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Abstract

Despite recent advances in acquisition techniques and reconstruction algorithms,

magnetic resonance imaging (MRI) remains challenging in the presence of motion.

To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in

clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane

motion. The resulting stacks of thick 2D slices typically provide high-quality visual-

izations when viewed in the in-plane direction. However, the low spatial resolution

in the through-plane direction in combination with motion commonly occurring be-

tween individual slice acquisitions gives rise to stacks with overall limited geometric

integrity. In further consequence, an accurate and reliable diagnosis may be compro-

mised when using such motion-corrupted, thick-slice MRI data.

This thesis presents methods to volumetrically reconstruct geometrically consis-

tent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted,

possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstruc-

tions techniques using inverse problem formulations applicable to a broad field of

clinical applications in which associated motion patterns are inherently different,

but the use of thick-slice MR data is current clinical practice. In particular, volu-

metric reconstruction frameworks are developed based on slice-to-volume registration

with inter-slice transformation regularization and robust, complete-outlier rejection

for the reconstruction step that can either avoid or efficiently deal with potential

slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward

Splitting schemes for image registration for any combination of differentiable (not

necessarily convex) similarity measure and convex (not necessarily smooth) regular-

ization with a tractable proximal operator.

Experiments are performed on fetal and upper abdominal MRI, and on historical,
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printed brain MR films associated with a uniquely long-term study dating back to the

1980s. The results demonstrate the broad applicability of the presented frameworks

to achieve robust reconstructions with the potential to improve disease diagnosis and

patient management in clinical practice.
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Impact Statement

The algorithms and software for volumetric MRI reconstruction from 2D slices de-

veloped in this thesis have the potential to lead to benefits both inside and outside

of academia in several ways.

Within the academic environment, the presented reconstruction framework for fe-

tal brain MRI enables the investigation of fetal and neonatal brain development in

high resolution. It sets the stage for developing more robust and accurate segmen-

tation, parcellation, and image analysis tools that benefit from the high-resolution

representation, eventually leading to more precise, quantitative measurements of

cortical brain development. Furthermore, the ability to accurately reconstruct a ge-

ometrically consistent, volumetric representation from printed brain MR films, as

demonstrated with a uniquely long-term brain MR study dating back to the 1980s,

makes patient film data accessible to modern image processing techniques. In the

context of longitudinal studies in which historical data is preserved only on film, this

could be vital in the development and measurement of biomarkers to help understand

disease progression of brain conditions such as multiple sclerosis. Moreover, further

research on the presented numerical framework of Forward-Backward Splitting may

lead to the development of physiologically more plausible registration frameworks

because biologically meaningful tissue properties, such as elasticity and incompress-

ibility, can be incorporated more efficiently.

Outside of academia, the work presented in this thesis has the potential to ben-

efit clinical practice and healthcare. The developed fully-automated reconstruction

framework for fetal brain MRI may unlock the clinical use of high-resolution visual-

izations in the standard anatomical planes for both normal and pathological cases.

The high-resolution reconstructions obtained by this framework may aid more ac-
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curate brain tissue measurement, which would help identify pathological changes

associated with conditions such as spina bifida and other prognostically important

brain changes. In the case of fetal surgery, the higher resolution could facilitate

presurgical planning, leading to safer procedures with better surgical outcomes. In

the context of upper abdominal studies, in particular in conjunction with magnetic

resonance cholangio-pancreatography, the higher anatomical clarity of peri-ductal

and extra-ductal upper abdominal soft tissue anatomy, which can be achieved using

the proposed reconstruction framework, may lead to improved clinical diagnosis and

aid in the management of cancer patients.

Finally, the public availability of the developed frameworks as open-source soft-

ware packages1,2,3,4,5 allows straightforward and widespread access to the presented

concepts. Indeed, researchers and clinical scientists from several hospitals, includ-

ing University College London Hospitals (UK), Sheffield Teaching Hospitals (UK),

University Hospitals Leuven (Belgium), and Bambino Gesù Children’s Hospital of

Rome (Italy), and numerous research institutions, including University College Lon-

don (UK), Imperial College London (UK), King’s College London (UK), Medical

University of Vienna (Austria), École Polytechnique Fédérale de Lausanne (Switzer-

land), Technical University of Valencia (Spain), Indiana University (USA), and Zhe-

jiang University (China), are currently using the developed algorithms. In partic-

ular, the availability of these software packages has led to the translation of the

presented reconstruction frameworks into clinical research tools used in hospitals

and has encouraged knowledge exchange between academic institutions. Further-

more, this could foster future collaboration with industry partners, such as medical

imaging companies, which could lead to accelerated technology transfer and clinical

translation.

1https://github.com/gift-surg/NiftyMIC
2https://github.com/gift-surg/ITK_NiftyMIC
3https://github.com/gift-surg/VolumetricReconstructionFromPrintedFilms
4https://github.com/gift-surg/NSoL
5https://github.com/gift-surg/SimpleReg
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Since the early 1980s, when magnetic resonance imaging (MRI) first became clin-

ically available, the advances in MR scanners and the development of bespoke mag-

netic resonance (MR) acquisition protocols have led to a widespread availability of

MRI in clinical practice. MRI offers remarkable soft tissue contrast and the benefit
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1 Introduction

of non-ionizing radiation, making it a safe and highly valuable imaging modality for

disease diagnosis and presurgical planning for a wide range of clinical applications.

Nonetheless, the high sensitivity of MRI leads to specific challenges. On the one

hand, it offers the possibility to obtain images with highly tunable soft tissue con-

trast indispensable for clinical diagnosis. On the other hand, it makes MR tremen-

dously challenging in the presence of motion and generally results in lower-resolution

and possibly motion-artefact-affected images. However, sufficient spatial resolution

is key to visualizing small anatomical structures and is essential for a reliable clinical

assessment.

The use of firmly established ultra-fast two-dimensional (2D) MRI in current clin-

ical practice mitigates the problem of motion by acquiring a sequence of thick 2D

slices spanning the entire anatomy of interest. The advantages of such ultra-fast 2D

MRI are the ability to largely “freeze” the effect of motion as well as the provision of

excellent soft tissue contrast with remarkably high in-plane resolution. However, a

balance has to be struck between a short scanning time (to avoid motion artefacts)

and the signal-to-noise ratio, which must be maintained at an acceptable level. With

motion commonly occurring between each slice acquisition, the resulting “stack” of

thick slices offers an anatomical visualization with limited geometric integrity, in

which adjacent slices do not necessarily visualize adjacent anatomy. Moreover, the

large slice thickness comes at a cost: small tissue structures with fine anatomi-

cal details cannot be captured. In further consequence, an accurate and reliable

diagnosis based on such motion-corrupted, thick-slice MRI data may be compro-

mised [Gholipour et al., 2014, Brix et al., 2016, Basaran et al., 2008, Griffin et al.,

2012].

Recent advances in image post-processing have demonstrated the potential to in-

crease the image resolution a posteriori by combining multiple MRI stacks of low-

resolution 2D slices into a single, high-resolution 3D volume – in a method called

Super-Resolution Reconstruction1. Instead of acquiring a high-resolution 3D MR

volume directly (which cannot be achieved due to motion and/or scanning time con-

1Also referred to as Slice-to-Volume Reconstruction in this context, e.g. [Kainz et al., 2015b,
Cordero-Grande et al., 2018].
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siderations) one can estimate a high-resolution visualization from several, possibly

motion-corrupted, low-resolution 2D slices. As a result, a more detailed anatomical

visualization in higher resolution becomes possible which can lead to improved dis-

ease diagnosis and pre-surgical management. However, precise motion correction is

vital to establish accurate inter-slice spatial correspondences.

The work in this thesis aims to provide robust methods to volumetrically recon-

struct geometrically consistent, high-resolution 3D images from motion-corrupted,

possibly sparse, low-resolution 2D MR slices. The thesis focuses on volumetric re-

construction techniques applicable to a broad field of clinical applications in which

associated motion patterns are inherently different, but the use of thick-slice MR data

is current clinical practice. In particular, a volumetric reconstruction framework is

developed and applied to fetal (Chapter 2) and upper abdominal MRI (Chapter 3),

and to historical, printed MR films associated with a uniquely long-term brain MR

study dating back to the 1980s (Chapter 4). Each application is characterized by dif-

ferent motion patterns, including unpredictable, large motion (fetal MRI), breathing

and bowel motion (abdominal MRI), and random motion (printed MR films).

1.1. MRI in the Presence of Motion

1.1.1. The Effect of Motion on Resolution in MRI

“A fundamental consideration in any MRI experiment is how to opti-

mally balance image resolution, signal-to-noise ratio (SNR), and acqui-

sition time. These three imaging parameters are highly interdependent:

higher resolution allows one to observe smaller details, but typically re-

duces SNR, and/or increases imaging time. At the same time, a certain

minimum level of SNR is required to distinguish the signal of interest

from system noise, and scan time should be kept low, as MR imaging

resources are limited, costly, and long scan times are uncomfortable for

the patient, and induce motion artefacts in the images. Together, the

three parameters span a space, and their theoretical relations are well
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known.” [Plenge et al., 2012]

Indeed, the use of MR in the context of moving body organs has historically

been difficult. Significant improvement of MRI hard- and software in recent years

has led to the development of rapid imaging sequences to mitigate the challenging

problem of motion. The type of underlying motion, however, may have a substantial

impact on the preferred type of MR acquisition. Repetitive motion-patterns like

cardiac or respiratory motion can be addressed by gated MR image acquisitions to

reduce motion artefacts while maintaining relatively high resolution. A surrogate

signal, like an echo-cardiogram or a respiratory signal, allows the synchronization

of the image acquisition with the recurring relative position of the moving tissue.

Therefore, the image acquisition is prolonged over several cycles until the entire image

is constructed. MRI is particularly challenging in the presence of unpredictable or

non-repetitive motion as is the case in, e.g., fetal MRI. There, typically, ultra-fast 2D

MRI is performed in order to largely “freeze” motion for each slice acquisition. A

short scanning time is critical to avoid motion artefacts and, together with SNR

considerations, imposes a relatively low resolution on the imaging in practice. The

resulting coarse spatial discretization, characterized by large, usually anisotropic,

voxel sizes, is prone to obscuring small anatomical structures. Associated partial

voluming effects are highly dependent on the directionality of the acquisition due to

voxel anisotropy and severely impact an accurate representation of the underlying

anatomy.

Overall, MR image quality and spatial resolution are affected primarily by the

presence of motion. In consequence, the MR-based assessment in various clinical

applications, including fetal and pediatric MRI, abdominal MRI and cardiac MRI,

currently is constrained by the use of thick-slice data for clinical diagnosis. Infor-

mation on small anatomical structures, relevant for disease diagnosis, may not be

captured, limiting the diagnostic power of MRI in the presence of motion [Gholipour

et al., 2014,Brix et al., 2016,Basaran et al., 2008,Griffin et al., 2012].
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Figure 1.1.: Visualization of typical fetal MRI data acquired at 1.5T (Data
courtesy of Prof. Jan Deprest, KU Leuven). An interleaved scanning protocol was

deployed where each stack was acquired using three packages of temporarily
sequential but spatially separated slices. Maternal and fetal motion is visible
throughout the HASTE stacks. Axial and coronal stacks show the effect of
magnetization transfer where some slices have suffered from reduced signal

intensity. The coronal stack is affected by wrapping artefacts.

1.1.2. Fetal Magnetic Resonance Imaging

Imaging technologies must meet strict safety standards in order to be utilized in the

sensitive period of pregnancy. Thus, imaging modalities used in fetal examinations in

clinical practice are typically constrained to ultrasound (US) and magnetic resonance
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imaging (MRI), because these are considered safe due to their non-invasive and non-

ionizing nature.

US remains the predominant modality employed during pregnancy to screen and

diagnose fetal anomalies, mainly due to its cost-effectiveness, wide availability and

portability, and real-time capabilities [Sepulveda et al., 2012]. However, US imaging

is highly operator-dependent and the interpretation of certain US findings may be

difficult even for skilled experts [Sepulveda et al., 2012, Benson and Bluth, 2008].

Moreover, US offers limited soft tissue contrast. Two-dimensional ultrasound (2D-

US) in particular faces limitations in depicting fetal anatomy due its sensitivity to

maternal habitus, abdominal scarring, the size and position of the fetus and its

limitation at progressive ossification of the fetal skeleton which results in acoustic

shadowing and oligohydramnios [Sepulveda et al., 2012, Benson and Bluth, 2008].

With the introduction of three-dimensional ultrasound (3D-US), volumetric acquisi-

tions have been possible, giving rise to facilitated visualization of arbitrary sections

and ultimately easier handling. Moreover, 3D-US allowed the storage of volumet-

ric information that can be processed offline for further image analysis. However,

3D-US may only capture a limited field of view of the targeted organ, is consider-

ably more expensive than 2D-US and remains highly operator-dependent [Sepulveda

et al., 2012].

At present, fetal MRI is widely considered as a complementary tool to US according

to [Garel, 2008]:

(i) To reassure the parents of the normality of a fetal brain in the pres-

ence of normal US findings, but a positive family history of a cerebral

abnormality that is recognised as being possibly overlooked by US,

such as subtle abnormal gyration or posterior fossa anomalies.

(ii) To clarify abnormalities detected by US and to add additional infor-

mation that might have an influence on prognosis or management

at birth.

(iii) To add functional evaluation to the morphological US analysis.
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The use of MRI has historically been difficult in fetal examinations due to the motion

artefacts generated by maternal breathing and spontaneous fetal motion [Sepulveda

et al., 2012]. Sedation of the fetus is highly controversial due to potential adverse

effects on the developing brain and is generally prohibited [McPherson and Inder,

2017]. The development of rapid MR sequences has made it possible to mitigate this

difficulty and has allowed MRI to gain momentum in clinical applications despite its

relative cost and complexity [Prayer et al., 2004,Malamateniou et al., 2013,Saleem,

2014]. Fast imaging methods like gradient echo imaging, echo planar imaging, and

fast spin-echo (FSE) imaging have been developed to collect images more rapidly and

have substantially reduced imaging times compared to standard spin-echo imaging

sequences [Dale et al., 2015]. In particular, T2-weighted ultra-fast FSE sequences

allow sufficiently short scan times of less than one second, providing the ability to

essentially “freeze” motion at each acquisition while providing excellent T2-contrast.

The field of fetal MRI has since been dominated by the use of such single-shot T2-

weighted (SST2W) sequences [Gholipour et al., 2014] with the associated vendor

acronyms being

• HASTE for HAlf-fourier Single-shot Turbo spin Echo (Siemens)

• SSFSE for Single-Shot Fast Spin Echo (General Electric Medical Systems)

• SSHTSE for Single-Shot Half-Fourier Turbo Spin Echo, UFSE for Ultra-Fast

Spin Echo or TSE for Turbo Spin Echo (Philips)

• RARE for Rapid Acquisition with Relaxation Enhancement (Bruker Instru-

ments)

Currently, fetal MRI plays an important role in providing valuable information for

disease diagnosis and ante-natal management and is especially useful for investi-

gating suspected abnormalities detected during a US examination. Moreover, fetal

MRI has been shown to yield improved diagnostic accuracy over US in a number of

applications, such as the diagnosis of esophageal atresia [Ethun et al., 2014], lung

volumetry [Story et al., 2017] and for various other conditions [Sepulveda et al.,

2012].
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Nevertheless, and despite attempts to further improve imaging speed with tech-

niques like parallel imaging [Brown et al., 2014], MRI remains relatively slow and

its application difficult in the context of motion. The need for short acquisition

times to avoid motion artefacts in combination with the requirement to maintain

reasonable signal-to-noise ratios leads to thick 2D slice acquisitions and ultimately

to relatively low spatial resolution. In current clinical practice, typical SST2W im-

ages have 1 × 1mm2 to 2 × 2mm2 in-plane spatial resolution with slice thicknesses

between 2mm and 4mm in fetal MRI [Gholipour et al., 2014]. Sequential slice

acquisitions are performed with minimum delays to avoid inter-slice fetal motion,

which results in an image represented as a stack of single 2D slices covering a se-

lected volume of fetal anatomy. To keep the acquisition time and the impact of fetal

motion low, the “cramming” of as many slices as possible into a specified period of

time has been shown to be beneficial. However, this can lead to deleterious visual

effects affecting the image quality due to amniotic fluid saturation, convective mo-

tion, and magnetization transfer between adjacent slices [Gholipour et al., 2014]. To

avoid such slice crosstalk and spin history artefacts, slices are usually acquired in

an interleaved manner, typically leading to two or three temporally sequential but

spatially separated acquisitions. A typical total scan time of 20 s allows the acqui-

sition of about 30 slices, which provides a coverage of about 12 cm of the fetus in

the slice-select direction. Typically, several stacks are acquired orthogonal to each

other in fetal MRI to obtain high in-plane resolution visualization in multiple planes

in order to obtain sufficient anatomical coverage for improved diagnosis. However,

with fetal and maternal motion commonly occurring during acquisition time, each

resulting image stack provides a low-resolution visualization of the covered anatomy

with overall limited geometric integrity where adjacent slices are not necessarily vi-

sualizing adjacent tissue anatomy (Figure 1.1). The high voxel anisotropy gives rise

to substantial partial voluming effects and hides fine anatomical details valuable for

reliable disease diagnosis. Moreover, optimal imaging planes for clinical assessment

relative to the fetal anatomy, such as the fetal brain, cannot be guaranteed due to

the unpredictable fetal motion. For longitudinal studies this may lead to difficulties
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in assessing anatomical changes as it cannot be ensured that the structure of inter-

est is visualised. Interactive, real-time imaging strategies have been proposed for

more reliable slice plane selections to capture optimal imaging planes for increased

diagnostic image quality [Brix et al., 2016]. However, while they represent promis-

ing approaches to obtain more accurate imaging planes for anatomical visualization,

each associated slice is a low-resolution image and therefore suffers from substantial

partial voluming.

1.1.3. Magnetic Resonance Cholangio-Pancreatography

The pancreatic ductal and biliary systems form part of the body’s digestive system

to provide and conduct the pancreatic and bile juices (secretions) required for diges-

tion. The production, storage, and secretion of the bile are guaranteed by a network

of ducts interconnecting the liver, gallbladder, and pancreas. Several conditions and

diseases can affect this digestive system. Gallstones can develop and lead to the ob-

struction of ducts and eventually give rise to severe inflammation at various points

along the biliary tree, including inflammation of the gallbladder (cholelithiasis) and

ducts of the biliary tree (choledocholithiasis) and pancreas (pancreatitis). In fact,

gallstone disease is one of the most common and costly gastrointestinal (GI) tract

disorders in the Western world with a prevalence of 10% to 20% [Li et al., 2017b,van

Dijk et al., 2017]. In the United States, pancreatic cancer is the fourth leading cause

of cancer-related deaths and is projected to become the second most deadly cancer

in the near future [Yang et al., 2019, Siegel et al., 2019]. In the UK, it is the fifth

most common cause of cancer death with less than 7% of affected people surviv-

ing more than five years [Scott and Jewell, 2019]. Imaging of the upper GI tract

plays a vital role in early detection and treatment of such disorders. Common imag-

ing modalities include endoscopic ultrasound (EUS), computed tomography (CT),

endoscopic retrograde cholangio-pancreatography (ERCP) and magnetic resonance

cholangio-pancreatography (MRCP), with all having their role in the diagnosis of

biliary pathologies in current clinical practice [Walshe et al., 2016].
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Endoscopic Ultrasound

EUS combines a high-frequency ultrasound probe with an endoscope and has been in

use since the early 1980s in a variety of GI conditions. It is widely considered as safe

with low rates of complications [Safari et al., 2016]. With a high diagnostic accuracy

of about 95%, EUS allows the reliable identification of bile duct stones (choledo-

cholithiasis) [Chen et al., 2015,Makmun et al., 2017]. EUS also provides additional

interventional capabilities, such as its use for guiding fine needle aspiration biopsy

(EUS-FNA) for evaluating gastrointestinal and pulmonary malignancies [Williams

et al., 1999]. However, EUS is highly operator-dependent, and its visualizations of

the biliary tree may be incomplete or unsuccessful [Chen et al., 2015]. In particu-

lar, the assessment of the distal common bile duct may be limited where bowel gas,

debris, fluid in the duodenum and obesity can degrade the image quality [Diwanji

et al., 2016].

Computed Tomography

CT has the advantage of being non-invasive and allows imaging at high resolution

with isotropic sub-millimeter voxels [Ringe and Wacker, 2015]. It is the standard

imaging technique for detection of acute pancreatitis [Carroll et al., 2007]. However,

the intravenous iodinated contrast agent required to differentiate pathology from

normal anatomy on CT is nephrotoxic and can cause an allergic reaction. Moreover,

it carries the risk of radiation exposure and fails at demonstrating two important

pathologies of biliary stones and biliary strictures [Diwanji et al., 2016].

Endoscopic Retrograde Cholangio-Pancreatography

ERCP was first used in 1968 [McCune et al., 1968] and was quickly accepted as a

technique for evaluating pancreatico-biliary disease [Chathadi et al., 2015]. In fact,

it has become the gold standard for diagnosis of choledocholithiasis [Chen et al.,

2015,Makmun et al., 2017]. The procedure combines endoscopy and fluoroscopy; the

endoscope is inserted through the mouth, into the stomach, and to the duodenum

where contrast medium is injected into the biliary tree and pancreatic ducts for fur-
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ther visualization via x-ray. As a therapeutic procedure, ERCP is particularly useful

for removing biliary obstructions due to choledocholithiasis, or, in conjunction with

bile duct stenting or biliary sphincterotomy, for treating bile leaks [Chathadi et al.,

2015]. However, ERCP is highly dependent on the operator’s skill and experience

and can cause serious complications because of its invasive nature. Moreover, it is

associated with several complications such as pancreatitis, cholangitis, bleeding, and

bowel perforation [Makmun et al., 2017], in addition to 1% to 7% morbidity and

0.2% to 1% mortality [Diwanji et al., 2016]. Due to its risks, ERCP has evolved

from a diagnostic procedure to one that is almost exclusively therapeutic [Chathadi

et al., 2015,Makmun et al., 2017]. Therefore, EUS and MRCP have become the

modalities of choice for diagnosing choledocholithiasis [Makmun et al., 2017].

Magnetic Resonance Cholangio-Pancreatography

The use of MR for cholangiography was first described in [Wallner et al., 1991] and

takes advantage of the inherent contrast-related properties of fluid in the biliary and

pancreatic ducts [Barish et al., 1999]. The development of novel and faster MR imag-

ing sequences in recent years has enabled the visualization of biliary and pancreatic

systems with excellent image quality, which previously could only be provided by

ERCP [Altun et al., 2016]. Moreover, MRCP provides images with inherently high

soft tissue contrast, allows for a non-invasive examination without administration of

anesthesia or intraductal or intravenous contrast agent, and is not operator depen-

dent [Altun et al., 2016,Ringe and Wacker, 2015]. This makes MRCP a useful tool

for use in almost all patients, including infants and those with allergies to iodine-

based contrast materials [Safari et al., 2016]. As a diagnostic procedure, it is now

increasingly replacing ERCP due to its non-invasiveness and excellent image quality

combined with its comparable accuracy for a broad spectrum of benign and malig-

nant pancreatic biliary ductal diseases [Barish et al., 1999,Chen et al., 2015,Ringe

and Wacker, 2015]. Nevertheless, a comparison against ERCP as a diagnostic tool

is still subject to ongoing investigations [Aydelotte et al., 2015, Kanaan and An-

taki, 2016,Parthasarathy et al., 2016,Engelbrecht et al., 2016,Aydelotte, 2016,Shiani
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Figure 1.2.: Visualization of typical MR data in MRCP studies showing the
anatomy of the biliary tree acquired at 1.5T (Image adapted from [Ebner et al.,

2017a]). Motion is visible throughout the HASTE stacks. The heavily T2-weighted
volume (T2w SPC RST) has approximately five times higher resolution compared
to the HASTE through-plane direction. However, the heavily T2-weighted volume
loses valuable tissue contrast in the surrounding anatomy. Additionally acquired
contrast-enhanced computed tomography (CT) image allows assessment in high
resolution but does not have the inherent high soft tissue contrast of MRI and

carries the risk of radiation exposure, iodinated contrast exposure and toxicity of
kidneys.

et al., 2018,Akbar et al., 2018]. In contrast to ERCP, however, MRCP does not en-

able therapeutic maneuvers which remains a significant advantage of ERCP, which

can perform therapeutic interventions at the time of initial diagnosis [Altun et al.,

2016]. MRI of the upper GI anatomy remains challenging due to its susceptibility

to motion and therefore the problem of complex motion during acquisition time,

including respiratory and cardiac motion in addition to peristaltic bowel movement.

Usually, a set of rapid T1- and T2-weighted sequences is acquired in current clinical

protocols. The T1-weighted images are useful for the evaluation of duct walls and

parenchymal lesions and can be acquired as T1-weighted gradient-echo sequences in

a 2D or 3D fashion [Altun et al., 2016]. The T2-weighted images include a non-
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breath-hold respiratory-triggered 3D turbo spin echo (TSE) and, typically, a coronal

and an axial ultra-fast single-shot T2-weighted (SST2W) sequence at breath-hold

(Figure 1.2). Respiratory-gating allows the acquisition of heavily T2-weighted im-

ages at high resolution of about 1mm3 isotropic voxel size. The signal from the

pancreatico-biliary system appears hyper-intense, whereas the background tissue,

such as hepatic and pancreatic tissue, peritoneal fat, fast-flowing blood, is either

very low signal or signal void, resulting in excellent contrast and depiction of the

pancreatico-biliary system [Altun et al., 2016]. Its downside, however, is a lack of

surrounding structural tissue information, which is important for the assessment of

peri-ductal and extra-ductal upper abdominal soft tissue pathology. The ultra-fast

SST2W sequences require less than 1 s per slice acquisition and essentially “freeze”

any physiological motion and, in contrast to the 3D TSE acquisition, capture infor-

mation on peri- and extra-ductal anatomy. Acquired at breath-hold with durations

of, typically, about 20 s a volumetric representation of the upper GI anatomy via

a stack of (thick) 2D slices is possible. SNR-considerations prevent acquiring small

slice thickness which, generally, leads to slices with slice thickness between 4mm

to 6mm at an in-plane resolution of, approximately, 1mm. Thus, the large voxel

anisotropy manifests in considerable partial voluming effects and prevents the diag-

nosis of small vessels. In fact, and in contrast to ERCP, MRCP is known to miss

gallstones smaller than 4mm, small ampullary lesions and ductal strictures [Carroll

et al., 2007,Safari et al., 2016].

1.1.4. Historical MRI Acquisitions on Printed Films

After the discovery of nuclear magnetic resonance by Purcell, Torrey and Pound

in 1945 as described in the seminal work [Purcell et al., 1946], it took several decades

before its potential usefulness in clinical diagnosis was fully appreciated [Damadian,

1971]. Indeed, MRI first became available in 1980 for clinical use and since then has

revolutionized the field as a powerful, non-invasive and non-ionizing medical imaging

technique.

The earliest brain studies were performed based on thick contiguous slices acquired
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Figure 1.3.: Scanned MR Film of Multiple Sclerosis/Clinically Isolated Syndrome
subject acquired at the National Hospital for Neurology and Neurosurgery in 1986
(Image adapted from [Ebner et al., 2018a]). Twenty-four proton density-like images
were acquired to cover the brain and printed sequentially on three films for further

visual inspection. Each slice is about 5mm thick and was acquired at 0.5T.

in the axial direction to cover the entire volume [Miller et al., 1988,Miller et al.,

1989]. In the absence of modern standards for digital archives and visualization, the

acquired scans were placed side-by-side and printed sequentially on multiple films, for

further, visual analysis. The analysis was typically limited to measures such as lesion

count and location in multiple sclerosis (MS) studies [Ormerod et al., 1987,Miller

et al., 1989,Morrissey et al., 1993, O’Riordan et al., 1998]. With the introduction

of the PACS (Picture Archiving and Communications System) and DICOM (Digital

Imaging and COmmunication in Medicine) standards in the early 1990s, standards

were created for digitally storing medical imaging information including essential
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Figure 1.4.: Longitudinal proton density (PD) scans of one subject followed up
since the 1980s with two spatial locations roughly aligned across acquisitions (Data

courtesy of Dr. Declan Chard, UCLH NNHN). The slice thickness ranges
from 10mm in the earliest scans acquired at 0.5T to 5mm in more recent ones.
The second row shows the evolution of the spatial distribution and size of lesions

which are of particular clinical interest.

meta-data on spatial information and acquisition details. This allowed further de-

velopment of clinically important biomarkers such as brain and lesion volume from

longitudinal MS studies [Brex et al., 2002,De Stefano et al., 2014,Sailer et al., 1999]

– information which, currently, cannot be readily extracted from scans dating back

to the 1980s and early 1990s if they are only available as printed films. The origi-

nal digital data is often lost or cannot be recovered due to hardware and software

obsolescence issues, which also has been shown in more recent studies on brain mor-

phometry where original MR films were digitized anew and manually processed to

allow for further quantification [Ekert et al., 2016]. In other words, especially for lon-

gitudinal studies dating back to the 1980s, a decade or more of valuable image data

information may not be readily accessible to modern image processing techniques,

representing lost opportunities in the understanding of long-term pathological and

morphological evolution.

As a motivating example, which is developed in this thesis, at the National Hos-

pital for Neurology and Neurosurgery (NHNN), Queen Square, London, a cohort
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of 132 people recruited soon after a clinically isolated syndrome was diagnosed has

been followed up since the 1980s with regular time points until present [Miller et al.,

1988,Miller et al., 1989,Morrissey et al., 1993, O’Riordan et al., 1998, Brex et al.,

2002,Fisniku et al., 2008]. A 30-year longitudinal clinical study is currently under-

way, which includes more than 300 image acquisitions captured on historical films.

One example set of films is shown in Figure 1.3 with an additional longitudinal

comparison in Figure 1.4. A framework to volumetrically reconstruct consistent 3D

visualizations from printed MR films would facilitate a robust longitudinal analysis

spanning more than 30 years of MRI scans. To visualize a consistent 3D geome-

try, such a framework needs to correctly align the sequentially printed, historical 2D

slices, estimate the lost geometrical properties and dimensions, and correct for dis-

tortions from printing, storage and manual scanning of the films. Making historical

scans available for modern image processing and analysis could contribute new in-

sights and understanding of disease progression.

1.2. Super-Resolution Reconstruction: Addressing

Clinical Needs of Higher Resolution in MRI

The aim of both structural and functional medical imaging is to extract information

on the human body or specific organs within it [Greenspan, 2008]. Sufficiently spatial

(or temporal) resolution2 is vital for a better and more detailed understanding of the

anatomy in addition to early detection of abnormalities and increased accuracy in the

assessment of size and morphology of organs and pathologies [Greenspan, 2008]. In

the context of motion, however, those needs may only be partially addressed by MRI

in various applications including the mentioned areas of fetal and abdominal imaging.

Ultra-fast 2D MRI, although powerful and valuable in its ability to address the

problem of motion, is limited in providing detailed information on small anatomical

structures due to their inherent requirement of acquiring thick anatomical slices.

Modern image processing techniques can provide an effective means to serve the

2Spatial resolution is defined as the smallest separation of two point sources necessary for the
source to be resolved [Van Reeth et al., 2012].

44



1.2 Super-Resolution Reconstruction: Addressing Clinical Needs of Higher
Resolution in MRI

goal of resolution augmentation post acquisition without requiring the purchase of

new hardware equipment as technology evolves. Indeed, Super-Resolution (SR)

methods can reconstruct high-SNR and high-resolution representations of objects

that could only be acquired at low resolution because of motion, scanning time limi-

tations or SNR considerations [Candès and Fernandez-Granda, 2014,Milanfar, 2010,

Greenspan, 2008,Van Reeth et al., 2012,Plenge et al., 2012]. In several fields includ-

ing cardiac MRI [Shi et al., 2013,Bhatia et al., 2014,Odille et al., 2015,Oktay et al.,

2016, Basty and Grau, 2018], thoracic MRI [Van Reeth et al., 2015], tongue [Woo

et al., 2012], fetal MRI [Rousseau et al., 2010,Gholipour et al., 2010b,Kainz et al.,

2015a] and, more recently, abdominal MRI [Ebner et al., 2017a] SR methods have

been applied successfully in increasing the image resolution as a post-processing step.

Super-Resolution techniques can be categorized into single- and multi-image meth-

ods. Single-image SR methods3 rely on a database of previously learned relationships

between low- and high-resolution images and leverage this information to enhance

the resolution of a newly presented, single low-resolution image. Especially recent

deep learning-based methods have been tremendously successful in single-image-

based SR to create remarkable results in computer vision [Dong et al., 2016, Shi

et al., 2016, Johnson et al., 2016,Lim et al., 2017] but also in medical imaging such

as in cardiac MRI [Shi et al., 2013,Oktay et al., 2017,Basty and Grau, 2018]. How-

ever, they require a very strong prior knowledge, which is not always available. This

dependency on representative training data also limits the generalizability of its re-

sults, which can lead to poor performance if applied to images with different contrast,

anatomies, or sizes. Moreover, motion correction is not explicitly addressed, which

can constitute a critical challenge, depending on the application.

Multi-image SR methods4 combine information from multiple LR observations

of the same object to reconstruct a single, HR image where each LR acquisition

typically corresponds to an aliased output, i.e. by violating the Nyquist sampling

theorem [Park et al., 2003]. The aim of SR reconstruction (SRR) methods is to

combine the information present in multiple LR images to reconstruct a higher-

3also called example-based or learning-based SR methods
4also called reconstruction-based SR methods
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resolution image [Vandewalle et al., 2010]. As pointed out in [Plenge et al., 2012],

there is broad consensus that multi-image super-resolution in MRI is not achievable

in-plane, nor in true 3D acquisitions. This has been explained by the fact that

the Fourier encoding scheme excludes aliasing in the frequency and phase encod-

ing directions [Peled and Yeshurun, 2002, Scheffler, 2002, Van Reeth et al., 2012].

The improvement in in-plane resolution, however, can lead to noise reduction and,

therefore, higher SNR [Van Reeth et al., 2012,Greenspan et al., 2002]. In the litera-

ture, SRR approaches have been presented in the image domain, frequency domain,

or wavelet domain [Park et al., 2003,Milanfar, 2010, Aganj et al., 2012, Gholipour

et al., 2015]. Most commonly, the image domain is preferred since it offers great

flexibility to model all kinds of image degradations including more sophisticated

motion-models [Yang and Huang, 2010,Gholipour et al., 2015]. In order to describe

the relationship between an LR observation yk ∈ RNk and the unknown, discretized

HR image x ∈ RN , typically the observation model [Park et al., 2003,Greenspan,

2008,Milanfar, 2010,Van Reeth et al., 2012]

yk = Dk Bk Wk x + nk (1.1)

is used to describe the MR image acquisition process whereby Nk � N for all ob-

servations k = 1, . . . ,K in practice. The warp operator Wk describes the geometric

transformation to the LR image yk from a reference position. The blurring oper-

ator Bk mimics the blurring effects of the MR imaging process described by the

point spread function (PSF), i.e. the impulse response of the imaging system. The

downsampling operator Dk describes the loss of dimensionality and nk represents

the imaging noise.

Several SR algorithms have been proposed to solve this, in practice, ill-posed

problem [Van Reeth et al., 2012, Milanfar, 2010, Park et al., 2003]. A common

approach is the assumption of Gaussian noise vk and independent and identically

distributed LR observations, which, assuming that the operators, and hence the
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motion, are known, lead to the maximum a posteriori (MAP) formulation

min
x

( K∑
k=1

‖yk −Dk Bk Wk x‖2`2 + αΦ(x)
)

(1.2)

with regularization parameter α > 0 and prior term Φ(x) [Yang and Huang, 2010].

Examples include Tikhonov regularization with Φ(x) = ‖Qx‖2`2 where Q represents

a high-pass filter such as the first derivative [Tanaka and Okutomi, 2010], and total

variation regularization [Yang and Huang, 2010,Basty et al., 2017].

Several challenges are associated with solving (1.2) in practice. Firstly, one relies

on the assumption that all operators in (1.1) are known or can be estimated reliably.

Given the nature of the involved operators, this can result in large linear systems

involving large matrices that can incur a substantial memory and computational cost.

In its classical theory [Park et al., 2003,Yang and Huang, 2010,Hardie, 2010], SR is

possible only when the LR observations are subsampled, i.e. aliased, as well as shifted

with subvoxel precision. This guarantees that each LR observation contains new

image information that can be exploited to generate an HR image [Park et al., 2003,

Hardie, 2010]. Consequently, SR can only work accurately when there is very precise

motion estimation with subvoxel accuracy of all LR observations for the recovery of

subvoxel details. The associated registration problem is critical but well known to

be ill-posed, especially in the context of SR where the associated observations are of

low resolution [Yang and Huang, 2010]. Moreover, without knowing the PSF it is

in principle impossible to register precisely images blurred by motion [Sorel et al.,

2010]. In practice, however, the blurring operator is typically set to be known and

spatially invariant to keep the problem tractable. Some SRR methods like non-local

means or probabilistic motion modeling aim to bypass explicit motion estimation

at the expense of increased computational complexity [Protter et al., 2009,Takeda

et al., 2009, Protter and Elad, 2010]. Other approaches consider the registration

problem separate from HR image estimation. However, as highlighted in [Yang

and Huang, 2010], LR image registration and the HR image estimation are actually

interdependent. On one hand, accurate subpixel motion estimation benefits HR image
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estimation. On the other hand, high quality HR image can facilitate accurate motion

estimation.

As of today, little is known about the optimal number of input LR images for

optimal SRR results and theoretical predictions have been made only for very simple

motion scenarios like translation [Baker and Kanade, 2002, Lin and Shum, 2004].

For general, more realistic, situations, the optimal number of input LR images is

not known and will be application dependent [Poot et al., 2010, Rousseau et al.,

2010,Van Reeth et al., 2012]. In particular, the number of LR images will depend on

the magnification factor, i.e. the ratio between the resolution of the reconstructed

HR image of the SR algorithm and the input LR images, but no consensus or shared

best practices are available. Therefore, the SRR problem (1.1) can be severely ill-

posed, especially when the magnification factor is large, e.g. greater than 2 [Yang and

Huang, 2010]. In particular, for large enough magnification factors any smoothness

prior leads to overly smooth results with very little high-frequency content regardless

of the number of LR input images used [Baker and Kanade, 2002].

1.3. Thesis Contributions

The overall goal of this thesis is to provide robust and versatile volumetric recon-

struction approaches that can be applied in a variety of clinical applications where

motion patterns are inherently different, but the use of thick-slice MR data is cur-

rent clinical practice. Several challenges needed to be overcome in this context which

mainly relate to two key problems mentioned in the previous section: Reliable and

accurate motion correction of individual, low-resolution 2D slices and robust volu-

metric reconstruction to achieve a high-fidelity, high-resolution 3D visualization from

the motion-corrected, and potentially sparse, scattered data.

