38,319 research outputs found

    A Novel Deep Learning Technique for Morphology Preserved Fetal ECG Extraction from Mother ECG using 1D-CycleGAN

    Full text link
    Monitoring the electrical pulse of fetal heart through a non-invasive fetal electrocardiogram (fECG) can easily detect abnormalities in the developing heart to significantly reduce the infant mortality rate and post-natal complications. Due to the overlapping of maternal and fetal R-peaks, the low amplitude of the fECG, systematic and ambient noises, typical signal extraction methods, such as adaptive filters, independent component analysis, empirical mode decomposition, etc., are unable to produce satisfactory fECG. While some techniques can produce accurate QRS waves, they often ignore other important aspects of the ECG. Our approach, which is based on 1D CycleGAN, can reconstruct the fECG signal from the mECG signal while maintaining the morphology due to extensive preprocessing and appropriate framework. The performance of our solution was evaluated by combining two available datasets from Physionet, "Abdominal and Direct Fetal ECG Database" and "Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations", where it achieved an average PCC and Spectral-Correlation score of 88.4% and 89.4%, respectively. It detects the fQRS of the signal with accuracy, precision, recall and F1 score of 92.6%, 97.6%, 94.8% and 96.4%, respectively. It can also accurately produce the estimation of fetal heart rate and R-R interval with an error of 0.25% and 0.27%, respectively. The main contribution of our work is that, unlike similar studies, it can retain the morphology of the ECG signal with high fidelity. The accuracy of our solution for fetal heart rate and R-R interval length is comparable to existing state-of-the-art techniques. This makes it a highly effective tool for early diagnosis of fetal heart diseases and regular health checkups of the fetus.Comment: 24 pages, 11 figure

    Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram

    Get PDF
    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.Web of Science713178413175

    Hybrid methods based on empirical mode decomposition for non-invasive fetal heart rate monitoring

    Get PDF
    This study focuses on fetal electrocardiogram (fECG) processing using hybrid methods that combine two or more individual methods. Combinations of independent component analysis (ICA), wavelet transform (WT), recursive least squares (RLS), and empirical mode decomposition (EMD) were used to create the individual hybrid methods. Following four hybrid methods were compared and evaluated in this study: ICA-EMD, ICA-EMD-WT, EMD-WT, and ICA-RLS-EMD. The methods were tested on two databases, the ADFECGDB database and the PhysioNet Challenge 2013 database. Extraction evaluation is based on fetal heart rate (fHR) determination. Statistical evaluation is based on determination of correct detection (ACC), sensitivity (Se), positive predictive value (PPV), and harmonic mean between Se and PPV (F1). In this study, the best results were achieved by means of the ICA-RLS-EMD hybrid method, which achieved accuracy(ACC) > 80% at 9 out of 12 recordings when tested on the ADFECGDB database, reaching an average value of ACC > 84%, Se > 87%, PPV > 92%, and F1 > 90%. When tested on the Physionet Challenge 2013 database, ACC > 80% was achieved at 12 out of 25 recordings with an average value of ACC > 64%, Se > 69%, PPV > 79%, and F1 > 72%.Web of Science8512185120

    Mathematical tools for identifying the fetal response to physical exercise during pregnancy

    Get PDF
    In the applied mathematics literature there exist a significant number of tools that can reveal the interaction between mother and fetus during rest and also during and after exercise. These tools are based on techniques from a number of areas such as signal processing, time series analysis, neural networks, heart rate variability as well as dynamical systems and chaos. We will briefly review here some of these methods, concentrating on a method of extracting the fetal heart rate from the mixed maternal-fetal heart rate signal, that is based on phase space reconstructio

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    Fetal ECG extraction using wiener, SVD and ICA algorithms

    Get PDF
    Fetal Electrocardiogram (FECG) signal recording is one of the best techniques for Heart signal monitoring of fetus. It is also used to monitor health condition of fetus in pregnancy period continuously. Fetal electrocardiogram is nothing but wave form which shows electrical activity of fetus’s heart. FECG is extracted from a signal recorded on the mother’s abdomen, which is an indirect method (non-invasive method). Abdomen signal includes mother electrocardiogram (MECG) signal, FECG signal and noise signal. Different indirect methods to extract the Fetal Electrocardiogram (FECG) signal from an ECG recorded on the mother’s abdomen have been proposed. In this thesis, three methods are used, which are as follows: Singular Value Decomposition (SVD) method, Independent Component Analysis (ICA) method, and Weiner Filtering method. Wiener filter uses the linear least square estimation; SVD uses the variance as measure which is similar to Eigen value decomposition and ICA uses the fourth order moment, kurtosis. SVD and ICA are comes under statistical domain and also blind source separation, whereas Wiener filter comes under Fourier domain. The mentioned methods use signal processing techniques for extracting FECG from Abdominal Electrocardiogram (AECG) and uses a multi-channel data/signal. The advantages and disadvantages of each method are discussed. The methods have applied on synthetic ECG signals of 10 seconds with a sampling rate of 256Hz. Efficiencies of all the methods are compared together based on the few important criterions, which are output waveform, PSD, and SNR. The results are stated and best method based on the criterions is selected
    corecore