1,137 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.

    Get PDF
    Recent automated medical image analysis methods have attained state-of-the-art performance but have relied on memory and compute-intensive deep learning models. Reducing model size without significant loss in performance metrics is crucial for time and memory-efficient automated image-based decision-making. Traditional deep learning based image analysis only uses expert knowledge in the form of manual annotations. Recently, there has been interest in introducing other forms of expert knowledge into deep learning architecture design. This is the approach considered in the paper where we propose to combine ultrasound video with point-of-gaze tracked for expert sonographers as they scan to train memory-efficient ultrasound image analysis models. Specifically we develop teacher-student knowledge transfer models for the exemplar task of frame classification for the fetal abdomen, head, and femur. The best performing memory-efficient models attain performance within 5% of conventional models that are 1000× larger in size

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    Machine learning for outlier detection in medical imaging

    Get PDF
    Outlier detection is an important problem with diverse practical applications. In medical imaging, there are many diagnostic tasks that can be framed as outlier detection. Since pathologies can manifest in so many different ways, the goal is typically to learn from normal, healthy data and identify any deviations. Unfortunately, many outliers in the medical domain can be subtle and specific, making them difficult to detect without labelled examples. This thesis analyzes some of the nuances of medical data and the value of labels in this context. It goes on to propose several strategies for unsupervised learning. More specifically, these methods are designed to learn discriminative features from data of a single class. One approach uses divergent search to continually find different ways to partition the data and thereby accumulates a repertoire of features. The other proposed methods are based on a self-supervised task that distorts normal data to form a contrasting class. A network can then be trained to localize the irregularities and estimate the degree of foreign interference. This basic technique is further enhanced using advanced image editing to create more natural irregularities. Lastly, the same self-supervised task is repurposed for few-shot learning to create a framework for adaptive outlier detection. These proposed methods are able to outperform conventional strategies across a range of datasets including brain MRI, abdominal CT, chest X-ray, and fetal ultrasound data. In particular, these methods excel at detecting more subtle irregularities. This complements existing methods and aims to maximize benefit to clinicians by detecting fine-grained anomalies that can otherwise require intense scrutiny. Note that all approaches to outlier detection must accept some assumptions; these will affect which types of outliers can be detected. As such, these methods aim for broad generalization within the most medically relevant categories. Ultimately, the hope is to support clinicians and to focus their attention and efforts on the data that warrants further analysis.Open Acces

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound

    Full text link
    Fetal pose estimation in 3D ultrasound (US) involves identifying a set of associated fetal anatomical landmarks. Its primary objective is to provide comprehensive information about the fetus through landmark connections, thus benefiting various critical applications, such as biometric measurements, plane localization, and fetal movement monitoring. However, accurately estimating the 3D fetal pose in US volume has several challenges, including poor image quality, limited GPU memory for tackling high dimensional data, symmetrical or ambiguous anatomical structures, and considerable variations in fetal poses. In this study, we propose a novel 3D fetal pose estimation framework (called FetusMapV2) to overcome the above challenges. Our contribution is three-fold. First, we propose a heuristic scheme that explores the complementary network structure-unconstrained and activation-unreserved GPU memory management approaches, which can enlarge the input image resolution for better results under limited GPU memory. Second, we design a novel Pair Loss to mitigate confusion caused by symmetrical and similar anatomical structures. It separates the hidden classification task from the landmark localization task and thus progressively eases model learning. Last, we propose a shape priors-based self-supervised learning by selecting the relatively stable landmarks to refine the pose online. Extensive experiments and diverse applications on a large-scale fetal US dataset including 1000 volumes with 22 landmarks per volume demonstrate that our method outperforms other strong competitors.Comment: 16 pages, 11 figures, accepted by Medical Image Analysis(2023
    corecore