1.3.1. Super-Resolution Reconstruction of Fetal Brain MRI

For fetal brain MRI reconstruction, multiple high-resolution reconstruction frame-

works have been presented in the literature already [Rousseau et al., 2006, Jiang

et al., 2007,Kim et al., 2010b,Gholipour et al., 2010b,Kuklisova-Murgasova et al.,
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2012,Kainz et al., 2015b]. Although the proposed approaches are shown to be useful

in practice, the unpredictable and large fetal motion and its associated challenges

require particularly robust motion-correction and volumetric reconstruction frame-

works to allow for potential clinical translation. In particular, previously proposed ro-

bust super-resolution approaches rely on multiple hyperparameters to be tuned in or-

der to achieve optimal reconstruction outcomes. Moreover, the proposed approaches

require time-consuming optimization methods due to their resulting non-convex min-

imization problem formulation [Gholipour et al., 2010b,Kuklisova-Murgasova et al.,

2012]. Obtaining the HR fetal brain reconstructions in the standard anatomical

planes can facilitate brain studies and is typically favoured for clinical assessment

by clinicians. However, currently existing methods for automatic visualization in

the standard anatomical planes may work for mildly pathological cases only [Tour-

bier et al., 2017]. Moreover, recently proposed automatic brain segmentations ap-

proaches [Anquez et al., 2009,Taleb et al., 2013,Keraudren et al., 2014,Rajchl et al.,

2016,Salehi et al., 2018] unlock the potential use of automatic fetal brain reconstruc-

tion studies in clinical practice. Yet, to date, no reconstruction framework has been

tested as part of a fully-automated brain MRI reconstruction pipeline requiring no

manual intervention. This thesis aims to address these shortcomings and presents

the following contributions [Ebner et al., 2018c,Ebner et al., 2019c]:

• An alternative outlier-robust volumetric reconstruction framework for isotro-

pic, high-resolution 3D reconstruction from motion-corrupted, low-resolution 2D

slices.

• A simple, yet demonstrably effective, complete outlier-rejection method for

robust super-resolution that relies on a single hyperparameter only and retains

a linear least-squares formulation which can be solved efficiently.

• A fast and robust template-space alignment approach for automatic high-resolution

visualization in the standard anatomical planes suitable for pathological brains.

• A motion-correction method based on Gaussian process regularization that

encourages the consistency of spatial transformations with the overall objective
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of achieving more robust slice motion-correction estimates.

• Demonstration of the clinical potential of the presented reconstruction frame-

work as part of a fully automated localization, segmentation and super-resolution

reconstruction framework for fetal brain MRI that requires no manual inter-

vention.

1.3.2. Super-Resolution Reconstruction of Upper Abdominal MRI

In the context of upper abdominal MRI, no algorithm has been presented to recon-

struct an isotropic, high-resolution 3D visualization to define upper gastrointesti-

nal (GI) tract and biliary anatomy from low-resolution SST2W sequences. Despite

super-resolution being well suited in principle, its application is particularly chal-

lenging in the context of MR cholangio-pancreatography (MRCP) studies due to

the sparse data in clinical acquisition protocols (only two SST2W scans; one axial

and one coronal acquisition) and the necessity of correcting for complex, non-rigidly

deforming anatomy. However, as opposed to fetal MRI, abdominal MRI is character-

ized by less substantial motion and allows for better-controlled experiments, which

can enable valuable validation studies of motion-correction and volumetric recon-

struction algorithms. Moreover, current reconstruction frameworks presented for the

high-resolution reconstruction of SST2W data do not take into account the image

formation process for registration/motion-correction. This is particularly problem-

atic since neglecting the point spread function (PSF) during resampling introduces

aliasing and subsequently results in additional loss of information [Cardoso et al.,

2015,Chacko et al., 2015]. In this thesis, the following contributions are presented:

• Introduction of a super-resolution reconstruction framework to reconstruct an

isotropic, high-resolution 3D visualization of upper GI anatomy specifically

tailored to the sparsely available data in clinical MRCP studies [Ebner et al.,

2017a].

• Introduction of PSF-aware registration that takes into consideration the physi-

cal image formation process during motion correction for MRCP sequences [Ebner
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et al., 2017a].

• Design and execution of a pilot study involving the acquisition of multiplanar

SST2W stacks of the upper abdomen and the brain (’quasi-static’ control data,

to remove the effect of upper abdominal motion artefact) for eight healthy

volunteers with the overall objectives of [Ebner et al., 2019a,Chouhan et al.,

2019,Ebner et al., 2019b]

1. optimising source image acquisition protocols by establishing the ideal

number and orientation of SST2W series for MRCP SRR generation

2. optimising post-processing protocols by defining the most suitable ap-

proach to registration/motion correction for SRR in the upper abdomen

3. validating the overall potential of upper abdominal SRR using expert-

readers

1.3.3. Volumetric Reconstruction from Printed Films

Historical, printed brain MR films are not readily accessible to modern image pro-

cessing techniques. A volumetric reconstruction needs to account for various kinds of

image degradations and geometrical distortions present in printed films. This thesis

presents the following contributions [Ebner et al., 2018a]:

• A volumetric reconstruction framework to recover geometrically consistent, vol-

umetric images from printed films in MR neuroimaging.

• The reconstruction framework is based on a joint slice-to-volume affine registra-

tion with inter-slice 2D transformation regularisation and affine slice-intensity

correction whereby the missing meta-data information is contributed by a lon-

gitudinal scan of the same subject.

• A final isotropic total variation in-plane deconvolution technique to revitalise

the visual appearance of the reconstructed stack of historical slices.
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1.3.4. Forward-Backward Splitting in Deformable Image

Registration

Efficient non-linear image registration implementations are key for many biomedical

imaging applications. Recently proposed forward-backward splitting approaches rep-

resent promising numerical schemes that, although particularly relevant for medical

image registration, have not been widely used in this context. Associated contribu-

tions in this thesis are [Ebner et al., 2018b]:

• Introduction of recently proposed Forward-Backward Splitting (FBS) methods

to deformable image registration.

• Highlighting that FBS is guaranteed to converge to a critical point for cost

functions of the form f + g consisting of a smooth (possibly non-convex)

function f and a convex (possibly non-smooth) function g. In the context of

(non-linear) image registration, f will typically correspond to a (differentiable)

similarity measure and g to a (convex) regularizer.

• Showcasing the advantage of FBS to efficiently solve for various kinds of cost

functions vital for medical image registration by performing two simple iterative

steps – a forward and a backward step.

• Illustration that Tikhonov regularization breaks down to simple B-Spline fil-

tering in the backward step.

• Demonstration of the versatility of FBS by encoding spatial transformation as

displacement fields or free-form B-Spline deformations.

• Comparison of two FBS variants, namely FISTA [Goldstein et al., 2014] and

iPiano [Ochs et al., 2014], against the classical demons algorithm, the recently

proposed inertial demons algorithm [Santos-Ribeiro et al., 2016] and the con-

jugate gradient method within NiftyReg [Modat et al., 2010].

• Numerical experiments performed on both synthetic and clinical data show

the advantage of FBS in image registration in terms of both convergence and

accuracy.
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1.3.5. Publicly Available Open-Source Implementations

To facilitate collaboration both within and outside of academia, the software imple-

mentations of the developed concepts have been made publicly available as open-

source packages:

• NiftyMIC5: A generic toolkit for motion correction and volumetric image re-

construction of 2D ultra-fast MRI. A robust super-resolution reconstruction

implementation is provided for a variety of robust data loss function and reg-

ularizer options.

• ITK_NiftyMIC6: An extension to the Insight Segmentation and Registration

Toolkit7 (ITK) framework to enable PSF-aware registration and volumetric

reconstruction.

• VolumetricReconstructionFromPrintedFilms8: A toolkit to recon-

struct a volumetric representation from printed brain MR films.

• NSoL9: A numerical solver library for denoising and deconvolution applications

using Alternating Direction Method of Multipliers (ADMM) and Primal-Dual

methods.

• SimpleReg10: A toolkit providing conversion interfaces between commonly

used registration platforms including NiftyReg11, FLIRT12 and ITK-based

frameworks in addition to extended registration functionalities.

1.4. Thesis Organisation

This thesis is structured in six chapters. In the current chapter, the challenges and

limitations of MR imaging in the context of motion were pointed out. Ultra-fast 2D
5https://github.com/gift-surg/NiftyMIC
6https://github.com/gift-surg/ITK_NiftyMIC
7https://itk.org
8https://github.com/gift-surg/VolumetricReconstructionFromPrintedFilms
9https://github.com/gift-surg/NSoL

10https://github.com/gift-surg/SimpleReg
11https://github.com/KCL-BMEIS/niftyreg
12https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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MRI was described as a means to mitigate this limitation by acquiring an image stack

of thick 2D slices spanning the anatomy of interest for further clinical assessment.

Two important clinical applications of fetal and abdominal MRI were presented,

for which ultra-fast 2D MRI plays a major role in current clinical practice. The

concept of Super-Resolution and its challenges were presented to address the clinical

need of higher-resolution visualization to allow for more accurate and reliable clinical

diagnosis and facilitated disease management. Motion correction was identified as

one of the key challenges to be addressed to reconstruct a high-resolution volume

of diagnostic value by Super-Resolution algorithms. The inherently different nature

of unpredictable, large motion (fetal MRI), pseudo-periodic, breathing and bowel

motion (abdominal MRI) and random motion (historical MR films) was discussed to

enumerate a variety of potential clinical applications that could benefit from robust

and versatile motion-correction frameworks.

The second chapter (Super-Resolution Reconstruction of Fetal Brain MRI),

starts with a review on Super-Resolution Reconstruction frameworks developed for

fetal brain MRI. Given the unpredictability of fetal motion, the application of Super-

Resolution Reconstruction algorithms on, potentially, severely motion-corrupted, LR

stacks of slices is widely regarded as a highly challenging problem. A framework for

automatic localization, segmentation and Super-Resolution Reconstruction of fetal

brain MRI is presented. The proposed pipeline produces automatic reconstructions

that are comparable to manual segmentation-based reconstructions, therefore, effec-

tively eliminating the need for manual intervention.

Compared to fetal MRI, abdominal MRI is characterized by less severe motion

where, typically, additional types of MR acquisitions such as a heavily T2-weighted

volume are acquired during MRCP studies. In the third chapter (Super-Resolution

Reconstruction of Upper Abdominal MRI), specifically tailored MRCP SRR ap-

proaches are presented whereby controlled abdominal and ’quasi-static’ experiments

are performed for validation purposes. Additionally, it introduces the concept of

PSF-aware slice-to-volume registration in the context of ultra-fast 2D MRI.

The fourth chapter (Volumetric Reconstruction from Printed Films: Enabling 30
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Year Longitudinal Analysis in MR Neuroimaging) is dedicated to the volumetric re-

construction from printed, historical MR films. The presented reconstruction frame-

work is based on semi-automatic slice extraction, automated in-plane 2D affine reg-

istration with inter-slice transformation regularization and slice intensity correction

followed by isotropic total variation reconstruction. This framework will be used to

facilitate the robust analysis of a uniquely long-term multiple sclerosis study span-

ning 30 years of MRI scans of people followed up after a clinically isolated syndrome.

The fifth chapter (Forward-Backward Splitting in Deformable Image Registra-

tion: A Demons Approach) focuses on a means to efficiently solve non-linear image

registration problems. Taking advantage of the rich mathematical body developed

for Forward-Backward Splitting (FBS) methods in recent years, it shows that regis-

tration problems with any combination of differentiable (not necessarily convex) sim-

ilarity measure and convex (not necessarily smooth) regularization with a tractable

proximal operator can be solved efficiently. Moreover, it describes how these insights

could be useful for achieving more robust slice-to-volume registration estimates for

the presented reconstruction frameworks.

Finally, the sixth chapter (Conclusions and Future Work) concludes the thesis

and outlines potential future research directions.
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Super-Resolution Reconstruction of

Fetal Brain MRI
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• Ebner, M., Wang, G., Li, W., Aertsen, M., Patel, P. A., Aughwane,

R., Melbourne, A., Doel, T., David, A. L., Deprest, J., Ourselin, S., and

Vercauteren, T. (2018c). An Automated Localization, Segmentation and

Reconstruction Framework for Fetal Brain MRI. In Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2018, pages 313–

320. Springer

• Ebner, M., Wang, G., Li, W., Aertsen, M., Patel, P. A., Aughwane, R.,

Melbourne, A., Doel, T., Dymarkowski, S., De Coppi, P., David, A. L.,

Deprest, J., Ourselin, S., and Vercauteren, T. (2019c). An Automated

Framework for Localization, Segmentation and Super-Resolution Recon-

struction of Fetal Brain MRI. Under Submission (NeuroImage)

My specific contributions presented in this chapter1 are:

• A publicly available2 outlier-robust volumetric reconstruction framework

for isotropic, high-resolution 3D reconstruction from motion-corrupted,

low-resolution 2D slices for fetal brain MRI.

• My methodological contributions of this framework include:

– An effective complete outlier-rejection method for robust super-resolution

reconstruction that relies on a single hyperparameter only and retains

a linear least-squares formulation.

– A fast and robust template-space alignment approach for automatic

HR visualization in the standard anatomical planes suitable for patho-

logical brains.

– A robust motion-correction method based on Gaussian process regu-

larization that encourages the consistency of spatial transformations

within each sub-stack of an interleaved stack acquisition3.

• The reconstruction results of the proposed method compare favourably

with those obtained by manual, labour-intensive brain segmentations,

which unlocks the potential use of automatic fetal brain reconstruction

studies in clinical practice.

1The work in this chapter associated with the automatic fetal brain localization and segmentation
steps was contributed by Guotai Wang. It was made available in this thesis to provide context
and ease readability of the overall framework.

2https://github.com/gift-surg/NiftyMIC
3Unpublished work and an extension to [Ebner et al., 2018c,Ebner et al., 2019c].

58

https://github.com/gift-surg/NiftyMIC


2.1 Introduction

A follow-up work is currently in preparation where the fully automated frame-

work for localization, segmentation and super-resolution reconstruction of fetal

brain MRI presented in this chapter is applied to automatically reconstruct

more than 300 fetal MRI examinations. In particular, this framework will be

used to help quantify the impact of spina bifida surgical closure [Sacco et al.,

2018].

2.1. Introduction

Figure 2.1.: Chiari II malformation with ventriculomegaly. Courtesy of Prof. Anna
David, UCLH. c©University College London Hospitals NHS Foundation Trust.

As briefly discussed in Chapter 1, Fetal Magnetic Resonance Imaging (MRI) has

become increasingly important in prenatal diagnosis as a complementary tool to ul-

trasound, for its advantages in demonstrating pathologies in soft tissues, that may

not be apparent or cannot be accurately characterized on prenatal ultrasonography.

To mitigate the effect of fetal (and maternal) motion, fast single-shot T2-weighted

(SST2W) sequences are used to acquire thick, low-resolution (LR) stacks of 2D slices

that can largely freeze in-plane motion [Saleem, 2014,Gholipour et al., 2014]. With

motion commonly occurring in between slice acquisitions, this generally results in

motion-corrupted stacks of slices in multiple orientations with poor 3D image in-

tegrity and resolution. In order to assess and quantify fetal brain development and
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pathology, it is highly desirable to reconstruct a single isotropic, high-resolution

(HR) volume of the fetal brain in standard anatomical planes from multiple LR

stacks acquired in different views. One indication for fetal MRI is spina bifida,

where MRI plays a role in characterizing the spinal lesion as well as the associated

brain changes [Aertsen et al., 2019]. In open spina bifida (myelomeningocoele and

myeloschisis), a fault in the development of the spinal cord and surrounding verte-

brae leaves a gap in the spine, allowing the spinal cord and nerve tissue to bulge

through a defect on the baby’s back. Because of a suction gradient by leakage of

cerebrospinal fluid at the lesion, the hind brain descends through the base of the skull

where the spinal cord exits (a condition termed a Chiari II malformation, Figure 2.1).

This may be associated with excessive accumulation of fluid in the brain ventricles

(ventriculomegaly). In these cases, HR 3D reconstructions would aid more accu-

rate measurements, currently performed on LR 2D stacks [Aertsen et al., 2019], and

help characterize associated brain changes, ruling out those that are prognostically

important.

Currently existing reconstruction toolkits generally rely on an approach that itera-

tively operates motion correction and super-resolution reconstruction (SRR) [Rousseau

et al., 2006,Gholipour et al., 2010b,Kuklisova-Murgasova et al., 2012,Kainz et al.,

2015b]. Since the position and orientation of the fetal brain vary significantly be-

tween different patients in relation to maternal structures, localizing the fetal brain

and obtaining a segmented mask to exclude the surrounding tissues is crucial to

achieve accurate motion correction outcomes. Current motion-correction approaches

typically employ rigid registration with the assumption that the brain has rigid and

surrounding tissues non-rigid motion patterns. Thus, localization/segmentation can

help to clearly delineate the brain region so that rigid motion correction becomes

meaningful. At present, this usually requires manual localization of the fetal brain

and uses manual or semi-automatic methods to obtain fetal brain masks, which

is laborious and time consuming. The approach of [Alansary et al., 2017] avoids

this problem by directly reconstructing the whole uterus by splitting each slice into

patches for motion correction. However, apart from the increased computational
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2.1 Introduction

requirements and reduced robustness, this leads to non-rigid motion correction and,

thus, suboptimal outcomes of rigidly moving regions such as the fetal brain. More-

over, it is highly desirable to obtain the HR fetal brain visualization in the standard

anatomical planes for clinical assessment. For this purpose, previously proposed au-

tomatic methods, such as presented in [Tourbier et al., 2017] or [Gholipour et al.,

2017], rely on gestational age-matching between normal brains for the template brain

selection. However, especially for pathological brains such as encountered with spina

bifida [Ovaere et al., 2015,Aertsen et al., 2019], severe morphological and brain vol-

ume changes require a more robust template space alignment approach. Hence, we

hypothesize that a fully automatic reconstruction pipeline based on automatic fetal

brain localization, segmentation and robust reconstruction and template-space align-

ment steps is favorable to achieve efficient and accurate fetal brain reconstructions

for potential clinical translation.

Several studies have reported automatic fetal brain localization and segmentation.

They are based on template-registration [Taleb et al., 2013], template-matching [An-

quez et al., 2009] or machine learning with hand-crafted features of local patches [Ker-

audren et al., 2014]. Whereas template-based methods are not robust to pathologies

and large motions, traditional learning methods with local patches suffer from ineffi-

ciency at inference time. Convolutional neural networks (CNNs) have been used for

this task [Rajchl et al., 2016, Salehi et al., 2018] for better performance. However,

since the fetal brain is relatively small in a whole slice and these CNNs work on the

whole slice, they can easily generate false positives [Salehi et al., 2018]. In addition,

their utility for automatic fetal brain reconstruction has yet to be demonstrated.

With the localized or segmented fetal brain masks, multiple motion-corrupted LR

stacks can be reconstructed into a single HR volume. There are two main chal-

lenges in the HR volume reconstruction step. First, the inter-slice motion can lead

to inconsistent appearance in neighboring slices. This is mainly due to the fact

that the SST2W sequence acquires fetal MR images in an interleaved fashion to re-

duce the scan time and avoid slice cross-talk artifacts [Gholipour et al., 2014]. An

M -interleaved scanning leads to M sub-stacks that are temporally sequential but
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2 Super-Resolution Reconstruction of Fetal Brain MRI

(a) (b) (c) (d) (e)

through-plane in-plane

Figure 2.2.: Three example stacks of fetal brain MRI. (a) has a consistent
appearance and small inter-slice motion. (b) has an inconsistent motion between
two interleaved sub-stacks. (c) has two outlier slices shown in (d) and (e). The
gestational age is 24 weeks for the fetuses shown in (a) and (b), and 29 weeks for

the fetus shown in (c)-(e).

spatially interleaved, where M is usually set as 2 or 3. The motion pattern within

each sub-stack is relatively consistent and smooth while that between sub-stacks

can be inconsistent, as shown in Figure 2.2(b). Moreover, motion during image ac-

quisition can lead to various types of artefacts such as in-plane image blur, slice

crosstalk and spin-history artefacts that can considerably affect the image quality

of individual slices [Gholipour et al., 2014] as visualized in Figure 2.2(c)-(e). For

motion correction, previously described methods typically rely on a hierarchical ap-

proach which starts from entire sub-stacks and subdividing them until each slice is

dealt with independently [Rousseau et al., 2006,Gholipour et al., 2010b]. However,

due to the unpredictable nature of fetal motion, the generic subdividing might lead

to a suboptimal grouping of slices for motion correction for which the approaches

in [Kuklisova-Murgasova et al., 2012,Kainz et al., 2015b] present rigid slice-to-volume

registrations directly after a first volumetric alignment. Second, robustness against

outlier slices characterized by either misregistration or image artefacts is key for a

high-fidelity HR reconstruction [Gholipour et al., 2010b,Kuklisova-Murgasova et al.,

2012]. However, no complete outlier slice rejection is achieved in [Gholipour et al.,

2010b] and the method of [Kuklisova-Murgasova et al., 2012, Kainz et al., 2015b]

relies on multiple hyperparameters to be tuned in order to achieve optimal recon-

structions while both require time-consuming optimization methods due to their

resulting non-convex problem formulation.
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We propose a novel CNN-based fetal brain segmentation method in a coarse-to-fine

fashion to reduce false positives and applied the proposed framework for HR volume

reconstruction of MR images of fetuses with spina bifida. Additionally, we introduce

an approach for effective complete rejection of detected outlier slices as an alternative

to the methods in [Gholipour et al., 2010b,Kuklisova-Murgasova et al., 2012], that

relies on a single hyperparameter only and retains a linear least-squares formulation

which can be solved efficiently. In this chapter, we give a detailed description of the

framework including four novel aspects:

1. we investigate a novel robust motion correction method that encourages consis-

tency of spatial transformations within each sub-stack of an interleaved stack

acquisition

2. we propose a fast template space alignment method that is robust to large

brain morphology changes such as encountered in spina bifida

3. we show the superiority of our automatic localization, segmentation and recon-

struction methods by comparing them with different variants and state-of-the-

arts

4. we validate the proposed framework with a large dataset of images from both

normal fetuses and fetuses with spina bifida [Aertsen et al., 2019]

Experimental results show that our framework can achieve comparable reconstruc-

tion output to that of manual segmentation-based reconstruction, and it outperforms

existing fetal brain extraction and reconstruction methods on different cohorts of fe-

tuses.

Related Works

Fetal Brain Localization and Segmentation

Extracting fetal brain from fetal MRI usually serves as a prerequisite step for HR vol-

ume reconstruction of the fetal brain. [Anquez et al., 2009] proposed an automated

63



2 Super-Resolution Reconstruction of Fetal Brain MRI

fetal brain segmentation method by localizing the fetal eyes and then segmenting the

neighboring skull bone content, which can lead to a poor performance when the inter-

slice motion is large. [Taleb et al., 2013] used a template-based method to generate

fetal brain masks. It obtains a region of interest (ROI) based on the intersection of

multiple scans of the same patient, and then registers the ROI to an age-specific tem-

plate. [Tourbier et al., 2017] used template-to-slice block matching and deformable

slice-to-template registration for automatic fetal brain localization and segmentation.

It achieved good performance at the cost of a very long computational time up to

several hours. [Kainz et al., 2014a] proposed to localize the fetal brain by voxel clas-

sification using rotation invariant volume descriptors. [Keraudren et al., 2013] used

bundled Scale-Invariant Feature Transform (SIFT) features to fit a 3D bounding box

of the fetal brain where prior knowledge of the fetal brain development was used to

define size and shape constraints for robust localization. [Keraudren et al., 2014]

extended that method for fetal brain segmentation with image-specific online learn-

ing based on Random Forests. It is limited by hand-crafted features and inefficiency

during inference.

Recently, deep learning with CNNs has been employed for fetal brain segmentation

from fetal MRI. [Rajchl et al., 2016] used a fully convolutional neural network (FCN)

for fetal brain segmentation under distributed weak supervision. [Salehi et al., 2018]

used a 2D U-Net [Ronneberger et al., 2015] for slice-by-slice fetal brain segmenta-

tion. These methods with CNNs predict the segmentation result directly without

a localization step and, compared with previous methods, are more efficient at test

time. However, they can easily cause false positives and show poor performance

for challenging cases, and their utility has not been demonstrated in the context of

automatic fetal brain reconstruction.

Fetal Brain Reconstruction

Slice-based motion correction techniques have been successfully applied in various

fields of medical imaging [Ferrante and Paragios, 2017] and can estimate the correct

inter-spatial relationship of multiple slices to reconstruct a consistent volumetric
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representation. To date, slice-based volumetric reconstruction methods have been

applied to fetal brain [Rousseau et al., 2006, Jiang et al., 2007, Kim et al., 2010b,

Gholipour et al., 2010b,Kuklisova-Murgasova et al., 2012,Kainz et al., 2015b], fetal

thorax [Kainz et al., 2014b], fetal trachea [Ebner et al., 2016], the whole uterus

including the human and the placenta [Alansary et al., 2017, Kainz et al., 2015a],

and the fetal heart [Lloyd et al., 2019] in the context of fetal MRI. An extended

review of previously proposed SRR frameworks for fetal brain MRI is provided in

the following.

[Rousseau et al., 2005,Rousseau et al., 2006] proposed a slice-to-volume registration

(SVR) method for fetal brain reconstruction based on semi-automatic segmentation

results. It consisted of three steps: motion correction, volume reconstruction and

contrast correction. In the motion correction step, each LR stack is globally aligned

first followed by a hierarchical slice package motion correction approach based on

the temporal slice interleave. Iterative reconstructions are used as reference for mo-

tion correction which were obtained by using scattered interpolation with a narrow

Gaussian kernel as the point spread function (PSF). A contrast correction step is

used to correct the local relative intensity distortion between the LR stacks. [Jiang

et al., 2006,Jiang et al., 2007] used a similar approach but used multilevel scattered

cubic B-spline interpolation for the reconstruction task instead which resulted in

isotropic HR volumes with reduced blurring. Additionally, they investigated using

multiple LR stacks acquired only in the transverse direction with overlapping slices

instead of orthogonally acquired LR image stacks in all three anatomical planes.

Apart from the non-compatibility of this protocol with standard clinical practice,

where typically orthogonal slices are acquired for clinical assessment, the single-

orientation input data also led to worse through-plane quality in the obtained HR

volumes compared to using multi-orientation input. [Kim et al., 2008, Kim et al.,

2010b] proposed a reconstruction-free registration approach that relies on a slice in-

tersection motion correction (SIMC) method that directly co-aligns multiple stacks

of 2D slices which was followed by a single Gaussian-weighted averaging step for the

volumetric reconstruction. Subsequent works incorporated a non-iterative relative
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bias field correction prior to SIMC to attenuate bias field inhomogeneities across

slices [Kim et al., 2011c] and volumetric reconstructions with improved noise reduc-

tion by using structure tensor weighted kernel regression [Kim et al., 2011a]. Their

resulting software tool is called the “SLIce MRI Motion Estimation and Reconstruc-

tion” (SLIMMER)4 [Kim et al., 2011b]. [Gholipour and Warfield, 2009,Gholipour

et al., 2010a,Gholipour et al., 2010b] formulated the volumetric reconstruction step

as a super-resolution reconstruction problem (1.2) that allowed a minimum error rep-

resentation of the obtained HR volume, whereby the slice acquisition model (1.1) was

used. For increased robustness, it used a robust M-estimation formulation in (1.2)

that minimizes a Huber’s error function to reduce the influence of potential outliers.

[Kuklisova-Murgasova et al., 2012] built on the idea of robust SRR and proposed

a reconstruction method with complete outlier rejection that can entirely exclude

identified misregistered slices or corrupted voxels using expectation-maximization

(EM)-based robust statistics. Intensity matching was used to compensate incon-

sistent scaling factors and bias fields of acquired slices as motivated by [Ashburner

and Friston, 2005]. Additionally, an edge-preserving prior function [Charbonnier

et al., 1997] was proposed as a regularization term for the SRR formulation (1.2).

[Rousseau et al., 2010] investigated experimentally the question on the ideal number

of LR stacks in fetal MRI required for super-resolution to trade-off reconstruction

quality and acquisition time. Three orthogonal stacks, one in each anatomical direc-

tion, were identified as the minimum requirement for fetal brain SRR under optimal

conditions as tested on synthetic, noise-free data. However, experiments on the

optimal number for fetal brain SRR remained inconclusive but they argued that de-

noising can substantially decrease the number of required LR images. As a follow-up

work, the “Baby Brain Toolkit” (BTK)5 was published as open-source reconstruction

framework for fetal brain MRI [Rousseau et al., 2013] by using blockwise non-local

means (NLM) denoising of [Buades et al., 2005,Coupé et al., 2008] and a non-local

regularization term for the SRR formulation (1.2) based on [Manjón et al., 2010].

4http://depts.washington.edu/bicg/software/SLIMMER/?f=slimmer.html,
Last accessed: May 4, 2019 (SLIMMER download was not available)

5https://github.com/rousseau/fbrain
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2.1 Introduction

[Tourbier et al., 2014, Tourbier et al., 2015] proposed a total variation (TV) regu-

larization for the SR step as part of BTK, which was solved using a primal-dual

algorithm [Chambolle and Pock, 2011]. [Kainz et al., 2015b] developed a GPU-

accelerated implementation6 of [Kuklisova-Murgasova et al., 2012], and proposed to

automatically select the stack with least motion as the reference stack. Addition-

ally, the PSF was modeled as a sinc-function in the in-plane directions for the SRR

step, therefore, being closer to the theoretically assumed PSF [Liang and Lauterbur,

2000, Jiang et al., 2007]. Later, [Kainz et al., 2015a,Alansary et al., 2017] proposed

a patch-to-volume registration (PVR) framework to reconstruct larger field-of-views

beyond the fetal brain by breaking a slice into smaller, overlapping patches at the

cost of increased computational requirements. This poly-rigid reconstruction frame-

work approximates more complex, non-rigid motion and was applied to reconstruct

flexible organs including the placenta [Kainz et al., 2016,Miao et al., 2017] and the

fetal heart [Lloyd et al., 2019]. [Tourbier et al., 2017] proposed a fully automated

reconstruction pipeline including template-space alignment step for the HR visual-

ization of the fetal brain in the standard anatomical planes but presented gestational

age-matching to select the template from the normal brain atlas which may work for

mildly pathological cases only. Apart from the SIMC approach, all other presented

approaches so far relied on an iterative two-step motion-correction/volumetric recon-

struction approach. However, despite shown to be effective in practice, a separation

into two steps does not guarantee optimality in the estimated volumetric reconstruc-

tion as defined by (1.1). [Fogtmann et al., 2012] aimed to address this shortcoming

by framing the motion-correction and volumetric reconstruction problem as a single,

unified formulation. Additionally, they proposed a generic motion prior to penal-

ize differences between slice-motion correction parameters of temporal neighboring

slices. However, the practical implementation of the proposed UF followed again

an iterative paradigm that separates the steps slice transformation and volumetric

reconstruction steps. [McDonagh et al., 2017] proposed a context-sensitive upsam-

pling method based on CNNs to improve the resolution of each LR stack, and then

6https://github.com/bkainz/fetalReconstruction
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used the upsampled LR stacks as the inputs of an SVR-based 3D reconstruction

method. [Hou et al., 2017, Hou et al., 2018] utilized CNNs to predict the initial

transformation parameters of SVR in the motion correction step to achieve more

robust initialisations for the slice-to-volume registration step.

Overall, the rich body of research presented in the literature illustrates the mul-

titude of challenges encountered in fetal MRI associated with the critical steps of

automatic brain localization, segmentation and robust high-resolution reconstruc-

tion in the standard anatomical planes. Nevertheless, to the best of our knowledge,

the existing methods have not yet fully solved all these issues vital for a robust and

fully-automated reconstruction framework that may allow clinical translation.

2.2. An Automated Framework for Localization,

Segmentation and Super-Resolution Reconstruction

of Fetal Brain MRI

Input
LR

stacks

Automatic
localization based

on CNN 1

Automatic fine
segmentation based

on CNN 2

SVR Motion 
Correction

Outlier-
robust SRR

Output
HR

volume

Automatic HR volume reconstruction

Fast & robust 
standard 

anatomical 
space alignment

Figure 2.3.: The proposed fully automatic framework for fetal brain reconstruction.
The automatic localization, segmentation and reconstruction parts are detailed in

Figure 2.4, Figure 2.5 and Figure 2.6 respectively.

An overview of our proposed fully automatic framework for fetal brain reconstruc-

tion is depicted in Figure 2.3. We first use a CNN to automatically localize the fetal

brain region in each input LR stack and obtain a 3D bounding box of the fetal brain.

Within the bounding box, we use another CNN to automatically generate a fine seg-
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mentation of the fetal brain. The automatic HR volume reconstruction stage includes

the two-step iterative SVR and outlier-robust SRR step followed by a fast and robust

standard anatomical template space alignment step. For the outlier-robust SRR, we

propose a novel outlier rejection (OR) method by defining a similarity measurement

to remove outlier slices and frame the SRR problem as a linear least-squares for-

mulation that can be solved efficiently. For robust SVR, we investigate Gaussian

Process Regularization (GPR) to encourage spatial consistency of the transforma-

tions of slices that are within the same sub-stack of an interleaved acquisition. For

the template registration step, we propose a rigid registration approach based on

symmetric block-matching between the SRR and a brain-volume-matched template

that is initialized by the rigid alignment of the respective principal brain axes (PBA).

The three stages of automatic localization, segmentation and reconstruction are de-

tailed in Sections 2.2.1 to 2.2.3, respectively7. All implementations are available as

open-source packages8.

2.2.1. Localization based on Coarse Segmentation

Loc-Net 3D Bounding 
Box Fitting

Downsampling Coarse segmentation Bounding box (3D)

Post-
processing

Figure 2.4.: The proposed fetal brain localization method using a CNN (Loc-Net)
to obtain a coarse segmentation followed by 3D bounding box fitting.

7Sections 2.2.1 and 2.2.2 describe the methods for localization and segmentation of fetal brains
which were developed by Guotai Wang.

8The automatic localization and segmentation framework fetal_brain_seg is available at
https://github.com/gift-surg/fetal_brain_seg and is integrated in the outlier-robust SRR
framework NiftyMIC (https://github.com/gift-surg/NiftyMIC).

69

https://github.com/gift-surg/fetal_brain_seg
https://github.com/gift-surg/NiftyMIC


2 Super-Resolution Reconstruction of Fetal Brain MRI

Differently from traditional top-down object localization methods using sliding

window classification [Criminisi et al., 2009] or bounding box regression [Gauriau

et al., 2015,He et al., 2017], we use a bottom-up strategy for fetal brain localization

based on a coarse segmentation by a CNN with pixel-level prediction. The advantage

of such a localization method is that it gives an explainable support for the localiza-

tion result and is well-suited for single-object localization. To reduce computational

requirements, we apply the CNN at a down-sampled version of an input LR stack,

as shown in Figure 2.4. We refer to this network for the fetal brain localization task

as Loc-Net.

The proposed framework is theoretically amenable to different CNN models. How-

ever, as the input LR stack has a large inter-slice spacing and is potentially corrupted

by motion between neighboring slices, it is more compelling to use a 2D CNN than

a 3D CNN. We choose the 2D P-Net [Wang et al., 2018] for its compactness and

efficiency. It consists of six blocks of convolution layers with dilated convolution [Yu

and Koltun, 2016] to preserve resolution for dense prediction. The first five blocks

have 2, 2, 3, 3 and 3 convolution layers respectively and they have dilation param-

eters of 1, 2, 4, 8 and 16, respectively. The convolution channel number for these

layers is 64. Multi-scale features from these five blocks are concatenated and fed into

the 6-th block which is a voxel-wise classifier with 1x1 convolution. A softmax layer

is used to obtain probability-like outputs.

Let I denote a stack of slices and Ii represent the i-th 2D slice of I. To reduce the

inference time and memory consumption for the localization task, we down-sample

Ii to a given size, i.e., 96×96, obtaining I ′i. We keep the through-plane resolution

the same as the input stack, and use I ′ to denote the stack of down-sampled 2D

slices. As shown in Figure 2.4, to get a 3D bounding box of the fetal brain in a

stack, we first use the Loc-Net to obtain a segmentation of I ′ by stacking the 2D

segmentations, i.e., a coarse segmentation.

With the coarse segmentation of the down-sampled stack I ′, we employ two post-

processing steps to reduce segmentation noise and obtain a smoother result. First,

we use a 3D morphological closing and opening operation on the result of Loc-Net.
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Then we select the largest connected 3D component as the post-processed coarse

segmentation of the fetal brain and fit a 3D bounding box to the component as

the localization result in I ′. The final localization result for input I is obtained by

rescaling the bounding box to the original space of I and expanding by a margin of

5mm.

2.2.2. Fine Segmentation

Seg-Net 

Testing

Training with multi-scale loss function

Ground truth

+ + +

Average pooling

𝑙(#) 𝑙(#) 𝑙(#) 𝑙(#)

Figure 2.5.: The proposed fetal brain segmentation method using a CNN (Seg-Net)
that works on the localization result. We propose to use a multi-scale loss function

to train Seg-Net.

After the localization, we further obtain a fine segmentation of the fetal brain

from I with a second CNN that is referred to as Seg-Net. It works on the ROI of

the localization result of I to reduce false positives of the dense prediction. Similar

to the localization step, we use the 2D P-Net structure [Wang et al., 2018] for the

fine segmentation rather than a 3D network considering the inter-slice spacing and

motion.

Due to the change in appearance of the fetal brain at different gestational ages and

as a consequence of the presence of pathologies such as spina bifida, it is challenging

to achieve robust segmentation results. We propose a multi-scale loss function for

training to improve the performance of fine segmentation. The commonly adopted

logistic loss and Dice loss functions for image segmentation use a sum of pixel-wise
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losses [Sudre et al., 2017] and only penalize prediction errors at the finest scale,

without considering the relationship between neighboring pixels at a larger scale.

This potentially leads to noisy and spatially inconsistent segmentations. In contrast,

dealing with the image in the scale-space representation helps to achieve more robust

results, as shown by previous works inspired by the scale-space theory [Lindeberg,

1994,Hu et al., 2018].

We propose a training loss function across multiple scales as depicted in Figure 2.5.

Let Y represent the pixel-wise probability prediction of an image given by a segmen-

tation CNN and G denote the corresponding pixel-wise probabilistic ground truth.

The loss function l(Y,G) measures the similarity between Y and G and guides the

network to obtain a segmentation as close as possible to the ground truth. It is

commonly defined as a pixel-wise function for segmentation tasks. For example, the

Dice loss function is defined as [Milletari et al., 2016,Sudre et al., 2017]:

lDice(Y,G) = 1− 2
∑N

i yigi∑N
i y

2
i +

∑N
i g

2
i

(2.1)

where N is the number of pixels. yi represents the probability of pixel i being the

foreground given by Y and gi represents that probability given by G. Let s be a

scale index (s ∈ {1, 2, ...}), and Ys and Gs be the downscaled versions of Y and G at

scale s, respectively. Then the proposed multi-scale loss function is

L(Y,G) =
1

S

S∑
s=1

l(Ys, Gs), (2.2)

where S is the total number of scales. Thus, the loss function L(Y,G) is the average

of l(Ys, Gs) across multiple scales. When s = 1, Ys is the same as Y , and when

s > 1, Ys is a downscaled version of Y . Ys can be obtained by down-sampling Y

or applying max-pooling on Y . However, both methods cause the obtained Ys to

contain little contextual information. In contrast, Gaussian smoothing and average-

pooling summarize the prediction of a local patch for more contextual information.

