
OPERA TIONS RESEARCH CENTER

Working Paper

An Optimal Algorithm for Integrating Printed Circuit Board
Manufacturing Problems

by
A.M. Cohn

M.J. Magazine
G.G. Polak

OR 349-00 September

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

2000

Integrating Printed Circuit Board Manufacturing Problems by Branch-and-Price

Amy Mainville Cohn, Operations Research Center, The Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, amycohn@mit.edu

Michael J. Magazine, Department of QAOM, University of Cincinnati,
Cincinnati, Ohio 45221-0130, michael.magazine~uc.edu

George G. Polak, MSIS Department, Wright State University,
Dayton, Ohio 45435 george.polakgwright.edu

1

Abstract

Printed circuit boards appear in a wide array of products and thus their production

is crucial to the contemporary electronics industry. A global approach to planning the

complex and multi-stage production process is currently intractable. Nonetheless,

significant improvements can be made by integrating closely related elements within the

planning process. We focus here on the integration of two key problems -- product

clustering and machine setup. In the product clustering problem, board types with similar

component requirements are clustered together for assembly under a common

configuration of the pick-and-place machine. In the machine setup problem, an optimal

configuration of the pick-and-place machine is found for each of these clusters. In

practice and in the literature, the product clustering and machine setup problems are

typically solved sequentially. By instead solving the two problems simultaneously, we

are able to find an optimal tradeoff between processing and setup times. We present the

Integrated Clustering and Machine Setup model as a set partitioning problem. We

describe a branch-and-price algorithm for solving this exponentially large problem. We

introduce a rank-cluster-and-prune, a method for solving the imbedded pricing problems

by combinatorial search, and conclude with computational results.

1. Introduction

Appearing in a wide range of products including home appliances, automotive

controls, and computer hardware, printed circuit boards (PCB) play a crucial role in the

contemporary electronics industry. Global PCB production in 1998 was estimated at $35

billion (Crama, van de Klundert, and Spieksma (1999)) with roughly half of that

production occurring in the United States and Japan.

2

PCB production planning is complex and multi-staged, involving many

interrelated decisions, and consequently raises many interesting and challenging research

problems. Ball and Magazine (1988) demonstrate this complexity in their description of

six principal steps - production order release, kitting, prepping, component insertion,

component soldering, and board inspection. Crama, van de Klundert, and Spieksma

(1999) propose a PCB planning hierarchy that includes eight different optimization

subproblems, with significant attention paid to their interdependence. Both of these

papers serve to highlight the challenges associated with efficiently planning the

production process. In fact, a global optimization approach is presently intractable.

Nonetheless, integrating key subproblems can yield significant improvements. For

example, Altinkemer, Kazaz, Koksalan and Moskowitz (2000) considered the

subproblems of allocating components to feeders and of sequencing the placement of

these components on the PCB. They noted that solving these independently, even to

optimality, might result in "extremely poor" overall performance. They therefore

formulated a single model to solve these two subproblems simultaneously, presenting

numerical evidence of the benefits of such an integrated approach. Crama et al (1999)

cite numerous other works that propose a joint approach to these same two subproblems.

Based on our association with a major computer manufacturer, we have focused

our efforts on integrating two other key subproblems -- product clustering and machine

setup, designated SPI and SP5, respectively, by Crama et al (1999). Product clusters are

groups of similar PCB types that proceed in common through the stages of production

order release, kitting, and prepping in the planning sequence described by Ball and

Magazine (1988). Machine setup determines the location on the assembly machine of

.3

components for insertion and soldering. In section 2 we describe these problems in detail

and consider the interaction between them. In section 3 we present the Integrated Cluster

and Machine Setup (ICMS) model and formulate this model as a set partitioning problem.

For many applications, ICMS also simultaneously determines for each cluster the

assignment of component types to the machine. In this way ICMS incorporates a special

case of yet a third subproblem, which Crama et al (1999) designate SP3 and call

"partition" of components. In section 4 we describe a branch-and-price algorithm for

solving this computationally challenging, large-scale integer program. We also present an

original combinatorial search method, rank-cluster-and-prune, for solving the pricing

problems required by the branch-and-price framework. As we show in section 4, this

method employs a sorting operation in order to avoid the need for a polyhedral

representation of the constraints characterizing a machine setup. In section 5 we present

computational results for a number of test problems. We offer conclusions and suggest

areas for further research in section 6.

