikipedia site are cut off at 6 (maximum shortest-path distance in the English

Wikipedia graph). Further details about this dataset are available in [44].
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Because this graph is relatively large compared with other real-life graphs that we

considered, we only tested the FAQ algorithm. Note that testing JOFC on this graph

is still possible, but we had no reason to believe that another JOFC experiment would

provide any new insight.

The results show that there is a strong correlation between the twoWikipedia graphs

and that as many as 50 seeds are enough to improve graph matching dramatically. More

seeds improve the true matching ratio, but the improvements are much more modest.

With graph matching using no seeds, we obtain a very small number of true matches.

12.3.2.4 Charitynet graph

The charitynet dataset consists of timestamped donation relationships between 8052

donors and 756 charities. The donations are divided into two time intervals according to

whether they fall before the midpoint of the earliest and latest timestamps. Each group

of donations are represented as edges in the bipartite graphs, where vertices correspond

to donor or charity entities.

Let tmid = (tmax−tmin)
2

. We build two bipartite graphs represented by B1 and B2 for

[tmin, tmid) and (tmid, tmax], respectively – each B(t) is n × m, where n is the total

number of donors in all of charitynet and m is the total number of charities in all of

charitynet. Therefore, B(t)
ij is a 1 if donor i gives to charity j during time interval t.

For charities i and j, let A(t)
ij =


k B

(t)
ki B

(t)
kj , i.e., the number of donors that give

funds to both i and j during the time interval t. We consider the two graphs G1 and G2
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Figure 12.9: Seeded Graph Matching experiments on the English and French Wikipedia

subgraph for FAQ
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represented by A[tmin,tmid), A[tmid,tmax]. These graphs consist of 8052 vertices represent-

ing all donors. Because the graphs are too large for matching by any algorithm, we sample

pairs of subgraphs from these two graphs, where the pairs consist of the corresponding

vertices. Consider the vertices from the largest connected components of G1 and G2,

V ∗
1 and V ∗

2 , respectively. We will slightly abuse the notation by considering the corre-

sponding vertices to be the same vertex, i.e., G1 = (V,E1), G2 = (V,E2). We randomly

sample j vertices from V ∗
1 ∩V ∗

2 ⊂ V . For each sampled vertex pair v ∈ V ∗
1 ∩V ∗

2 , we con-

sider N1(v, k) and N2(v, k) : the k-neighborhood of v in each graph. The neighborhood

size k is increased in increments of 1, starting from 1 until ‖N1(v, k) ∩ N2(v
′, k)‖ > n,

where n is the maximum allowable graph size, which depends on the computation time

allotted for the graph matching. We match the subgraphs of G1 and G2 induced by

N1(v, k) ∩ N2(v, k). There is no guarantee that either of these subgraphs are connected;

however, for strongly correlated G1 and G2, they should be mostly connected, i.e., the

largest connected component size is close to the graph size. This connection occurs be-

cause the local neighborhood of vertices must be the same for two strongly correlated

graphs.

The comparison of the JOFC and FAQ approaches for CharityNet data12.10 show

that the two approaches have comparable performances. Both of the approaches have

small true matching ratios compared with 1, which is either due to the weak correlation

between the two graphs,G1 andG2, or due to the related fact that the sampled subgraphs

are not mostly connected.
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Figure 12.10: Graph Matching experiments on the two Charitynet graphs for JOFC
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12.3.3 One-to-k matching of vertices

Consider the case in which the correspondences between vertices of G1 = (V1, E1)

and G2 = (V2, E2) (represented by adjacency matrices, A and B, respectively) are not

one-to-one. To describe the problem in its most general form, we could define group

assignment functions g1v1 : V1 → G = l1, l2, . . . , lυ, g2v2 : V2 → G, where the inverse

images of g1li, g2li are always nonempty. A vertex v1 ∈ V1 in one graph corresponds

to a vertex v2 ∈ V2 in another graph, if g1(v1) = g2(v2). We want to make the simple

restriction that g2 is a one-to-one mapping, that is, each vertex in G2 corresponds to

at least one vertex in G1. For simulations, we consider a very simple case in which

the ith vertex in B corresponds to ki vertices in A, where 1 ≤ ki ≤ kmax and where

kmax is the maximum number of corresponding vertices a B vertex can have. Denote

by g(·) = g−1
2 ◦ g1(·) : V1 → V2 the correspondence function from vertices in G1 to

vertices in G2. Given r vertices in B and the corresponding vertices in V1 for each of the

r vertices (u ∈ V1 such that g(u) = v2), the task is to find at most kmax closest matches

to each vertex of G2.