Since average-pooling is more efficient and more straightforward to implement than

Gaussian smoothing, we use average-pooling for the downscaling. Let Plavg(·) denote
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the average-pooling operation. We set the pooling kernel size as 2 × 2 with stride

size 2 × 2. Therefore, Plavg(·) averages every neighboring 2 × 2 pixels. Plavg(·) is

used recursively to down-scale Y and G for larger scales s:

Ys =


Y for s = 1

Plavg(Ys−1) for s > 1

(2.3)

With a larger s, Ys and Gs encode the prediction and the ground truth at a higher

level with more non-local information. Therefore, L(Y,G) not only penalizes the

pixel-wise difference between Y and G, but also encourages their similarity at multi-

ple non-local scales. In this chapter, we use the Dice loss function as the loss function

at each scale due to its good performance in dealing with imbalanced classes, i.e.,

l(Ys, Gs) = lDice(Ys, Gs). We set the total number of scales S as 4, as shown in

Figure 2.5.

2.2.3. Robust HR Volume Reconstruction Framework

The steps of the HR volume reconstruction stage are shown in Figure 2.6. We briefly

list them here and further detail the main contributions in the subsequent sections.

For a set of LR stacks of 2D slices acquired in multiple views, we preprocess the

images using the bias field correction method [Tustison et al., 2010] as implemented

in the Insight Toolkit (ITK)9. Using a volume-to-volume registration based on sym-

metric block-matching [Modat et al., 2014], all stacks are rigidly aligned with an

automatically chosen target stack (more details in Section 2.3.2). Based on the

brain segmentation of the target stack, all remaining, volumetrically-aligned, stacks

are intensity corrected using a linear regression. An initial HR volume is obtained by

applying a scattered data approximation (SDA) scheme on the LR stacks that uses an

efficient discrete implementation of Nadaraya-Watson kernel regression [Vercauteren

et al., 2006, Ebner et al., 2017a]. It is based on nearest neighbor sampling onto a

regular grid followed by a subsequent Gaussian blurring operation for each single

slice. Similarly, SDA is used to obtain a brain mask HR volume from the individual
9https://itk.org
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Stacks of Low-Resolution 2D Slices
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Outlier-Robust
Super-Resolution Reconstruction
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converged
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(Gholipour et al., 2017)

Isotropic High-Resolution
Reconstruction in

Standard Anatomical
Planes

PBA-initialized Rigid
Volume-to-Template

Registration

Rigid SVR with Gaussian
Process Regularization

HASTE SagittalHASTE AxialHASTE Coronal

Figure 2.6.: The proposed outlier-robust HR volume reconstruction method for
fetal brain MRI. As part of a two-step motion-correction/volumetric reconstruction
cycle, we propose an effective robust SRR method for complete outlier rejection
that relies on a single hyperparameter only and retains a linear least-squares

formulation. A fast template-space alignment, which is robust also for pathological
brains, is achieved by using a principal brain axes (PBA)-initialized rigid
volume-to-template registration based on symmetric block-matching.

LR stack masks. Then, an updated HR volume is obtained through a two-step it-

erative registration-reconstruction approach [Rousseau et al., 2006,Gholipour et al.,

2010b]. In each iteration, the rigid registration step registers the slices to the HR

volume constructed in the previous iteration for motion correction constrained by the
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respective slice and HR brain mask. Using Gaussian Process Regularization based

on a t-distribution noise model between each sub-stack of an interleaved acquisition,

we investigate a robust statistical model as a temporal prior for the slice transfor-

mations. Subsequently, the reconstruction step constructs an HR volume and brain

mask from the aligned slices and segmentations, respectively. After reconstruction

in the subject’s space, we rigidly align the HR volume to a spatiotemporal atlas of

normal brains [Gholipour et al., 2017] to obtain the reconstruction in the standard

anatomical planes.

Robust Motion Correction using Gaussian Process Regularization

To obtain more robust registration outcomes, we want to reduce the likelihood of

occurring misregistrations for individual slices. Each slice of a sub-stack in fetal MRI

is acquired with fast temporal resolution and therefore leads to a high sampling of

the continuous underlying physical motion of the fetus. Thus, we hypothesize that

slices within each sub-stack of an interleaved acquisition are likely to have similar

transformation parameters. Let (θk,1, . . . , θk,6) ∈ R6, k = 1, . . . , K, describe the

parameters associated with the 3D rigid registration transformations of the K slices

for a given sub-stack of the M -interleaved acquisitions. We assume that the r-th

transformation parameter changes smoothly for the slices across a given sub-stack,

i.e. we assume θk,r changes smoothly for k = 1, . . . , K for each fixed r. We interpret

the estimated registration parameters (θk,r)
K
k=1 as the sampled observations from

a Gaussian process [MacKay, 1998] that are temporally dependent on a Brownian

motion. For increased robustness to outliers, we assume a t-process prior T P(ν, µ̃, σ̃)

with mean µ̃ and standard deviation σ̃ as the noise model as a generalization of a

Gaussian process prior GP(µ̃, σ̃), whereby ν controls how heavy-tailed the process

is. Thus, we can write

zk ∼ N (zk−1 + µ, (1− λ)σ2) for k = 2, . . . ,K

θk,r ∼ T P(ν, zk, λσ
2)

(2.4)
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whereby zk is the hidden Brownian motion, i.e. the robust registration parameter

value estimate associated with the observed, noisy value θk,r, µ the expectation of

the random offset between zk and zk−1, and σ2 the total variance. Thus, (2.4) is

split into two parts where the variance of the hidden Brownian motion is (1− λ)σ2

and the variance of the observation noise is λσ2 whereby λ ∈ (0, 1) balances the

respective contributions. The higher λ, the more variance is assigned to the noise

which therefore leads to a higher smoothness in (zk)
K
k=1. To reduce the influence of

noise, a maximum a-posteriori estimator is used to obtain the values of the hidden

process zk as a regularized version of θk,r.

Outlier-Robust Super-Resolution Reconstruction

After each SVR step of the two-step registration-reconstruction iteration i, an SRR

step is used to recover the most likely HR volume xi that satisfies the slice acquisition

model (1.1) [Gholipour et al., 2010b]

yik = Ai
kx

i + nik (2.5)

where yik is the k-th slice in a stack. Ai
k represents the image acquisition process

including rigid transformation, slice selection, blurring according to the PSF, and

down-sampling. nik denotes the vector of observed noise. The intensity of each voxel

in an LR slice is therefore influenced by a certain neighborhood of this voxel within

an HR volume x given by the assumed PSF that is specific to the slice profile of the

MR acquisition [Liang and Lauterbur, 2000]. For SST2W sequences, a common ap-

proximation is given by a slice-aligned 3D Gaussian function that depends on the in-

and through-plane resolution of the LR slice [Jiang et al., 2007,Kuklisova-Murgasova

et al., 2012]. The position and orientation of the slice (and PSF) within the volume

is estimated in the rigid SVR step. In order to prevent misregistered or artefact-

corrupted outlier slices from affecting the reconstructed HR volume, we propose a
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robust SRR with outlier rejection in a maximum a-posteriori (MAP) formulation

xi := arg min
x≥0

( ∑
k∈Kiβ

1

2
‖yik −Ai

kx‖2`2 +
α

2
‖∇x‖2`2

)
(2.6)

where α ≥ 0 denotes a regularization parameter, ∇ the differential operator, and Kiβ
a set of indices of inlier slices

Kiβ :=
{

1 ≤ k ≤ K : Sim(yik, Ai
kx

i−1) ≥ β
}

(2.7)

that demonstrate high agreement with their simulated counterparts projected from

the previous SRR iterate using a similarity measure Sim and a threshold β > 0.

Thus, slices with a value of Sim(·) lower than β are regarded as outliers and rejected

in the SRR step. More complex SRR models have been proposed in addition to the

MAP formulation including modifying (2.6) to rely on robust M-estimator [Gholipour

et al., 2010b] and total variation formulations [Tourbier et al., 2015]. However, while

they substantially increase the computational cost, in our experience, they tend to

show little improvement in the obtained reconstruction quality in case of appropriate

motion correction10. Assuming a fixed Kiβ , we obtain a convex SRR problem with

complete outlier rejection in a linear least-squares formulation which we solve using

matrix-free operations [Diamond and Boyd, 2015, Ebner et al., 2017a]. We use a

dedicated linear least-squares solver to deal with this large linear system whereby

positivity is enforced by clipping negative values.

Furthermore, we create an HR brain mask by applying the fast SDA approach on

the motion-corrected inlier slice masks which is used for both motion correction and

the labelling of inlier-slices in (2.7) in the subsequent iteration.

Reconstruction in Standard Anatomical Planes

Obtaining the HR fetal brain reconstructions in the standard anatomical planes can

facilitate brain studies and is typically favored for the clinical assessment by clini-

10Associated experiments for MRCP SRR are summarized in Section 3.4.2
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Table 2.1.: Information of the datasets used for the experiments. The number of
available subjects and stacks are listed for training, validation and testing,

respectively. Gestational age (GA) is stated as mean and standard deviation.
Group A Group B1 Group B2

Pathology Normal Spina bifida
(pre-surgical)

Spina bifida
(post-surgical)

GA (weeks) 29.51±4.46 23.47±2.86 25.73±1.28
Subjects (26, 4, 7) (12, 4, 16) (0, 0, 16)
Stacks (78, 12, 44) (36, 12, 119) (0, 0, 105)

cians. To define the template space, we deployed the spatiotemporal atlas11 [Gholipour

et al., 2017] which was constructed from 81 normal fetuses scanned between 19 and 39

weeks of gestation. Rigid registration can be used to align the subject-space SRR to

a template. However, given the substantial morphological differences in brain volume

and shape between pathological and normal fetuses, a direct registration approach is

likely to get stuck in local minima leading to an incorrect template space alignment.

To avoid this problem, we propose to use an initialized transformation that is based

on the rigid alignment of fetal brain masks only. Using principal component analysis,

we first rigidly align the principal brain axes (PBA) of the template and HR brain

masks whereby the template is selected based on brain-volume matching. Following

the PBA-based initialization, we perform a 3D rigid registration based on block-

matching [Modat et al., 2014]. For increased robustness, all four permutations of

the right-handed bases of principal eigenvectors are tested and the best registration

transform is selected as determined by the normalized mutual information similarity

between warped SRR and template.

After the 3D rigid registration, we use an additional SRR step to obtain the HR

volume in the template space, considering that the resampling process during the 3D

rigid registration may affect the image quality.
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2.3. Experiments and Results

2.3.1. Data

The automatic reconstruction framework was applied to routinely acquired clinical

images of fetuses with normal brains, yet scanned for other anomalies, and fetuses

with spina bifida (SB) that were scanned at University Hospitals KU Leuven as re-

ported in [Aertsen et al., 2019]. Access to anonymized images was facilitated through

the GIFT-Cloud platform for data sharing [Doel et al., 2017]. For normal fetuses, 134

stacks from 37 individuals were scanned at the gestational age (GA) of 29.51± 4.46

weeks (“normal” group A). 32 fetuses with spina bifida were scanned before fetal

surgical closure at a GA of 23.47 ± 2.86 weeks (“pre-surgery” group B1), and 16 of

them were additionally scanned after fetal surgical closure at a GA of 25.73 ± 1.28

weeks (“post-surgery” group B2). Details of the dataset are summarized in Table 2.1.

For each study, 3 to 9 SST2W stacks in at least three different orientations were col-

lected with pixel size 0.39mm to 1.48mm and slice thickness 2.50mm to 4.40mm.

All images were acquired with no slice overlap nor gap. For the purpose of test-

ing the robustness of our proposed framework, we also kept heavily motion- and

artefact-corrupted stacks and also images where brains were only partially scanned.

For the fetal brain detection and segmentation set-up, 78 stacks of 26 patients

from Group A and 36 stacks of 12 patients from Group B1 were used for training,

and 12 stacks of 4 patients from Group A and 12 stacks of 4 patients from Group

B1 were used for validation. The remaining images were used for testing, as shown

in Table 2.1. Manual segmentations of the fetal brains on the 2D slices were used

as the ground truth for the segmentation task, and the bounding box of the manual

segmentation was extended by 5mm to be used as the ground truth for fetal brain

localization. We normalized the intensity of each stack by its mean and standard

deviation.

11http://crl.med.harvard.edu/research/fetal_brain_atlas
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2.3.2. Implementation Details

Our CNNs were implemented in TensorFlow12 using NiftyNet13 [Li et al., 2017a,

Gibson et al., 2018]. For the training of Seg-Net, we set the number of scales S

to 4 in (2.2) and employed Dice loss as the loss function used in each individual

scale. The detection/segmentation experiments were implemented with an NVIDIA

GeForce GTX 980 GPU. For both Loc-Net and Seg-Net, we used Adaptive Moment

Estimation (Adam) [Kingma and Ba, 2015] for training, with initial learning rate

10−3, batch size 10, weight decay 10−7 and 104 iterations.
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Orientation
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Low-resolution stacks of 2D slices Isotropic, high-resolution 3D volume

Input Output

Figure 2.7.: Volumetric reconstructions in patient-specific orientation and standard
anatomical planes. The image is adapted from the GitHub-page of NiftyMIC and
shows the HR brain visualizations of a fetal neck mass subject [Ebner et al., 2016]
using a 1mm isotropic reconstruction grid (5 input LR stacks, GA = 30 weeks).

The HR volume reconstruction algorithm was applied to the testing data of Group

A (normal), B1 (pre-surgical spina bifida) and B2 (post-surgical spina bifida) cases

using the obtained automatic segmentation results to guide the rigid SVR step. The

reconstruction was performed with three cycles of the two-step motion correction

12https://www.tensorflow.org
13http://niftynet.io
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and robust volumetric reconstruction iterations. For automatic target stack selec-

tion, we empirically chose the stack with (estimated) brain volume closest to 70% of

the median brain volume using the automatically segmented (Seg-Net) brain masks.

This approach was chosen for simplicity to define a target stack that shows good

brain coverage but avoids stacks with unrealistically high brain volume estimates

due to false-positive segmentations or heavy motion-corruption. However, and as

shown in the results section, this may still lead to a target stack with substantial

motion artefacts suitable to test the robustness of our algorithm also for challenging

cases. The orientation of the subject space is defined by the target stack whereby

the reconstruction grid is obtained by extending the bounding box of the union of

the volumetrically aligned stack masks by 10mm in each direction. For the respec-

tive volume-to-volume (and volume-to-template) rigid registrations we deployed the

symmetric block-matching algorithm RegAladin as part of NiftyReg14 [Modat

et al., 2014]. For the rigid slice-to-volume motion correction steps we used ITK

with normalized cross-correlation (NCC) to guide the registrations, whereby a con-

jugate gradient descent solver in combination with line-search for the learning rate

was used as the optimizer. The implementation of the SDA approach was based on

the Young & Van Vliet recursive Gaussian smoothing filter15[Vidal-Migallon et al.,

2013]. We empirically chose a standard deviation of 1 for both the HR volume and

brain mask HR volume SDAs. For robust SVR, we used GPR to obtain regular-

ized transformation parameters within each sub-stack of the interleaved acquisition

with a default smoothing parameter λ = 0.5 in (2.4). We set the expectation of the

random offset µ to zero to avoid any systematic bias in the parameter estimates.

The remaining parameters in (2.4) were drawn from distributions with manually set

parameters. The total variance σ2 was sampled from an exponential distribution

with parameter equal to 1, i.e σ ∼ exp(1). The degrees of freedom ν for the T P
prior were drawn from a Gamma-distribution with shape α = 2 and rate β = 1, i.e.

ν ∼ Γ(2, 1). The maximum likelihood estimation of zk in (2.4) was implemented

14https://github.com/KCL-BMEIS/niftyreg
15https://github.com/Inria-Asclepios/SmoothingRecursiveYvvGaussianFilter
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using the probabilistic Python package PyMC316 [Salvatier et al., 2016]. After per-

formed GPR step, we performed another SVR step to refine the respective rigid slice

transformations as initialized by the GPR estimate. GPR was applied only for the

first SVR cycle; all subsequent motion-correction steps were performed using rigid

slice-to-volume registration only. To parametrize the outlier-robust SRR approach,

experiments were performed to investigate its sensitivity to the outlier-threshold β

and the input fetal brain masks. Associated comparisons are summarized in Sec-

tion 2.3.5. By choosing NCC as the similarity measurement function Sim(·) in (2.7),

a good balance between conservative slice retention and effective outlier rejection

was found for β = 0.8. For the experiments, we set the threshold value β to be

0.5, 0.65 and 0.8 per iteration to account for increasing accuracy in (2.6), respec-

tively. The matrix-free implementation of the forward operator Ai
k in (2.6) (and

its adjoint) was done by extending the resampling operator in ITK to allow for ori-

ented Gaussian filtering17 representing the oriented PSF kernel whereby the SciPy

LSMR solver was used for the numerical optimization in (2.6). The isotropic res-

olution of the HR volume was set to match the final template space resolution of

0.8mm [Gholipour et al., 2017] for both subject and template space reconstructions.

The regularization parameter α = 0.01 was determined by visual assessments sup-

ported by L-curve studies [Hansen, 2001]. We reconstructed the entire field of view for

both subject and template spaces from the brain-motion corrected slices to provide

anatomical context beyond the brain18. Our Python code, including both the au-

tomatic brain segmentation tool fetal_brain_seg19 and the outlier-robust SRR

framework NiftyMIC20, is publicly available. An overview of the reconstructions

obtained by NiftyMIC in the patient-specific orientation and standard anatomical

planes for a fetal neck mass subject [Ebner et al., 2016] is provided in Figure 2.7.
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Figure 2.8.: Visual comparison of different methods for fetal brain localization. The
three rows show examples from Group A (controls), B1 (pre-surgical spina bifida),
and B2 (post-surgical spina bifida), respectively. Column 1-5: in-plane. Column

6-10: through-plane. Yellow: ground truth. Green: detection results.

Table 2.2.: Quantitative evaluation of different methods for fetal brain localization.
The best values are shown with bold font. ∗ denotes significant difference from the

other values based on a paired t-test (p-value< 0.05).
IoU (%) Centroid distance (mm) Stack-level

runtime(s)Group A Group B1 Group B2 Group A Group B1 Group B2
[Keraudren et al., 2014] 72.38±12.88 72.87±10.37 69.18±11.73 6.70±4.04 7.31±4.58 7.68±2.83 15.03±3.54
Loc-Net (2D P-Net) 86.54±5.87∗ 84.74±5.55∗ 83.67±5.04∗ 3.51±1.85∗ 3.70±2.10∗ 4.51±2.45∗ 2.35±1.02
Loc-Net (2D U-Net) 83.22±6.94 81.26±6.80 78.32±8.81 4.25±2.33 4.46±1.98 5.38±2.59 2.12±1.03
Loc-Net (3D P-Net) 82.68±8.14 78.26±8.87 76.58±12.74 4.46±2.29 4.77±2.76 5.54±2.83 2.49±1.05
Loc-Net (3D U-Net) 80.02±10.57 76.67±9.83 75.88±12.03 5.73±3.08 5.89±3.06 5.76±3.64 2.31±1.08

2.3.3. Localization Results

For the choice of network structure of Loc-Net, we compared 2D P-Net with 2D

U-Net, and also compared them with 3D P-Net [Wang et al., 2018] and 3D U-

Net [Çiçek et al., 2016] to investigate whether 2D or 3D networks are more suitable

for uncorrected fetal MR image stacks. These networks were all implemented using

NiftyNet. In addition, we compared Loc-Net using these network structures with

the method described in [Keraudren et al., 2014]21 that is based on classification of

image regions using SIFT features and combined with prior knowledge of brain size

16https://docs.pymc.io/intro.html
17https://github.com/gift-surg/ITK_NiftyMIC
18As we only correct for rigid brain motion, the surrounding maternal/fetal tissue reconstruction

may be of limited anatomical accuracy.
19https://github.com/gift-surg/fetal_brain_seg
20https://github.com/gift-surg/NiftyMIC
21https://github.com/BioMedIA/IRTK
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and shape based on gestational age.

Figure 2.8 shows the fetal brain localization results for three cases from Group A,

B1 and B2 respectively. In the first case, the centroid of the bounding box obtained

by [Keraudren et al., 2014] is close to that of the ground truth. However, the size

of the localization result is larger than that of the ground truth. In contrast, the

result of our Loc-Net with 2D P-Net matches better with the ground truth. It can

also be observed that the result of 2D P-Net is better than that of the other three

networks. In the second case, the in-plane visualization shows that similar results

are achieved by the 2D and 3D networks. However, the through-plane visualization

shows that 2D P-Net and 2D U-Net outperform their 3D counterparts.

Quantitative evaluations of these localization methods are shown in Table 2.2. We

calculated the Intersection over Union (IoU) score and centroid distance between the

localized 3D bounding box and the localization ground truth. Our Loc-Net with 2D

P-Net achieved average IoUs of 86.54%, 84.74% and 83.67% for these three groups,

respectively, and they are more than 10% higher than that of [Keraudren et al.,

2014]. The runtime measurements show that Loc-Net is more than 6 times faster

than [Keraudren et al., 2014]. Table 2.2 also shows that 2D P-Net outperforms 2D

U-Net when used as Loc-Net, and both of them achieve better localization accuracy

than their 3D counterparts.

2.3.4. Segmentation Results

Table 2.3.: Quantitative evaluation of fetal brain segmentation. The best values are
shown with bold font. A ∗ denotes significant improvement compared with the

corresponding baseline without ML based on a paired t-test (p-value< 0.05). The
runtime of Seg-Net is a sum of time consumed by localization and segmentation.

Dice (%) Hausdorff (mm) Stack-level
runtime(s)Group A Group B1 Group B2 Group A Group B1 Group B2

[Salehi et al., 2018] 90.48±4.61 90.12±4.19 88.57±4.24 12.01±6.87 14.75±7.51 12.08±6.63 1.98±0.76
Seg-Net (2D P-Net) 92.27±3.83 91.56±3.33 90.93±4.95 11.26±8.25 10.93±5.66 9.83±5.29 3.65±1.34
Seg-Net (2D P-Net) + ML 93.21±4.02∗ 93.87±2.79∗ 92.94±4.14∗ 9.67±6.55∗ 6.94±4.29∗ 7.84±3.26∗ 3.66±1.33
Seg-Net (2D U-Net) 92.50±2.85 91.10±3.41 91.48±4.31 10.41±6.34 10.91±6.80 9.76±6.21 3.40±1.35
Seg-Net (2D U-Net) + ML 93.45±2.99∗ 91.57±2.24 92.49±3.61∗ 9.13±5.28 7.27±3.89∗ 7.71±4.26∗ 3.40±1.35

We compared using 2D P-Net and 2D U-Net as the Seg-Net. As a baseline, both of

them were trained with the Dice loss with a scale s = 1, i.e. at the input resolution.
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Figure 2.9.: Visual comparison of different methods for fetal brain segmentation.
The three rows show examples from Group A (controls), B1 (pre-surgical spina
bifida), and B2 (post-surgical spina bifida), respectively. Column 1-5: in-plane.

Column 6-10: through-plane. Yellow: ground truth. Green: segmentation results.

Then we trained these networks with the proposed multi-scale (ML) Dice loss. These

four variants are referred to as Seg-Net (2D P-Net), Seg-Net (2D U-Net), Seg-Net

(2D P-Net) + ML, Seg-Net (2D U-Net) + ML respectively. All of them take the

same localization result of Loc-Net (2D P-Net) as input for a fair comparison. In

addition, we compared them with the method described in [Salehi et al., 2018] that

applies 2D U-Net to the whole input image for segmentation without a localization

stage. We followed their implementation available online22 and trained the model

from scratch with our training images.

Figure 2.9 presents a visual comparison of these segmentation methods for images

from Group A, B1 and B2 respectively. It shows that the method of [Salehi et al.,

2018] tends to generate false positives in tissues surrounding the fetal brain. In

contrast, the variants of Seg-Net based on localization results achieve more accurate

segmentation with reduced false positives. The results of Seg-Net (2D P-Net) and

Seg-Net (2D U-Net) have some under-segmentations and unsmoothed contours. By

training with the proposed multi-scale loss function, their corresponding results are

more spatially consistent and accurate.

Table 2.3 presents quantitative evaluations of these segmentation methods for the

fetal brain. We calculated the Dice score and Hausdorff distance between the seg-

22https://bitbucket.org/bchradiology/u-net/src
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mentation results and the pixel-level ground truth. It shows that all the Seg-Net

variants achieved a higher segmentation accuracy than [Salehi et al., 2018]. Seg-Net

(2D P-Net) + ML achieved average Dice scores of 93.21%, 93.87% and 92.94% for

Group A, B1 and B2 respectively, and it significantly outperformed Seg-Net (2D

P-Net) that was trained without ML. The total average time of our CNN-based

localization and segmentation steps was less than four seconds for one stack.

2.3.5. Outlier-Robust SRR Results

For the experiments, we computed the HR volume reconstructions using various

methods: 1) the automatic localization results based on Loc-Net (2D P-Net), 2) the

automatic fine segmentation results obtained by Seg-Net (2D P-Net), and 3) manual

segmentation results. These three variants are denoted as SRR (L), SRR (S) and

SRR (M), respectively. Additionally, we applied the state-of-the-art toolkit provided

by [Kainz et al., 2015b]23 using the manual segmentations as input masks, denoted

as Kainz et al. (M)24.

First, we performed experiments to compare the impact of using GPR in the first

slice-to-volume motion-correction cycle. Figure 2.10 illustrates how GPR can detect

apparent outliers after the SVR step and therefore lead to more consistent trans-

formations of slices within a sub-stack. In Figure 2.11, a comparison on the overall

number of retained, i.e. non-rejected, slices used for the HR reconstruction outcomes

for both SRR (M) and SRR (S) for all 39 cases. Despite reducing the number of

slice rejections, GPR leads to an only minimal improvement of achieving approxi-

mately 0.74 ± 1.29 and 0.56 ± 1.50 more slices for SRR (M) and SRR (S) for the

final volumetric reconstruction step, respectively Therefore, our experiments suggest

that using GPR does not lead to a demonstrable improvement in obtaining more

robust slice motion-correction transformations, unfortunately. Thus, we perform a

“standard” slice-to-volume registration approach for motion correction and do not

include the GPR step in the volumetric reconstruction algorithm for the remainder
23https://github.com/bkainz/fetalReconstruction
24For the reconstructions, we used the CPU version for both SVR and SRR as the GPU-accelerated

approach tends to produce blurrier SRR outcomes in our experience. Therefore, the resulting
benchmark method reduces to the approach as described in [Kuklisova-Murgasova et al., 2012].
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Figure 2.10.: Original SVR registration parameter values and the outcome after
using GPR for an example stack that was acquired with an interleave of 3. The
three rotation parameters are denoted as αx, αy and αz, and the three translation
parameters as tx, ty and tz, respectively. Especially for the translational parameters
tx, ty and tz, GPR visibly leads to a more continuous change in parameter values
by updating apparent outliers as compared to adjacent slices acquired within the

same sub-stack.

of this chapter.

Experiments were performed to investigate the sensitivity of the proposed HR

reconstruction method to the outlier-threshold β and the input fetal brain masks.

Figure 2.12 shows how the outlier-threshold β impacts the number of retained slices

used for solving the SRR problem (2.6). The higher β the higher and less vari-

ant the volumetric self-consistency becomes as expressed by the slice similarities

Sim(yik, Ai
kx

i) after the final iteration i = 3. However, the number of slice rejections

substantially increases beyond β = 0.8 whereas the NCC of measured slice similari-

ties plateaus. To strike a balance between conservative slice retention and effective
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Figure 2.11.: Resulting number of retained slices used for the HR reconstruction
outcomes using both manual and the automatically segmented masks, i.e.

SRR (M) and SRR (S), based on either original SVR or SVR combined with GPR,
respectively. Results are provided for 39 cases including 6 normal (A), 16

pre-surgical (B1) and 16 post-surgical (B2) cases. In general, GPR tends to provide
only minimal improvement as the final figures of retained slices are comparable. On
average, the GPR leads to an increased retention of only 0.74 ± 1.29 and 0.56 ±

1.50 slices for SRR (M) and SRR (S), respectively.

outlier rejection we select β = 0.8 as the defining outlier-threshold for our method.

Figure 2.13 illustrates the slice rejection performance based on different input masks.

In case of manual masks, typically well beyond 90% of all slices are retained for the

volumetric reconstruction. Automatically obtained masks lead to a higher rate of

slice rejections but result in an overall comparable number of remaining slices for the

SRR step. Thus, slices with false-positives segmentations are automatically detected

88



2.3 Experiments and Results
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Figure 2.12.: Impact of outlier threshold on slice retention and slice similarities.
Impact of outlier rejection threshold β on the slice similarities Sim(yik, Ai

kx
i) for

SRR (M) for the respectively remaining Kiβ-slices at iteration i = 3. The error bars
indicate the mean and standard deviation. A good balance between a high number
of retained slices and high slice similarity (indicating a good self-consistency of the

obtained SRR) appears to be around β = 0.8.

and rejected by the SRR algorithm.

All of the 39 cases of the groups A (7), B1 (16) and B2 (16) were used for analysis

as at least one of the reconstruction methods provided a successful reconstruction

in the subject-space. In Table 2.4 we demonstrate the effectiveness of the proposed

template-space alignment step. For comparison purposes, we also provided the num-

ber of successful template-space alignments using NiftyReg, FLIRT25[Jenkinson

et al., 2002] and their respective compositions. Overall, only two cases failed at the

template-space alignment step for SRR (S) (one each for B1 and B2) for our pro-

posed method whereas all alignments were successful for SRR (M). All seven cases

of group A were successfully reconstructed and aligned. Therefore, the success rate

of our framework for all the groups was 37/39 (and 39/39 when the template-space

alignment is not considered). The failed template-space alignments were manually

initialized for SRR (S) so that in total all 39 cases were available for the following

evaluations. Some visual comparisons of the obtained SRR (S) in the template space

25https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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Figure 2.13.: Impact of outlier threshold for different inputs masks. Comparison of
remaining slices given by Kiβ at iteration i = 3 for the outlier-robust SRR algorithm
using different input masks. Automatic segmentations lead to a higher rate of slice

rejections compared to using the manual input masks but result in an overall
comparable number of remaining slices. Thus, slices with false-positive

segmentations are automatically detected and rejected by the SRR algorithm.

along with the HR mask reconstructions for different input masks are provided in

Figure 2.14.

Figure 2.15 presents a visual comparison of the obtained SRRs for a B1 (pre-

surgical spina bifida) and an A (normal) case in the subject space. Despite the

challenging target stacks due to intra-stack motion, in-plane blur and intensity arte-

fact corruption, successful reconstructions were obtained using the proposed outlier-

robust SRR method. In particular, the HR visualizations for SRR (M) and SRR (S)

appear visually almost indistinguishable.

For quantitative evaluations, we used Sim(yik, Ai
kx

i) after the final SVR-SRR it-

eration (i = 3) to measure the similarities between the motion-corrected slices of

the input LR stacks and their corresponding simulated slices from the reconstructed

HR volume. We present structural similarity index measure [Wang et al., 2004]

(SSIM) and peak-signal-to-noise ratio (PSNR) measurements for the comparisons

here. Alternative similarity measures (NCC; normalised mutual information, NMI;

root mean squared error, RMSE; mean absolute error, MAE) were also generated

and are presented in Figure A.1 for the sake of manuscript conciseness. Figure 2.16
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Figure 2.14.: Comparison of SRR (S) with overlaid SRR (L)/(M)/(S) HR masks
obtained using either the manual masks (SRR (M); blue colour), the automatic

segmentations by Seg-Net (SRR (S); differences to SRR (M) in green colour) or the
localization results by Loc-Net (SRR (L); differences to SRR (M)/(S) in red

colour). The respective visualizations of SRR (S) were obtained by reconstructing
the entire template-space field of view using the brain-motion corrected slice

transformations transformed into the template space. The last row shows the only
B1-case that failed in the template-space alignment step for SRR (S), see Table 2.4;

the final alignment was obtained after manual re-initialization of the
volume-to-template registration.
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Figure 2.15.: Qualitative comparison of reconstruction methods in the subject
space. Visual comparisons of different reconstruction methods for a B1 (left) and

an A (right) case where challenging target stacks were (automatically) selected. An
additional comparison of the group A case in the template space is shown in
Figure 2.20. Dilated SRR (M) masks were used for visual cropping. SRR (M)

without outlier rejection (OR) presents various artefacts. Similarly, the localization
masks as used for SRR (L) lead to poor reconstruction outcomes despite the use of
outlier rejection. The outlier-robust results SRR (M) and the proposed SRR (S)
based on manual and automated brain masks, respectively, provide successful

reconstructions and are, visually, almost indistinguishable. Green arrows indicate
artefacts in SRR (M) without OR that are eliminated using our proposed OR

method. Red arrows show differences between our proposed method and Kainz et
al. (M).
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Table 2.4.: Assessment of the robustness of the proposed template-space alignment
approach. The comparison shows the number of successful template space

alignments based on a total of 39 cases with 7 normal (group A), 16 pre-surgical
and 16 post-surgical spina bifida cases (groups B1 and B2). FLIRT is based on

correlation ratio as similarity measure whereas NiftyReg uses symmetric
block-matching based on NCC. Generally, NiftyReg achieves a more robust

alignment given a sufficiently good initial alignment. Using our proposed principal
brain axes (PBA)-initialized block-matching registration step, a very robust
template-space alignment without a failure case can be achieved even for

pathological brains. The SRR (S) with the overlaid SRR (L)/(S)/(M) brain masks
for the failed B1 case is shown in Figure 2.14.

SRR (L) SRR (S) SRR (M)
A B1 B2 A B1 B2 A B1 B2

NiftyReg 0 0 0 1 0 0 1 0 0
FLIRT 0 0 0 4 0 4 3 0 4
FLIRT ◦ PBA-init 0 0 0 7 0 4 4 0 3
NiftyReg ◦ PBA-init 2 0 0 7 15 15 7 16 16
Total number of cases 7 16 16 7 16 16 7 16 16

illustrates that all methods apart from SRR (S) produce statistically significant dif-

ferences compared to SRR (M) in terms of measured slice similarities. Thus, SRR (S)

and SRR (M) appear of similar volumetric self-consistency as quantified by the sim-

ilarities between motion-corrected and respectively projected HR volume slices.

In absence of a ground-truth of the HR volume, an additional subjective quality

assessment in a clinical context was made. Two pediatric radiologists (MA and PP)

assessed all reconstructions in the template-space side-by-side blinded to the recon-

struction methods. The HR masks obtained by SRR (M) were used for a consistent

visual cropping of the reconstructions. The radiologists gave scores of three metrics

on the results: 1) anatomical clarity of the cerebellar structure (CS), the cerebral

aqueduct and the interhemispheric fissure (CAIF) and the longitudinal cerebral fis-

sure (LCF) in the range of [0, 4], 2) SRR quality against introduced artifactual

structures and edge uncertainty in the range of [0, 2], and 3) radiologists’ preference

in the range of [0, 2]. A higher score for each metric indicates a better reconstruction.

The evaluation results are summarized in Figure 2.17 (a more detailed comparison of

the individual scores is provided in the Figures A.2 and A.3). It shows that SRR (S)

and SRR (M) achieved high-quality reconstruction results that are subjectively al-

93



2 Super-Resolution Reconstruction of Fetal Brain MRI

A B1 B2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM

* * * * * *

A B1 B2

10

20

30

40

50

P
S

N
R

* * * * * * *

Slice similarities after final SVR-SRR iteration

SRR (L) SRR (M) w/o OR SRR (S) SRR (M)∗

Figure 2.16.: Quantitative comparison of different reconstruction methods based on
Sim(yik, Ai

kx
i) after the final SVR-SRR iteration (i = 3) in terms of SSIM and

PSNR. A ∗ denotes a significant difference compared to SRR (M) within each group
based on Kruskal-Wallis with post-hoc Dunn tests (p < 0.05). Thus, SRR (S) and

SRR (M) appear of similar volumetric self-consistency as quantified by the
similarities between motion-corrected and respectively projected HR volume slices.

most indistinguishable. Moreover, both SRR (S) and SRR (M) were consistently

preferred over Kainz et al. (M) by the radiologists which can be explained by the

high anatomical clarity and SRR quality achieved by our proposed reconstruction

framework. The comparison against Kainz et al. (M) confirms the effectiveness of

our proposed outlier-robust SRR framework which is also illustrated in Figures 2.15

and 2.18 to 2.22.

Using our non-optimized implementation on a single computer with four CPUs, the

typical processing time for SRR (S) was approximately 13min for the subject-space

reconstruction, i.e. the computation of the two-step iterative motion-correction and

volumetric reconstruction steps, and approximately 11min for the template-space

reconstruction, i.e. the combined template-space alignment and volumetric recon-

struction from motion-corrected slices. The reconstruction times for SRR (M) were

comparable. For Kainz et al. (M) the subject-space reconstructions took approxi-

mately 6min on average.
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Figure 2.17.: Summary of clinical evaluation. Two radiologists performed a
qualitative assessment of the obtained HR reconstructions regarding anatomical
clarity, SRR quality and subjective preference involving 39 cases. A higher score
indicates a better outcome. For anatomical clarity scores indicate how well CS,

CAIF and LCF are visualized in each image with ratings 0 (structure not seen), 1
(poor depiction), 2 (suboptimal visualization; image not adequate for diagnostic

purposes), 3 (clear visualization of structure but reduced tissue contrast;
image-based diagnosis feasible), and 4 (excellent depiction; optimal for diagnostic
purposes). SRR quality is a combined average score of individual visible artefacts

and blur scores with ratings 0 (lots of artefacts/blur) to 2 (no artefact/blur).
Radiologists’ preference ranks subjectively from the least (0) to the most preferred
(2) reconstruction. A ∗ denotes a significant difference compared to SRR (M) based
on a Wilcoxon signed-rank test (p < 0.05). The results underline that SRR (M)/(S)
represent high-quality reconstructions with high anatomical clarity that are visually
indistinguishable and were subjectively preferred over Kainz et al. (M) by the two

radiologists.

2.4. Discussion

Our automated pipeline for fetal brain reconstruction in MR imaging benefits from

deep learning-based localization and segmentation where a CNN-based coarse seg-

mentation is proposed for robust localization and a multi-scale loss function for a

fine segmentation of the fetal brain. Compared with [Keraudren et al., 2014], our

localization method does not need prior information such as shape and size of the

fetal brain and it achieved superior performance in less time. Different from [Salehi

et al., 2018], which takes a whole image as the input of a CNN, our segmentation

method follows a coarse-to-fine approach. The benefit is three-fold: 1) it rejects false
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Figure 2.18.: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group B2
subject (post-surgical SB, GA = 27 weeks) based on 7 LR input stacks. An

original stack (linearly resampled) with resolution of 0.472 × 3 mm3 is provided for
reference. Red arrows show anatomical differences between SRR (S) and Kainz et

al. (M).
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Figure 2.19.: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group B2
subject (post-surgical SB, GA = 26 weeks) based on 4 LR input stacks. An

original stack (linearly resampled) with resolution of 0.742 × 3 mm3 is provided for
reference. Green arrows indicate the rejection of the final intensity-artefacted slice

of the original stack using the outlier-threshold β = 0.85. Red arrows show
anatomical differences between SRR (S) and Kainz et al. (M) in direct comparison

with the original stack.
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Figure 2.20.: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group A

subject (normal, GA = 30 weeks) based on 7 LR input stacks (subject space SRRs
are shown in Figure 2.15b). An original stack (linearly resampled) with resolution
of 0.742 × 3 mm3 is provided for reference. Red arrows indicate example differences

in the reconstruction outcomes compared to Kainz et al. (M).
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Figure 2.21.: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a Group B1

subject (pre-surgical SB, GA = 23 weeks) based on 6 LR input stacks. An original
stack (linearly resampled) with resolution of 0.742 × 3 mm3 is provided for

reference. Red arrows show differences between SRR (S) and Kainz et al. (M).
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Figure 2.22.: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group B1

subject (pre-surgical SB, GA = 23 weeks) based on 6 LR input stacks. An original
stack (linearly resampled) with resolution of 0.392 × 4 mm3 is provided for

reference. It represents the only case where SRR (M) is markedly better than
SRR (S). Green arrows indicate differences between SRR (M) and SRR (S). Red

arrows show differences between SRR (S) and Kainz et al. (M).
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positives outside the localization result, 2) the training data for Seg-Net are local

regions around the fetal brain and therefore they have less imbalance between the

foreground and background, and 3) Seg-Net has lower memory requirements and

is more efficient than working on the whole image. However, it requires training

of two networks independently, and may be improved by joint training or adopting

attention mechanisms [Oktay et al., 2018, He et al., 2017] in the future. Minimiz-

ing our proposed multi-scale loss function encourages a segmentation to be close to

the ground truth at multiple non-local levels, and helps to obtain more spatially

consistent results as shown in Figure 2.9.