2. The Product Clustering and Machine Setup Problems

2.1 Problem Descriptions

Printed circuit boards are made up of an assortment of components - capacitors,

resistors, diodes, microprocessors, etc. - that are mounted onto a substrate, or blank

board. The assembly plant that motivated this study employs through-hole mounting

technology by which a computerized numerically controlled (CNC)pick-and-place

machine inserts wire leads from the components into pre-drilled holes in the substrate.

Through-hole technology is common for PCB products intended for high voltage or high

amperage applications. For many other applications, surface mount technology (SMT)

4

obviates the need for pre-drilled holes in the substrate via advanced soldering techniques.

Jain, Johnson and Safai (1996) and Moyer and Gupta (1996) describe SMT and the types

of machines used to implement it in some detail. Though the assumptions of our model

reflect a through-hole production environment, they are reasonably relevant to many

SMT shops as well.

.....................:eederban k

Figure 1. A pick-and-place machine. The insertion head is shown in home

Dosition at the midDoint of the feederbank.

Figure 1 depicts a simplified version of the pick-and-place machine in use at the

plant. It contains a component magazine known as afeederbank, which is a linear array

of sleeves or slots used to store the various components. Each sleeve contains

components of a single type. Suppose that each delivery and insertion from sleeve

je { 1,...,N} requires dj seconds and consists of moving the insertion head to that sleeve to

pick a component, returning it to the home position, and placing the component on the

board. Clearly retrieval time for a component must increase along with the distance of its

5

sleeve from the home position. While the component is being retrieved, the board is re-

positioned under the insertion head and thus does not add excess time to the process.

These operations are all numerically controlled by a combination of hardware and

software.

Given that the re-positioning of the board occurs while the components are being

retrieved, and that the time to insert the components is fixed and independent of the pick-

and-place machine setup, an optimal machine setup is one that assigns component types

to sleeves so as to minimize the total time spent in retrieving components.

In our discussion of how to construct optimal machine setups, we first consider

the special case where a manufacturer only produces a single PCB, which requires r i units

of component type i, for each i { 1,... ,N}. We let s(denote the function which assigns

a unique sleeve to each component type in a setup. It is easy to see that the total retrieval

time is minimized when component types are assigned to sleeves in the pick-and-place

machine such that the more frequently a component type is used, the closer it is

positioned to the insertion head. Figure 2 shows this "pipe organ" assignment s*,

familiar in material handling, which minimizes total processing time, f(s) = rid,,(.
iEN

This follows from a classical result of Hardy, Littlewood and Polya (1952) which ensures

that rdj is minimized when nonnegative sequences {ri} and {d} are arranged
jeN

monotonically in opposite senses. Thus, in this special case, finding an optimal machine

setup reduces to simply sorting the component types by the frequency with which they

appear on the PCB.

6

Figure 2. An optimal machine setup, i.e., assignment of component types to feeder

sleeves. The greater the population of a type, the closer its assigned sleeve to the

insertion head's home position.

We next extend the problem to the case where the manufacturer produces multiple

copies of this single board type. It is clear that the machine configuration that is optimal

for a single copy of the board type will also be optimal for the batch of multiple copies.

Finally, we consider the general case where the manufacturer produces a

collection of distinct types of PCB, with varying quantities of each type. If the time

associated with setting up the pick-and-place machine were negligible, then the optimal

approach would be to re-configure the machine for each new board type, using the pipe

organ approach described previously. (This had been the prior practice in the fabrication

shop, or "fab," which we visited.) Conversely, if the time associated with setting up the

pick-and-place machine were prohibitively high, then the optimal approach would be to

manufacture all board types using one common machine configuration. To find an

optimal configuration for this complete collection of board types, we would sum the

component demands across all boards being manufactured, and then implement the pipe

organ setup.