The following three information retrieval performance measures are used: Precision,

Recall, and F-measure.

Precision :=
Number of correct matches found

Number of found matches

Recall :=
Number of correct matches found

Number of true matches
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Figure 12.11: Graph Matching experiments on simulated graphs for JOFC

F-measure :=
2× Precision× Recall
Precision+ Recall

For each vertex i of G2, the number of true matches is ki. The three performance

measures are calculated for each vertex ofG2, and then, the three averages over all vertices

B constitute the performance measures computed for the matching.

The results provide evidence that the JOFC approach is a suitable method for solv-
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ing this variant of the graph matching problem. While both the JOFC approach and the

FAQ algorithm were acceptable algorithms for the approximate graph matching (AGM)

problem with one-to-one correspondence between vertices, with comparable matching

performances, the FAQ algorithm cannot directly solve the GM problem when the ver-

tex correspondences are one-to-k. In contrast, JOFC is quite adequate for solving AGM

with one-to-k correspondence. We only need to use a matching algorithm that allows for

multiple assignments for the vertices of one of the graphs. We use the full matching al-

gorithm implemented in the R package [61], which finds “a matching between units that

minimizes the average within-group distances, given a matrix describing the distances

between two groups” [62]. That is, the full matching algorithm finds an assignment for

all of the vertices in both graphs. Because the assignment problem is independent of the

embedding, other matching algorithms can be used with the same embedding, if one is

concerned about efficiency or other aspects of the matching algorithm.
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Conclusion

13.1 Conclusion

Our investigations began with a match detection problem where the data from dis-

parate sources were available in dissimilarity representation. We formulated a joint em-

bedding method to render the disparate data commensurate and applied the method to

inference tasks such as match detection and graph matching. We introduced two crite-

ria, fidelity and commensurability, that are essential for any inference task that uses such

data. We investigated the tradeoff between fidelity and commensurability and its relation

to the weighted raw stress criterion for MDS.

For hypothesis testing such as the exploitation task, we compared different values

of the tradeoff parameter w in terms of testing power. The results indicate that for a

joint optimization, one should consider an optimal compromise point between fidelity
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and commensurability, which corresponds to an optimal weight w∗ of the weighted raw

stress criterion, in contrast to uniform weighting.

We then proved under which conditions w∗ might exist. The uniqueness of w∗ is not

settled upon, and further investigations are necessary. In our search for the necessary

conditions for the existence ofw∗, we attempted to construct a counter-example in which

w∗ does not exist. This led to an interesting setting in which the embedding configuration

has a discontinuity with respect to w in the raw stress function 9. While this is an

interesting finding, this unique phenomenon appears in a carefully constructed point

configuration, and we can reasonably assume that the probability measure of such a

configuration is zero for most data settings.

We also introduced two alternative approaches for solving the same multiple view

data problems, which are based on Procrustes Analysis and Canonical Correlational

Analysis. These methods can also be viewed in terms of the fidelity-commensurability

tradeoff. Procrustes◦MDS optimizes fidelity with commensurability as the secondary

priority. CCA optimizes commensurability subject to the linearity of projections to

the commensurate space. Other studies in the scientific literature introduce fidelity and

commensurability- like terms for solving multiple view problems. Our investigations

of fidelity and commensurability are therefore relevant to understanding alternative ap-

proaches for solving similar multiview problems.

The different views in the multiview data can include two different graphs with ver-

tices that share the same set of labels. Here, we assume that the corresponding vertices
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with the same label represent the same object and that the edges incident to correspond-

ing vertices are strongly correlated, if not identical. Given only the two simple graphs

with no vertex label information, the graph matching problem is then the task of find-

ing vertex correspondences. These correspondences are found by minimizing the edge

disagreements between corresponding vertices. In some cases, a portion of the corre-

spondences are known a priori, or can be discovered at no cost. If we know even a

small portion of the correspondences, we can solve the seeded graph matching problem

by inferring the rest of the correspondences by exploiting the vertices with the known

correspondences known as seeds.