Moreover, we presented an alternative reconstruction framework that includes

a novel outlier-rejection method for robust SRR. In contrast to [Gholipour et al.,

2010b] and [Kuklisova-Murgasova et al., 2012], our formulation leads to a simple,

yet effective, linear least-squares problem with a single hyperparameter that can be

solved efficiently. Despite its simplicity, this outlier-rejection method using a single

threshold parameter value was shown to allow for a remarkably robust elimination

of outliers for most cases (Figure 2.19). We demonstrate that our proposed outlier-

robust framework can produce high-quality HR visualizations from highly hetero-

geneous and challenging clinical data with results superior to the state-of-the-art

toolkit Kainz et al. (M) [Kainz et al., 2015b,Kuklisova-Murgasova et al., 2012]. This

involved stacks with multiple image resolutions per case including high slice thick-

nesses between 2.5mm and 4.4mm which can be severely affected by substantial

motion and intensity artefacts. In particular, we show that high-fidelity reconstruc-

tions with clear tissue boundary definitions can be achieved even in case a corrupted

target stack is selected. However, limitations of the comparison against Kainz et

al. (M) include that the publicly available method26 only allows to specify a single

mask for the target stack whereas our method can take advantage of using separate

masks for all input stacks. This allows a more accurate motion correction for our

method and can therefore lead to higher quality HR reconstructions. A potential

exclusion of heavy motion- or artefact-corrupted stacks is likely to improve the SRR

26https://github.com/bkainz/fetalReconstruction
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2 Super-Resolution Reconstruction of Fetal Brain MRI

quality further for cases that performed less satisfying (e.g. Figure 2.22).

We investigated a novel robust motion correction method to encourage higher

consistency of spatial transformations within each sub-stack of an interleaved stack

acquisition. The approach based on Gaussian process regularization was shown to

achieve higher retention rates of slices so that, ultimately, the volumetric recon-

struction algorithm can take advantage of more input data due to fewer slice re-

jections. However, our preliminary results indicated that the currently proposed

method achieves a minimal improvement only and does not lead to significantly

higher slice retention rates. A more thorough investigation is needed, but based on

the high reconstruction quality outcomes achieved by the “standard” SVR, rejections

due to slice misregistrations do not appear to be a major concern in our proposed

reconstruction framework.

Additionally, we present a fast template space alignment method for high-resolution

visualizations in the standard anatomical planes that is robust to large brain mor-

phology changes such as encountered in spina bifida. Further robustness to more sub-

stantial false-positives in the brain mask HR volume (Figure 2.14) could be achieved

by using robust principal component analysis [Candès et al., 2011,Parikh and Boyd,

2014] to estimate the principal brain axes. Faster computational times for the HR

volume reconstructions can be achieved by more efficient multi-core or GPU im-

plementations including an, in principle, trivially parallelizable computation of the,

currently, sequentially performed rigid slice-to-volume registrations.

In conclusion, we present a fully automated, and publicly available27, framework

for fetal brain MRI localization, segmentation and super-resolution reconstruction.

Our experiments with fetuses with normal brain anatomy as well as fetuses with

brain changes associated with spina bifida show that the proposed pipeline produces

automatic reconstructions that are comparable to manual segmentation-based recon-

structions, therefore, effectively eliminating the need of any manual intervention. In

the future, we aim to apply this framework to quantify the impact of spina bifida

27The automatic localization and segmentation framework fetal_brain_seg is available at
https://github.com/gift-surg/fetal_brain_seg and is integrated in the outlier-robust SRR
framework NiftyMIC (https://github.com/gift-surg/NiftyMIC).
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2.4 Discussion

surgical closure by measuring the resolution of the Chiari type II malformation and

the degree of ventriculomegaly. Furthermore, applications of our method are not con-

fined to spina bifida and may prove useful for a variety of other fetal brain pathologies

where automatic high-resolution visualizations in the standard anatomical planes are

clinically relevant.
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3 Super-Resolution Reconstruction of Upper Abdominal MRI

Foreword. This chapter is adapted and contains content from the work pub-

lished in

• Ebner, M., Chouhan, M., Patel, P. A., Atkinson, D., Amin, Z., Read, S.,

Punwani, S., Taylor, S., Vercauteren, T., and Ourselin, S. (2017a). Point-

Spread-Function-Aware Slice-to-Volume Registration: Application to Up-

per Abdominal MRI Super-Resolution. In Zuluaga, M. A., Bhatia, K.,

Kainz, B., Moghari, M. H., and Pace, D. F., editors, Reconstruction, Seg-

mentation, and Analysis of Medical Images. RAMBO 2016, volume 10129

of Lecture Notes in Computer Science, pages 3–13. Springer International

Publishing

• Ebner, M., Patel, P. A., Atkinson, D., Caselton, L., Firmin, L., Amin,

Z., Bainbridge, A., De Coppi, P., Taylor, S. A., Ourselin, S., Chouhan,

M. D., and Vercauteren, T. (2019a). Super-resolution for upper abdominal

MRI: Acquisition and post-processing protocol optimization using brain

MRI control data and expert reader validation. Magnetic Resonance in

Medicine, page mrm.27852

• Ebner, M., Patel, P. A., Atkinson, D., Caselton, L., Taylor, S. A., Bain-

bridge, A., Ourselin, S., Chouhan, M., and Vercauteren, T. (2019b). Recon-

struction-based Super-Resolution for High-Resolution Abdominal MRI: A

Preliminary Study. In International Society for Magnetic Resonance in

Medicine (ISMRM)

• Chouhan, M., Ebner, M., Patel, P. A., Atkinson, D., Firmin, L., Amin,

Z., De Coppi, P., Ourselin, S., Vercauteren, T., and Taylor, S. A. (2019).

Expert-reader validation of optimised Super-Resolution Reconstruction

for upper abdominal MRI. In European Society of Gastrointestinal and

Abdominal Radiology (ESGAR).

My specific contributions presented in this chapter are:

• Introduction of super-resolution reconstruction methods to reconstruct an

isotropic, high-resolution 3D visualization of upper gastrointestinal (GI)

anatomy from motion-corrupted, low-resolution, single-shot T2-weighted

(SST2W) MR cholangio-pancreatography (MRCP) sequences.
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• Methodological contributions include:

– Introduction of a non-iterative three-step volumetric reconstruction

algorithm based on a reference-guided multimodal, in-plane deformable

motion correction approach. This framework is specifically tailored to

reconstruct GI anatomy from sequences that are routinely available

in clinical MRCP protocols.

– Presentation of a point spread function (PSF)-aware slice-to-volume

registration method which takes into consideration the physical slice

acquisition process

– Design and execution of a pilot study involving the acquisition of mul-

tiplanar SST2W stacks of the upper abdomen and the brain (’quasi-

static’ control data, to remove the effect of upper abdominal motion

artefact) for eight healthy volunteers with the overall objectives of:

∗ optimising source image acquisition protocols by establishing the

ideal number and orientation of SST2W series for MRCP SRR

generation

∗ optimising post-processing protocols by defining the most suit-

able approach to registration/motion correction for SRR in the

upper abdomen

∗ validation of the overall potential of upper abdominal SRR using

expert-readers

A follow-up work on a patient cohort is currently in preparation to assess the

clinical utility of MRCP SRR obtained by the developed framework.

3.1. Introduction

As introduced in Chapter 1, Magnetic resonance cholangio-pancreatography (MRCP)

is an established method for imaging the upper abdomen and biliary/pancreatic ducts

(Figure 1.2). Heavily T2-weighted (HT2W) sequences exploit slow moving fluid in

the biliary and pancreatic ducts to generate high-resolution images of the biliary

tree [Barish et al., 1999, Griffin et al., 2012]. Such HT2W images are acquired as

near-isotropic voxel three-dimensional (3D) image volumes during free breathing us-

107



3 Super-Resolution Reconstruction of Upper Abdominal MRI

ing respiratory triggers and are useful in the assessment of intra-ductal benign and

malignant pathology [Basaran et al., 2008, Chen et al., 2015, Howard et al., 2006].

However, the assessment of peri-ductal and extra-ductal upper abdominal soft tis-

sue pathology is reliant on traditional two-dimensional (2D) single-shot T2-weighted

(SST2W) imaging (e.g. half-Fourier acquisition single-shot turbo spin echo, HASTE

sequences) because of the more suitable tissue contrast they provide of surrounding

anatomy. To achieve acceptable in-plane signal-to-noise ratio (SNR), slice thickness

is increased, with resultant low through-plane resolution, anisotropic voxel 2D im-

ages. Because of the close proximity of fine ductal/vascular structures in the upper

abdomen, these 2D images are particularly susceptible to partial voluming effects

(PVEs), whereby signal from a single voxel is contaminated by signal from multi-

ple anatomical structures. Images are also obtained in breath-hold, so that patient

non-compliance and breath-hold difficulties commonly introduce inter-slice motion

artefact. To mitigate these effects, SST2W sequences can be obtained consecutively

in axial and coronal planes, with radiologists reading low through-plane resolution,

motion-artefacted image series in both planes to improve sensitivity to pathology.

However, early malignant lesions are typically small and mural/extra-ductal (rather

than intra-ductal) and easily overlooked. Diagnostic pathways are therefore reliant

on non-MR imaging modalities for the exclusion of small volume pathology, but these

can be invasive (e.g. endoscopic ultrasound, EUS) or require ionising radiation (e.g.

computed tomography, CT).

Chapter 1 presented Super-Resolution Reconstruction (SRR) as a post-processing

technique to combine multiple low-resolution (LR) 2D image stacks into a single high-

resolution (HR), 3D visualization. Applications of SRR in MR imaging (MRI) range

from adult studies on the tongue [Woo et al., 2012] and thorax [Van Reeth et al., 2015]

to fetal applications [Rousseau et al., 2010,Kainz et al., 2015b,Ebner et al., 2018c]

(Chapter 2). Despite being well-suited to overcome the limitations of multiplanar

SST2W in principle, its application in the upper abdomen to-date has been limited.

As pointed out in Chapter 1, Super Resolution (SR) can only work accurately in case

of very precise motion estimation with subvoxel accuracy for all LR observations for
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the recovery of subvoxel detail [Park et al., 2003,Van Reeth et al., 2012,Milanfar,

2010]. This is especially difficult in the context of abdominal imaging where images

acquired from separate breath-holds are subject to inspiratory/expiratory variation

in addition to deformation arising from cardiac motion, arterial pulsation and gastro-

intestinal tract peristaltic motion. Existing respiratory motion models for motion

correction require the availability of respiratory surrogate data [McClelland et al.,

2013] which are currently not available for MRCP studies. In cardiac MRI, motion-

correction approaches typically rely on the assumption that images are acquired

at known cardiac phases [Villard et al., 2017]. Using an SRR approach such as

the iterative two-step registration-reconstruction approach used in fetal MRI [Kainz

et al., 2015b,Rousseau et al., 2006], applied to only two stacks, is prone to generate

a strongly biased volume and the currently used rigid motion models might not be

sufficient.

In the preliminary work of our first study [Ebner et al., 2017a], presented in Sec-

tion 3.3, we were the first to apply Super-Resolution (SR) to MRCP studies and

introduced an alternative SRR framework specifically tailored to reconstruct upper

gastrointestinal (GI) anatomy for sequences that are routinely available in clinical

protocols. Guided by the HT2W volume as a 3D reference, a rigid slice-to-volume

registration (SVR) was performed followed by an in-plane deformation step for each

individual slice to compensate for non-rigid deformations. In this preliminary study,

we identified several key challenges:

1. Optimizing imaging planes is required for adequate upper GI SRR: Super-

resolution applied to one axial and one coronal SST2W stack allows for a 3D

visualization of peri-ductal anatomy in higher resolution. However, datasets

with three or more planes would be justifiable in routine clinical imaging pro-

tocols if they can be used to generate a higher diagnostic yield SRR due to

improved PVE correction [Rousseau et al., 2010, Shilling et al., 2009]. How-

ever, the theoretical insight on the optimal orientation and number of input

stacks for SRR approaches is relatively limited [Baker and Kanade, 2002, Lin

and Shum, 2004,Candès and Fernandez-Granda, 2014]. This is especially the
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case in abdominal applications where motion patterns can be relatively com-

plex and magnification factors for SR are very high given the large disparity

between through-plane vs inplane resolutions.

2. Optimizing motion-correction strategies for MRCP SRR: HT2W-guided motion-

correction led to promising SRR results for a relatively small region of interest

(ROI) around biliary/pancreatic ducts. However, for clinically useful HR visu-

alizations, larger ROIs showing the entire biliary tree anatomy will need to be

reconstructed. As peri-ductal anatomy is not demonstrated in HT2W volumes,

different motion-correction references or strategies might be more suitable for

this task. Moreover, the bigger the ROI, the more critical it is to correct for

the complex, non-rigid motion presented in multiple SST2W stacks prior to

the SRR step.

We hypothesized that the application of SRR algorithms to a large numbers of

retrospective MRCP scans potentially available is unlikely to address these. Instead,

the prospective evaluation of SRR in a clinical setting will require the introduction

of changes to the established clinical MRCP protocol. The rationale for the second

study [Ebner et al., 2019a], presented in Section 3.4, was to collect data in normal

volunteers and optimise the technique so that clinical MRCP protocols can then be

amended to minimise patient inconvenience and maximise the likelihood of successful

SRRs in patients. We therefore designed and conducted a pilot study with the

following contributions:

1. MRCP sequence optimisation for abdominal reconstruction-based SR recon-

struction based on eight healthy volunteers:

• Dense T2-weighted ultra-fast 2D MR image sampling using SST2W imag-

ing in multiple imaging planes including seven different image orientations:

– standard anatomical acquisitions, i.e. axial, coronal and sagittal im-

ages

– additional standard anatomical acquisitions in axial, coronal and sagit-

tal orientation with an offset of half the slice thickness in the respec-
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tive slice-select direction

– four oblique orientations

• A non-standard balanced fast field echo (BFFE) 3D sequence is acquired

in addition to the standard-clinical HT2W volume. As it lacks peri-ductal

tissue contrast it is not clinically useful in the context of MRCP diagnosis

but due to its high resolution and similar T2W contrast it may represent

a suitable reference for image-guided motion-correction strategies.

• The identical abdominal protocol is used for imaging the brain but with

an additional HR T2W volume invaluable for method optimisation and

validation in a controlled, quasi-static scenario.

2. Experimental estimation of optimal number of SST2W stacks and their orien-

tation to trade off SRR quality and acquisition time specific for MRCP studies

3. Qualitative and quantitative assessment of various motion correction approaches

for MRCP studies to obtain best SRR outcomes. This includes the assessment

of

• reference-guided multimodal1 registration approach for SST2W images

guided by a reference image of a different modality [Ebner et al., 2017a].

• suitability of monomodal rigid motion-correction and robust reconstruc-

tion approaches [Kainz et al., 2015b,Ebner et al., 2018c] based on SST2W

image information only.

3.2. Motion Correction and Volumetric Reconstruction

for Upper Abdominal MRI

Assuming a classical slice acquisition model [Greenspan, 2008, Gholipour et al.,

2010b] for each LR 2D SST2W slice acquisition ys,i ∈ RNs from a stack s ∈ S with

1With multimodal registration, we refer to the involvement of two images with different MR image
contrasts due to different acquisition protocols as opposed to monomodal registration where two
images of the same image contrast are used.
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slice index i ∈ Is, the pixelwise association with the unknown HR volume x ∈ RN ,

whereby Ns � N for the voxel numbers due to the LR 2D image acquisition, (1.1)

can be rephrased as

ys,i(j) = As,i(j,x) + ns,i(j) ∈ R for all slice voxels j = 1, . . . , Ns. (3.1)

The linear operator As,i(j, ·) acts as point spread function (PSF)-defined intensity

interpolator in the HR volume space that approximates the image acquisition process

at a non-linearly transformed physical position of voxel j of slice ys,i up to the imag-

ing noise ns,i. Each voxel intensity of a LR slice is therefore influenced by a certain

neighbourhood of this voxel within a HR volume x given by the assumed PSF that is

specific to the slice profile of the LR MR acquisition [Liang and Lauterbur, 2000]. For

SST2W sequences, Chapter 2 highlighted that a common approximation is given by

a slice-aligned 3D Gaussian function that depends on the in- and through-plane reso-

lution of the LR slice [Jiang et al., 2007,Kuklisova-Murgasova et al., 2012]. However,

the motion that each anatomical region experiences during acquisition time is un-

known. Once estimated, the HR volume can be obtained from the (motion-corrected)

LR slices by solving the associated super-resolution reconstruction problem using a

maximum a posteriori formulation (MAP) (1.2) [Van Reeth et al., 2012,Gholipour

et al., 2010b,Ebner et al., 2017a]

x∗ := arg min
x≥0

(∑
s∈S

∑
i∈Is

1

2
‖ys,i −As,ix‖2`2 +

α

2
‖∇x‖2`2

)
∈ RN (3.2)

where As,ix denotes the application of (3.1) to a vector in RNs , α ≥ 0 the regular-

ization parameter and ∇ the differential operator. In particular, the linear operator

As,i : RN → RNs ,x 7→ As,ix =: ỹs,i models the image acquisition process that gen-

erates a LR slice ỹs,i from a HR volume x at a specific, and in our case, estimated,

position and orientation within that HR volume. The second term of (3.2) is a first-

order Tikhonov regularization which corresponds to a MAP formulation exploiting

a probabilistic prior on the HR volume. This counteracts the ill-posed nature of the

minimisation problem and retains a computationally efficient least-square structure.
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The final HR volume x∗ is also referred to as the Super-Resolution Reconstruction

(SRR). More complex SRR models have been proposed in addition to the MAP for-

mulation including modifying (3.2) to rely on robust M-estimator [Gholipour et al.,

2010b] and total variation formulations [Tourbier et al., 2015, Basty et al., 2017].

However, while they substantially increase the computational cost, in our experi-

ence, they tend to show little improvement in the obtained reconstruction quality in

case of appropriate motion correction. Associated experiments comparing Tikhonov

and total variation regularizations are summarized in Section 3.4.2.

Two different motion-correction approaches were investigated for upper abdominal

MRI reconstruction:

(a) a multimodal reference-guided, in-plane deformable registration approach that

registers the LR SST2W slices to a separately acquired 3D HR reference volume

of a different contrast (e.g. HT2W or BFFE volumes)

(b) a monomodal rigid motion-correction approach based on robust outlier rejec-

tion using only the SST2W slice image information

3.2.1. SRR using Reference-Guided Multimodal Deformable

Motion Correction

In our preliminary study [Ebner et al., 2017a] (Section 3.3), we introduced a reference-

guided motion-correction approach whereby the following is assumed:

(a) the resolution of the reference image is sufficiently high to act as a 3D reference

volume

(b) the occurring anatomical deformation can be captured by deforming the slice

only in the in-plane direction; the contribution in the orthogonal slice-select

direction can therefore be neglected given the thick slices and the associated

intensity information uncertainty due to PVEs.

Based on those assumptions the following non-iterative three-step volumetric recon-

struction algorithm is performed (Figure 3.1):
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Figure 3.1.: Reference-guided motion correction based on rigid slice-to-volume
registration and in-plane deformation steps (Section 3.2.1). Slices are rigidly

motion corrected to find the best rigid motion estimate within the 3D reference
before the non-rigid deformation step is applied. In-plane deformation is performed
using a 2D non-rigid registration for the corresponding HASTE (fixed image) and
intersecting reference (moving image) slices. Additional PSF-awareness for the rigid
and in-plane non-rigid registration steps can be applied to take into consideration

the physical slice acquisition process (Section 3.2.3).

(i) multimodal slice-to-volume registration where each individual 2D slice of each

stack is rigidly registered to the 3D reference

(ii) based on the intersection of the slices with the 3D reference, each slice is de-

formed in-plane to compensate for non-rigid deformations

(iii) estimation of the SRR volume by solving (3.2) using the estimated deformations
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3.2.2. Outlier-robust SRR using Monomodal Rigid Motion

Correction

Outlier-robust SRR using rigid motion correction has been proposed recently for fetal

MRI and exploits data from series obtained in at least three orientations [Rousseau

et al., 2006,Gholipour et al., 2010b,Kuklisova-Murgasova et al., 2012,Kainz et al.,

2015b]. Using an iterative two-step registration-reconstruction approach, a volumet-

ric reconstruction step is followed by a rigid SVR step until convergence using the

SST2W image series only. ’Outlier’ slices are detected during the SRR steps and

rejected to prevent misregistered or artefact-corrupted image slices from affecting

the final SRR outcome. In this study, we deploy our recently presented method for

fetal brain MRI [Ebner et al., 2018c] (Section 2.2.3). This computes the volumetric

reconstruction using an SRR formulation similar to (3.2), i.e.

xk+1 := arg min
x≥0

(∑
s∈S

∑
i∈Iks,β

1

2
‖ys,i −Ak

s,ix‖2`2 +
α

2
‖∇x‖2`2

)
(3.3)

for a slice-index set Iks,β :=
{
i : Sim(ys,i, Ak

s,ix
k−1) ≥ β

}
⊂ Is containing only slices

that demonstrate high agreement with their simulated counterparts projected from

the previous SRR iterate using a similarity measure Sim and parameter β > 0. In

particular, (3.2) is a special case of (3.3) since the combined linear forward opera-

tor Ak
s,i describes the oriented PSF-interpolator estimated after k motion-correction

steps whereby only a subset of indices Iks,β ⊂ Is per stack s is considered. Thus, (3.3)

represents a convex SRR problem with complete outlier removal using a single hy-

perparameter β in a linear least-squares minimisation formulation that can be solved

efficiently using matrix-free operations [Diamond and Boyd, 2015].

Therefore, by using this iterative SRR framework it is assumed that

(i) sufficient input SST2W images are available to allow anatomically plausible

reconstructions from these LR image stacks

(ii) the anatomical motion captured per slice is approximately rigid for the specified

region of interest (ROI) for most of the slices
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(iii) the outlier-rejection algorithm can reliably reject individual slices that present

non-matching deformations

3.2.3. Point-Spread-Function-Aware Slice-to-Volume Registration

Current motion correction techniques do not take into account the PSF for registra-

tion. This is particularly problematic since neglecting the PSF during resampling

introduces aliasing and subsequently results in additional loss of information [Car-

doso et al., 2015,Chacko et al., 2015]. The intent of using a PSF-aware registration

is to blur the moving image (3D reference) with the PSF defined by the relative

position between fixed image (LR 2D slice) and moving image in order to make

them comparable during the registration process which may increase the accuracy

for the motion-correction estimate [Cardoso et al., 2015,Chacko et al., 2015]. The

“PSF-aware” registration model itself follows by the definition of As,i(j, ·) as PSF-

defined intensity interpolator in the HR volume space that approximates the image

acquisition process at a non-linearly transformed physical position of voxel j of slice

ys,i in (3.1). In practice, a reasonable approximation for single-shot sequences in

the slice-coordinate system has been found to be a 3D Gaussian defined by the

variance-covariance matrix B̃s,i := diag
( (1.2 s1)2

8 ln(2) ,
(1.2 s2)2

8 ln(2) ,
s23

8 ln(2)

)
with s1, s2 being

the spacing in-plane and s3 through-plane [Cardoso et al., 2015, Jiang et al., 2007]

of slice ys,i. For the registration, this variance-covariance matrix needs to be ex-

pressed in the coordinate system of the moving image in order to accommodate the

interpolation in the moving space accordingly. By accounting for the orientation

difference between the LR slice and the HR volume with a basis transform with

orthogonal matrix Us,i, the PSF is expressed by UT
s,iB̃s,iUs,i for each single point

with respect to the floating space. Thus, a PSF-aware slice-to-volume registration

can be implemented by providing an oriented Gaussian interpolator As,i for each

slice ys,i to a generic registration framework which updates the PSF depending on

the current transformation parameters. The operation As,i(j, ·) can be efficiently

computed as a matrix-vector multiplication without storing a matrix explicitly by

iterating over the Ns � N voxels in a multi-threaded fashion while considering the
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oriented Gaussian-weighted 3D reference volume voxel intensities. An illustration

of the PSF-aware registration algorithm that takes into consideration the physical

slice acquisition process for motion correction is provided in Figure 3.1. PSF-aware

in-plane deformation can be achieved by using an oriented Gaussian interpolator to

compute the intersecting reference slice as acting moving image for a subsequent

in-plane (2D) non-rigid registration.

3.3. Point-Spread-Function-Aware Slice-to-Volume

Registration: Application to Upper Abdominal MRI

Super-Resolution

In our preliminary study [Ebner et al., 2017a], we were the first to introduce SR for

upper GI anatomy using currently available clinical data as shown in Figure 1.2.

Axial and coronal stacks are acquired consecutively and cannot be regarded as

motion-free given the non-periodic respiratory motion, tissue deformation due to

cardiac motion and arterial pulsation, peristaltic and other complex motion affecting

the upper gastrointestinal anatomy. Accurate registration and reconstruction are

complicated by the fact that in current clinical protocols usually only two single-shot

T2-weighted stacks are available (in axial and coronal planes) with a slice thickness

approximately five times higher than the in-plane resolution. Existing respiratory

motion models require the availability of respiratory surrogate data [McClelland

et al., 2013] which are currently not available for MRCP studies. Using an SRR

approach such as the iterative two-step registration-reconstruction approach used in

fetal MRI [Kainz et al., 2015b, Rousseau et al., 2006], applied to only two stacks,

is prone to generate a strongly biased volume and the currently used rigid motion

models might not be sufficient.

Thus, we presented the following contributions:

(i) introduction of a novel PSF-aware slice-to-volume registration (SVR) method

which takes into consideration the physical slice acquisition process (Section 3.2.3)
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(ii) novel use of an existing heavily T2-weighted volume available in MRCP studies

to guide registration (Section 3.2.1)

(iii) use of a novel SRR framework to reconstruct upper abdominal MRI using

a single, consistent model to incorporate the PSF in both registration and

reconstruction steps

3.3.1. Data, Evaluation Methodology and Results

Data and Data Preprocessing

MRCP studies of four anonymized patients, scanned at the University College Lon-

don Hospital, London, were used for this study. Among the clinically acquired scans

for MRCP studies, a set of axial and coronal 2D HASTE sequences and a 3D heavily

T2-weighted SPC RST volume acquisition were performed, as shown in Figure 1.2.

The acquisition parameters for the coronal stack were TE = 91ms, TR = 1350ms,

flip angle of 170◦ with resolution of 1.25mm × 1.25mm × 6mm. The respective

parameters for the axial stack were TE = 91ms, TR = 1200ms, flip angle of 160◦

with resolution of 1.48mm × 1.48mm × 5.50mm. The heavily T2-weighted volume

was acquired in coronal direction with dimensions of 1.09mm×1.09mm×1.30mm.

HASTE images were preprocessed via an ITK bias field correction filter step [Tusti-

son et al., 2010]. Rectangular masks were provided for both axial and coronal stacks

to mark a region of clinical interest.

Parametrization of Reconstruction Pipeline

First, both axial and coronal stacks were rigidly aligned to the reference volume

using normalized mutual information (NMI) as similarity measure. Similar to the

PSF-aware SVR approach, the multimodal volume-to-volume registration was made

PSF-aware by blurring the 3D reference with an oriented Gaussian filter considering

the PSF defined by slice-select direction and slice dimensions for each stack. Then,

the NMI-guided rigid slice-to-volume PSF-aware registration approach was deployed.

The PSF-aware in-plane deformation was performed with the NiftyReg software
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using a fast free-form deformation algorithm [Modat et al., 2010] with normalized

cross-correlation as similarity measure. The corresponding 3D reference (floating

image) slice for the in-plane registration was computed by using the oriented Gaus-

sian interpolator to estimate the intersecting reference slice. An illustration of the

reference-guided PSF-aware motion correction steps is provided in Figure 3.1. Prior

to the volumetric reconstruction a linear model was used to account for the inten-

sity differences in the HASTE sequences due their different acquisition parameters.

In order to initialize the SRR solver with a regular grid volume from motion cor-

rected slices, we used a discrete variant of Nadaraya-Watson kernel regression as

an efficient scattered data approximation (SDA) scheme for irregularly sampled in-

puts [Vercauteren et al., 2006]. It is based on nearest neighbour sampling onto a

regular grid followed by a subsequent Gaussian blurring operation for each single

slice. The initial value was computed by the SDA approach with σ = 4 to avoid the

problem of inpainting during SRR. The corresponding SRR step was performed with

the regularization parameter α = 0.03 selected via L-curve studies. In this applica-

tion, we chose a L-BFGS-B algorithm to deal with this large linear system (3.2) and

its positivity constraints to solve the corresponding normal equations.

Evaluation Methodology

The algorithm was run with and without the consideration of the oriented PSF for all

registration steps (PSF0 or PSF1) and with and without usage of the in-plane defor-

mation model (DM0 or DM1) resulting in four different reconstructions for analysis.

The reconstructions were initially quantitatively assessed by evaluating the residual

via a normalized cross correlation metric, instead of the `2-norm, in order to be

insensitive to the intensity normalization step used to compensate for the different

acquisition protocols. Following this, subjective assessment in a clinical context was

made including direct comparison to reconstructions obtained by open-source toolk-

its successfully employed in the challenging problem of fetal MRI reconstructions

(BTK-toolkit [Rousseau et al., 2013], version from 6 Jan 2016, and the IRTK-based

toolkit [Kainz et al., 2015b], version from 11 Jun 2015). Two radiologists, blinded to
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Figure 3.2.: Evaluation of the residuals for all subjects and modes of our proposed
reconstruction framework visualized for all axial slices (a) and coronal slices (c).
The associated NCC mean and standard deviation over all subjects for each mode
are 0.88± 0.10 for PSF0DM0, 0.89± 0.08 for PSF0DM1, 0.88± 0.11 for PSF1DM0

and 0.90± 0.08 for PSF1DM1, respectively.

the reconstruction methods, individually assessed reconstruction side-by-side and in

comparison to the original HASTE data. The final score is a joint agreement of the

radiologists’ individual results. Scores were given for:

1. Clinical usefulness: based on how well common bile duct (CBD), left and right

hepatic duct (LHD & RHD) were visualized and the degree of visible motion

artifacts

2. Reconstruction quality: inferred by assessment of preservation of original struc-

tural information and the amount of additionally introduced artifactual struc-

tures

3. Radiologists’ preferred reconstruction

Results

The evaluation of the residuals in (3.1) for all four subjects are visualized in Fig-

ure 3.2. The best agreement between the observed slice yk and simulated slice
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MkAkx was obtained for the reconstruction which used the most comprehensive

model including PSF-aware registration and in-plane deformable model (PSF1DM1).

This is confirmed by calculating the mean of the residuals which rank PSF1DM1

ahead of all other variants. PSF1DM1 yields consistently better agreement for sub-

jects 3 and 4 compared to other approaches which show less accurate registration

results for some slices.

Table 3.1.: Summary of clinical evaluation averaged over all four subjects.
Evaluation included original HASTE data, four modes of our proposed

reconstruction framework and reconstructions by other toolkits (BTK, IRTK).
Clarity of anatomical structure score indicates how well CBD, LHD and RHD are
visualized in each image with ratings 0 (structure not seen), 1 (poor depiction), 2
(suboptimal visualization; image not adequate for diagnostic purposes), 3 (clear
visualization of structure but reduced tissue contrast; image-based diagnosis
feasible) and 4 (excellent depiction; optimal for diagnostic purposes). Visible
motion score rates the amount of visible non-corrected motion from score 0
(complete motion) to 3 (no motion). Preserved structural information score
indicates how well original HASTE data information has been preserved with

grades 0 (structures not identified), 1 (poor visualization of structures), 2 (clear
visualization but not as good as originals) and 3 (as good as original). Introduced
artifacts score rates the amount of additional artifactual structures from 0 (lots of

new artifacts) to 2 (no new artifact). Radiologists’ preference ranks the
subjectively preferred reconstructions from 1 (least preferred) to 6 (most preferred)

reconstruction.
Clinical Usefulness Reconstruction Quality
Clarity of
Anatomical
Structures

Visible
Motion

Preserved
Structural
Information

Introduced
Artifacts

Radiologists’
Preference

HASTE
Ax & Cor 2.9± 0.3 1.8± 0.5 — — —

PSF0DM0 2.9± 0.3 2.8± 0.5 2.0± 0.0 0.8± 0.5 4.2± 0.9
PSF0DM1 2.9± 0.3 2.5± 0.5 1.8± 0.5 1.0± 0.0 5.5± 1.0
PSF1DM0 2.9± 0.3 2.8± 0.5 2.0± 0.0 0.5± 0.5 3.5± 1.0
PSF1DM1 2.9± 0.3 2.8± 0.5 2.0± 0.0 0.5± 0.5 4.5± 0.5
IRTK 2.4± 0.5 2.8± 0.5 1.2± 0.1 0.0± 0.0 1.8± 0.5
BTK 1.9± 0.3 2.0± 0.0 1.0± 0.0 1.0± 0.0 1.2± 0.5

The radiologists’ evaluation, shown in Table 3.1, indicates that the blinded radiolo-

gists had a clear preference for our novel PSF-aware SVR reconstructions. Addition-

ally, our proposed reconstruction framework yields reconstructions of similar clarity

of CBD, LHD and RHD as the original HASTE data. The reconstructions obtained

via IRTK score slightly lower and it was felt that the images would not be suitable

for making a clinical diagnosis. Furthermore, all reconstruction approaches demon-
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strate their ability to correct for motion visible in the HASTE data. With regards

to preservation of information in the original HASTE stacks, our novel PSF-aware

SVR reconstructions are close to the originals’ whereas IRTK and BTK2 perform

less satisfactorily. All reconstruction methods, to some degree, introduce structures

which cannot be directly visualized by the original HASTE data.

Figure 3.3.: Visualization of original HASTE data and the field of view for the SR
reconstruction algorithms. The axially acquired HASTE stack is visualized in the

through-plane direction showing the limited resolution due to the thick-slice
acquisition (left). The isotropic, HR reconstruction (right) obtained by combining
both axial and coronal HASTE stacks with the proposed uniform PSF-aware SRR

algorithm is overlaid for direct comparison.

Figure 3.3 shows the reconstructed region obtained by the proposed framework

in direct comparison with the original data. In Figure 3.4 our reconstruction vari-

ant PSF1DM1 and the reconstructions based on IRTK and BTK of one subject

are provided along with the linearly resampled original data for comparison. This

demonstrates that our proposed reconstruction framework largely preserves axial

and coronal HASTE data information with minor degradation in image quality as

opposed to both IRTK and BTK reconstructions. Moreover, it reveals sharp tissue

delineation also in sagittal section where no image stack information is provided.

2The BTK-results used in here do not include the SRR step. Using the standard parametrization
of BTK, the SRR outcome was less satisfying and of poorer quality than the reconstruction
obtained via local neighborhood oriented Gaussian interpolation [Rousseau et al., 2006].

122



3.3 Point-Spread-Function-Aware Slice-to-Volume Registration: Application to
Upper Abdominal MRI Super-Resolution

Figure 3.4.: Qualitative comparison between linearly resampled original HASTE
data (A) and reconstructions obtained by BTK, IRTK and our proposed approach
(B). Reconstructions are based on one axial and one coronal HASTE stack only.
Several arrows on our reconstruction show examples of successfully preserved raw

data information (blue a and b), introduction of artifacts (red c and d) and
resolution improvement (green e, f and g) in direct comparison with the other
reconstruction approaches. Artifacts are explained by similar intensities in the
original data (c) in addition to the complex deformation occurred between axial
and coronal stack acquisition (d). Resolution improvement was achieved by the

combined usage of SR and the incorporated heavily T2-weighted volume
information (C) as reference during motion correction.
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3.3.2. Discussion

In this work, we present for the first time a single, consistent SRR framework which

takes into consideration the PSF for both the motion correction and volumetric re-

construction steps. We put a particular focus on efficient implementation details

like the matrix-free approach to efficiently compute the oriented Gaussian and ad-

joint oriented Gaussian operators for slice-to-volume registration and the PSF-aware

volume-to-volume registration step. We test our framework by reconstructing up-

per abdominal MRI purely based on existing data available in current clinical MRCP

studies. We propose a novel motion correction approach by using the existing heavily

T2-weighted volume to guide the slice-to-volume registration to address the challenge

of having only two orthogonal stacks with thick slices affected by deformable mo-

tion. Despite the high degree of undersampling, we achieve remarkable results which

outperform current state-of-the-art techniques developed for fetal MRI, as shown in

Figure 3.4. Further improvements in the current implementation include the incor-

poration of the oriented PSF for the gradient computation. This shortcoming could

also describe the drop in accuracy for some slices observed in Figure 3.2. Overall,

the obtained results are promising and may have the potential to avoid CT scans

for further evaluation of this area. Existing limitations are assuming and only ac-

counting for in-plane deformation and sparseness of available data. In Section 3.4,

we expect to make further improvements by using more orthogonal stacks for higher

anatomy sampling in combination with a more refined motion model. This will also

allow increasing the field of view of the reconstruction to assess the entire biliary

tree of clinical interest.
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3.4. Super-Resolution for Upper Abdominal MRI:

Acquisition and Post-Processing Protocol

Optimisation using Brain MRI Control Data and

Expert-Reader Validation

Our preliminary study [Ebner et al., 2017a] (Section 3.3) demonstrated the feasibility

of upper abdominal MRI SRRs generated from only two standard MRCP protocol

axial and coronal SST2W series using HT2W volumes as a reference-guide for in-

plane deformable SVR/motion correction. However, anatomical clarity was lacking

and a more robust registration/motion correction was needed. SRRs generated from

a larger number of LR 2D source series are known to increase the reconstruction

quality [Rousseau et al., 2010, Shilling et al., 2009] but acquisition of additional

SST2W data comes at the expense of additional patient scanning time. Insight on

the optimal orientation and number of input stacks for SRR is limited [Baker and

Kanade, 2002,Lin and Shum, 2004,Candès and Fernandez-Granda, 2014], especially

in the upper abdomen. Using HT2W volumes as a reference to guide registration

is attractive but motion artefact arising from extended acquisition times and incon-

sistent breathing commonly degrades HT2W image quality. More rapidly acquired,

similar to SST2W tissue contrast T2-weighted balanced fast-field echo (BFFE) se-

quences may offer a more consistent alternative for reference-guided registration,

as may other more recently proposed non-reference guided SRR registration meth-

ods [Ebner et al., 2018c]. Finally, in order to objectively assess these factors, control

studies using imaging free from significant variation in inter-subject motion artefact

and from which a robust non-motion artefacted ground-truth/reference standard can

be generated for SRR comparison are required.

