162 research outputs found

    Setup Optimization in High-Mix Surface Mount PCB Assembly

    Get PDF
    Siirretty Doriast

    The design and implementation of a flexible manufacturing system for a surface mounting production line

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirements for the degree of Master of Science in Engineering.The viability of introducing a Surface Mount production line is chiefly determined by the reliability characteristics of the components being used. Surface Mount Technology (SMT) is entirely new and although related to traditional through-hole processes, requires different components, assembly techniques and design methods. The purpose of the literature survey is primarily to determine whether surface mount components meet today's industrial requirements with respect to their manufacturing reliability and availability. A brief review of the evolution of SMT is also presented. This study finds that the implementation of SMT should be given highest priority by manufacturing companies in order to maintain their share of the marketplace. Surface Mount Technology embodies a totally new automated circuit assembly process, using a new generation of electronic comporents: surface mounted devices (SMDs). Smaller than conventional components, SMDs are placed onto the surface of the substrate. From this, the fundamental difference between SMD assembly and convencional through-hole component assembly arises; SMD component positioning is relative, not absolute. When a through-hole component is inserted into a pcb, either the leads go through the hales or they don't. An SMD, however, is placed onto the substrate surface, it's position only relative to the solder lands, and placement accuracy is therefore influenced by variations in the substrate track pattern, component size, and placement machine accuracy. Other factors influence the layout of SMD substrates. For example, will the board be a mixed-print ( a combination of through-hole components and SMDs) or an all-SMD design? Will SMDs be placed on one side of the substrate or both? And there are process considerations like what type of machine will place the components and how will they be soldered? This project describes in detail the processes involved in setting up an SMT facility. A simulation program was developed to verify the viability of these processes. The simulation program was also applied to an existing SMT facility and together with developed optimization software, attempted to identify and resolve some of the major problems. All this was achieved, and the extent to which simulation could be used as an efficient production tool, was highlighted.AC201

    Optimization of product assignment to assembly lines

    Get PDF
    Dissertação de mestrado em Industrial engineering and ManagementThe work presented in this dissertation was developed in an industrial context integrated in the production control and management department of the Bosch Car Multimedia Portugal S.A – Braga automatic insertion. The problem addressed in this dissertation was finding the best distribution of product families to assign in different lines according to the physical and technical constraints of the assembly lines. In the approach of the problem, it was used tools and techniques of the Operational Research discipline through mathematical modeling, in order to analyze complex situation and obtain more efficient solutions to help in the decision-making process. Based on production data, production needs forecasts and assembly line physical availability, models with different sets of constraints and objective functions were created to present solutions that best fit the question and the specific problem of the present production context. Through specific software that suited the problem, the previously created models were solved, and the solutions were analyzed and evaluated to suit the company’s current needs and for possible and feasible implementation of the solutions.O trabalho apresentado nesta dissertação foi desenvolvido em contexto industrial integrado no departamento de planeamento e controlo de produção da área de inserção automática da Bosch Car Multimédia Portugal S.A - Braga. O problema abordado nesta dissertação foi encontrar a melhor distribuição de famílias de produtos a alocar nas diferentes linhas de produção de acordo com as suas restrições físicas e técnicas. Na abordagem do problema recorreu-se a técnicas de Investigação Operacional através de modelação matemática, para analisar situações complexas e obter soluções mais eficientes. Tendo como base dados da produção, previsões de necessidades e disponibilidade física da produção, foram criados modelos com diferentes conjuntos de restrições e funções objetivo por forma a apresentar soluções que melhor se adequassem à pergunta e ao problema específico do contexto produtivo presente. Através da utilização de software, foram resolvidos os modelos criados anteriormente, sendo que as soluções foram analisadas e avaliadas para a adequação às necessidades atuais da empresa e para a sua possível e viável implementação

    Developing and Deploying Electronics Assembly Line Optimization Tools: A Motorola Case Study

    Get PDF
    The assignment of workloads to production equipment is one category of planning decision for an electronics assembly factory. In practice, line balancing requires not only selecting machines with sufficient placement accuracy and feeder capacity, but also address- ing a host of other operational objectives and constraints. Motorola Labs led a multi-year effort to apply mathematical programming to balance a variety of production mix and vol- ume scenarios. By representing the optimization problem as a specially structured, mixed linear-integer program, we were able to incorporate a high degree of reality in the model, simultaneously optimizing fixed setups, handling custom parts, maximizing machine uptime, and mitigating secondary bottlenecks. This paper presents the story of how we developed and deployed a software solution that significantly improved assembly cycle times, setup changeovers, and overall factory productivity, saving the company tens of millions of dollars

    An Optimal Algorithm for Integrating Printed Circuit Board Manufacturing Problems

    Get PDF
    Printed circuit boards appear in a wide array of products and thus their production is crucial to the contemporary electronics industry. A global approach to planning the complex and multi-stage production process is currently intractable. Nonetheless,significant improvements can be made by integrating closely related elements within the planning process. We focus here on the integration of two key problems -- product clustering and machine setup. In the product clustering problem, board types with similar component requirements are clustered together for assembly under a common configuration of the pick-and-place machine. In the machine setup problem, an optimal configuration of the pick-and-place machine is found for each of these clusters. In practice and in the literature, the product clustering and machine setup problems are typically solved sequentially. By instead solving the two problems simultaneously, we are able to find an optimal tradeoff between processing and setup times. We present the Integrated Clustering and Machine Setup model as a set partitioning problem. We describe a branch-and-price algorithm for solving this exponentially large problem. We introduce a rank-cluster-and-prune, a method for solving the imbedded pricing problems by combinatorial search, and conclude with computational results

    Allocation of component types to machines in the automated assembly of printed circuit boards

    Get PDF
    Duman, Ekrem (Dogus Author) -- An earlier version of this paper which has been presented at ISCIS'06: The 21st International Symposium on Computer and Information Sciences, November 1-3, 2006 Istanbul, Turkey, has been published in Lecture Notes in Computer Science [18].Although the use of electronic component placement machines has brought reliability and speed to the printed circuit board (PCB) assembly process, to get higher utilization, one needs to solve the resulting complex operations research problems efficiently. In this study, the problem of distributing the assembly workload to two machines deployed on an assembly line with two identical component placement machines to minimize the line idle time is considered. This problem is NP-Complete even in its simplest form. A mathematical model and several heuristics have been proposed to solve this problem efficiently

    Baskı devre kartı dizgi atölyelerinde hat dengeleme

    Get PDF
    In assembling printed circuit boards (PCB), the use of numerically or computer controlled electronic component placement machines has become quite popular in the last decades. However, serious operations research problems arise through their use such as, allocation of component types to machines, board production schedule, feeder configuration and placement sequencing. In this study, the problem of allocation of component types to machines is taken up where two non-identical machines are deployed serially on a line to complete the assembly process of PCBs. For the solution of this problem three heuristic algorithms are suggested and their performances are investigated on experimental data.Son yıllarda baskı devre kartlarının (BDK) dizgisinde nümerik veya bilgisayar kontrollü elektronik dizgi makinalarının kullanımı yaygın hale gelmiştir. Ancak, bu beraberinde komponent tiplerinin makinalara atanması, kart üretim çizelgelemesi, besleyici düzeni ve dizgi sırası gibi karmaşık yöneylem araştırması problemlerini getirmiştir. Bu çalışmada, birbirinden farklı iki makinanın aynı hatta olması durumu için komponentlerin makinalara atanması problemi ele alınmıştır. Bu problemin çözümü için üç ayrı sezgisel algoritma geliştirilmiş ve performansları örnek veriler üzerinde incelenmiştir
    corecore