7

?�;z:

liir

s�J.-·
P

;"'` ·"I·:·�.r·rr

...,
..

.�. ;.

Y....

In reality, the machine setup time is usually somewhere in between - some groups

of board types are similar enough to be processed together under a common machine

setup to avoid excess setup time, while other board types merit individual setups so as to

maximize processing efficiency. Thus in the literature, the planning process is typically

broken down into two distinct steps. First, in the product clustering problem, similar

boards types are clustered together, based on some approximation of processing time or

cost. Next, a machine setup problem is solved for each cluster, which determines the true

processing time or cost of each cluster and thus of the system overall. This machine setup

problem is solved simply by the pipe organ assignment described earlier. Clearly, these

two problems are strongly interrelated, and a sequential approach can lead to sub-

optimality.

2.2 Literature Review

There is an extensive literature on the optimization of PCB operations, including

much work that is relevant to clustering, machine setup, or component partition. Hashiba

and Chang (1991) formulated an integer program to minimize the number of setups over

all sequences of jobs in a PCB assembly shop, for which they proposed and tested a

three-stage heuristic. Sadiq, Landers and Taylor (1993) presented and tested a two-stage

heuristic known as the intelligent slot assignment algorithm to minimize total

manufacturing time. The first stage sequences jobs to minimize setup time, and given

this sequence, the second assigns components to sleeves to minimize processing time.

Jain et al (1996) developed a nonlinear integer model for sequencing jobs in order

to minimize setup time, and obtained approximate solutions using a suite of four

heuristics. In shop floor testing at Hewlett-Packard facilities, these solutions exhibited a

8

tradeoff between setup time and processing time: for large batches, setup time reduction

was surpassed by increased processing time. Assembly operations at Hewlett-Packard

also motivated a study by Hillier and Brandeau (1998), who proposed a model for

optimally assigning PCB types and components to manual processes as well as to

machines. They developed a heuristic that provides near optimal solutions. Gunther,

Grunow and Schorling (1997) proposed a highly aggregated linear programming model

to maximize system throughput in a high mix, low volume facility. To lessen the error of

aggregation, the authors used a fuzzy estimation of the number of setups.

Carmon, Maimon and Dar-El (1989) proposed a heuristic group setup method for

a two-machine PCB assembly process, with an overall objective of increasing

throughput. Davis and Selep (1990) described the implementation of a "greedy board"

group technology heuristic to organize PCB board types into jobs, with a primary

objective of reducing total setup time. Luzzatto and Perona (1993) proposed a multi-

criteria heuristic for grouping PCB jobs, which they tested in turn by a simulation model.

Ben-Arieh and Chang (1994) modified the p-median clustering model to treat p, the

number of clusters, as a decision variable. Their objective of minimizing the total

measure of dissimilarity among the clusters can be interpreted to be a surrogate for some

measure of processing cost or time in the context of manufacturing.

The sequential approaches to clustering and setup extant in the literature often

result in suboptimality for the joint problem. Therefore in section 3 we introduce the

Integrated Clustering and Machine Setup (ICMS) model, within which these subproblems

are solved simultaneously. Certain issues associated with ICMS are considered in two

separate works. Magazine, Polak and Sharma (2001) show that this model is NP-hard,

9

and in addition propose and test a heuristic employing a multi-exchange neighborhood

search. Based on that analysis of the computational complexity of ICMS, Magazine and

Polak (2001) propose an alternative formulation for ICMS suitable for optimal solution of

very small problem instances by off-the-shelf software. They also show in that work that

the integrated model can be solved efficiently as a shortest path problem for the special

case in which the assembler fixes the sequence of jobs released upstream from the

assembly shop floor. Moreover they proceeded to analyze the opportunity cost of the

organizational barriers that often result in such procedures on the shop floor.

We conclude this section with definitions and assumptions used in our work.

2.3 Definitions and Assumptions

Ajob is the production of all boards of one type and a cluster is any set ofjobs.

The total manufacturing time for a set of jobs consists of the sum of processing and setup

times. Processing time is defined to be the total time spent by the pick-and-place

machine in component retrieval and insertion. Setup time is the time associated with

determining a machine configuration, where a setup is defined to be an assignment of

component types to feederbank sleeves.