In the pilot study presented in this section, we obtained healthy volunteer mul-

tiplanar SST2W stacks of the upper abdomen and the brain (’quasi-static’ control

data, to remove the effect of upper abdominal motion artefact), with the overall

objectives of

(a) optimising source image acquisition protocols by establishing the ideal num-
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ber and orientation of SST2W series (so-called ’source data configuration’) for

MRCP SRR generation

(b) optimising post-processing protocols by defining the best approach to registra-

tion/motion correction for SRR in the upper abdomen

(c) validation of the overall potential of upper abdominal SRR, using expert-

readers to compare pre-specified imaging features on the SRR with imaging

obtained from standard SST2W MRCP protocols

3.4.1. Image Acquisition

Subjects and MRI Scanning

Local ethics committee approval was obtained and all participants provided informed

written consent. Volunteers were recruited via advertisement within the University

College London campus and were eligible if (a) they had no MRI contraindication,

(b) were not taking any long-term medication (excluding the oral contraceptive pill)

and (c) had no documented history of previous liver or gastrointestinal disease. The

final cohort consisted of eight healthy volunteers (six male, mean age (28± 2) years,

mean weight (72± 12) kg). Imaging was performed using a 3T scanner (Ingenia,

Philips Healthcare, Best, Netherlands) with a 16 channel body coil (SENSE XL

Torso, Philips Healthcare, Best, Netherlands) used for abdominal imaging and a 15

channel head coil (dStream HeadSpine, Philips Healthcare, Best, Netherlands) used

for brain imaging.

Image Acquisition Protocols

Upper Abdominal Imaging. Abdominal imaging was planned to ensure ade-

quate coverage of the liver and biliary tree, with acquisition parameters listed in

Table 3.2. Standard clinical axial and coronal SST2W series were acquired in ex-

piratory breath-hold. The same acquisition parameters were used for additional

expiratory breath-hold SST2W series planned in (a) the sagittal plane, (b) repeat

axial, coronal and sagittal volumes shifted by half the slice thickness in the slice-select
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Figure 3.5.: Visualization of acquisition planes of SST2W images. Left and middle
figures illustrate the imaging planes in the standard and the oblique orientations,
respectively. The associated slice-select directions orthogonal to the respective

acquisition planes are shown in the figure on the right. Example images are shown
in Figure 3.6.

direction and (c) four additional oblique volumes where the slice-select dimensions

were defined by the direction of a unit vector towards the lower four corners of a

cube [−1, 1]3 whose orientation is aligned with the standard anatomical directions

(Figures 3.5 and 3.6).

For deformable reference-guided registration/motion correction, navigator-triggered

free-breathing standard clinical HR HT2W volumes were acquired (Table 3.2). To

investigate the potential of a less heavily T2-weighted volume for reference-guided

registration that can be acquired more rapidly, we also used a thin slice 1.5mm

balanced fast field echo (BFFE) volume sequence to obtain high through-plane res-

olution coronal images (Table 3.2).

Quasi-static Control Brain Imaging. The same imaging protocol as presented

for the abdomen was applied to the brain for seven out of the eight volunteers

whereby identical imaging parameters were used to obtain image contrasts similar to

the abdomen for the quasi-static control brain studies. All control data was planned

to ensure adequate coverage of the brain whereby no imaging trigger was used. For
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Figure 3.6.: Images obtained by extended MRCP protocol for abdomen and brain
anatomies. The first three rows show the acquisitions that are available in standard
clinical MRCP studies, i.e. an axial and a coronal SST2W images and an HT2W

volume. Further acquisitions include SST2W images in sagittal and oblique
orientations and a BFFE volume as an alternative candidate for the

reference-guided motion correction framework. For validation purposes, a separate
HR T2W volume was acquired for the brain.
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Table 3.2.: Image acquisition protocol used in this volunteer study for both
abdominal and control brain anatomies. For the abdominal imaging, the heavily
T2-weighted (HT2W) volume is acquired as a gated acquisition triggered by a

respiratory bellow. The single-shot T2-weighted (SST2W) stack and the balanced
fast field echo (BFFE) acquisitions are acquired at separate expiratory breath-holds
(BH). For the quasi-static control brain experiment, no imaging trigger are used
and an additional HR T2W volume is acquired for ground-truth comparisons.

Example images associated with this protocol are shown in Figure 3.6.
Abdomen and Control Brain Control Brain only

Description HT2W volume SST2W stack BFFE volume HR T2W volume
Acquisition Type 3D 2D 3D 3D

Repetition Time [ms] 1120 1161 2.46 2500
Echo Time [ms] 662.00 80.00 1.23 252.83
Flip Angle [◦] 90 90 15 90

Pixel Spacing [mm] 0.65× 0.65 0.78× 0.78 0.73× 0.73 0.98× 0.98
Slice Thickness [mm] 1.8 5 1.5 1
Slice Spacing [mm] 0.9 5 1.5 0.5
Number of Slices 90 20 – 25 83 360

Abdominal Imaging Trigger Respiratory bellow Expiratory BH Expiratory BH —
Abdominal Scan Duration 04:06.0 00:21.5 – 00:33.3 00:23.0 —

optimisation studies and ground-truth comparisons, an additional HR T2W volume

was obtained (Table 3.2 and Figure 3.6).

3.4.2. Data, Evaluation Methodology and Results

Data and Data Preprocessing

The extended MRCP protocol as shown in Table 3.2 was applied for imaging both

the abdomen and brain of eight healthy volunteers at University College London

Hospital, London, UK. For one subject, no HR T2W volume was acquired of the

brain which left seven subjects in a highly controlled, quasi-static environment for

ground-truth comparisons. A ROI including the common bile duct, head of pancreas,

porta hepatis and central liver was specified manually using masks generated on axial

SST2W images by a radiologist with over ten years experience in abdominal imaging

(PP). Quasi-static control ROIs for the brain tissue were defined automatically using

the Brain Extraction Tool (BET) [Smith, 2002]. This region was also used for the

quantitative ground-truth comparisons. SST2W images were preprocessed via an

ITK bias field [Tustison et al., 2010] and a linear intensity correction step constrained

by the provided manual (abdomen) and automatic (brain) masks.
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Parametrisation of the Reconstruction Pipeline

For abdominal and quasi-static control brain data, the ROI mask was propagated to

all the remaining SST2W series using nearest neighbour interpolation. Reconstruc-

tion pipelines were developed in Python using ITK for the individual registration

steps. Only data within the masked ROI was used for image processing and all

slice registrations were constrained to the slice mask. For the deformable, reference-

guided SRR framework, the in-plane deformation was performed using NiftyReg3

software that is based on a fast free-deformation algorithm [Modat et al., 2010] us-

ing localized normalised cross-correlation (LNCC) as similarity measure. By ap-

plying the obtained in-plane deformation to each individual slice ys,i, the SRR

problem (3.2) was solved using the transformed slices {y̆s,i}s∈S,i∈Is in combination

with the linear operators Ăs,i = As,i, s ∈ S, i ∈ Is, that carry the respective rigid

slice motion correction estimates. To model the PSF of the image acquisition, we

chose to approximate the SST2W sequence slice profile by a 3D Gaussian func-

tion defined by diag
(

(1.2 s1)2

8 ln(2) ,
(1.2 s2)2

8 ln(2) ,
s23

8 ln(2)

)
∈ R3×3 as variance-covariance matrix

with s1, s2 and s3 representing the in- and through-plane spacings [Jiang et al.,

2007,Kuklisova-Murgasova et al., 2012] in the slice-coordinate system, respectively.

For the outlier-robust, rigid motion-correction and SRR framework, NiftyMIC4

was used to solve (3.3) as described in [Ebner et al., 2018c]. Three iterations of

two-step rigid SVR and outlier-robust SRR steps were performed with normalised

cross-correlation (NCC) used to guide registrations. To create a first HR reference

for the initial rigid SVRs, we used a discrete variant of Nadaraya-Watson kernel re-

gression as an efficient scattered data approximation scheme for the volumetrically

aligned SST2W image stacks [Vercauteren et al., 2006, Ebner et al., 2017a]. For

outlier detection, Sim was set to NCC and β was selected empirically with values

of 0.6, 0.65 and 0.7 per iteration to account for increasing accuracy in (3.3), respec-

tively. There is broad consensus that SR in MRI can only reliably be achieved in

through-plane and not in in-plane direction [Peled and Yeshurun, 2002,Plenge et al.,

3https://github.com/KCL-BMEIS/niftyreg
4https://github.com/gift-surg/NiftyMIC
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2012, Scheffler, 2002, Van Reeth et al., 2012]. We, therefore, defined the isotropic

reconstruction grid for the abdominal SRRs by the in-plane resolution of the stacks

(0.78mm). Given the SST2W slice thickness of 5mm, our algorithm created an SR

volume with approximately six times the resolution in the through-plane direction as

the source SST2W images. For the brain, an isotropic reconstruction grid of 0.98mm

was used to approximately match the HR T2W volume resolution for the quantita-

tive comparisons. The regularization parameter α was set to be 0.01 and 0.02 for

the abdominal and quasi-static control SRRs, respectively. The different values are

a result of the different reconstruction grid resolutions and were determined using a

combination of L-curve studies [Hansen, 1992] and visual inspections.

Evaluation Methodology

Optimisation Control Studies for Brain MRI SRR. Six source data config-

urations for SRR generation were evaluated, using (i) axial and coronal (’a+c’, two

series); (ii) axial, coronal and sagittal (’a+c+s’, three series); (iii) axial, coronal,

sagittal and slice-select direction shifted axial, coronal and sagittal (’2a+2c+2s’, six

series); (iv) axial, coronal, sagittal and the first three oblique planes as shown in

Figure 3.5 (’a+c+s+3obl’, six series); (v) axial, coronal, sagittal and all four oblique

planes (’a+c+s+4obl’, seven series); and (vi) both axial, both coronal, both sagittal

and all four oblique planes (’2a+2c+2s+4obl’, ten series).

To evaluate the registration/motion-correction approaches, five SRRs were gener-

ated for each source data configuration using (i) no registration/motion correction

(static SRR); (ii) reference-guided rigid registration using HT2W data (RG-HT2W);

(iii) reference-guided rigid registration using BFFE data (RG-BFFE); (iv) reference-

guided rigid registration using HR T2W data (RG-HRT2W); and (v) outlier-robust

rejection rigid registration using only the SST2W source data used for each con-

figuration (NiftyMIC). HR T2W brain imaging was used as ground-truth/reference

standard imaging, with NCC used for both the similarity measure for each of the

registration steps and the quantification of ground-truth similarity. Alternative simi-

larity measures for registration (mutual information, MI; normalised mutual informa-
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tion, NMI) and ground-truth similarity (structural similarity index measure [Wang

et al., 2004], SSIM; NMI; peak-signal-to-noise ratio, PSNR) were also investigated

and are presented in Figures B.2 and B.3 and Table B.1.

Analysis of RG-HRT2W based SRR results from the quasi-static control data is

used to establish the optimal number and orientation of SST2W series for SRR while

excluding the confounding factor of motion as much as possible.

Optimisation Studies for Upper Abdominal MRI SRR. The results ob-

tained from the control brain studies were used to inform the abdominal imaging

optimisation study methodology. Three source data configurations for SRR genera-

tion were evaluated: (i) axial and coronal (’a+c’, two series), (ii) axial, coronal and

sagittal (’a+c+s’, three series), and (iii) axial, coronal, sagittal and the first three

oblique planes (’a+c+s+3obl’, six series). Four SRR approaches were evaluated for

all previously utilised methods excluding the unavailable RG-HRT2W approach in

this scenario.

In the absence of ground-truth/reference standard imaging, assessment was based

on (i) numerical SRR self-consistency similarity measures, and (ii) subjective semi-

quantitative analysis by two radiologists. Self-consistency was defined as the simi-

larity between each slice ys,i and its projected SRR counterpart As,ix according to

a similarity metric Sim, i.e. Sim(ys,i, As,ix), whereby NCC was used as Sim (SSIM,

NMI and PSNR are additionally presented in Figure B.4 and Table B.3).

Subjective semi-quantitative evaluation was undertaken independently by two ra-

diologists with over ten years experience in abdominal imaging (MC, PP) blinded to

the SRR source data configuration or registration/motion-correction approach. The

clarity of high signal intensity anatomical (biliary ductal) structures and presence

of misregistration artefacts were scored as described in Section 3.3.1, and within-

subject SRRs were ranked in order of preference. Where inter-reader discrepancies

were noted, images were jointly re-evaluated and a consensus score was recorded

after joint re-evaluation.

Because a reliable evaluation of 96 SRRs was not feasible, assessment was restricted

to 24 SRRs at a time. The first experiment evaluated the three best-performing
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image registration/motion-correction approaches determined from numerical self-

consistency measures, in SRRs generated from the densest source data configuration

(a+c+s+3obl, six series). The second experiment evaluated all three source data

configurations for SRRs generated using the best-performing MRCP SRR approach

determined from the first experiment.

Upper Abdominal MRI SRR Expert-Reader Validation Studies. Using

the previously determined ideal number and orientation of SST2W series and the best

approach for abdominal MRCP SRR, four radiologists (MC, PP, LF, ZA), three with

subspeciality interest in hepato-pancreatico-biliary imaging and all with more than

eight years experience in abdominal imaging, independently validated upper abdom-

inal SRRs by direct comparison with standard protocol axial and coronal SST2W

images, using a semi-quantitative scoring system. Both SRRs and standard SST2W

images were scored for preservation of anatomical information at nine anatomical

sites, focused predominantly on the assessment of peri-ductal and extra-ductal soft

tissues. Readers also scored regions for the presence of artefacts, i.e. subjective but

clinically apparent loss, addition or distortion of structures, introduced by SRR and

recorded their subjective preference relative to standard SST2W images.

Statistical Analysis. Non-parametric statistical tests were used for the non-normally

distributed NCC scores obtained from similarity measures between quasi-static con-

trol SRRs and ground-truth/reference standard imaging and for upper abdominal

SRR self-consistency. This included Wilcoxon signed-rank tests for paired compar-

isons for the quasi-static control brain studies, and Kruskal-Wallis with post-hoc

Dunn’s tests for multiple comparisons for the abdominal optimisation studies. For

the abdominal expert-reader experiments, non-parametric statistical tests were used

for all reader-derived semi-quantitative scores, specifically Kruskal-Wallis tests with

post-hoc Dunn’s tests were used to determine differences between source data con-

figurations or registration/motion-correction strategies for upper abdominal SRRs.

For validation studies, Bland-Altman analysis of agreement for averaged clarity of

anatomical information scores for SRR and standard SST2W imaging were compared
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Figure 3.7.: Ground-truth (HR T2W) similarities for static and reference-guided
SRR outcomes for the quasi-static control brain experiment whereby each of the
seven subjects is assigned a different marker. The more input stacks are used the
higher the similarity scores. Moreover, motion correction markedly improves the

ground-truth similarities which was performed by rigidly registering each individual
slice to the HR T2W volume using NCC as the similarity measure. A visual
comparison for one subject is provided in Figure 3.8. Stars indicate statistical
differences between the groups using a pairwise Wilcoxon signed-rank test

(p < 0.05).

using the median difference as a bias measure and 2.5th and 97.5th percentiles as the

95% Limits-of-Agreement (LoA). Wilcoxon signed-rank tests were used to test for dif-

ferences of anatomical clarity between SRRs and standard clinical axial and coronal

SST2W data (’Ax&Co’), subjective preference and the presence of visible artefacts.

The threshold of statistical significance for all tests was defined as p < 0.05.

Results

Optimisation Control Studies for Brain MRI SRR. A total of 210 quasi-

static control brain SRRs were generated (30 SRRs for each of the seven volunteers).

The box-plot in Figure 3.7 illustrates the impact of motion correction and source

data configuration on the NCC, SSIM, NMI and PSNR scores. It shows that adding

more than six input stacks (a+c+s+3obl) leads to only little numerical improvement

in reconstruction quality for MRCP SST2W data. Additional comparisons including
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Figure 3.8.: Qualitative comparison of the static and reference-guided SRR
outcome of one subject for various input data scenarios in the sagittal view
(additional axial and coronal view comparisons are shown in Figure B.1). It

illustrates the impact of the number of input stacks and how multiple orientations
can improve PVE recovery. In particular, SRR (a+c+s+3obl) shows visually higher
anatomical accuracy than SRR (2a+2c+2s) despite the same number of six input
stacks used for the SRR. The red arrows (a) underline that the SRR based on only
two stacks (a+c) as currently available for clinical MRCP study protocols produces
a very poor SRR quality which is especially noticeable in the sagittal view. The
magenta arrows (b) illustrate that for three input stacks (a+c+s) the corpus

callosum can only be reconstructed with limited geometrical integrity.
Motion-correction helps to recover it more clearly by adding three additional
stacks (2a+2c+2s) as indicated by arrows (c). The green arrows (d) show the
improved visual clarity at the medulla due to better PVE correction by using

oblique data. Additional oversampling for high input stack numbers leads to higher
PSNR. This may also result in clear tissue boundaries even in case of insufficient

motion correction for the static SRR as indicated by the cyan arrow (e).

Table 3.3.: Ground-truth (HR T2W) NCC-similarities of obtained quasi-static
control brain SRRs for an increasing number of input stacks for different motion
correction (MC) strategies summarised for all seven subjects. The rows are sorted

in a descending order according to the SRR outcome for ’a+c+s+3obl’.
MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl
RG-HRT2W 0.751 ± 0.046 0.770 ± 0.039 0.775 ± 0.038 0.779 ± 0.038
RG-BFFE 0.735 ± 0.047 0.754 ± 0.039 0.759 ± 0.038 0.764 ± 0.038
NiftyMIC 0.724 ± 0.052 0.748 ± 0.043 0.751 ± 0.041 0.758 ± 0.040
RG-HT2W 0.708 ± 0.042 0.734 ± 0.037 0.739 ± 0.037 0.750 ± 0.037
Static SRR 0.689 ± 0.049 0.708 ± 0.049 0.727 ± 0.050 0.724 ± 0.049
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all motion-correction strategies are provided in Figure B.3.

A visual comparison in Figure 3.8 illustrates how different source data configu-

rations affect the SRR results. In particular, using two input stacks (a+c) leads

to inferior outcomes which is especially noticeable in the sagittal plane. Three in-

put stacks (a+c+s) yield a substantial visual improvement that is further visible

by adding three more stacks as shown for both 2a+2c+2s and a+c+s+3obl SRR

outcomes. Although relatively subtle in this comparison, using oblique orientations

(a+c+s+3obl) instead of same-plane acquisitions (2a+2c+2s) can lead to more ac-

curate SRRs depending on the curvature of tissue structures. This is indicated at

the medulla which appears more blurred for the 2a+2c+2s outcome. Adding more

stacks shows little visual improvement. However, the additional oversampling leads

to higher PSNR and may result in clearer tissue boundaries (Figure 3.8).

A quantitative comparison of the five registration/motion-correction approaches

with respect to different source data configurations is shown in Table 3.3. Only a sub-

set of all performed comparisons is provided for simplicity (further comparisons are

available in Table B.1 which also includes using the axial SST2W stack (SST2WAx)

as another possible choice as reference image for the reference-guided SRR approach).

The RG-HRT2W outcome represents an approximation of the upper bound for the

theoretically achievable MRCP SRR quality. Of the remaining four SRR approaches,

using the BFFE volume as a reference performs second best. NiftyMIC, which does

not rely on any external reference, performs between RG-BFFE and RG-HT2W.

NiftyMIC demonstrated negligible outlier rejections (average 0.05± 0.21 slices) dur-

ing SRR. In terms of source data configurations, numerical outcomes confirm the

importance of multiplanar image input for high SRR quality. In particular, oblique

planes (a+c+s+3obl) are preferable over multiple standard planes (2a+2c+2s).

Optimisation Studies for Upper Abdominal MRI SRR. Based on the find-

ings from the control quasi-static brain MR data, we tested three source data con-

figurations (a+c, a+c+s, a+c+s+3obl) using all four registration/motion-correction

methods available in the abdomen (RG-BFFE, RG-HT2W, NiftyMIC and static

SRR). A total of 96 abdominal SRRs were generated (12 SRRs for each of the
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Table 3.4.: Clinical evaluation by two radiologists for abdomen averaged over all
eight subjects for two separate experiments: A first experiment based on six input

stacks (a+c+s+3obl), and a second experiment involving three source data
combinations (a+c, a+c+s, a+c+s+3obl) for the best performing method in the
first experiment (NiftyMIC). Clarity of anatomical structures score indicates how
well common bile duct (CBD), and left and right hepatic ducts (LHD and RHD)

are visualized in each image with ratings 0 (structure not seen), 1 (poor
depiction), 2 (suboptimal visualization; image not adequate for diagnostic
purposes), 3 (clear visualization of structure but reduced tissue contrast;

image-based diagnosis feasible) and 4 (excellent depiction; optimal for diagnostic
purposes). Visible motion score rates the amount of visible non-corrected motion
from score 0 (complete motion) to 3 (no motion). Radiologists’ preference ranks
the subjectively preferred reconstructions from 1 to 3 (least to most preferred).
Stars in the last three columns indicate that the respective score is statistically

significantly different from the respective other two groups based on Kruskal-Wallis
and post-hoc Dunn tests (p < 0.05).

Clarity of Anat. Structures Total Score
Anat. Clarity

Visible
Motion

Radiologists’
Preference

CBD LHD RHD

Static SRR 1.25±0.46 1.25±0.46 1.25±0.46 3.75±1.16 1.25±0.46 1.62±0.52

RG-HT2W 1.50±0.76 1.62±0.52 1.62±0.52 4.75±1.58 1.25±0.71 1.38±0.52

E
xp

.
1:

a+
c+

s+
3o

bl

NiftyMIC 2.88±0.35 2.62±0.52 2.62±0.52 8.12±1.25∗ 2.25±0.71∗ 3.00±0.00∗

a+c 1.38±0.52 1.12±0.35 1.12±0.35 3.62±0.74 1.00±0.00 1.12±0.35

a+c+s 1.75±0.46 1.50±0.53 1.50±0.53 4.75±0.89 1.38±0.52 1.88±0.35

E
xp

.
2:

N
ift
yM

IC

a+c+s+3obl 2.62±0.52 2.50±0.76 2.25±0.71 7.38±1.41∗ 2.12±0.35 3.00±0.00∗
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Figure 3.9.: Self-consistency evaluation given by projected NCC-similarities for all
slices of obtained abdominal SRRs for an increasing number of input stacks for
different motion-correction strategies summarised for all eight subjects. All

self-consistency outcomes between SRR approaches, except for RG-HT2W vs Static
SRR for ’a+c+s’, are significantly different within each source data configuration

based on Kruskal-Wallis with post-hoc Dunn tests (p < 0.05).

eight volunteers). The scores in Figure 3.9 indicate highest self-consistency for the

NiftyMIC SRR outcomes across source data configurations for NCC followed by

Static SRR (more comparisons including SSIM, NMI and PSNR as self-consistency

similarity measures in addition to a comparison against a rigid-only variant for the

reference-guided approach, i.e. no in-plane deformation step, are provided in Ta-

ble B.3). Lower outcomes for the reference-guided approaches indicate the existence

of slice misregistrations with RG-HT2W producing consistently better results. For

NiftyMIC, the statistics for the outlier-robust framework were (# of rejected slices /

# of total slices) 0.14±0.35 / 30.43±4.40, 0.71±0.88 / 50.29±4.33, and 5.00±2.14 /

108.57±4.87 for the a+c, a+c+s and a+c+s+3obl input data scenarios, respectively,

indicating a moderate increase of slice rejections for increasing input data.

Figure 3.10 shows that SRRs based on fewer input stacks represent anatomi-

cally less plausible reconstructions. Both RG-HT2W and NiftyMIC show improved

anatomical clarity over the static SRR approach. This is especially the case for the

SRRs based on six input stacks. However, RG-HT2W becomes less accurate in areas

with poor HT2W image contrast.
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Figure 3.10.: Qualitative comparison between the SRR approaches using either two
or six input stacks. Both motion-correction frameworks, i.e. the HT2W-guided one

and NiftyMIC, achieve SRRs with visually improved anatomical plausibility.
However, in areas where MRCP lacks contrast, NiftyMIC tends to produce superior
results. Moreover, using six input stacks can lead to better SRR outcomes in case

of adequate motion correction which is especially visible in the sagittal view.
Examples for such visual improvements are indicated by arrows.
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Table 3.4 summarises the two radiologists’ qualitative evaluation. Superiority of

NiftyMIC over RG-HT2W and Static SRR in terms of anatomical clarity, amount

of visible motion and the radiologists’ preference was statistically significant. By se-

lecting NiftyMIC as the best-performing MRCP SRR approach, a second experiment

demonstrated the significantly better reconstruction quality achieved by using the

a+c+s+3obl source data. In particular, it was selected as the radiologists’ prefer-

ence without exception. Two independently conducted experiments with, at least,

days delay, show little variability in the radiologists’ assessment of the NiftyMIC

a+c+s+3obl outcome, Table 3.4 rows 3 and 6.

Upper Abdominal MRI SRR Expert-Reader Validation Studies. NiftyMIC

with a+c+s+3obl input stacks was chosen as best-performing method for subsequent

validation studies. Bland-Altman analysis of agreement between SRR and standard

axial and coronal SST2W data in Figure 3.11 confirms a systematically better out-

come in clarity of anatomical structures presented on the SRRs. Assessment of

the individual anatomical regions shows a statistically better SRR performance for

two of the nine assessed anatomical features (cystic duct, and hepatic artery and

central branches). Expert-reader subjective preference scores demonstrate statisti-

cally significant preferences for vascular structures, the cystic duct and first genera-

tion intrahepatic ducts. Pancreatic duct, head-of-pancreas parenchyma and ampulla

were preferred on standard imaging. Importantly, artefact scores were generally well

above 1 which underlines that the SRRs present minimal or no new artefact in com-

parison with the original data. On average, no structure was scored as having less

artefact than the original data.

PSF-Aware Slice-to-Volume Registration. For the quasi-static control brain

data, additional experiments were performed to investigate the potential benefit of

using PSF-aware registration. The box-plots in Figure 3.12 illustrate the differences

in SRR quality obtained with and without PSF-awareness for the rigid slice-to-

volume motion correction based on RG-HRT2W-NCC, i.e using NCC as similarity

measure for RG-HRT2W. The comparison in Table 3.5 summarizes the impact of
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Figure 3.11.: Clinical evaluation by four radiologists for the abdomen of the third
experiment for all eight subjects. Top panels: Clinical interpretability scores were 0
(structure not identified), 1 (structure poorly visualized) and 2 (structure clearly

visualized). Bottom left: Subjective impression score ranks how frequently the SRR
(NiftyMIC a+c+s+3obl) was considered subjectively of worse, same or better

quality than the original axial and coronal SST2W data for interpretation. Bottom
right: Artefacts measure to what extent the SRR presented additional artefacts
with respect to the original axial and coronal SST2W data with scores 0 (lots of
new artefacts), 1 (minimal new artefacts), 2 (no new artefact) and 3 (less artefact
than original). Stars are shown to illustrate significant outcomes by rejecting the

respective H0 hypothesis based on a Wilcoxon signed-rank test (p < 0.05).
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Figure 3.12.: Evaluation of ground-truth (HR T2W) similarities for PSF-aware
registration. Ground-truth (HR T2W) similarities for standard and PSF-aware
reference-guided SRR outcomes for the quasi-static brain experiment involving
seven subjects. Stars indicate statistical differences between the groups using a

pairwise Wilcoxon signed-rank test (p < 0.05). The PSF-aware registration leads to
higher NCC-similarities across input source configurations. However, this trend
cannot be confirmed in terms of SSIM which is further underlined in Table 3.5.

using PSF-awareness during registration for additional motion correction strategies

whereby only the SRR using the source data configuration ’a+c+s+3obl’ was consid-

ered for its potential relevance in MRCP SRR. However, whereas a PSF-awareness

in the registration tends to achieve improved ground-truth similarities in terms of

measured NCC and PSNR scores, this trend cannot be confirmed systematically.
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Table 3.5.: Evaluation of ground-truth similarities for PSF-aware registration.
Ground-truth (HR T2W) similarities of the ’a+c+s+3obl’-SRR outcome of

obtained quasi-static control brain SRRs with and without PSF-awareness for
different reference-guided motion correction (MC) strategies summarised for all

seven subjects. Using the short-hand
“RG-Reference-SimilarityMeasureForRegistration”, the settings for the

reference-guided SRR approach are shown, where, e.g., RG-BFFE-NMI refers to
the use of BFFE as reference volume for guidance and NMI as similarity measure

for registration. The rows are sorted in a descending order according to the
PSF-aware-based result as measured in NCC (second column). Stars indicate

statistical differences between the groups using a pairwise Wilcoxon signed-rank
test (p < 0.05).

NCC SSIM PSNR
MC Strategy Standard PSF-Aware Standard PSF-Aware Standard PSF-Aware
RG-HRT2W-NCC 0.78±0.04 0.78±0.04∗ 0.41±0.06∗ 0.40±0.06 14.35±3.29 14.43±3.29∗

RG-HRT2W-NMI 0.77±0.04 0.77±0.04∗ 0.41±0.06 0.41±0.06∗ 14.25±3.27 14.26±3.29
RG-BFFE-NCC 0.76±0.04 0.77±0.04∗ 0.40±0.06 0.40±0.06 14.38±3.29 14.41±3.29∗

RG-BFFE-NMI 0.76±0.04 0.77±0.04∗ 0.40±0.06 0.41±0.06∗ 14.33±3.30 14.37±3.31∗

RG-HRT2W-MI 0.78±0.04∗ 0.76±0.05 0.39±0.06∗ 0.34±0.06 14.47±3.27 14.67±3.14
RG-HT2W-NCC 0.75±0.04∗ 0.74±0.04 0.39±0.05∗ 0.39±0.05 14.15±3.11∗ 14.05±3.08
RG-SST2WAx-NCC 0.74±0.04 0.72±0.04 0.38±0.05 0.37±0.04 14.13±3.21 13.50±3.08
RG-BFFE-MI 0.48±0.20 0.62±0.15∗ 0.14±0.16 0.23±0.15∗ 14.41±2.71 14.72±2.93
RG-SST2WAx-MI 0.41±0.06 0.50±0.04∗ 0.10±0.02 0.14±0.03∗ 13.85±2.13 13.88±2.46
RG-HT2W-MI 0.29±0.10 0.41±0.08∗ 0.07±0.03 0.12±0.03∗ 13.53±2.02 13.89±2.09∗

Table 3.6.: Evaluation of slice-similarities for PSF-aware registration.
Slice-similarities Sim(ys,i, As,ixref) between slices ys,i and the projection As,ixref
from the reference volume xref that was used by the respective reference-guided

motion correction (MC) strategy with and without PSF-awareness summarised for
all slices of the seven subjects. Using the short-hand

“RG-Reference-SimilarityMeasureForRegistration”, the settings for the
reference-guided SRR approach are shown, where, e.g., RG-BFFE-NMI refers to
the use of BFFE as reference volume for guidance and NMI as similarity measure

for registration. The rows are sorted according to Table 3.5. Stars indicate
statistical differences between the groups using a pairwise Wilcoxon signed-rank

test (p < 0.05).
NCC SSIM PSNR

MC Strategy Standard PSF-Aware Standard PSF-Aware Standard PSF-Aware
RG-HRT2W-NCC 0.79±0.08 0.79±0.08∗ 0.46±0.07∗ 0.45±0.07 13.34±4.17 13.39±4.17∗

RG-HRT2W-NMI 0.78±0.09 0.78±0.09∗ 0.46±0.07 0.47±0.07∗ 13.23±4.21 13.29±4.18∗

RG-BFFE-NCC 0.87±0.04 0.88±0.04∗ 0.40±0.06∗ 0.40±0.06 11.26±3.32 11.25±3.30
RG-BFFE-NMI 0.87±0.05 0.87±0.04∗ 0.40±0.06 0.40±0.06∗ 11.26±3.35 11.28±3.32∗

RG-HRT2W-MI 0.76±0.12∗ 0.71±0.17 0.43±0.09∗ 0.37±0.13 13.25±4.10∗ 13.04±4.05
RG-HT2W-NCC 0.84±0.09 0.85±0.09∗ 0.18±0.06∗ 0.18±0.06 7.66±2.54∗ 7.54±2.61
RG-SST2WAx-NCC 0.80±0.12∗ 0.79±0.12 0.44±0.23∗ 0.43±0.22 23.71±5.09∗ 23.60±4.89
RG-BFFE-MI 0.46±0.33 0.58±0.33∗ 0.16±0.17 0.22±0.17∗ 10.64±3.25 10.86±3.27∗

RG-SST2WAx-MI 0.37±0.28 0.46±0.28∗ 0.15±0.18 0.19±0.20∗ 18.22±2.91 18.98±3.26∗

RG-HT2W-MI 0.19±0.29 0.30±0.37∗ 0.03±0.08 0.06±0.09∗ 6.93±2.53 7.12±2.49∗

A similarly inconclusive outcome can be observed by assessing the slice-similarities

Sim(ys,i, As,ixref) between slices ys,i and the projection As,ixref from the respective
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3 Super-Resolution Reconstruction of Upper Abdominal MRI

reference volume xref used to guide the registration as shown in Table 3.6. PSF-aware

registration generally achieves higher similarities for the slice motion correction es-

timates in terms of NCC, but not necessarily in terms of SSIM or PSNR.

Abdominal MRI SRR using Total Variation Regularization. To investigate

a potential improvement of the volumetric reconstruction quality by using a different

regularizer other than the proposed first-order Tikhonov regularization (TK1), we

additionally performed comparisons against isotropic total variation (TV) regular-

ization. Thus, we compared the obtained SR reconstructions

x∗ := arg min
x≥0

(∑
s∈S

∑
i∈Is

1

2
‖ys,i −As,ix‖2`2 + αΨ(x)

)
∈ RN (3.4)

using both the TK1 and TV regularizers defined as

Ψ(x) = TK1(x) :=
1

2
‖∇x‖2`2 :=

1

2

N∑
k=1

(
∂xx(k)

)2
+
(
∂yx(k)

)2
+
(
∂zx(k)

)2 (3.5)

and

Ψ(x) = TViso(x) :=
∥∥|∇x|

∥∥
`1

:=

N∑
k=1

√(
∂xx(k)

)2
+
(
∂yx(k)

)2
+
(
∂zx(k)

)2
, (3.6)

respectively. However, while the TK1 problem can be solved efficiently using a lin-

ear least-squares formulation the TV formulation requires a more complex framework

that can deal with the associated non-smooth (but still convex) optimisation prob-

lem. For the implementation of the isotropic TV solver we used a primal-dual (PD)

algorithm presented in [Chambolle and Pock, 2011] known for its suitability and

fast convergence in imaging problems. Our PD solver implementation is publicly

available in the NSoL5 package which is integrated into NiftyMIC.

To allow for a direct comparison of the TV and TK1 regularizer outcomes, their

respective SRR problem (3.4) was solved after performed motion correction of the

respective MRCP SRR frameworks as presented in the Sections 3.2.1 and 3.2.2 (SRR

5https://github.com/gift-surg/NSoL
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using Reference-Guided Multimodal Deformable Motion Correction and Outlier-

robust SRR using Monomodal Rigid Motion Correction). Therefore, for the non-

iterative reference-guided approach, (3.4) was solved after finishing the individual

slice registrations. For the iterative two-step registration-reconstruction framework

NiftyMIC, the respective regularizer is applied before the final SRR reconstruction

step. This process allows a direct comparison of the TV and TK1 regularizers on the

obtained SRR outcome without the confounding factor of different motion correction

estimates. Additionally, this helps to keep the computational times low for NiftyMIC

as the TV problem only needs to be solved once at the end of the two-step iterations.

Similar to the parametrisation of the TK1-based reconstruction pipeline described

in the Section 3.4.2 (Data and Data Preprocessing), parameter studies were per-

formed to determine suitable TV-regularization parameters α and the number of

required PD iterations to achieve convergence. Based on additional visual inspec-

tion, TV-regularization parameters of α ∈ {0.0001, 0.0005, 0.0009} were chosen for

the comparisons in here. Considering the input source data configurations of ’a+c’,

’a+c+s’ and ’a+c+s+3obl’, it was found that 15 PD iterations are sufficient to

achieve convergence for the chosen regularization parameters.

Table 3.7 provides a direct comparison of the obtained ground-truth (HR T2W)

similarities for the quasi-static control brain experiment using TK1 and TV reg-

ularization for the SRR after RG-HRT2W-NCC-based motion correction. A visual

summary of the outcomes is also provided in Figure 3.13 comparing TK1 and TV us-

ing α = 0.0005. The comparisons show that TV does not lead to an improvement of

the SRR as quantified by the similarity measures of NCC, SSIM and NMI. However,

TV shows slightly increased PSNR compared to TK1. A qualitative comparison in

Figure 3.14 represents an extension to Figure 3.10 and shows that TV produces vi-

sually similar reconstructions compared to TK1 for low regularization parameters α.

Larger α values for TV can lead to slightly sharper contours but a delicate balance

needs to be found in order to avoid the introduction of staircase artefacts typical for

TV which may well suppress clinically relevant structural information.

Finally, typical computational times to reconstruct a HR volume around the biliary
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Table 3.7.: Ground-truth (HR T2W) similarities of obtained quasi-static control
brain SRRs using first-order Tikhonov (TK1) and isotropic Total Variation (TV)
regularization SRR outcomes for an increasing number of input stacks for all seven
subjects. The respective regularization was applied in the final reconstruction step

using RG-HRT2W-NCC as the motion-correction strategy.