We proposed two solutions for seeded graph matching. The first one is based on

the JOFC approach, where we use a dissimilarity measure to compute dissimilarities

between vertices separately in each graph and jointly embed the dissimilarities. Using

the pairwise distances between the embedded points as costs in an assignment problem,

we find a match between the non-seeded vertices. The second solution we proposed is

based on a relaxation of the combinatorial optimization problem. Given the adjacency

matrices of the two graphs to be matched, A and B, we minimize ‖A−PBPT‖2 with

respect to the permutation matrix P . This problem is equivalent to a specific case of the

quadratic assignment problem. The continuous relaxation we consider minimizes the

same function over the set of doubly stochastic matrices. The Frank-Wolfe algorithm

provides an iterative solution to this relaxed optimization problem over the convex do-

main of doubly stochastic matrices. The relaxed solution can then be projected to the set
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of permutation matrices. We adapted this algorithm, called Fast Approximate Quadratic

graph matching algorithm [63], to the seeded graph matching problem, where part of P

is known due to some number of seeds. Without loss of generality, we let P = I ⊕ P ,

where P is the permutation matrix for the non-seeded vertex pairs. We are able to show

through simulations and experiments on real graphs that even if a small portion of cor-

respondences are known, our proposed modified FAQ algorithm is able to match the

remaining vertex pairs much more successfully than unseeded graph matching.

While the modified FAQ algorithm is more suitable for matching pairs of simple

graphs, there are many cases in which the correspondences are not well defined. A vertex

in one graph may match to many or to none of the vertices in the other graph. The

modified FAQ algorithm as it is currently described cannot handle such pathologies. For

different variations of the simple seeded graph matching problem, the JOFC approach is

much more suitable.

We also tested our approaches using real-world graph data. The matching ratio for a

given number of seeds depends on various factors, such as how correlated the graph pairs

are and how connected the vertices are, among others. It is possible that even if most

of the correspondences are known, we would not obtain satisfactory performance on

matching the rest of the vertices. This was the case for SGM with the Charitynet and C.

elegans connectome graph pairs. However, even in these cases, seeds improve the graph

matching performance significantly. In addition, our JOFC algorithm is competitive

with and, in some cases, improves upon the modified FAQ algorithm, a modification of
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the state-of-the art graph matching algorithm presented in [63].

13.2 Future Directions

Our findings warrant further investigations. For example, under what conditions is

the fidelity-commensurability tradeoff parameter w∗ unique? Our results indicate that

for some settings, the value of w does not have a significant effect on performance in the

neighborhood of the optimal value. For simulations using the data models in chapter 6,

the AUC(w) function exhibited a plateau near the optimal value. For graph matching,

most w values yielded the same matching performance. However, for match testing on

the Wikipedia data, varying w values had a very significant effect on matching perfor-

mance. The ability to predict whether the tradeoff parameter w will or will not have

a significant effect on the performance for a particular dataset is important, and thus,

further investigation of this sensitivity issue is needed.

While we choseMDSwith the weighted raw stress function as the embedding method,

there are other possible embedding methods that can be used, such as local linear embed-

ding and spectral embedding, for which fidelity and commensurability error-like terms

can be defined. Investigations with alternative embedding approaches may result in per-

formance improvements in the inference tasks and prove the generality of fidelity and

commensurability criteria.

As in many data problems, model selection is an important issue that has significant
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impact on our inference tasks. What should be the embedding dimension of dissimilar-

ities? While we considered different d values, we have not really addressed this issue. A

useful heuristic for our graph matching experiments was the selection of the dimension

based on the matching ratio of the in-sample dissimilarities. That is, we embed and match

the in-sample dissimilarities (for which we know the true matching). We then choose

the minimum embedding dimension which fully or mostly recovers the true matching

of the in-sample dissimilarities.

The seeded graph matching algorithm derived from the FAQ algorithm provides av-

enues for further research. Our efforts to improve the matching results by using a convex

function as the objective function in the rQAP2 formulation yielded mixed results. For

a small number of seeds, the average true matching ratio for the rQAP2 formulation was

larger compared to that of the rQAP1 formulation, whereas for a large number of seeds,

it was smaller. These findings are most likely due to convergence issues, as shown in

Figure 11.5. While the hybrid approach holds promise, it is still not good enough to

provide the best of both worlds and calls for further tuning.

Various similar approaches in the literature for multiple view data can be investigated

in the light of the fidelity and commensurability tradeoff. Most of these approaches

have a tradeoff parameter that corresponds to our w. Some of these tradeoff parameters

could be more amenable to analysis, which could lead to rigorous results related to the

uniqueness and the existence of the parameter w.
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