As noted in Section 2.1, the assumptions listed here are based on our experiences

in through-hole fabrication shops, and also hold reasonably well in the many SMT shops:

(1) The time to "pick and place" a component is nondecreasing in its distance from

the home position of the insertion head and is independent of the component's

placement on the substrate. The substrate is small relative to the feeder bank so that

positioning the board for placement is relatively quick, while the component retrieval is

the bottleneck operation.

10

(2) Setup times are independent of the partition of jobs into clusters. As in

many PCB assembly operations, all setups that we observed in the fabrication

shops were "full tear-down." That is, all feeders were removed from the bank at

the end of each run, and this activity is quite invariant in time or cost. The full

teardown setup is widely practiced for several reasons: it allows optimal

placement of components for each cluster ofjobs, it reduces opportunities to

make mistakes, and it allows restocking of all feeders at once (Johnson (1995)).

(3) The feederbank sleeves are uncapacitated. For the machine under

consideration, to reload a sleeve with the same type of component is a simple

operation requiring very little down time. Other machines are equipped with bulk

feeders appropriate for many types of components. Moreover, the full teardown

mode of setup affords an opportunity to restock all sleeves so that component

"stockouts" are a rare occurrence during processing (Johnson (1995)). Altinkemer

et al (2000) similarly noted that "the capacity of each feeder is not restrictive."

(4) Each job k belongs to one and only one cluster and cannot be split among several

clusters. This is a common policy that, e.g., allows management to track a job for the

purposes of monitoring quality.

3. The Integrated Clustering and Machine Setup Model (ICMS)

By solving the product clustering and machine setup problems simultaneously, we

address the fundamental tradeoff between processing time (minimized by using a

different setup for each board type) and machine setup time (minimized by

manufacturing all boards under a common configuration). Before presenting the

Integrated Clustering and Machine Setup model, we introduce the following notation:

11

* K denotes the set ofjobs, where each job k EK corresponds to a distinct board type;

· N denotes the set of component types, and also the set of sleeves in the feederbank of

the pick-and-place machine;

* C denotes the set of all nonempty subsets of K (also referred to as clusters);

IC1q=2KI 1;

· bk denotes the number of boards in job k;

* rtk denotes the number of components of type i N required for each board of type k.

Thus, job k requires bk* rk components of type i in total;

*· denotes the setup time associated with a single configuration of the pick-and-place

machine;

* Sc*(i) denotes the sleeve assignment of component i in an optimal pipe organ machine

configuration for cluster c eC.

Recall that dj denotes the time required to retrieve a component from sleevej and

insert it into the substrate.

Thus, the optimal processing time for cluster c is f(s) = Z d.()bkr,k,
kec iEN

which we denote byfc . The optimal manufacturing time associated with cluster c is

therefore a + fc .Our goal in the Integrated Clustering and Machine Setup model is to

divide the set of jobs K into clusters so as to minimize the total manufacturing time. We

can formulate this as a simple set partitioning problem.' Let xc represent the binary

decision variable indicating whether cluster c is included in the solution (xc = 1) or not (xc

= 0). The objective coefficient for xc is simply a + fc, which is determined off-line,

based on the pipe organ assignment of components to sleeves.

12

We have one constraint for each board type k stating that we must choose exactly

one cluster containing that board type. The model can thus be written as

(ICMS)

min (o +fc)xc (1)
ceC

subject to

'XC =1 Vboard type k K (2)
CEC: kec

XC E (0, 1} V cluster c C.

This model uses exact, rather than approximate, processing and setup times in

product clustering, thereby leading to an optimal solution. This comes at the price,

however, of an exponential number of variables, each of which requires us to solve a

corresponding machine setup problem. Furthermore, these decision variables are binary,

increasing the difficulty of solving the model.