(a) NCC
Regularizer a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
TK1 0.751 ± 0.046 0.770 ± 0.039 0.775 ± 0.038 0.779 ± 0.038 0.780 ± 0.038 0.781 ± 0.038
TV (α=9e-4) 0.730 ± 0.043 0.750 ± 0.037 0.756 ± 0.036 0.761 ± 0.036 0.763 ± 0.036 0.764 ± 0.035
TV (α=5e-4) 0.727 ± 0.043 0.748 ± 0.037 0.755 ± 0.036 0.759 ± 0.036 0.761 ± 0.036 0.763 ± 0.035
TV (α=1e-4) 0.723 ± 0.043 0.745 ± 0.037 0.753 ± 0.036 0.757 ± 0.036 0.760 ± 0.036 0.762 ± 0.035

(b) SSIM
Regularizer a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
TK1 0.368 ± 0.047 0.386 ± 0.051 0.402 ± 0.053 0.407 ± 0.054 0.411 ± 0.055 0.416 ± 0.055
TV (α=9e-4) 0.325 ± 0.039 0.348 ± 0.041 0.360 ± 0.044 0.363 ± 0.044 0.367 ± 0.045 0.371 ± 0.045
TV (α=5e-4) 0.320 ± 0.040 0.342 ± 0.043 0.356 ± 0.045 0.359 ± 0.045 0.363 ± 0.046 0.368 ± 0.046
TV (α=1e-4) 0.309 ± 0.041 0.330 ± 0.044 0.349 ± 0.046 0.351 ± 0.046 0.355 ± 0.046 0.363 ± 0.047

(c) NMI
Regularizer a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
TK1 1.090 ± 0.014 1.103 ± 0.015 1.107 ± 0.016 1.110 ± 0.016 1.111 ± 0.016 1.112 ± 0.016
TV (α=9e-4) 1.086 ± 0.012 1.097 ± 0.013 1.100 ± 0.014 1.103 ± 0.014 1.104 ± 0.014 1.104 ± 0.014
TV (α=5e-4) 1.083 ± 0.012 1.095 ± 0.013 1.098 ± 0.014 1.100 ± 0.014 1.101 ± 0.014 1.102 ± 0.014
TV (α=1e-4) 1.080 ± 0.011 1.091 ± 0.012 1.095 ± 0.013 1.097 ± 0.013 1.099 ± 0.013 1.100 ± 0.014

(d) PSNR
Regularizer a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
TK1 14.275 ± 3.048 14.230 ± 3.027 14.276 ± 3.011 14.349 ± 3.042 14.344 ± 3.027 14.350 ± 3.020
TV (α=9e-4) 14.311 ± 2.821 14.379 ± 2.820 14.420 ± 2.808 14.496 ± 2.828 14.510 ± 2.819 14.523 ± 2.819
TV (α=5e-4) 14.223 ± 2.799 14.306 ± 2.803 14.376 ± 2.798 14.448 ± 2.815 14.468 ± 2.809 14.493 ± 2.811
TV (α=1e-4) 14.114 ± 2.769 14.215 ± 2.781 14.325 ± 2.786 14.392 ± 2.799 14.420 ± 2.796 14.460 ± 2.802

tree anatomy with our non-optimized implementation are shown in Table 3.9 as

measured on a local workstation using 8 CPUs. For the SRR obtained by NiftyMIC

using the ’a+c+s+3obl’ as source data configuration results in a total computational

time of about 40min using a TK1 regularizer. Using TV instead increases the total

computational time by nearly 300% to about 2h 30min.

Fast SRR processing times are not a main consideration in the context of obtaining

high-resolution visualizations of abdominal anatomy from MRCP data. However, our

results underline that TV regularization substantially increases the computational

cost but tends to show only little improvement in the obtained reconstruction quality.

3.4.3. Discussion

In this section, we presented the first comprehensive analysis of SRR for MRCP stud-

ies. Using quasi-static control data from the brain and upper abdominal MR imaging
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Figure 3.13.: Ground-truth (HR T2W) similarities for first-order Tikhonov (TK1)
and isotropic Total Variation (TV) regularization SRR outcomes for the
quasi-static brain experiment involving seven subjects. The respective

regularization was applied in the final reconstruction step using RG-HRT2W-NCC
as the motion-correction strategy. Stars indicate statistical differences between the

groups using a pairwise Wilcoxon signed-rank test (p < 0.05).

of healthy volunteers, we optimised source data configuration and motion-correction

strategies for MRCP SRR. We validated optimised SRRs using expert-readers to

show that SRRs can lead to novel high-quality HR visualization of peri-ductal anat-

omy. In particular, we empirically showed that SRRs based on the clinically available

axial and coronal images are of inferior quality compared to those with additional

input stacks. By performing highly controlled brain experiments we found that af-

ter approximately six input stacks the SRR quality achievable with MRCP SST2W

sequences plateaus. Moreover, we showed that not only the number but also the ori-

entation of the SST2W stack acquisitions matters. In particular, for the same number

of six input stacks using oblique orientations on top of the standard anatomical direc-

tions produces superior SRR outcomes compared to using multiple standard axial,

coronal and sagittal anatomical acquisitions. Notably, motion correction was needed

for these experiments to exclude the confounding factor of motion despite the ’static’
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Figure 3.14.: Qualitative comparison between first-order Tikhonov (TK1) and
isotropic Total Variation (TV) regularization in the final reconstruction step using

NiftyMIC (a+c+s+3obl). The zoomed windows illustrate that smaller
regularization parameters α for TV result in similar SRRs as obtained by TK1.

Increasing α leads to reconstructions with slightly sharper edges but at the cost of
a staircasing effect typical for TV regularization [Chambolle and Pock, 2011] which
presents artificial discontinuities and may suppress clinically relevant structural

information.
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Table 3.9.: Typical computational times to create a HR visualization of the biliary
tree split into motion correction and volumetric reconstruction processing times.

Motion correction for NiftyMIC refers to the total time of the two-step registration
and TK1-based reconstruction iterations without the final SRR step. Volumetric
reconstruction refers to solving the SRR problem (3.2) to obtain an isotropic
volume of 0.78mm resolution after performed motion correction using either

first-order Tikhonov (TK1) or isotropic total variation (TV) regularizations (3.5)
and (3.6), respectively. The total reconstruction time is determined by the sum of

the individual motion-correction and volumetric reconstruction times.
Source Data
Configuration

Motion Correction: Volumetric Reconstruction:
RG-HT2W-NCC NiftyMIC TK1 TV

a+c 1min 30 s 7min 20 s 1min 17min
a+c+s 2min 30 s 10min 40 s 1min 30 s 25min
a+c+s+3obl 7min 15 s 32min 15 s 7min 15 s 2h

nature of brain imaging.

High anatomical fidelity of the SRRs relies on the accurate establishment of gener-

ally non-linearly affected, anatomical correspondences captured by different SST2W

stacks acquired at different breath-holds. We explored two SRR frameworks that are

based on different motion-correction strategies: A non-iterative framework based on

reference-guided multimodal, in-plane deformable motion correction that leverages

the existence of a separate HR volume of a different modality for motion correction,

and an iterative outlier-robust SRR framework that is based on monomodal rigid mo-

tion correction that does not rely on any external reference. For the reference-guided

approach, we found that the optimal combination of reference image and associated

similarity measure for registration is difficult to determine reliably. Whereas the

controlled quasi-static brain experiments indicated high quality SRR outcomes by

using the BFFE combined with NCC, this set-up failed in the abdominal experi-

ments due to misregistrations. We hypothesize that this comes from more complex

appearance differences between BFFE and SST2W image contrasts we noticed in

the abdomen compared to the brain, including the more pronounced cancellation

effects around fat-water tissue boundaries typical for BFFE (Figures 3.6 and 3.15).

Besides the reported similarity measures and references in here, we also ran experi-

ments using NMI, MI and LNCC as additional similarity measures and the standard

axial SST2W series as alternative reference, all of which corroborated the findings
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Figure 3.15.: T2W brain and abdominal data associated with the acquisition
protocol defined in Table 3.2. For the abdomen, more complex appearance

differences between BFFE and SST2W image contrast can be noticed, including
the more pronounced cancellation effects around fat-water tissue boundaries typical

for BFFE.

using NCC (Tables B.1 and B.3). Among reference-guided SRR frameworks applied

to the abdomen, only the HT2W-guided approach driven by NCC showed promising

results in regions of high MRCP contrast but is prone to artefacts in areas where this

is not the case. Our results indicate that the RG-HT2W-based motion correction can

lead to improved anatomical clarity compared to the Static SRR for the abdomen.

However, it is prone to creating artefacts due to slice misregistrations which may

degrade the overall reconstruction quality. Additional experiments suggest that the

in-plane deformation step does not substantially improve the results (Table B.3).

Similarly, experiments incorporating the PSF for registration remained inconclusive

(Figure 3.12 and Tables 3.5 and 3.6). Contrastingly, we found very encouraging out-

comes for the outlier-robust SRR approach that was originally developed for fetal

brain MRI. Despite the use of a rigid motion-correction model only, it could consis-

tently generate SRRs of the biliary tree that have the potential for diagnostic use.

We therefore conclude that the encountered motion was approximately rigid for the

most part and that the outlier rejection mechanism is effective in eliminating slices
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where this was violated. In case of sufficient data oversampling, the SRR algorithm

was then able to reconstruct anatomical structures with high anatomical clarity.

Qualitative expert-reader comparisons showed that the optimised SRRs tend to pro-

vide limited value for regions like ampulla, the head of pancreas parenchyma, the

imaged pancreatic duct and the CBD where specifically developed MRCP SST2W

sequences traditionally show high diagnostic yield. However, in regions where the

SST2W data typically provides only limited insight such as the portal vein and first

generation branches, hepatic artery and central branches, cystic duct, and the imaged

first generation intrahepatic ducts the SRRs allow an assessment with much higher

anatomical detail which has important applications particularly for the assessment

of hepato-pancreatico-biliary cancers. Therefore, we believe that using SRRs along-

side the original data has real potential to improve the diagnostic yield of standard

MRCP imaging, and improve patient care by reducing delays introduced by the need

for further investigations, particularly in the context of cancer care.

Limitations of this work include the analysis of a relatively small cohort of eight

subjects. Moreover, this pilot study was conducted using healthy volunteers. Ac-

quired data during breath-holds of patients is expected to have more challenging

motion artefacts. We therefore plan to apply the proposed extended MRCP proto-

col to a representative patient cohort to assess the clinical utility of MRCP SRR.

Furthermore, we plan to make improvements on the reference-guided framework.

Using the BFFE as a reference appears promising in case a more robust similarity

measure is available. In fact, recently proposed deep learning methods [Cheng et al.,

2018,Simonovsky et al., 2016] could prove useful for this step or, as shown in other

applications, be used to aid the motion correction as a whole [Hu et al., 2018]. In

this work, we performed manual segmentations to define the region of interest in the

standard axial SST2W image for the SRR. This step could be automated similar to

the work as proposed in, e.g., [Ebner et al., 2018c]. For NiftyMIC a unified motion-

correction/reconstruction framework could help to better constrain the registration

steps that might also allow the incorporation of a deformable model. This could

help achieve higher anatomical accuracy in correcting for the challenging deforma-
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tions in the upper GI anatomy. Finally, validation with abdominal isotropic 3D

volumes acquired as “single-slab” 3D fast-spin-echo sequences [Mugler, 2014], was

not undertaken in this study, but remains subject of future work.
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Ebner, M., Chung, K. K., Prados, F., Cardoso, M. J., Chard, D. T., Ver-

cauteren, T., and Ourselin, S. (2018a). Volumetric reconstruction from printed

films: Enabling 30 year longitudinal analysis in MR neuroimaging. NeuroImage,

165:238–250.

My specific contributions presented in this chapter are:

• A publicly available1 volumetric reconstruction framework to recover ge-

ometrically consistent, volumetric images from printed films in MR neu-

roimaging

• The presented framework consists of

– a semi-automatic slice extraction tool to create a digital image stack

from historical slices selected from scanned brain MR films, and

– a fully automatic volumetric reconstruction framework to estimate

the lost meta-data information of each slice in the 3D space.

• Methodological contributions include

– a reconstruction framework based on a joint slice-to-volume affine reg-

istration with inter-slice 2D transformation regularisation and affine

slice-intensity correction whereby the missing meta-data information

is contributed by a longitudinal scan of the same subject

– a final isotropic total variation in-plane deconvolution technique serves

to revitalise the visual appearance of the reconstructed stack of his-

torical slices

For a follow-up work [Chung et al., 2019], I used the presented framework to

reconstruct more than 200 image acquisitions captured on historical films to

support a landmark longitudinal study2 of 132 multiple sclerosis (MS) patients

which where tracked since the 1980s. These reconstructions may unlock the

full potential of modern image analysis tools and help understand the disease

progression in MS.
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4.1 Introduction

Figure 4.1.: Scanned MR Films of MS/Clinically Isolated Syndrome (CIS) subjects
from 1985 to 1991. The top row (a) illustrates a typical proton density-like

sequence of printed 5mm thick slice acquisitions side-by-side, acquired at 1.5T
in 1991. The left bottom column (b) illustrates a scan acquired at 0.5T in 1986

with lesions encircled directly on the film. The middle bottom column (c) depicts a
scratched, visibly rotated and deformed film from 1985 with unknown

slice-thickness. The bottom right column (d) shows handwritten annotations on a
scan from 1990. The skulls and also a part of the brain is merged into each other to
save film space. Overall, it is worth noting the different types of MR films, their

illumination differences and different visible distortions affecting even the same film
belonging to the same acquisition.

4.1. Introduction

As pointed out in Chapter 1, Magnetic Resonance Imaging (MRI) has been recog-

nised as a powerful, non-invasive and non-ionising medical imaging technique since

the early 1980s, when it first became available for clinical use [Damadian, 1971].

1https://github.com/gift-surg/VolumetricReconstructionFromPrintedFilms
2https://www.ucl.ac.uk/healthcare-engineering/news/2018/feb/
image-reconstruction-tool-allows-researchers-unlock-historic-ms-data
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The earliest, longitudinal brain studies were performed based on thick contiguous

slices acquired in the axial direction to cover the entire volume, e.g. [Miller et al.,

1988,Miller et al., 1989]. In absence of modern standards for digital archives and

visualisation, the acquired scans were placed side-by-side and printed sequentially

on multiple films, for further, visual analysis, as shown in Figures 1.3 and 4.1. The

analysis was typically limited to measures such as lesion count and location in multi-

ple sclerosis (MS) studies [Miller et al., 1989,Morrissey et al., 1993,O’Riordan et al.,

1998]. With the introduction of the PACS (Picture Archiving and Communications

System) and DICOM (Digital Imaging and COmmunication in Medicine) standards

in the beginning of the 1990s, the basis was created to digitally store medical imag-

ing information including essential meta-data on spatial information and acquisition

details. This allowed further development of clinically important biomarkers such as

brain and lesion volume for longitudinal MS studies [Brex et al., 2002,De Stefano

et al., 2014,Sailer et al., 1999] – information which, currently, cannot be readily ex-

tracted from scans dating back to the 1980s and early 1990s if they are only available

as printed films. The original, digital data is often lost or cannot be recovered due

to hardware and software obsolescence issues which has also been shown in more

recent studies on brain morphometry where original MR films were digitised anew

and manually processed to allow for further quantification [Ekert et al., 2016]. In

other words, especially for longitudinal studies dating back to the 1980s, a decade

or more of valuable image data information may not be readily accessible to mod-

ern image processing techniques which could add to the understanding of long-term

pathological or morphological evolution.

In order to re-establish a consistent, volumetric representation from printed, his-

torical films several challenges need to be overcome: Patient-specific anatomy is only

sparsely captured on printed films corresponding to a single acquisition of axially

acquired thick slices only. Similar to the applications developed in Chapters 2 and 3,

each 2D slice needs to be extracted from the MR film and correctly aligned in the 3D

space. Slice-based motion correction and reconstruction frameworks were proposed

for structural MRI (see fetal and abdominal applications as described earlier in Chap-
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ters 2 and 3), but also for functional MRI [Kim et al., 1999,Seshamani et al., 2016],

diffusion tensor imaging (DTI) [Jiang et al., 2009, Fogtmann et al., 2014,Marami

et al., 2016,Marami et al., 2017] and histology [Casero et al., 2017]. In particular,

[Fogtmann et al., 2014] and, more recently, [Marami et al., 2017] have proposed regu-

larised slice-to-volume registration approaches to better address the ill-posed nature

of independent slice-to-volume registrations in order to achieve more robust motion

correction frameworks for multi-plane multi-slice Diffusion MRI. In the case of re-

constructing volumetric representations from printed MR films, however, only one

single stack of past thick-slice acquisitions in a single, axial plane is captured. The

slice thickness of past acquisitions can range from 5mm like in [Brex et al., 2002,Ek-

ert et al., 2016,Miller et al., 1989, Sailer et al., 1999] to 10mm as in [Brex et al.,

2002,Miller et al., 1989,Sailer et al., 1999] to even encountered 12mm. Hence, even

in the 5mm slice thickness case, which is the focus of this work, neighbouring slices

correspond to relatively distant anatomical positions which renders purely intra-stack

alignment-based motion correction approaches particularly difficult so as to recover

the correct inter-slice relationship and, thus, the patient-specific anatomy. This is in

contrast to the method presented in [Casero et al., 2017] for histology where purely

intra-stack alignment steps were performed for the 10 µm thick slices after completing

a first initial alignment using a lower-resolution blockface image as reference [Casero

et al., 2016,Siedlecka et al., 2013]. An appropriate single slice-based motion correc-

tion approach will be key but needs to deal with the very sparse information given

the thick, contiguous slices. Additionally, the geometrical properties and dimensions

of printed slices are lost and need to be recovered. The top part of the brain is often

missing due to a reduced field of view (FOV) in past acquisitions complicating accu-

rate registrations. The arguably higher magnetic field inhomogeneities of past MR

image acquisitions and the further processing associated with film printing, storage

and subsequent scanning lead to different types of illumination differences which are

present across, but also within, MR films belonging to the same acquisition in addi-

tion to other types of degradations as shown in Figure 4.1. Storage of the films over

decades may have further degraded the data whereby individual films belonging to
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the same acquisition may have been affected differently resulting in stark differences

in image intensities across slices of different films. Moreover, historical films are likely

to carry a substantial amount of background noise and may well come with low image

contrast. Additional distortion has been introduced due to the performed manual

scanning, manifested in rotated, sheared and possibly, otherwise deformed images,

as visible in Figure 4.1. Due to advances in MR, increased field strengths, higher

spatial resolution, changes in imaging protocols and image contrast preferences for

diagnostic purposes in addition to changes in MR scanner manufacturers and print-

ers, the appearance and also the layout of MR films can change substantially in the

course of a longitudinal study spanning several decades. In particular, this renders

learning-based registration approaches such as presented in [Miao et al., 2016,Hou

et al., 2018] difficult as not many data samples are available for the training stage.

In this chapter, we propose a novel reconstruction framework, able to address the

challenges discussed above. More specifically, our contributions are:

1. A semi-automatic slice extraction tool to create a digital image stack from

historical slices selected from the scanned brain MR films. It provides an

initial digital 3D representation of acquired slices printed on a 2D film where

the correct spatial position and dimension of each single slice needs to be

recovered.

2. A fully automatic volumetric reconstruction framework to estimate the lost

meta-data information of each slice in the 3D space. It is based on a joint

slice-to-volume affine registration with inter-slice 2D transformation regulari-

sation and affine slice-intensity correction. Missing meta-data information is

contributed by a longitudinal scan of the same subject. A final isotropic to-

tal variation in-plane deconvolution technique serves to revitalise the visual

appearance of the reconstructed stack of historical slices.

3. A validation of our slice-extraction tool and volumetric reconstruction frame-

work on clinical, historical ground-truth data to show the potential of our pro-

posed framework to enable a more robust analysis of long-term datasets:
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• We apply our proposed method to a uniquely long-term, longitudinal

dataset of patients first recruited with clinically isolated syndrome (CIS)

dating back to the 1980s [Miller et al., 1988,Miller et al., 1989,Morrissey

et al., 1993,O’Riordan et al., 1998,Brex et al., 2002,Fisniku et al., 2008].

• We validate our framework on a subset of this cohort where also the orig-

inal, digital stack of the same acquisition has been preserved in addition

to the printed MR films. In this rare situation, we can validate against

historical ground-truth data.

– We perform a quantitative comparison and assess the accuracy of

our obtained volumetric reconstructions in terms of mean squared

error, normalised cross correlation, structural similarity, peak signal-

to-noise ratio and Structural Image Evaluation, using Normalization,

of Atrophy (SIENA) [Smith et al., 2002] analysis.

– We undertake a qualitative assessment relying on expert neurologist

ratings both in terms of clinical usefulness and ground-truth com-

parison of our recovered volumetric representations of historical film

data.

– We provide a qualitative comparison of longitudinal data to assess

ground-truth similarity over time.

The framework is made open source and available on github3.

Compared to regularised slice-to-volume motion-correction and MR reconstruction

methods proposed in the literature such as [Fogtmann et al., 2012,Fogtmann et al.,

2014] or [Marami et al., 2017] the proposed reconstruction pipeline differs signifi-

cantly in a number of aspects as it is designed particularly to deal with the specific

challenges associated with the volumetric reconstruction from historical MR films.

[Fogtmann et al., 2014] propose reconstructing 3D DTI from multiple multi-slice

diffusion weighted (DW) images by using a framework for unified motion-estimation

and image reconstruction as an extension of their previous work [Fogtmann et al.,

3https://github.com/gift-surg/VolumetricReconstructionFromPrintedFilms
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2012] introduced for structural multi-plane MRI. Despite the formulation as a uni-

fied approach, the volumetric reconstruction of the unknown image is performed by

alternating between the two problems of estimating the motion parameters of a 3D

rigid and scale-skewness transform for all slices followed by estimating the weight

parameters which define the diffusion volume. Instead, we propose a method which

corrects at once for affine in-plane 2D motion of each single slice and estimates its

missing physical dimensions by the guidance of a reference volume acquired many

years later which usually exists in longitudinal studies. In particular, this approach

avoids out-of-plane resampling of the very sparse anatomical data given by only

one single stack of the thick axial slices. Moreover, [Fogtmann et al., 2014] use a

regularisation prior based on the Huber norm for motion correction to favour sim-

ilarity between motion correction parameters of consecutive slices. We propose a

robust smooth `1-approximation-based inter-slice affine 2D transform regularisation

and affine intensity correction framework in addition to the use of a prior on opti-

misation parameters based on a smooth `1-approximation. This drives the physical

dimension and 2D position estimates directly by the similarity between slice neigh-

bours guided by the anatomical shape prior provided by the reference volume.

[Marami et al., 2017] build on their work presented in [Marami et al., 2016] and

explicitly model the dynamics of rigid motion with a state space model where they

estimate the temporal motion trajectories with a Kalman filter for a more robust re-

construction of DWI. They automatically detect and reject motion-corrupted DWI

slices to enhance motion tracking and reconstruction. In our setting of volumetri-

cally reconstructing 3D volumes from sparse historical 2D slices printed on films,

the motion captured in the obtained stack of slices after the semi-automatic slice

extraction cannot be assumed to follow a physiological model. Each individual slice

will have different motion shifts with respect to each other given that each slice is ex-

tracted according to a landmark which is placed manually on the film. Therefore, we

propose a motion correction framework based on an inter-slice regularisation which

leverages the 2D image similarity between two neighbour slices and the respective

(oblique) reference slice instead. Moreover, we do not perform outlier rejection as we
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need to recover the physical position and dimension for each single slice reliably in

order to form a consistent volumetric representation of the subject-specific anatomy

as captured by the single acquisition in the past. Importantly, however, [Marami

et al., 2017] use the method presented in [Kainz et al., 2015b] for the required struc-

tural image reconstruction of the high-resolution T2-weighted volume from multiple

motion corrupted slices, which uses independent rigid slice-to-volume registration

without regularisation.

In addition, the mentioned approaches rely on Super-Resolution techniques (see

Chapters 2 and 3) for the image reconstruction steps to reconstruct a single, higher-

resolution, isotropic 3D volume from multiple scattered low-resolution 2D slices.

In the approach developed in this chapter, a final isotropic total variation in-plane

deconvolution step is added after performed in-plane motion correction of each single

slice for improved visual appearance only.

The remaining part of this chapter is organised as follows. Section 4.2 motivates

and presents the design choice and the details of our proposed volumetric recon-

struction framework. In Section 4.3 the results of the validation of our proposed

volumetric reconstruction framework are presented using a uniquely long-term his-

torical dataset spanning 30 years of MRI scans. Finally, Section 4.4 concludes with

a discussion.

4.2. Volumetric Reconstruction from Printed MR Films

The first step of the volumetric reconstruction method is dedicated to the slice ex-

traction and stacking of all slices of the same historical axial acquisition in order to

create an initial, digital 3D image. A semi-automatic slice extraction framework is

chosen to deal with the wide variety of existing films, data characteristics, and styles

as pointed out in Figure 4.1. This enables flexible processing even for complex cases

where slices are merged on a printout and brain images need to be carefully delin-

eated, as, e.g., shown in Figure 4.1a. A manual interaction can additionally ensure

that only correct slices and films belonging to the same acquisition are extracted.

This is particularly relevant since multiple films, or slices printed on films, encoun-
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Figure 4.2.: Overview of volumetric reconstruction framework for historical MR film
data. Provided the scans of the MR films acquired at time T0 and a more recent,
digital 3D scan of the same patient acquired X years later, the proposed algorithm
reconstructs the volumetric representation of the original MR image acquisition at

T0. Further details on the semi-automatic slice extraction, initialisation and
refinement steps are visualised in the Figures 4.3 to 4.5, respectively.

tered in the database of historical films are duplicated whereas other ones are missing

or not ordered in the right sequence and inevitably require manual intervention.

The imperfect slice extraction of rotated, sheared and possibly otherwise deformed

images due to printing and manual scanning gives rise to a naively stacked 3D data

with visibly in-plane motion affected slices. Therefore, the volumetric reconstruction

framework needs to recover the correct inter-spatial position of all slices in addition to

their physical dimensions. After printing and scanning, the only spatial information

available from the MR films is the slice thickness which is generally printed on the

films as indicated in Figure 4.1. All other meta-data typically stored in DICOM

headers, such as exact spatial position relative to the neighbouring slice, in-plane

spacing, and image orientation, is lost and needs to be recovered for each single slice.

The aim of our algorithm is to infer the missing information from a more recent,

digital 3D scan of the same patient which holds the required meta-data information

and is of similar intensity contrast; a scan which generally exists in longitudinal

studies. For instance, early and current studies for MS use proton density (PD)-like

image contrast [Gracien et al., 2016,Miller et al., 1988] despite the advances and

changes in imaging protocols over several decades. However, this reference image is

likely to be acquired many years later and the patient may have undergone substantial

morphological changes including atrophy. It will be dissimilar to the brain captured
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by the historical MR films.

By neglecting subject motion during acquisition time, slice motion correction can

be reduced to in-plane motion correction only. This assumption addresses both the

need of balancing the complexity versus robustness of the method and avoids out-

of-plane resampling for the final volumetric reconstruction of the sparse, historical,

thick-sliced data. The primary goal of our obtained volumetric reconstructions from

printed films is to gain clinical trust by performing a sufficiently accurate motion

correction without introducing implausible deformations. Hence, a gradual increase

of transformation complexity shall be performed up to in-plane 2D affine transfor-

mation which is believed to be capable of dealing with the encountered distortions

in the films. Intra-stack slice registration is highly ill-posed due to the large slice

thickness and its associated sparse anatomical sampling of the patient-specific brain

anatomy. This inhibits a potential approach of performing first an intra-stack slice

alignment followed by a subsequent volume-to-volume registration to the reference

image. Taking advantage of the valuable information on the skull geometry cap-

tured by the later reference image with similar appearance, we propose leveraging

the combined information of both reference and historical slice neighbour data by

deploying a slice-to-volume registration framework based on regularised motion and

affine intensity correction. The regularised slice-based intensity correction is meant

to deal with the intensity variations across slices and films and to balance existing

intensity discrepancies to the reference image. A previous global intensity correction

step will be vital to eliminate background noise of the historical slices and to scale

the scanned image intensities accordingly. Finally, we make use of a well-established,

isotropic total variation deconvolution step [Beck and Teboulle, 2009b,Rudin et al.,

1992] to alleviate the blurring of the historical slices resulting from both printing and

scanning steps and to reduce the impact of the original point-spread-function (PSF)

from the MR scanner during acquisition time.

Based on those assumptions, the proposed algorithm, illustrated in Figure 4.2,

reconstructs the 3D geometry of the original shape as captured by the MR films

such as shown in Figure 4.1.
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4.2.1. Semi-Automatic Slice Extraction

Figure 4.3.: Semi-Automatic Slice Extraction. By providing the scanned MR films
associated with the same acquisition a semi-automatic slice extraction step is

deployed to naively stack each extracted 2D slice into a 3D stack. No meta-data
information is assigned at this stage.

A flexible semi-automatic procedure is proposed to extract each individual slice-

acquisition from every MR film associated with the same acquisition to address

the variety of existing films and styles as pointed out in Figure 4.1. As shown in

Figure 4.3, the first MR film is read and a common landmark is selected manually

with one click per slice on the film. The selection order of the landmarks defines

the slice extraction order for the later slice stacking. This ensures that the proposed

slice extraction tool can deal with historical MR films where consecutive acquisitions

are not necessarily printed sequentially and in the same manner across different film

types. We emphasise that the manual landmark selection does not need to be very

precise and is used for initialisation purposes of the motion correction algorithm

only. After landmark selection, a selection window is automatically overlaid, based

on default values relative to each landmark, indicating the FOV for slice extraction.

The window size and respective offset are then adjusted manually, in a uniform

manner, so that changes applied to one window are automatically adjusted to the

rest. A more precise extraction window is then achieved, comprising the region of

interest for all slices on the film. This adjustment also allows to easily extract slices

even in cases where skulls are overlapping as shown in Figure 4.1a. The final FOV

windowing is stored and used for the subsequent films. After having marked the same

common landmark on all slices on all remaining films sequentially, the selected 2D

slices are extracted and stacked automatically to form a naively stacked 3D data.
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4.2.2. Joint Regularised Motion and Intensity Correction Model

We propose using an in-plane, affine spatial transformation model to strike a bal-

ance between fully compensating the distortions of each slice while preventing the

introduction of additional image artefacts. However, due to the sparse, thick slice

anatomical sampling, additional information is required to estimate the true, origi-

nal, anatomical shape. The missing information can be contributed by the reference

image. Due to the mentioned morphological changes of this later scan, we will use

only the information around the skull; the structure which is believed to change the

least over time. Hence, a good estimate of the correct slice position and geometry

is likely to be found if each historical slice yk matches both a corresponding refer-

ence (oblique) slice rk around the skull and its immediate neighbouring slices over

the FOV to achieve a good geometric consistency driven by the original MR film

data. Thus, the idea is to find the slice transformation parameters θk ∈ R6 to an

in-plane 2D affine spatial transformation T(θk, ·) : Ω ⊂ R2 → R2 which jointly

minimises the costs

s1

(
yk
(
T(θk, ξ)

)
, rk(ξ)

)
∀ξ ∈ Ωskull ⊂ Ω, (4.1)

s2

(
yk
(
T(θk, ξ)

)
, yk+1

(
T(θk+1, ξ)

))
∀ξ ∈ Ω, (4.2)

for adequate similarity measures s1, s2 for all K slices. To compensate intensity

variations across historical slices and between historical and reference slice, a global

intensity correction step, as shown in Figure 4.2, and a local affine intensity com-

pensation model during registration will be deployed. By defining the joint motion

and intensity correction parameter Θk := (θk, αk, βk) the cost (4.2), measuring the

dissimilarity of neighbouring, historical slices, is defined as

Nk(Θk,Θk+1) :=
∑
ξ∈Ω

%γ

(
αk yk

(
T(θk, ξ)

)
+ βk

− αk+1 yk+1

(
T(θk+1, ξ)

)
− βk+1

) (4.3)

165



4 Volumetric Reconstruction from Printed Films: Enabling 30 Year Longitudinal
Analysis in MR Neuroimaging

with a loss function %γ : R → R+, e 7→ %γ(e) :=
√
γ2 + e2 − γ, as a smooth `1-

approximation with scaling factor γ > 0, similar to the Huber function, to allow

for a more robust optimisation. Similarly, the cost (4.1) between historical and

corresponding reference slices is defined as

Rk(Θk) :=
∑

ξ∈Ωskull

%γ

(
αk yk

(
T(θk, ξ)

)
+ βk − rk(ξ)

)
(4.4)

whereby only a neighbourhood around the skull Ωskull ⊂ Ω is considered. With

Θ := (Θ1, . . . ,ΘK) denoting the joint set of optimisation parameters and P(Θ) :=∑
θ∈Θ %γ(θ), the motion correction problem for one stack of semi-automatically ex-

tracted slices can subsequently be written as a joint, regularised minimisation prob-

lem

min
Θ

(
λR

K∑
k=1

Rk(Θk) + λN

K−1∑
k=1

Nk(Θk,Θk+1) + λP P(Θ−Θ0)

)
(4.5)

with weights λR, λN > 0, regularisation parameter λP > 0 and prior Θ0 on the

parameters which need to be defined accordingly. The critical point is to get the

corresponding reference (oblique) slices rk, k = 1, . . . , K, to initialise (4.5).

4.2.3. Initialisation of Volumetric Reconstruction Algorithm

Update Meta Data
Slice thickness,

Initial in-plane scaling

Pairwise Slice Align.
 In-plane Rigid

3D Skull Masking
BET

3D Global In-plane 
Scaling and Position

3D Skull Masking
BET

3D Scaled Data

Naively Stacked Data

Resampled ReferenceReference (T  + X years)0

Figure 4.4.: Initialisation of the volumetric reconstruction algorithm: Global
rescaling and positioning of the historical slices to initialise the regularised

optimisation models.

As mentioned earlier, the slice thickness is the only preserved meta-data informa-

tion of the slice acquisitions stated on the MR films. After the scanning, the image

data is only given in pixel dimensions. Hence, the semi-automatically extracted and
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naively stacked slices need to be re-scaled and aligned with the reference 3D volume

in order to extract the respective reference (oblique) slices rk. Our proposed approach

is shown in Figure 4.4. The slice-thickness is updated according to the information

from the MR film and the in-plane scaling is initialised by a uniform value manually

fixed. A subsequent rigid in-plane registration step with inter-slice regularisation is

performed using the sum of the slice neighbour-terms (4.3) to obtain a more consis-

tent brain geometry and to correct for possible inaccuracies of the semi-automatic

slice extraction. More information on the parametrisation of the registration param-

eters is provided in Section 4.3.2. By using the Brain Extraction Tool (BET) [Smith,

2002] a mask surrounding the skull of both the in-plane registered stack and the ref-

erence image is created. A subsequent in-plane 3D similarity registration based on

normalised cross-correlation aligns the entire stack with the reference and estimates

a uniform in-plane scaling factor for all slices to match their skull masks. The ad-

ditionally resampled reference image to the 3D scaled stack space both provides the

oblique slices rk and serves for the subsequent global intensity correction step.

4.2.4. Global Intensity Correction

Due to the printing, storage over years and scanning, the historical slices may carry

a substantial amount of background noise and have low image contrast. A global

intensity correction step aims to improve the intensity contrast by using the re-

sampled 3D reference image intensity information and to keep the slice intensities

as close as possible to the original ones’ at the same time. With q20% being the

global 20%-intensity percentile of all historical slices, all slice intensities i are capped

via i← max(i− q20%, 0) to eliminate background noise whereby the 20%-threshold

was found experimentally by visual analysis. We then apply a uniform-across-slices

linear intensity correction step.

4.2.5. Refinement of Volumetric Reconstruction

In order to increase the convergence basin of the joint-regularised registration model (4.5),

a step-wise increase in transformation complexity is chosen for the slice-based mo-
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Figure 4.5.: Refinement of the volumetric reconstruction algorithm: Application of
joint, regularised motion and intensity correction (4.5) in addition to the

TVL2-deconvolution (4.6).

tion correction step to correct for individual geometric distortions, illustrated in

Figure 4.5. A similarity 2D transformation is used first in (4.5) to correct for rigid

motion and uniform in-plane scaling for each slice separately. This is performed

twice with different spatial initialisation transformations, i.e. using the identity

transformation and the initialisation transformation based on the moments of the

skull-masked historical and the reference slice whereby the result with overall lower

cost is selected. The prior term in (4.5) is chosen to penalise in-plane scaling and

intensity coefficients. Since all slices have been uniformly scaled previously, the prior

value for in-plane scaling is set to 1. Similarly, due to the global intensity scaling, the

coefficients αk and βk are expected to be close to 1 and 0, respectively. Regularisation

parameters are found experimentally and described in Section 4.3.2. Afterwards, the

full, 2D affine transformation model is chosen for (4.5) so that the historical slice can

match the skull as accurately as possible.

After having estimated the positions and geometrical properties of the slices a

subsequent image deconvolution step is performed for each slice separately in order

to restore each individual slice without mixing neighbouring slice information; this

is in contrast to the previous Chapters 2 and 3 to avoid out-of-plane resampling of

the sparse, axial data. For this purpose, we rely on a 2D isotropic total variation

(TVL2) deconvolution step [Beck and Teboulle, 2009b,Rudin et al., 1992]

min
x

(
1

2
‖y −A(σ2)x‖2`2 + λTV`2(x)

)
s.t. x ≥ 0 (4.6)
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for each individual slice y ∈ {y1, . . . ,yK} with yk =
(
yk(ξ)

)
ξ∈Ω

representing the

vectorised slice, x its deblurred version, A the blurring operator with covariance σ2 to

jointly describe the in-plane blurring of the image acquisition, printing and scanning

and λ > 0 the regularisation parameter. A matrix-free implementation is chosen in

order to avoid the storage of large matrices [Diamond and Boyd, 2015,Ebner et al.,

2017a]. The optimisation problem (4.6) is solved via Alternating Direction Method

of Multipliers (ADMM) described in [Boyd et al., 2011]. The implemented, scaled,

explicit form of ADMM iterations reads

xi+1 := arg min
x≥0

(
1

2
‖y −Ax‖2`2 +

ρ

2
‖∇x− vi + wi‖2`2

)
(4.7)

vi+1 := Sλ/ρ
(
∇xi+1 + wi

)
(4.8)

wi+1 := wi +
(
∇xi+1 − vi+1

)
(4.9)

with the auxiliary variable v, the scaled dual variable w, the Lagrange multiplier ρ

and the vectorial soft threshold operator Sλ/ρ [Boyd et al., 2011]. Given that the

standard Lawson & Hanson algorithm [Lawson and Hanson, 1974] cannot cope with

large-scale non-negative least-squares problems several specialised methods have been

proposed in the literature to solve minimisation problems like (4.7) such as presented

in [Becker and Fadili, 2012, Kim et al., 2010a, Kim et al., 2013]. In this chapter,

we used the L-BFGS-B v3.0 solver [Byrd et al., 1995,Morales and Nocedal, 2011]

which, although not specifically designed for non-negative least squares, generally

shows good performance for such problems and, especially for large-scale problems,

regularly outperforms other modern methods [Kim et al., 2010a].

4.3. Data, Evaluation Methodology and Results

4.3.1. Data

A cohort of people recruited soon after a CIS was first assessed at the National Hos-

pital for Neurology and Neurosurgery, Queen Square, London, between 1984-1987

and followed up at regular time points until present [Miller et al., 1988,Miller et al.,
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1989,Morrissey et al., 1993,O’Riordan et al., 1998,Brex et al., 2002,Fisniku et al.,

2008]; a 30-year longitudinal follow-up, clinical study is currently underway includ-

ing more than 100 image acquisitions captured on historical films. The preserved

MR films were scanned using the Vidar DiagnosticPRO Advantage film digitizer,

processed with the Hipax Diagnostic Workstation medical image viewer software

and exported to DICOM files. For the current study, a subset of 20 MR film sets

(18 acquisitions at 5-year follow-up acquired at 0.5T and two at 10-year follow-up

acquired at 1.5T) was available where both the original MR films and the stacked,

digital scans of the exact same 5mm thick PD-like slice acquisitions were available.

This is a rare situation and allows to validate the volumetric reconstruction pipeline

against ground-truth data. In 18 out of those 20 subjects, the acquisitions were

captured on films where two consecutive slices showed overlapping skull and brain

structures similar to Figure 4.1a and Figure 4.1d. To recover the spatial correspon-

dences for each slice a later PD-scan of the same subject was used as the reference

which is typically available in longitudinal studies. The reference scan was acquired

as stacks of 5mm thick slices and, depending on the subject-specific follow-ups and

availability, either was a 10-, 14- or 20-year time point after the baseline scan of the

same subject. This reference was also used to correct for existing left-right flipping

of the brain we encountered in the scans.

4.3.2. Parametrisation of Volumetric Reconstruction Pipeline

The entire, regularised volumetric reconstruction framework was implemented in

Python while taking advantage of ITK for the individual registration steps. The

joint regularised registration problem (4.5) was implemented via the least_squares

algorithm of SciPy where the exact Jacobian was provided for both accelerated

and more accurate computational results. The framework is made open source and

available on github4.

The semi-automatic slice extraction tool stores the naively stacked 3D data as a

NIfTI image for further processing. The rigid in-plane registration step with inter-

4https://github.com/gift-surg/VolumetricReconstructionFromPrintedFilms
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slice regularisation using slice neighbour-terms (4.3) was initialised based on the slice

moments and used least-squares differences as similarity metric whereby 10 itera-

tions were performed in the least_squares algorithm. By considering this stack of

neighbour-aligned slices as a 3D volume BET was applied to extract its brain mask.

The skull mask was then defined as its negated mask followed by a subsequent di-

lation step to account for geometric discontinuities across slices. The skull mask

for the more recent 3D reference image was obtained analogously but without the

dilation step. Constrained by the skull masks, the in-plane 3D similarity registration

step was performed using cross-correlation as the similarity measure, linear interpo-

lation resampling, regular step gradient descent optimiser with physical shift scales

estimation and a three level multi-resolution framework which was initialised by a

previously performed rigid registration based on the respective 3D image moments.

The global intensity correction was performed as described in Section 4.2.4 by

using the global 20%-intensity percentile for the lower threshold. This threshold

was found experimentally by visual comparisons.

The motion correction method with inter-slice regularisation and reference image

information transfer in combination with the affine intensity correction model (4.5)

described in Section 4.2.5 was implemented via the least_squares optimiser. The

prior term P was set up to regularize the in-plane scaling and the affine intensity

correction parameters only so as to extend the inter-slice regularisation of the motion

correction framework. Due to the global scaling and intensity correction performed

during the initialisation steps, the associated prior values are set to 1 for the in-plane

scaling and αk0 = 0 and βk0 = 1 for the intensity correction parameters, respectively.

By using the solver-specific soft_l1 for the respective λ-weighted residuals in (4.5),

the applied smooth `1-approximation corresponds to %1/λ(e) =
√

1/λ2 + e2 − 1/λ

for λ ∈ {λR, λN , λP}. The weights and the regularisation parameter were found

experimentally and set to λN = 1, λR = 10 and λP = 106 in (4.5) for the 2D

similarity registration step, respectively, whereby 10 iterations were performed. For

the subsequent 2D affine registration, the regularisation parameter was reduced to

λP = 103 and 20 iterations were performed which was sufficient to achieve overall
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convergence. During experiments we found that omitting the inter-slice regularisa-

tion term in (4.5) can lead to severe misregistrations during motion correction. We,

therefore, conclude that the proposed motion correction framework based on inter-

slice regularisation is key in order to reliably achieve volumetric reconstructions of

high anatomical accuracy. Associated comparisons are provided at the end of Sec-

tion 4.3.4. For the TV reconstruction step (4.6), the regularisation parameter λ = 5,

the Lagrange multiplier ρ = 0.5 and the covariance σ2 = 0.25 for the blurring opera-

tor A were found via L-curve studies. The first-order Tikhonov problem (4.7) in the

corresponding TVL2 deconvolution step with its positivity constraints was solved

via the L-BFGS-B algorithm of SciPy to iteratively solve for the unique minimizer

whereby 10 ADMM iterations were performed.

4.3.3. Evaluation Methodology

Naively Scaled
Data

Naively Scaled + IC 
Data

Ground-Truth (T  )0

Motion Corrected
(MC) Data

Individual 2D Affine 
Correction for 

All Slices

Uniform 2D Affine 
Correction based on 
Midslice Transform

Volumetric Reconstruction Algorithm
Relevant information of performed volumetric reconstruction including scaling, motion correction and intensity correction is stored

Validation against Ground-Truth
MSE, NCC, SSIM, PSNR, SIENA

Qualitative Assessment and Longitudinal Comparison

Intensity Correction
(IC)

Individual 2D Affine 
Correction for

All Slices

Intensity Correction
(IC)

Uniform 2D Affine 
Correction based on 
Midslice Transform

Individual 2D Affine 
Correction for

All Slices

Intensity Correction
(IC)

TVL2 Deconvolution

Recon after TVL2
(MC + IC + TVL2)

Recon prior to TVL2
(MC + IC)  

Historical MRI Films (T  )0

Reference (T  + X years)0

Figure 4.6.: Summary of the pipeline used to validate the volumetric reconstruction
framework. Each image shows a typical volumetric output obtained after the

respective steps of processing.
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Several similarity measures like mean squared error (MSE), peak signal-to-noise

ratio (PSNR), structural similarity index measure (SSIM)[Wang et al., 2004] and nor-

malised cross-correlation (NCC), were used to assess the similarity between ground-

truth and different intermediate results until the final volumetric reconstruction with

the TVL2 step. We considered the reconstruction prior to the TVL2 step (full 2D

affine correction including intensity correction but no TVL2 step), the motion cor-

rected (MC) data (full 2D affine correction but no intensity correction), the naively

scaled data (naively stacked data scaled based on the final 2D affine transformation

belonging to the mid-slice of the stack but no intensity correction), the naively scaled

and intensity corrected (IC) data (same intensity correction applied to the naively

scaled data), and the reference used for motion and intensity correction. A visual

summary of the used validation pipeline including the respective short-hands is shown

in Figure 4.6. The similarity measures were only evaluated at the masked brain region

obtained via BET [Smith, 2002] applied on the ground-truth. The required align-

ment of stacks prior to the evaluation was obtained by using the rigid registration

algorithm reg_aladin within NiftyReg5 which is based on block-matching [Modat

et al., 2014].

In addition, we evaluated the absolute mean surface motion in linear voxel units

of the reconstruction after TVL2 step and the naively scaled and intensity corrected

data compared to the ground-truth which reflects the sum of all edge motions between

two segmentations [Smith et al., 2002]. This measure was computed via Structural

Image Evaluation, using Normalization, of Atrophy (SIENA) [Smith et al., 2002],

where we only measured in-plane edge motion because of the missing top brain on

the historical data, as visible in Figure 4.2.

Following this, a subjective quality assessment in a clinical context was performed

where two blinded neurologists assessed the naively scaled and intensity corrected

data, the reconstruction prior to TVL2 and the reconstruction after TVL2 step side-

by-side and in comparison with the naively scaled data, the ground-truth data and

the reference image used for motion and intensity correction. After performing a

5https://sourceforge.net/projects/niftyreg
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contrast auto-adjustment in the image viewer for more comparable visualisation,

scores were given for:

1. Clinical usefulness ranking based on lesions’ conspicuity and geometric plausi-

bility/skull continuity essential for volumetric measurements in addition to a

final score on overall preference.

2. Ground-truth comparison in terms of interpretability based on image quality

and anatomical similarity.

4.3.4. Results
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Figure 4.7.: Similarity measures evaluated at the ground-truth brain for each
subject separately. Each of the 20 subjects is assigned a different curve. The bold

black curve shows the error bar given by mean and standard deviation. A ∗

indicates that the reconstructions are statistically significantly different from the
reconstruction prior to TVL2 (MC + IC, marked with a ◦) based on a paired t-test

(p < 0.05) and Bonferroni-correction.

Figure 4.7 illustrates that the biggest improvement in measured similarity is achieved

by the intensity correction step. Importantly, however, motion correction is shown

to significantly increase the similarity to the ground-truth. A further, significant

improvement in PSNR is achieved by the TVL2 deconvolution step at the expense of

measured similarity with the ground-truth. This can be explained by the fact that

the considered ground-truth stack is affected by blurring and noise due to the acqui-

sition performed decades ago. Therefore, deblurring can counteract the PSF during

174



4.3 Data, Evaluation Methodology and Results

Table 4.1.: Summary of similarity measures evaluated at the ground-truth brain
stated as mean and standard deviation for all 20 subjects. The MSE was omitted

in favour of less absolute intensity value sensitive measures. The symbol 6=∗
indicates a statistically significant difference between the left and right hand-side
with respect to the statistics shown in the sub-index based on a paired t-test

(p < 0.05) and Bonferroni correction.
NCC SSIM PSNR Notes

a) Naively Scaled 0.985±0.005 0.519±0.056 2.505±1.159
b) Motion Corr. (MC) 0.985±0.005 0.523±0.056 2.503±1.160 b 6=∗

NCC/SSIM a
c) Naively Scaled + IC 0.993±0.002 0.745±0.085 10.671±3.250 c 6=∗

NCC/SSIM/PSNR a,b
d) MC + IC 0.995±0.002 0.776±0.099 10.876±3.589 d 6=∗

NCC/SSIM a–c &
d 6=∗

PSNR a,b
e) MC + IC + TVL2 0.995±0.002 0.770±0.097 11.426±3.639 e 6=∗

NCC/SSIM/PSNR a–d

acquisition time and have a positive impact on the image quality [Beck and Teboulle,

2009b,Rudin et al., 1992, Buades et al., 2005]. The evaluation in Table 4.1 allows

a more detailed assessment of the contribution of each individual step as outlined

in Figure 4.6. It clearly shows that motion correction applied on both intensity and

non-intensity corrected data leads to significant improvements in measured image

similarities. It also illustrates the high intensity contrast dependency of all involved

measures which explains the visually striking impact of the performed non-linear in-

tensity correction observed in Figure 4.7. However, by considering the same starting

point of either non-intensity or intensity corrected data, the significant similarity

improvements by the performed motion correction underline its importance and ef-

fectiveness to obtain high-quality volumetric reconstructions.
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Figure 4.8.: Similarity measures evaluated at the ground-truth brain for each
individual subject. The subjects on the horizontal axis are ranked according to the

MSE of the reference image, shown for comparison purposes.

Figure 4.8 provides a per-subject comparison and shows the impact of each per-

formed step in the volumetric reconstruction pipeline for each individual case. The
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high figures in NCC and SSIM of the naively scaled and intensity corrected data

reveal that the semi-automatic slice-extraction is able to achieve an overall high

accuracy of initial slice alignment which is further, significantly, improved by the

volumetric reconstruction pipeline. The MSE suggests that the performed inten-

sity correction is very effective for all subjects and yields slice intensities similar to

their respective references. The figures of NCC and SSIM confirm that the motion

correction had a significant impact and led to substantial improvements in image

similarity for almost all subjects. Both NCC and SSIM also show that our volumet-

ric reconstructions achieve higher similarity than the reference images illustrating

the morphological changes the brain has undergone over time and differences owed

to the different contrast.

SIENA measured the absolute mean surface motion between ground-truth and

naively scaled image as 0.80± 0.20 linear voxel units with 95%-confidence interval

(CI) from 0.71 to 0.88. The reconstruction after TVL2 step achieved a mean fig-

ure of 0.61± 0.13 with 95%-CI from 0.56 to 0.67 which corresponds to a significant

improvement based on paired t-test (p < 0.05) of about 25%. Therefore, detected

edge-motion was significantly reduced which underlines the capability of the per-

formed motion correction framework to significantly increase the accuracy of the

obtained volumetric reconstructions.

Table 4.2.: Summary of blinded, clinical evaluation averaged over all 20 subjects.
Lesions conspicuity and geometric plausibility/skull continuity subjectively rank
preferred reconstruction from 1 (least preferred) to 3 (most preferred). Preferred
image score indicates the number of times the respective reconstruction was the
preferred choice. Ties were allowed for the geometric plausibility and preference

ranking in case images were visually indistinguishable. The anatomical similarity to
the ground-truth is rated 0 (distinguishable) or 1 (not distinguishable). Image

quality similarity to ground-truth scores are 0 (worse, but interpretable), 1 (same
as ground-truth) and 2 (improved interpretation).

Clinical Usefulness Ranking Ground-Truth Comp.
Lesions’

Conspicuity
Geometric
Plausibility

Pref.
Image

Anatomical
Similarity

Image
Quality

Naively Scaled + IC 1.45±0.69 2.00±0.00 0 0.10±0.31 0.70±0.73
MC + IC 2.40±0.50 3.00±0.00 8 0.80±0.41 1.35±0.59
MC + IC + TVL2 2.85±0.37 3.00±0.00 15 0.95±0.22 1.50±0.51
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To further investigate the impact of the performed motion correction and denois-

ing steps we analysed the reconstruction quality of the associated volumes and in

direct comparison with the naively scaled and intensity corrected data by performing

a qualitative assessment by expert neurologists. The neurologist’s evaluation, shown

in Table 4.2, indicates that the blinded neurologists had a clear preference for our

volumetric reconstructions over the naively scaled data given their higher geometric

plausibility and improved lesions’ conspicuity. Adding the TVL2 deconvolution step

yields even further improvement. Particularly, the score on geometric plausibility

states that the performed motion correction always yielded an improved outcome.

In direct comparison, we almost always achieve results which are visually indistin-

guishable from the ground-truth data. In addition, it was felt that especially the

reconstruction after TVL2 step gives rise to improved interpretation; better than the

original, non-processed ground-truth data which itself is affected by its PSF-affected

physical acquisition from the past.

In Figure 4.9 the naively scaled stack and the reconstruction results before and

after the TVL2 step are provided for one of the cases along with the ground-truth

data and the reference image used for motion and intensity correction. This example

was selected to showcase the result for one of the visually most motion corrupted

stacks after the semi-automatic slice extraction step which served as initialisation of

the volumetric reconstruction framework. The overlaid brain mask of the ground-

truth illustrates the discrepancy of the naively scaled data which becomes almost

invisible in the obtained volumetric reconstruction results. Only at the neck, slight

inaccuracies of the reconstructions become apparent in the sagittal view which can be

explained by the high intensities at this region on the reference image. The bottom

row of Figure 4.9 shows a zoomed-in comparison highlighting the high accuracy of

the motion correction in combination with the image quality improvements due to

intensity correction and deconvolution steps.

Figure 4.10 provides a qualitative comparison of three longitudinal scans used in

this study associated with a subject where the baseline scan was acquired in 1986.

The visualised subject represents the only available case in this study where both
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Figure 4.9.: Visual comparison between reconstruction results and original data.
The automatically segmented ground-truth brain is shown as a red overlay in each
of the images and illustrates the reconstruction accuracy of the obtained volumetric
reconstruction from limited FOV data. At the bottom, a zoomed window highlights
the improvement and reconstruction quality. There, also a stroke of dirt is visible

on the historical data.
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Figure 4.10.: Qualitative comparison of three longitudinal scans used in this study
associated with a subject where the baseline scan was acquired in 1986. The
comparison shows the 20-year scan used as reference image for the volumetric
reconstruction pipeline along with the linearly resampled digital, ground-truth,
data, and the obtained volumetric reconstructions from the historical films of the
respective 5-year and 10-year follow-up time points. Visually, differences between
the reconstructions and the ground-truth are hardly detectable. The measured

ground-truth-similarities for the reconstructed 5-year scan are 0.992, 0.787, 10.294,
for NCC, SSIM and PSNR, respectively. Similarly, the respective figures for the
10-year scan are 0.993, 0.844, and 16.167. Note that due to overlapping skulls on
the historical MR films, see Figure 4.1a, only the part visible on the films could be
recovered during the semi-automatic slice extraction step for the 10-year scan.
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a 5-year and 10-year digital stack, i.e. a “ground-truth”, were available. One can

observe the highly consistent reconstructions obtained by the proposed volumet-

ric reconstruction framework with closely matching contours of skull and brain for

both 5- and 10-year follow-up scans.

Using our non-optimised implementation, the typical processing time to restore one

single subject from printed MR films was measured to be approximately 1 h 20min on

a single computer. This includes about 2min to 5min of user interaction to operate

the semi-automatic slice extraction tool. The remaining processes are fully auto-

mated whereby the volumetric reconstruction steps, including motion and intensity

correction, were measured to take about 45min and the final TVL2 deconvolution

step about 30min.

The Importance of Inter-slice Regularisation

In this section, we summarise additional experiments to underline the importance of

using inter-slice regularisation in the proposed motion correction framework.

For this purpose, we volumetrically reconstructed the historical data described in

Section 4.3.1 with the method described in Section 4.2 by using three variants of

the cost function (4.5). Using the parametrisation of the volumetric reconstruction

pipeline as described in Section 4.3.2, we reconstructed the historical data in three

experiments characterized by increasing model complexity by varying the parame-

ters λR, λN and λP . Specifically, we ran the reconstruction pipeline a) without using

regularisation for motion correction, i.e. motion correction is based on the reference

similarity term Rk alone, b) without using inter-slice regularisation, i.e. using the

reference similarity term Rk and the regularisation term P but no inter-slice simi-

larity term Nk, and c) using our proposed method. The three experiments were run

based on the parameters

a) λR = 10, λN = 0, λP = 0, i.e. no regularisation at all

b) λR = 10, λN = 0, λP = 103, i.e. no inter-slice regularisation

c) λR = 10, λN = 1, λP = 103, i.e. method as proposed
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4.4 Discussion

By using a similar comparison as in Table 4.1, we quantitatively compared the

reconstruction quality achieved by all three variants for all 20 subjects to investigate

the importance of using inter-slice transform regularisation in (4.5). The results

are summarised in Table 4.3 and show that the measured ground-truth similarity is

consistently higher in terms of both NCC and SSIM by using the proposed method

with inter-slice regularisation and outperforms any of the “reduced” methods a) and

b). This can be explained by the fact that the insufficient transform regularisation

of the motion correction based on a) or b) can lead to severe misregistrations of

individual slices and, subsequently, to volumetric reconstructions of poor anatomical

plausibility.

Additionally, we provide a qualitative comparison for one subject to illustrate the

insufficiency of the methods a) and b) to reliably achieve high-quality reconstructions

in Figure 4.11 which summarises our experience: Using motion correction based

on inter-slice regularisation reduces the risk of slice misregistration and generally

achieves volumetric reconstructions of high anatomical accuracy.

Table 4.3.: Summary of similarity measures evaluated at the ground-truth brain
stated as mean and standard deviation for all 20 subjects. The MSE was omitted
in favour of less absolute intensity value sensitive measures. Bold values correspond

to the best outcome. A ∗ indicates that the reconstructions are statistically
significantly different from the result obtained by the proposed method based on a

paired t-test (p < 0.05) and Bonferroni-correction.
NCC SSIM PSNR

a) Motion Corr. (MC) without reg. 0.985±0.005 0.521±0.056∗ 2.505±1.155
b) MC without inter-slice reg. 0.985±0.005 0.522±0.056 2.503±1.159
c) MC with proposed method 0.985±0.005 0.523±0.056 2.503±1.160
a) MC + IC without reg. 0.992±0.006 0.754±0.100∗ 10.780±3.285
b) MC + IC without inter-slice reg. 0.994±0.002∗ 0.758±0.093∗ 10.628±3.245
c) MC + IC with proposed method 0.995±0.002 0.776±0.099 10.876±3.589

4.4. Discussion

In this chapter, we presented, and to the best of our knowledge for the first time,

a framework which reconstructs the volumetric stack from printed, historical, lim-

ited FOV MR films being acquired decades earlier. The proposed semi-automatic
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Figure 4.11.: Reconstructed sample to show the importance of inter-slice
regularisation for motion correction to obtain high-quality volumetric

reconstructions. Severe misregistrations are visible in case motion correction is
based on the reference image information alone (a). Adding the regularization prior

term P achieves slight improvements (b). A volumetric reconstruction of high
anatomical accuracy is achieved by using the proposed reconstruction pipeline
based on the minimization problem (4.5) which additionally relies on inter-slice

regularisation (c).
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slice-extraction algorithm is capable of dealing with different MR films of many

kinds, formats and appearances including films where parts of the brain and skull

are overlapping on consecutively printed slices. Its particular design choice ensures

the robustness to any acquisition set-up with respect to slice-ordering or single/multi-

slice acquisition in the sense that printed slices which capture adjacent anatomy are

reliably combined to form a first naively stacked 3D data for further processing re-

gardless of the encountered type of historical MR film. We introduce a joint slice-to-

volume registration with inter-slice transformation regularisation and slice intensity

correction based on a smooth `1 approximation as loss functional for a more robust

registration framework. We put a particular focus on using methods which are able

to restore the original image quality and geometry of the historical scans without

introducing additional image artefacts. We emphasise on numerical accuracy and

computational efficiency by providing the exact Jacobian for all cost functions and

use a matrix-free implementation during the TVL2 deconvolution step. We test our

reconstruction results against ground-truth data both quantitatively and in a clin-

ical context and demonstrate the high reconstruction quality and suitability of the

proposed framework.

The performed validation proves the used global intensity correction step sufficient

to deal with the existing intensity differences and illustrates its substantial contri-

bution to an overall improved similarity to the ground-truth data. It demonstrates

that the motion correction algorithm yields a further, statistically significant, im-

provement towards overall similarity in both the measures of structural similarity

and normalised cross-correlation. It underlines that the proposed motion correc-

tion is vital to eliminate implausible discontinuities across slices existing after the

semi-automatic slice extraction and yields reconstructions with highly plausible brain

geometries which accurately reflect the patient-specific anatomy. It illustrates that

the volumetric reconstruction framework and its design is capable of robustly re-

constructing accurate volumetric reconstructions from historic MR films even when

skulls are merged and, consequently, information on the skull is compromised. It

shows that the additional TVL2 deconvolution step gives rise to volumetric recon-

183



4 Volumetric Reconstruction from Printed Films: Enabling 30 Year Longitudinal
Analysis in MR Neuroimaging

structions which are visually almost indistinguishable from the ground-truth data

and may even lead to an improved interpretation over the original, digital volumes.

The volumetric reconstruction algorithm with its joint, in-plane 2D affine motion

and intensity correction model in addition to the in-plane 2D deconvolution step is

designed as a framework to carefully balance the desire of fully recovering the orig-

inal 3D image anatomy without mixing slice neighbour information or introducing

image artefacts. However, this approach can account for axial motion only and may

well be insufficient in cases where subject motion occurred during acquisition time

or more complex motion is present in the historical MR films. The consistently high

reconstruction quality shown in the course of the validation supports the argument

that inter-slice subject motion was not an issue for the data in our study. Our pro-

posed pipeline is not designed to reconstruct parts of the brain which are not visible

in the original MR films. This includes anatomical information hidden by partial

voluming effects due to the thick slice acquisitions or parts of the brain which are

entirely missing due to a reduced FOV. Hence, a truncation at the vertex will prevent

whole brain volumes from being estimated. Furthermore, the anatomical accuracy

of the volumetric reconstruction depends on the estimate of the respective, oblique

reference slices obtained by resampling of the reference stack. Thus, a higher res-

olution of the reference image would provide more scope of accurate registrations.

Minor issues we encountered with our method were associated with subjects where

either the top or the bottom slices of the historical stack did not have a sufficient

overlap with the FOV of the reference image. For such slices only the slice neighbour-

term (4.3) contributes to the cost function (4.5). This situation effectively simplifies

to an intra-stack in-plane registration problem and tends to align bordering slices so

that they fit their proximal neighbour. Consequently, minor inaccuracies for these

slices are visible which may slightly differ from the correct anatomical shape.

This volumetric reconstruction pipeline was developed based on the assumption

that a reference 3D digital image exists with similar intensity appearance in order

to extract both its meta-data and intensity contrast information. However, in cases

where no such reference is available the proposed volumetric reconstruction pipeline
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could still be applied in various ways. In case a naive digital 3D representation

is sufficient for the problem at hand the naively stacked data after semi-automatic

slice extraction can be used whereby the imaging meta-data could be updated with

manual values. Additional motion correction could be performed by using intra-stack

regularisation (4.3) only. However, this is likely to lead to non-physiological slice-

alignments like a straight skull delineation. Alternatively, an atlas could be used

to apply the entire volumetric reconstruction method as outlined in Section 4.2.

Nevertheless, a high reconstruction accuracy depends on the possibility to realign all

slices so that they match the patient-specific anatomy as closely as possible. For this

step, a reference image which accurately reflects the subject anatomy is key and the

higher the slice thickness becomes the more important such a similarity will be for

our proposed framework.

Overall, our framework has shown its capability to accurately reconstruct 3D vol-

umes from printed MR films of MS subjects and will help in the robust analysis of a

uniquely long-term study spanning 30 years of MRI scans of people followed up after

a CIS. This study includes more than 100 subject scans captured on historical films

which can be reconstructed with our proposed technique for further image processing

and analysis. However, applications of the proposed method are not confined to CIS

and MS studies, and it may prove useful for the longitudinal assessment of lesions

and anatomical structures in a variety of other conditions that affect the brain. Our

framework may also be useful in current clinical practice, where not uncommonly,

patients have had MR imaging performed previously on different scanners, and the

only format available is in film format. The volumetric reconstruction of these images

would allow the digital storage of the data, and also a longitudinal comparison with

an up-to-date scan. Moreover, despite being tested on only PD-like images where

ground-truth data was available, the proposed framework may be used for other MR

image contrasts as well.

185





Chapter 5.

Forward-Backward Splitting in

Deformable Image Registration:

A Demons Approach

Table of Contents

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.2. Forward-Backward Splitting for Image Registration . . 191

5.2.1. Forward-Backward Splitting Methods . . . . . . . . . . . . 191

5.2.2. Forward Step in Image Registration . . . . . . . . . . . . . 193

5.2.3. Proximal Step in Image Registration . . . . . . . . . . . . . 193

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.1. Circle to C . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.2. 3D Anatomical MRI . . . . . . . . . . . . . . . . . . . . . . 196

5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Foreword. This chapter is adapted and contains content from the work pub-

lished in

Ebner, M., Modat, M., Ferraris, S., Ourselin, S., and Vercauteren, T. (2018b).

Forward-backward splitting in deformable image registration: A demons ap-

proach. In 2018 IEEE 15th International Symposium on Biomedical Imaging

(ISBI 2018), pages 1065–1069, Washington, D.C. IEEE.

187



5 Forward-Backward Splitting in Deformable Image Registration: A Demons
Approach

In the previous chapters, volumetric reconstruction frameworks were presented

that critically relied on accurate registration/motion correction. All associated

numerical approximations to estimate the slice transformation parameters in

each step relied on traditional solvers like conjugate gradient methods, whereby

the problem of convergence and optimality of these solvers was not investigated.

This chapter provides an opportunity to take a deeper look at the problem of

registration and to potentially improve the efficacy and reliability of these steps.

My specific contributions presented in this chapter are:

• Introduction of recently proposed Forward-Backward Splitting (FBS) meth-

ods to deformable image registration.

• Highlighting that FBS is guaranteed to converge to a critical point for

cost functions of the form f + g consisting of a smooth (possibly non-

convex) function f and a convex (possibly non-smooth) function g. In the

context of (non-linear) image registration, f will typically correspond to

a (differentiable) similarity measure and g to a (convex) regularizer.

• Showcasing the advantage of FBS to efficiently solve for various kinds

of cost functions vital for medical image registration by performing two

simple iterative steps – a forward and a backward step.

• Illustration that Tikhonov regularization breaks down to simple B-Spline

filtering in the backward step.

• Demonstration of the versatility of FBS by encoding spatial transforma-

tion as displacement fields or free-form B-Spline deformations.

• Comparison of two FBS variants, namely FISTA [Goldstein et al., 2014]

and iPiano [Ochs et al., 2014], against the classical demons algorithm, the

recently proposed inertial demons algorithm [Santos-Ribeiro et al., 2016]

and the conjugate gradient method within NiftyReg [Modat et al., 2010].

• Numerical experiments performed on both synthetic and clinical data

show the advantage of FBS in image registration in terms of both conver-

gence and accuracy.
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5.1. Introduction

Efficient non-linear image registration implementations are essential in the fields of

medical and biomedical imaging to allow for both timely and accurate modern image

analysis. In its general formulation, image registration aims at finding a (non-linear)

registration transform T which best aligns a fixed with a moving image, denoted

by F and M , respectively. This is typically framed as the optimization of a global

energy

E(T ) := Sim(F, M ◦ T ) + Reg(T ) (5.1)

consisting of a similarity measure Sim and an additional regularization term Reg to

better constrain the otherwise ill-posed problem. Given the difficulty of solving the

(in most applications of interest) non-convex problem (5.1) directly, in the demons

algorithm, the relaxed formulation,

Ẽ(S, T ) := Sim(F, M ◦ S) + λ‖S − T‖2 + Reg(T ) (5.2)

with λ > 0, is optimized instead by solving iteratively for the spatial transformations

S and T [Thirion, 1998,Pennec et al., 1999,Cachier et al., 2003,Vercauteren et al.,

2007,Vercauteren et al., 2009, Santos-Ribeiro et al., 2016]. In the first step of this

demons approach, T is being fixed and the optimization of Sim(F, M ◦S)+λ‖S−T‖2

with respect to S is approximated by a gradient descent step. Then, the updated S is

fixed and the optimization of λ‖S−T‖2+Reg(T ) with respect to T is performed with

a simple Gaussian filter applied to S. Both steps are then repeated until convergence.

Despite its simplicity, it has been shown to be a very powerful approach in practice.

Much work has been invested to further extend the demons approach. For instance,

in [Vercauteren et al., 2009] the incorporation of diffeomorphic transformations was

suggested to enforce preservation of topology and, more recently, it was suggested

to incorporate an additional inertial term to improve overall convergence speed and

accuracy [Santos-Ribeiro et al., 2016]. The diffusion-like Gaussian regularization
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was extended to bilateral filtering to allow for deformation discontinuities in [Papież

et al., 2014] and a duality-based Total Variation (TV) approach for optical flow was

proposed in [Pock et al., 2007] to solve a convex approximation of form (5.2). Thus, a

wide range of algorithms typically solve a relaxed formulation which is not guaranteed

to obtain an optimal solution of the original formulation (5.1). In contrast, gradient

descent and conjugate gradient methods have been applied to directly solve the

original problem (5.1) for a variety of cost functions and regularizers, e.g. [Modat

et al., 2010]. However, some form of relaxation is typically employed in case the

regularizing term is non-differentiable as in the setting of TV regularization.

In this chapter, we want to highlight a numerical framework which indeed is able

to solve the deformable registration problem (5.1) in its original form. As an active

field of research, Forward-Backward Splitting (FBS) methods have been developed

to solve convex and, more recently, non-convex problems of the form

min
u∈RN

(
f(u) + g(u)

)
(5.3)

whereby the composite objective function consists of a smooth (possibly non-convex)

function f : RN → R and a convex (possibly non-smooth) function g : RN →
R [Goldstein et al., 2014,Ochs et al., 2014]. In case the associated proximal operator

of g, i.e.

proxg(u, τ) := arg min
v∈RN

(
‖u− v‖2 + 2 τ g(v)

)
, (5.4)

with τ > 0 is easy to compute, FBS methods break down the iterative solution

of (5.3) into two simple, iterative steps: a forward gradient descent step on f and a

so-called proximal, backward gradient descent step. Their advantage, however, lies in

their sound mathematical basis, proof of algorithmic convergence to a critical point,

simplicity to use and their richness of possible functions f and g.

In this chapter, (i) we propose using a guaranteed-to-converge FBS framework to

solve directly for non-linear registration problems of the form (5.1); (ii) we demon-

strate their advantage to efficiently implement various kinds of regularizers vital for
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medical image registration; (iii) we specifically illustrate that Tikhonov regulariza-

tion breaks down to simple B-Spline filtering in the proximal step; (iv) we showcase

both the fast iterative shrinkage/thresholding algorithm (FISTA) [Goldstein et al.,

2014] and the recently proposed inertial proximal algorithm for non-convex optimiza-

tion (iPiano) [Ochs et al., 2014] as FBS instances; (v) we illustrate the versatility of

FBS by relying on a combination of displacement fields, free-form B-Spline transfor-

mation, sum of squared differences (SSD) and normalized mutual information (NMI)

in conjunction with second-order Tikhonov regularization; and (vi) we evaluate the

performance of both FISTA and iPiano against the classical demons, the recently

proposed inertial demons [Santos-Ribeiro et al., 2016] and the conjugate gradient

method within NiftyReg [Modat et al., 2010].

5.2. Forward-Backward Splitting for Image Registration

5.2.1. Forward-Backward Splitting Methods

Given a differentiable (possibly non-convex) function f and a convex (possibly non-

differentiable) function g, problems of the form (5.3) can efficiently be solved by FBS

methods1 in cases where the proximal operator (5.4) of g can be evaluated easily. In

case of a convex f , the basic FBS algorithm

while not converged do
ũk+1 := uk − τk∇f(uk) (Forward step)
uk+1 := proxg(ũk+1, τk) (Proximal step)

end

guarantees the convergence of uk to a critical point û of (5.3) for k → ∞ for an

appropriate step size 0 < τk < 2/L(∇f), which depends on the Lipschitz constant of

the gradient on f only [Goldstein et al., 2014,Ochs et al., 2014]. The recently pro-

posed FBS-variant called “inertial proximal algorithm for non-convex optimization”

(iPiano) extends this statement even to non-convex functions f [Ochs et al., 2014].

In practice, however, it can be very challenging to estimate the Lipschitz constant

1Also commonly referred to as Proximal-Gradient methods
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L(∇f) beforehand. By using backtracking, the Lipschitz constant and, hence, the

step sizes τk can be estimated automatically. Several variants of FBS have been

proposed to speed up the convergence of potentially slow FBS. For the numerical

experiments we will use both FISTA [Beck and Teboulle, 2009a] and iPiano [Ochs

et al., 2014] with their basic iterations shown in Algs. 5.1 and 5.2 and their extended

versions in Algs. 5.3 and 5.4, respectively.

Algorithm 5.1: FISTA algorithm [Beck and Teboulle, 2009a]
ṽk+1 := uk − τk∇f(uk) (Forward step)
vk+1 := proxg(ṽk+1, τk) (Proximal step)

αk+1 := (1 +
√

1 + 4α2
k)/2 (Acceleration parameter)

uk+1 := vk+1 + αk−1
αk+1

(vk+1 − vk) (Prediction step)

Algorithm 5.2: Generic iPiano algorithm [Ochs et al., 2014]
ũk+1 := uk − τk∇f(uk) + β(uk − uk−1) (Forward step with inertia)
uk+1 := proxg(ũk+1, τk) (Proximal step)

FISTA is based on a predefined sequence of acceleration parameters and is charac-

terized by its lack of tuning parameter in addition to its good worst-case performance.

The correct step size can be estimated even without knowing the Lipschitz constant

by using backtracking line search. Using non-monotone backtracking has the ad-

vantage of not discarding iterates with a higher objective value which might still

be closer to the minimizer. This is especially useful in case of poorly conditioned

problems and alleviates the computational burden since non-monotone line search

conditions are less likely to be violated. Generally, FISTA also performs well on

non-convex problems although global convergence is not guaranteed. Building on

FISTA, the recent iPiano algorithm has been specifically designed for non-convex

problems. Its rigorous mathematical analysis ensures favorable properties and guar-

antees global convergence also for non-convex f under very weak restrictions. As

opposed to FISTA, additional tuning parameters are required. This includes the

inertial weight β ∈ [0, 1) and the parameters η, c > 1 which adaptively tune the step

size τk during run time to achieve fast convergence.
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In the context of (non-linear) image registration (5.1) the framework of FBS is

ideal for dealing with a wide range of composite objective functions. Here, f will

typically correspond to the (differentiable) similarity measure Sim and g to the (con-

vex) regularizer Reg.

5.2.2. Forward Step in Image Registration

To illustrate the use of forward step in FBS, we focus on SSD as the similarity

measure and displacement fields as the spatial transformation model. Nonetheless,

we highlight and demonstrate in Section 5.3 that FBS allows for both parametric,

e.g. free-form B-Spline, and non-parametric spatial transformations. The forward

step is based on the gradient of f(u) = Sim(u) = SSD(u) = 1
2‖F −M ◦ u‖2 with

vector field u. Explicitly written, this reads

∇uf(u(x)) =
(
M ◦ u(x)− F (x)

)
Ju(x) (5.5)

with Ju(x) = ∇uM
(
u(x)

)
or Ju(x) = 1

2

(
∇uM

(
u(x)

)
+ ∇F (x)

)
in case symmetric

forces are applied at a point x [Vercauteren et al., 2009]. Moreover, any other

differentiable, parametric or non-parametric spatial transform can be incorporated

without restriction. This includes the exponential map vital for image registration

on the Lie algebra of diffeomorphisms [Ashburner, 2007, Vercauteren et al., 2008,

Vercauteren et al., 2009].

5.2.3. Proximal Step in Image Registration

An explicit or easy-to-solve proximal map proxg is critical for the efficient com-

putation of the proximal step in FBS. We discuss important examples for image

registration.

It is well known that Gaussian blurring Gσ with standard deviation σ > 0 used

in the demons algorithm corresponds to applying diffusion-like regularization.

Based on the relationship between Gaussian smoothing and solving the heat equation

established in [Nielsen et al., 1996] we infer the closed-form solution for the proximal
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operator for diffusion-like regularization, i.e.

Gσ ∗ u = arg min
v

(
‖u− v‖2 +

D∑
i,j=1

∞∑
k=1

σ2k

2kk!

∥∥∥ ∂k
∂xki

vj

∥∥∥2)
= proxgστ (u, τ) (5.6)

with gστ (v) = 1
2τ

∑D
i,j=1

∑∞
k=1

σ2k

2kk!

∥∥ ∂k

∂xki
vj
∥∥2 whereby v = (vj)

D
j=1 : RD → RD and

D denoting the dimension of space. Hence, Gaussian filtering corresponds to using

the function gστ as regularizer and using a step size τk = τ for its proximal operator.

With a view to FBS where the same step size is used for both the forward and

proximal step, this means that adjusting the step size τk at FBS iterations implicitly

corresponds to an adaptive scaling of the objective function according to f + gστk =

f + 1
τk
gσ1 in (5.3). However, proofs of convergence are based on a fixed g and, hence,

the strong mathematical statement of guaranteed algorithmic convergence of FBS to

a critical point would be lost. Note that (5.6) corresponds to the second step in the

classical demons approach too.

Another class of important closed-form proximal maps are related to the applica-

tion of Tikhonov regularization. Based on the insights in [Unser et al., 1993],

we explicitly state the proximal operator for r-th order Tikhonov regularization, i.e.

gλr (v) = λ
2

∑D
i,j=1

∥∥ ∂r

∂xri
vj
∥∥2 with regularization parameter λ > 0, as

B2r−1,τλ(v) = arg min
v

(
‖u− v‖2 + τλ

D∑
i,j=1

∥∥ ∂r
∂xri

vj
∥∥2
)

= proxgλr (v, τ) (5.7)

whereby B2r−1,τλ denotes the B-Spline smoothing filter of order 2r− 1 and smooth-

ing parameter τλ. Varying step sizes τk for adaptive FBS schemes can easily be

incorporated by scaling the smoothing parameter for the filtering without changing

the original objective function, in contrast to Gaussian smoothing. Importantly,

second-order Tikhonov regularization represents a cubic spline smoothing for the

proximal step which can be efficiently implemented using 15D operations per voxel

by recursive infinite impulse response (IIR) filters [Unser et al., 1993].

Moreover, more complicated regularizers can easily be wrapped into the FBS
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framework. For example, isotropic TV regularization leads to a proximal step of

proxg(u, τk) = arg min
v

(
‖u− v‖2 + 2 τk λTV`2(v)

)
(5.8)

which corresponds to a TV denoising step. By using its dual formulation, isotropic

TV regularization can be solved via a nested FBS scheme in which a FBS is applied

also for the minimization in the proximal step (5.8) [Goldstein et al., 2014].

5.3. Experiments

5.3.1. Circle to C
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Figure 5.1.: Convergence comparison of solvers for the non-linear registration of the
classical “Circle to C” experiment with markers indicating every 500 iterations.

To examine the ability for the proposed FBS framework to perform large de-

formations, we chose the classical “Circle to C” experiment. We compare both

FISTA and iPiano against the additive demons and the recently proposed inertial

demons [Santos-Ribeiro et al., 2016]. Based on the similarity measure SSD(u) =

1
2‖F −M ◦u‖2 = f(u), we parameterized the inertial demons as proposed in [Santos-

Ribeiro et al., 2016] and implemented the Efficient Second-order Minimization (ESM) [Ver-

cauteren et al., 2009] based gradient in (5.5), set the inertial weight α = 0.9 and the

maximal step to 0.5 voxels for the demons algorithms. The corresponding Gaussian

smoothing was performed using σ = 1. FISTA and iPiano were implemented as
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outlined in [Goldstein et al., 2014, Alg. 3] and [Ochs et al., 2014, Alg. 4], respec-

tively, whereby second-order Tikhonov (TK2) regularization was applied using cubic

B-Spline filtering for the proximal step. The TK2-regularization parameter λ = 0.5

was set based on the relationship σ2 =
√

2λ to the Gaussian standard deviation σ

established experimentally in [Unser et al., 1993]. The step size parameter τ0 was

arbitrarily initialized as in [Goldstein et al., 2014] by ensuring a value higher than

2/L(∇f) from where backtracking line search took care of finding the adequate step

size for the FBS variants. For iPiano the inertial weight β was set to 0.95 in con-

junction with c = 1.05 and η = 1.2 to adaptively tune the step size parameter during

runtime. The identity deformation was provided as the initial value for all solvers.

Figure 5.1 shows that both FISTA and iPiano outperform the demons and in-

ertial demons algorithm in terms of computational speed and numerical accuracy

converging about four times faster than their demons counterparts. The oscillations

of FISTA at the beginning can be attributed to the non-monotone backtracking line

search to ensure that iterates with higher objective values, but possibly closer to the

minimizer, are not discarded.

5.3.2. 3D Anatomical MRI
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Figure 5.2.: 3D-Comparison of FISTA and iPiano against the conjugate gradient
(CG) solver based on overall 1180 registrations. The Dice scores represent the
mean of all propagated labels for each registration. All FBS results, apart from
NMI, are statistically significantly better (p < 10−6) than the CG ones based on

the Wilcoxon signed rank test.

In the 3D experiment, we assessed the proposed FBS framework by registering 35

T1-weighted brain MRIs as provided by Neuromorphometrics for the MICCAI 2012
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Grand Challenge on label fusion and propagated their respective parcellations hold-

ing 143 labels. Each brain was registered to the remaining 34 brains in either

direction summing up to overall 1190 registrations for each method. In order to

evaluate the performance of the actual numerical solvers in this task, we embedded

both FISTA and iPiano as additional optimizers into the NiftyReg registration

framework [Modat et al., 2010] which is based on a cubic B-Spline parameteriza-

tion. As similarity measure, we chose normalized mutual information. Including

a TK2-regularization term in the objective function, the conjugate gradient (CG)

solver could be applied to the overall cost function (5.1). This could then directly

be compared against the performance of both FISTA and iPiano using cubic B-

Spline filtering for the proximal operator. For the regularization parameter λ we

chose 0.05. The step size for both FBS solvers was fixed and set experimentally to

avoid its possible re-computation during the backtracking at each iteration and β

was set to 0.95 for iPiano. The registration was performed within a multi-resolution

framework with 2 levels. The FBS solvers ran for the total amount of 500 iterations

whereas the CG solver was terminated earlier in case the stopping condition was met

as implemented in NiftyReg.

Figure 5.2 summarizes the corresponding registration results. Both FBS solvers

reached statistically significantly better figures for overall similarity (NMI− λTK2),

smoothness (TK2), and Dice scores. However, 68 values were detected as outliers

with higher values in the TK2 term for iPiano. Further analysis needs to be done

but, presumably, this can be attributed to a possibly too high inertial weight β used

in the experiment.

5.4. Discussion

In this chapter, we presented and demonstrated the capability of Forward-Backward

Splitting schemes to be efficiently used in the challenging problem of deformable

image registration. The advantage of FBS lies in their general framework to solve

for arbitrary differentiable similarity measures in conjunction with any kind of con-

vex regularizer associated with an easy-to-compute proximal operator. In addition,
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the use of FBS comes with a proven algorithmic convergence to a critical value

of the original problem (5.1). We provide explicit forward and proximal steps for

several similarity and regularisation terms of benefit for (medical) image registra-

tion thereby allowing for efficient solutions via FBS. Additionally, and for the first

time, we show the possibility to incorporate Tikhonov regularization in image reg-

istration by the mere application of B-Spline filtering in the proximal step which

can be efficiently implemented by recursive IIR filters. We showcase two important

instances of FBS solvers, FISTA and iPiano, and obtain statistically significantly

better results in our numerical experiments than those obtained by the conjugate

gradient method in NiftyReg. Overall, we recommend the use of FBS methods to

efficiently solve deformable registration problems due to their favorable theoretical

properties, simplicity to use and general applicability to a wide range of similarity

measures and regularizers. Future work could include the investigation of obtained

deformation fields using FBS and a comparison with Quasi-Newton optimization

methods. Moreover, FBS could constitute a more efficient means to compute the

transformation parameters within the volumetric reconstruction frameworks. In par-

ticular, inter-slice regularization could be achieved by using Tikhonov regularization

to impose a smoothness prior in between temporal neighboring slices for increased

robustness in the slice-to-volume registration estimates.
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Algorithm 5.3: FISTA with “restart” method, non-monotone backtracking line
search and residual computation [Goldstein et al., 2014]. Residual computation is
provided for completeness and was not incorporated to generate the results pre-
sented in here. Provided a differentiable, convex function f and convex (possibly
non-smooth) function g, FISTA is guaranteed to converge.
Input : Starting point u0, optional initial step size estimate τ0
Output : Critical point estimate û of arg minu

(
f(u) + g(u)

)
1 v−1 := u0, v0 := u0, α0 := 1, k := 0
2 if initial step size estimate τ0 is not provided then
3 τ0 := 5 2

Lest
with Lest := ‖∇f(ŭ1)−∇f(ŭ2)‖

‖ŭ1−ŭ2‖ ≤ L(∇f) for random ŭ1, ŭ2

4 end
5 while residual rk > εtol and k < kmax do
6 ṽk+1 := uk − τk∇f(uk) (forward step)
7 vk+1 := proxg(ṽk+1, τk) (proximal step)
8 αk+1 := (1 +

√
1 + 4α2

k)/2 (acceleration parameter)
9 uk+1 := vk+1 + αk−1

αk+1
(vk+1 − vk) (prediction step)

10 while non-monotone backtracking line search condition

f(uk+1) ≤ f̂k + 〈∇f(uk) , uk+1 − uk〉 +
1

2τk
‖uk+1 − uk‖2

with f̂k := max{f(uk−1), f(uk−2), . . . , f(uk−min{M,k})}, M ∈ N, is not fulfilled
(to ensure τk < 2/L(∇f)) do

11 τk ← τk/2 (decrease step size)
12 recompute lines 6 to 9
13 end
14 begin
15 Compute residual rk+1 := min{rrk+1, r

n
k+1} based on relative and normalized

residuals

rrk+1 :=
‖r̂k+1‖

max{‖∇f(vk+1)‖, ‖ ṽk+1−vk+1

τk
‖}+ εr

, rnk+1 :=
‖r̂k+1‖
r̂1 + εn

(5.9)

with

r̂k+1 := ∇f(vk+1) +
ṽk+1 − vk+1

τk
(5.10)

16 end
17 if 〈uk+1 − vk+1 , vk+1 − vk〉 ≥ 0 then
18 αk+1 := 1 (“restart” method)
19 end
20 k ← k + 1

21 end
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5 Forward-Backward Splitting in Deformable Image Registration: A Demons
Approach

Algorithm 5.4: Non-monotone iPiano algorithm with backtracking [Ochs et al.,
2014] and residual computation [Goldstein et al., 2014]. Residual computation
is provided for completeness and was not incorporated to generate the results
presented in here. Provided a differentiable (possibly non-convex) function f and
convex (possibly non-smooth) function g, iPiano is guaranteed to converge.
Input : Starting point u0, inertial weight β ∈ [0, 1), step size tuning parameters

η > 1 and c > 1 and optional initial Lipschitz-constant estimate L0 > 0
Output : Critical point estimate û of arg minu

(
f(u) + g(u)

)
1 u−1 := u0, k := 0
2 if initial Lipschitz-constant estimate L0 is not provided then
3 L0 := Lest

5 with Lest := ‖∇f(ŭ1)−∇f(ŭ2)‖
‖ŭ1−ŭ2‖ ≤ L(∇f) for random ŭ1, ŭ2

4 end
5 while residual rk > εtol and k < kmax do
6 τk := 1.99(1−β)

Lk

7 ũk+1 := uk − τk∇f(uk) + β(uk − uk−1) (forward step with inertia)
8 uk+1 := proxg(ũk+1, τk) (proximal step)
9 while monotone backtracking line search condition

f(uk+1) ≤ f(uk) + 〈∇f(uk) , uk+1 − uk〉 +
Lk
2
‖uk+1 − uk‖2

is not fulfilled do
10 Lk ← η Lk (increase Lipschitz-constant estimate)
11 recompute lines 6 to 8
12 end
13 Compute residual rk+1 = min{rrk+1, r

n
k+1} via (5.9) and (5.10).

14 Lk+1 := Lk/c (decrease Lipschitz-constant estimate)
15 k ← k + 1

16 end
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Conclusions and Future Work
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6.1. Conclusions

This thesis presents robust volumetric reconstruction frameworks from motion-corrupted,

potentially sparse, 2D slices using inverse problem formulations applicable to a broad

field of clinical applications in which associated motion patterns are inherently dif-

ferent, but the use of thick-slice MR data is current clinical practice.

In Chapter 2, an alternative to currently existing reconstruction frameworks

for fetal brain MRI reconstruction was presented. A novel, complete outlier-robust

super-resolution reconstruction framework was described that relies on a single hy-

perparameter only and retains a linear least-squares formulation, which can be solved

efficiently. Despite its simplicity, it was shown to be an effective outlier-rejection ap-

proach to create high-fidelity high-resolution reconstructions with clear tissue bound-

ary definitions even for very challenging motion- and intensity-artefact-corrupted

low-resolution input data. A fast and automatic template-space alignment approach

for automatic high-resolution visualization in the standard anatomical planes suit-

able for pathological brains was presented. Additionally, a robust motion-correction

method based on Gaussian process regularization was presented that encourages the

201
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consistency of spatial transformations with the overall aim of achieving more robust

slice motion-correction estimates. The presented volumetric reconstruction frame-

work was tested as part of an automatic localization, segmentation and volumetric

reconstruction pipeline for fetal brain MRI, which generated high-resolution brain vi-

sualizations in the standard anatomical planes visually indistinguishable from those

obtained by manual, labour-intensive brain segmentations. This framework unlocks

the potential use of automatic fetal brain reconstruction studies in clinical practice.

InChapter 3, super-resolution reconstruction frameworks were introduced to gen-

erate isotropic, high-resolution 3D visualizations of upper gastrointestinal anatomy

from MRCP data. A reference-guided multimodal, deformable registration approach

was presented for volumetric reconstruction in the context of sparse T2W MRI data

available in current clinical MRCP protocols. By presenting a PSF-aware registra-

tion approach for motion correction, a consistent SRR framework was introduced

that takes into account the physical image formation process for both registration

and reconstruction steps. In a follow-up pilot study on healthy volunteers, the poten-

tial clinical utility of Super-Resolution was investigated for instances when current

clinical MRCP protocols are extended by additional multiplanar SST2W stacks. Ex-

periments showed the suitability and effectiveness of the proposed robust volumetric

reconstruction framework initially presented for fetal brain MRI. In a controlled en-

vironment using quasi-static brain control data, the optimal number and orientation

of SST2W series for MRCP SRR generation was empirically estimated. A compre-

hensive SRR quality assessment was conducted including four expert-readers with

subspeciality interest in hepato-pancreatico-biliary imaging who assessed a range of

anatomical regions particularly critical for the management of cancer patients. The

results underline the potential of using SRR alongside traditional MRCP data for

improved clinical diagnosis.

In Chapter 4, a volumetric reconstruction framework was presented that recovers

geometrically consistent, volumetric images from printed films in MR neuroimaging.

The flexible framework was based on semi-automatic slice extraction followed by

automated slice-to-volume registration with inter-slice transformation regularization
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and slice intensity correction whereby the missing meta-data information is con-

tributed by a longitudinal scan of the same subject. A subsequent, isotropic in-plane

total variation deconvolution technique was applied for visual enhancement of the

obtained volumes. The validation of the proposed algorithm was performed on a

uniquely long-term MRI dataset where a ground-truth was available. The results

illustrated the robustness against numerous detrimental effects present in archaic

films and the capability to accurately reconstruct 3D volumes. For follow-up re-

search [Chung et al., 2019], the presented framework was used to reconstruct more

than 200 image acquisitions captured on historical films to support a landmark lon-

gitudinal study1 of 132 multiple sclerosis (MS) patients who had had been tracked

since the 1980s. These reconstructions may reveal the full potential of modern image

analysis tools and help understand disease progression in MS.

In Chapter 5, Forward-Backward Splitting (FBS) methods were presented to

show their suitability in the context of deformable image registration and their po-

tential advantage to efficiently achieve more robust slice-to-volume registration es-

timates for the proposed volumetric reconstruction frameworks. It was illustrated

that for a range of cost functions vital for image registration, FBS variants can guar-

antee the convergence to a critical point by performing two simple, iterative steps.

In particular, this framework guarantees that registration problems with any dif-

ferentiable (not necessarily convex) similarity measure and convex (not necessarily

smooth) regularization with a tractable proximal operator can be solved efficiently.

The comparisons against state-of-the-art solvers performed on both synthetic and

clinical data showed the advantage of FBS in terms of both convergence and regis-

tration accuracy.

6.2. Discussion and Future Work

The results presented in this thesis are encouraging, but the extent to which the

proposed reconstruction methods will provide actual clinical utility and benefit in

1https://www.ucl.ac.uk/healthcare-engineering/news/2018/feb/
image-reconstruction-tool-allows-researchers-unlock-historic-ms-data
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practice remains to be seen.

The developed fully-automated reconstruction framework for fetal brain MRI could

be particularly useful in the context of spina bifida, in which MRI plays a role in char-

acterizing the spinal lesion as well as resulting brain changes. The high-resolution

reconstructions obtained by this framework may aid more accurate brain tissue mea-

surement, which would help identify pathological changes associated with conditions

such as spina bifida and other prognostically important brain changes. While the

associated work in this thesis focused on methodological development and valida-

tion, a follow-up clinical study reconstructing more than 300 MRI examinations

with the presented algorithm is currently under preparation. Moreover, the deploy-

ment of this algorithm for clinical use could be facilitated by its integration into

GIFT-Cloud [Doel et al., 2017], a data sharing and collaboration platform between

hospitals and research institutions. Such a large dataset will provide invaluable in-

sight into the clinical applicability of the current algorithm. In particular, it may

lead to revisiting some of the investigated robust motion-correction approaches pre-

sented in this thesis that had proven to be less effective in their current form (such

as the GPR approach in Section 2.2.3) or to alternative initialization methods such

as proposed in [Hou et al., 2018].

The same reconstruction algorithm also produced promising results in the recon-

struction of the upper gastrointestinal anatomy of healthy subjects when an extended

MRCP acquisition protocol is used that is not clinical standard. Future work aims

at applying the proposed extended MRCP protocol to a representative patient co-

hort to assess the clinical utility of MRCP SRR. However, as data acquired during

breath-holds of patients is expected to have more challenging motion artefacts, an

algorithmic improvement may well be necessary. In particular, the currently used

rigid motion correction model is inherently limited in capturing the complex defor-

mations encountered in upper abdominal imaging. A poly-rigid (or poly-affine by

simple extension) motion correction framework can be achieved by splitting a slice

into smaller patches for a subsequent rigid patch-to-volume registration for each

individual patch [Alansary et al., 2017]. However, it is non-trivial to define phys-
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iologically plausible patches and the associated, reduced support of a single patch

can complicate an accurate image registration, potentially leading to an increased

rate of misregistrations. A promising approach could involve defining a robust joint-

regularized motion-correction model, similar to the one presented in Section 4.2.2,

which takes advantage of an additional 3D reference in (extended) MRCP protocols,

such as the BFFE sequence. In general, a reference-guided approach appears partic-

ularly promising if a suitable multimodal similarity measure is available. Recently

proposed deep learning methods [Cheng et al., 2018, Simonovsky et al., 2016] could

prove useful for this step or, as shown in other applications, could be used to aid

the motion correction as a whole [Hu et al., 2018]. Alternatively, recent deep learn-

ing approaches show promising results to synthesize images using image-to-image

translation [Zhu et al., 2017, Isola et al., 2017,Wolterink et al., 2017]. In particular,

pseudo-monomodal registration could be performed in case a suitable, same-contrast

reference volume is synthesized [Tanner et al., 2018, Hiasa et al., 2018]. Further-

more, learning-based reconstruction methods could be another avenue worth explor-

ing. However, key challenges would include the need for a sufficiently large training

dataset of MRCP studies in addition to a potential poor ability to generalize in cases

of complex, and potentially, substantial motion in abdominal anatomy (Figure 1.2).

Forward-Backward Splitting approaches represent an attractive numerical scheme

when a tractable proximal operator is available. If this leads to an overall smooth

cost function, such as given by a Tikhonov regularizer (Section 5.2.3), their advantage

against Quasi-Newton methods is yet to be demonstrated. However, a potentially

much more clinically interesting application for FBS could be found in deformable

image registration constrained by physiologically relevant tissue properties such as

elasticity or incompressibility [Mansi et al., 2011]. Imposing such constraints leads

to an overall non-smooth cost function that in practice is difficult to solve using

traditional solvers. In the framework of FBS, however, the associated incompress-

ibility term results in a tractable proximal operator. Thus, using FBS could prove

particularly helpful in the context of incompressible image registration to achieve

physiologically plausible transformations [Fidon et al., 2019].
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Appendix A.

Super-Resolution Reconstruction of

Fetal Brain MRI

A.1. Evaluation of Volumetric Self-Consistency

In addition to the performed slice similarity comparisons Sim(yik, Ai
kx

i) after the

final SVR-SRR iteration (i = 3) using SSIM and PSNR in Figure 2.16, we also per-

formed comparisons using NCC, normalised mutual information (NMI), root mean

squared error (RMSE) and mean absolute error (MAE). Figure A.1 summarizes the

comparisons which corroborate the findings using SSIM and PSNR that SRR (S)/(M)

appear of similar volumetric self-consistency.

A.2. Clinical Evaluation

Figures A.2 and A.3 represent an extension to Figure 2.17 and provide a more detailed

comparison of the individual scores regarding anatomical clarity and SRR quality.
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A Super-Resolution Reconstruction of Fetal Brain MRI
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Figure A.1.: Slice similarities after the final SVR-SRR iteration. Quantitative
comparison of different reconstruction methods based on Sim(yik, Ai

kx
i) after the

final SVR-SRR iteration (i = 3). A ∗ denotes a significant difference compared to
SRR (M) within each group based on Kruskal-Wallis with post-hoc Dunn tests

(p < 0.05). Thus, SRR (S) and SRR (M) appear of similar volumetric
self-consistency as quantified by the similarities between motion-corrected and

respectively projected HR volume slices.
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A.2 Clinical Evaluation
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Figure A.2.: Summary of clinical evaluation for anatomical clarity scores. Two
radiologists performed a qualitative assessment of the obtained HR reconstructions
regarding anatomical clarity involving 39 cases. Scores indicate how well cerebellar

structure (CS), cerebral aqueduct and interhemispheric fissure (CAIF) and
longitudinal cerebral fissure (LCF) are visualized in each image with ratings 0
(structure not seen), 1 (poor depiction), 2 (suboptimal visualization; image not
adequate for diagnostic purposes), 3 (clear visualization of structure but reduced
tissue contrast; image-based diagnosis feasible), and 4 (excellent depiction; optimal
for diagnostic purposes). A ∗ denotes a significant difference compared to SRR (M)

based on a Wilcoxon signed-rank test (p < 0.05).
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Figure A.3.: Summary of clinical evaluation for SRR quality scores. Two
radiologists performed a qualitative assessment of the obtained HR reconstructions
regarding SRR quality involving 39 cases. The SRR quality was described by the
visible artefacts and blur scores with ratings 0 (lots of artefacts/blur) to 2 (no

artefact/blur). A ∗ denotes a significant difference compared to SRR (M) based on
a Wilcoxon signed-rank test (p < 0.05).
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Appendix B.

Super-Resolution Reconstruction of

Upper Abdominal MRI

B.1. Optimisation Control Studies for Brain MRI SRR

The qualitative comparison in Figure B.1 extends the one in Figure 3.8 by providing

additional axial and coronal views for both static and motion-corrected brain SRR

outcomes.

Figures B.2 and B.3 show SSIM, PSNR and NMI in addition to NCC as provided

in Figure 3.7.

Table B.1 provides an extension to Table 3.3 for more source data configurations,

additional similarity measures and the axial SST2W stack (SST2WAx) as another

possible choice as reference image for the reference-guided SRR approach. Using the

short-hand "RG-Reference-SimilarityMeasureForRegistration", the settings for the

reference-guided SRR approach are shown, where, e.g., RG-BFFE-NMI refers to the

use of BFFE as reference volume for guidance and NMI as similarity measure for

registration. Using NMI, as shown for the two references of HT2W and the axial

SST2W stack in Table 3.3, can be computationally unstable and eventually fail as

voxel numbers can be insufficient for the slice-to-volume metric evaluations.
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Figure B.1.: Qualitative comparison of the static and reference-guided SRR
outcome of one subject for various input data scenarios (extension to Figure 3.8). It
illustrates the impact of the number of input stacks and how multiple orientations
can improve PVE recovery. In particular, SRR (a+c+s+3obl) shows visually higher
anatomical accuracy than SRR (2a+2c+2s) despite the same number of six input
stacks used for the SRR. The red arrows (a) underline that the SRR based on only
two stacks (a+c) as currently available for clinical MRCP study protocols produces
a very poor SRR quality which is especially noticeable in the sagittal view. The
magenta arrows (b) illustrate that for three input stacks (a+c+s) the corpus

callosum can only be reconstructed with limited geometrical integrity.
Motion-correction helps to recover it more clearly by adding three additional
stacks (2a+2c+2s) as indicated by arrows (c). The green arrows (d) show the
improved visual clarity at the medulla due to better PVE correction by using

oblique data. Additional oversampling for high input stack numbers leads to higher
PSNR. This may also result in clear tissue boundaries even in case of insufficient

motion correction for the static SRR as indicated by the cyan arrow (e).
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B.2 Optimisation Studies for Upper Abdominal MRI SRR

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850
NC

C
* * * * * *

Static SRR
Motion-Corrected SRR

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SS
IM

* * * * *

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

NM
I

* * * * *

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

10

12

14

16

18

PS
NR

* * * * * *

Figure B.2.: Ground-truth (HR T2W) similarities for static and reference-guided
SRR outcomes for the quasi-static brain experiment involving seven subjects. The

more input stacks are used the higher the similarity scores. Moreover, motion
correction markedly improves the ground-truth similarities which was performed by
rigidly registering each individual slice to the HR T2W volume using NCC as the
similarity measure. Stars indicate statistical differences between the groups using a

pairwise Wilcoxon signed-rank test (p < 0.05).

B.2. Optimisation Studies for Upper Abdominal MRI

SRR

Figure B.4 shows SSIM, PSNR and NMI in addition to NCC as provided in Fig-

ure 3.9. Table B.3 provides a numerical summary of investigated motion-correction

strategies including the reference-guided approaches without the in-plane deforma-

tion step (RigidOnly).

215



B Super-Resolution Reconstruction of Upper Abdominal MRI

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

NC
C

Static SRR RG-HT2W NiftyMIC RG-BFFE RG-HRT2W

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SS
IM

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

NM
I

a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2c+2s+4obl
Source Data Configuration

10

12

14

16

18

20

PS
NR

Figure B.3.: Ground-truth (HR T2W) similarities for the quasi-static brain
experiment for all registration/motion correction strategies as an extension to

Figure B.2. Reference-guided approaches used NCC as the similarity measure for
registration.
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Table B.1.: Ground-truth (HR T2W) similarities of obtained quasi-static control brain
SRRs for an increasing number of input stacks for different motion correction (MC)

strategies summarized for all seven subjects. The rows are sorted in a descending order
according to the SRR outcome for ’a+c+s+3obl’. Using the short-hand

"RG-Reference-SimilarityMeasureForRegistration", the settings for the reference-guided
SRR approach are shown, where, e.g., RG-BFFE-NMI refers to the use of BFFE as

reference volume for guidance and NMI as similarity measure for registration.

(a) NCC
MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2a+2c+4obl
RG-HRT2W-NCC 0.751 ± 0.046 0.770 ± 0.039 0.775 ± 0.038 0.779 ± 0.038 0.780 ± 0.038 0.781 ± 0.038
RG-HRT2W-MI 0.722 ± 0.050 0.760 ± 0.040 0.772 ± 0.038 0.777 ± 0.038 0.780 ± 0.037 0.784 ± 0.037
RG-HRT2W-NMI 0.738 ± 0.051 0.760 ± 0.043 0.764 ± 0.042 0.771 ± 0.041 0.771 ± 0.041 0.772 ± 0.041
RG-BFFE-NCC 0.735 ± 0.047 0.754 ± 0.039 0.759 ± 0.038 0.764 ± 0.038 0.765 ± 0.038 0.766 ± 0.038
RG-BFFE-NMI 0.726 ± 0.052 0.748 ± 0.043 0.751 ± 0.042 0.758 ± 0.041 0.760 ± 0.041 0.759 ± 0.041
NiftyMIC 0.724 ± 0.052 0.748 ± 0.043 0.751 ± 0.041 0.758 ± 0.040 0.759 ± 0.040 0.758 ± 0.040
RG-HT2W-NCC 0.708 ± 0.042 0.734 ± 0.037 0.739 ± 0.037 0.750 ± 0.037 0.752 ± 0.037 0.751 ± 0.037
RG-SST2WAx-NCC 0.706 ± 0.049 0.717 ± 0.042 0.724 ± 0.041 0.735 ± 0.041 0.739 ± 0.040 0.739 ± 0.043
Static SRR 0.689 ± 0.049 0.708 ± 0.049 0.727 ± 0.050 0.724 ± 0.049 0.726 ± 0.048 0.735 ± 0.046
RG-BFFE-MI 0.353 ± 0.176 0.389 ± 0.196 0.427 ± 0.190 0.484 ± 0.183 0.506 ± 0.178 0.525 ± 0.168
RG-SST2WAx-MI 0.295 ± 0.052 0.336 ± 0.059 0.384 ± 0.053 0.414 ± 0.052 0.434 ± 0.048 0.463 ± 0.046
RG-HT2W-MI 0.242 ± 0.074 0.258 ± 0.079 0.310 ± 0.092 0.288 ± 0.094 0.290 ± 0.092 0.336 ± 0.101

(b) SSIM
MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2a+2c+4obl
RG-HRT2W-NMI 0.378 ± 0.045 0.394 ± 0.050 0.408 ± 0.052 0.411 ± 0.054 0.414 ± 0.055 0.419 ± 0.055
RG-HRT2W-NCC 0.368 ± 0.047 0.386 ± 0.051 0.402 ± 0.053 0.407 ± 0.054 0.411 ± 0.055 0.416 ± 0.055
RG-BFFE-NMI 0.372 ± 0.046 0.386 ± 0.051 0.400 ± 0.054 0.404 ± 0.056 0.407 ± 0.057 0.412 ± 0.057
RG-BFFE-NCC 0.366 ± 0.047 0.382 ± 0.051 0.397 ± 0.053 0.402 ± 0.055 0.406 ± 0.056 0.411 ± 0.056
RG-MRCP-NCC 0.357 ± 0.038 0.374 ± 0.045 0.388 ± 0.046 0.393 ± 0.049 0.398 ± 0.050 0.403 ± 0.050
RG-HRT2W-MI 0.336 ± 0.055 0.365 ± 0.052 0.385 ± 0.052 0.391 ± 0.053 0.397 ± 0.053 0.405 ± 0.053
NiftyMIC 0.351 ± 0.041 0.374 ± 0.043 0.381 ± 0.046 0.385 ± 0.047 0.389 ± 0.047 0.389 ± 0.048
RG-SST2WAx-NCC 0.356 ± 0.043 0.358 ± 0.044 0.373 ± 0.047 0.382 ± 0.049 0.389 ± 0.050 0.388 ± 0.050
Static SRR 0.336 ± 0.060 0.344 ± 0.073 0.372 ± 0.077 0.364 ± 0.076 0.368 ± 0.075 0.382 ± 0.078
RG-BFFE-MI 0.099 ± 0.108 0.115 ± 0.130 0.129 ± 0.141 0.145 ± 0.151 0.154 ± 0.155 0.159 ± 0.157
RG-SST2WAx-MI 0.087 ± 0.022 0.086 ± 0.018 0.105 ± 0.018 0.101 ± 0.020 0.107 ± 0.021 0.121 ± 0.022
RG-MRCP-MI 0.059 ± 0.022 0.069 ± 0.022 0.084 ± 0.028 0.066 ± 0.026 0.065 ± 0.025 0.080 ± 0.028

(c) NMI
MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2a+2c+4obl
RG-HRT2W-NMI 1.092 ± 0.013 1.104 ± 0.015 1.108 ± 0.016 1.111 ± 0.016 1.112 ± 0.016 1.113 ± 0.017
RG-HRT2W-NCC 1.090 ± 0.014 1.103 ± 0.015 1.107 ± 0.016 1.110 ± 0.016 1.111 ± 0.016 1.112 ± 0.016
RG-BFFE-NMI 1.087 ± 0.013 1.100 ± 0.015 1.104 ± 0.016 1.107 ± 0.016 1.109 ± 0.016 1.109 ± 0.017
RG-BFFE-NCC 1.087 ± 0.014 1.100 ± 0.015 1.104 ± 0.016 1.107 ± 0.016 1.109 ± 0.016 1.109 ± 0.017
RG-HRT2W-MI 1.078 ± 0.015 1.096 ± 0.015 1.101 ± 0.016 1.104 ± 0.015 1.107 ± 0.016 1.108 ± 0.016
NiftyMIC 1.088 ± 0.013 1.099 ± 0.013 1.102 ± 0.014 1.104 ± 0.014 1.105 ± 0.014 1.105 ± 0.014
RG-MRCP-NCC 1.079 ± 0.009 1.095 ± 0.012 1.099 ± 0.012 1.102 ± 0.013 1.104 ± 0.013 1.105 ± 0.014
RG-SST2WAx-NCC 1.087 ± 0.012 1.091 ± 0.012 1.095 ± 0.013 1.099 ± 0.013 1.101 ± 0.014 1.101 ± 0.015
Static SRR 1.081 ± 0.012 1.088 ± 0.015 1.096 ± 0.017 1.094 ± 0.017 1.096 ± 0.017 1.100 ± 0.017
RG-BFFE-MI 1.022 ± 0.023 1.027 ± 0.031 1.031 ± 0.034 1.039 ± 0.037 1.043 ± 0.038 1.044 ± 0.038
RG-SST2WAx-MI 1.013 ± 0.004 1.015 ± 0.005 1.018 ± 0.004 1.021 ± 0.005 1.023 ± 0.004 1.026 ± 0.004
RG-MRCP-MI 1.009 ± 0.006 1.010 ± 0.006 1.013 ± 0.007 1.012 ± 0.006 1.012 ± 0.006 1.015 ± 0.007

(d) PSNR
MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl a+c+s+4obl 2a+2a+2c+4obl
NiftyMIC 15.001 ± 2.926 15.135 ± 2.902 15.030 ± 2.847 15.148 ± 2.863 15.123 ± 2.850 15.061 ± 2.832
RG-HRT2W-MI 14.162 ± 2.938 14.252 ± 2.990 14.398 ± 3.013 14.474 ± 3.031 14.498 ± 3.027 14.546 ± 3.043
RG-BFFE-MI 12.536 ± 2.219 13.328 ± 2.339 13.903 ± 2.337 14.412 ± 2.505 14.644 ± 2.541 14.904 ± 2.513
RG-BFFE-NCC 14.302 ± 3.043 14.257 ± 3.034 14.298 ± 3.020 14.378 ± 3.042 14.364 ± 3.025 14.365 ± 3.019
RG-HRT2W-NCC 14.275 ± 3.048 14.230 ± 3.027 14.276 ± 3.011 14.349 ± 3.042 14.344 ± 3.027 14.350 ± 3.020
RG-BFFE-NMI 14.243 ± 3.062 14.219 ± 3.048 14.244 ± 3.026 14.330 ± 3.051 14.313 ± 3.034 14.305 ± 3.025
RG-HRT2W-NMI 14.148 ± 3.049 14.129 ± 3.025 14.164 ± 3.007 14.251 ± 3.029 14.236 ± 3.011 14.232 ± 3.003
RG-MRCP-NCC 13.968 ± 2.803 13.984 ± 2.849 14.039 ± 2.850 14.151 ± 2.882 14.148 ± 2.877 14.150 ± 2.875
RG-SST2WAx-NCC 13.929 ± 2.983 13.906 ± 2.940 13.985 ± 2.936 14.130 ± 2.975 14.159 ± 2.967 13.426 ± 2.499
Static SRR 13.727 ± 2.827 13.746 ± 2.794 13.957 ± 2.938 13.926 ± 2.782 13.932 ± 2.759 14.041 ± 2.886
RG-SST2WAx-MI 11.822 ± 1.401 12.659 ± 1.686 13.437 ± 1.829 13.852 ± 1.976 14.201 ± 2.073 14.565 ± 2.158
RG-MRCP-MI 11.754 ± 1.369 12.658 ± 1.608 13.596 ± 1.824 13.529 ± 1.873 13.752 ± 1.915 14.239 ± 1.967
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Figure B.4.: Self-consistency evaluation given by projected similarities for all slices
of obtained abdominal SRRs for an increasing number of input stacks for different
motion-correction strategies summarised for all eight subjects. All self-consistency

outcomes between SRR approaches, except for RG-HT2W vs Static SRR for
’a+c+s’, are significantly different within each source data configuration based on

Kruskal-Wallis with post-hoc Dunn tests (p < 0.05).
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Table B.3.: Projected slice similarity evaluation of obtained abdominal SRRs for an
increasing number of input stacks for different motion correction strategies summarized for

all eight subjects. The rows are sorted in a descending order according to the
NCC/NMI-outcome for "a+c+s+3obl". NiftyMIC shows superior self-consistency across

different number of input data scenarios.

(a) NCC and SSIM
NCC SSIM

MC Strategy a+c a+c+s a+c+s+3obl a+c a+c+s a+c+s+3obl
NiftyMIC 0.942 ± 0.041 0.922 ± 0.050 0.898 ± 0.061 0.720 ± 0.056 0.645 ± 0.066 0.526 ± 0.072
Static SRR 0.892 ± 0.084 0.858 ± 0.093 0.812 ± 0.129 0.680 ± 0.089 0.584 ± 0.086 0.447 ± 0.085
RG-HT2W-NCC (RigidOnly) 0.872 ± 0.120 0.835 ± 0.144 0.778 ± 0.193 0.602 ± 0.109 0.511 ± 0.098 0.390 ± 0.104
RG-HT2W-NCC 0.871 ± 0.110 0.835 ± 0.138 0.772 ± 0.201 0.599 ± 0.102 0.506 ± 0.095 0.381 ± 0.107
RG-BFFE-NCC (RigidOnly) 0.834 ± 0.114 0.751 ± 0.172 0.651 ± 0.226 0.541 ± 0.100 0.414 ± 0.094 0.285 ± 0.095
RG-BFFE-NCC 0.832 ± 0.136 0.751 ± 0.179 0.648 ± 0.229 0.537 ± 0.122 0.409 ± 0.108 0.282 ± 0.098
RG-HT2W-MI 0.748 ± 0.158 0.687 ± 0.193 0.577 ± 0.248 0.500 ± 0.151 0.385 ± 0.115 0.257 ± 0.103
RG-HT2W-MI (RigidOnly) 0.749 ± 0.151 0.678 ± 0.171 0.565 ± 0.218 0.498 ± 0.146 0.372 ± 0.103 0.247 ± 0.092
RG-BFFE-MI 0.713 ± 0.188 0.634 ± 0.208 0.509 ± 0.233 0.446 ± 0.136 0.333 ± 0.108 0.215 ± 0.092
RG-BFFE-MI (RigidOnly) 0.706 ± 0.190 0.627 ± 0.201 0.505 ± 0.216 0.441 ± 0.138 0.334 ± 0.102 0.217 ± 0.085
RG-HT2W-NMI — — — — — —
RG-HT2W-NMI (RigidOnly) — — — — — —
RG-BFFE-NMI — — — — — —
RG-BFFE-NMI (RigidOnly) — — — — — —

(b) NMI and PSNR
NMI PSNR

MC Strategy a+c a+c+s a+c+s+3obl a+c a+c+s a+c+s+3obl
NiftyMIC 1.230 ± 0.058 1.215 ± 0.061 1.203 ± 0.076 24.631 ± 2.170 23.217 ± 2.251 21.903 ± 2.434
Static SRR 1.205 ± 0.062 1.188 ± 0.059 1.180 ± 0.083 22.229 ± 2.689 20.631 ± 2.566 19.356 ± 2.546
RG-HT2W-NCC 1.192 ± 0.060 1.179 ± 0.062 1.174 ± 0.092 21.493 ± 2.927 20.160 ± 2.716 18.975 ± 2.893
RG-HT2W-NCC (RigidOnly) 1.194 ± 0.067 1.180 ± 0.065 1.174 ± 0.089 21.617 ± 3.003 20.250 ± 2.807 19.116 ± 2.846
RG-HT2W-MI 1.175 ± 0.099 1.162 ± 0.100 1.162 ± 0.134 17.818 ± 3.646 16.453 ± 3.333 14.918 ± 3.360
RG-BFFE-MI 1.175 ± 0.103 1.168 ± 0.112 1.161 ± 0.121 17.031 ± 3.119 15.417 ± 3.086 13.680 ± 2.789
RG-HT2W-MI (RigidOnly) 1.181 ± 0.127 1.163 ± 0.115 1.159 ± 0.140 17.721 ± 3.613 16.169 ± 3.246 14.530 ± 3.180
RG-BFFE-MI (RigidOnly) 1.171 ± 0.094 1.168 ± 0.108 1.159 ± 0.119 16.940 ± 2.924 15.269 ± 2.560 13.496 ± 2.517
RG-BFFE-NCC 1.181 ± 0.087 1.162 ± 0.083 1.156 ± 0.111 20.036 ± 2.583 18.020 ± 2.694 16.107 ± 2.751
RG-BFFE-NCC (RigidOnly) 1.181 ± 0.087 1.163 ± 0.086 1.156 ± 0.111 20.129 ± 2.436 18.090 ± 2.555 16.216 ± 2.649
RG-HT2W-NMI — — — — — —
RG-HT2W-NMI (RigidOnly) — — — — — —
RG-BFFE-NMI — — — — — —
RG-BFFE-NMI (RigidOnly) — — — — — —
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