It is only for convenience that we use the same index set N for sleeves and for

component types; we need not assume that the number of component types is identical to

the number of sleeves in the feederbank. Dummy components or sleeves can be

employed as necessary. If there are more sleeves than types of components, a dummy

component indicates that a sleeve is left empty in the appropriate setup. If instead the

number of component types is larger, then a component assigned to a dummy sleeve

associated with a suitably large d is actually inserted offline. This can be done manually

or by a flexible pick-and-place machine as a follow up operation, as described by Hillier

and Brandeau (1998). Thus our model determines the set of components to be loaded

onto the machine for each cluster. For the special case of an assembly process that

13

employs a single principal pick-and-place machine, this is subproblem SP3 that Crama et

al (1999) call the "partition" of components.

In section 4, we describe a branch-and-price approach that allows us to solve this

exponentially large problem without explicitly considering the full set of potential

clusters. Computational results in section 5 show that this approach enables us to solve

problem instances of realistic size.

4. Solving ICMS With Branch-and-Price

We have formulated ICMS as an integer program with an exponential number of

variables. To solve this computationally challenging problem, we use branch-and-price,

a technique that combines branch-and-bound with column generation. Branch-and-price

can be a powerful tool for solving large-scale IP's. Its success, however, is dependent on

the careful design of key elements of the algorithm. [See Barnhart, Johnson, Nemhauser,

Savelsbergh, and Vance (1998) for a detailed analysis of branch-and-price, along with

numerous examples of its application.] In the sections that follow, we review the general

concept of branch-and-price and then discuss the ICMS implementation.

4.1 Review of Branch-and-Price

Integer programs are frequently solved using branch-and-bound, a technique in

which a series of increasingly constrained linear programming relaxations are solved

until a provably optimal integer solution is found (Nemhauser and Wolsey (1988)). In

large problems such as ICMS, even solving the individual LP relaxations can be

challenging, due to their exponential number of variables. Column generation (Wolsey

(1998)) is a useful tool for solving such large LP's. The purpose of column generation is

to solve an LP with a very large number of variables, or columns, without explicitly

14

considering them all. We begin by solving a variation of the LP, known as the restricted

master problem, in which only a subset of the variables are considered. Given the dual

values associated with the solution to the restricted master, we then solve a pricing

problem -- an optimization problem that identifies the most negative reduced cost

variable from the original LP. If this variable has strictly negative reduced cost, then it is

a valid pivot variable. We add it to the restricted master, re-solve to generate new dual

values, and repeat. When the optimal value to the pricing problem is zero, we have

established that no negative reduced cost variables exist and therefore the solution to the

restricted master problem is also optimal for the original LP.

The success of column generation depends on our ability to identify a pricing

problem which is fast enough to be solved many times, in spite of its large number of

feasible solutions (note that a variable in the original LP corresponds to a feasible

solution in the pricing problem). The structure of this pricing problem varies from

application to application; in section 4.2, we discuss the ICMS pricing problem.

When column generation is used with branch-and-bound in a branch-and-price

framework for solving large-scale IP's, it is not enough to design a pricing problem that

can be solved quickly. This pricing problem must also be coordinated with a branching

strategy for the branch-and-bound tree. Recall that in branch-and-bound, we solve an LP

relaxation of the problem. If the solution is integer, we stop. Otherwise, we create two

new sub-problems by adding constraints to the original LP such that the current fractional

solution is not valid for either sub-problem, but all feasible solutions to the IP remain

feasible for at least one of the sub-problems. When we then solve the two new LP's using

15

column generation, we must be able to enforce these added constraints within the pricing

problem.

4.2 Branch-and-Price for ICMS

4.2.1 The ICMS Pricing Problem

In ICMS, the reduced cost of a cluster of board types c can be written as

o + (fc (i) - ri), (3)
iec

where f*(i) is the processing time for job i given an optimal machine configuration for

cluster c, and ir is the dual variable associated with the cover constraint (2) for board type

i.

The ICMS pricing problem seeks a cluster c in order to minimize the reduced cost

less setup time, that is:

min"(fc (i) - ri (4)
iec

subject to

ceC. (5)

If the solution to this optimization problem has value strictly less than -, then we have

identified a new pivot variable. Otherwise, we have established optimality.

There are a number of ways to approach this pricing problem. We initially

attempted to model it as an integer program. Unfortunately, slow convergence

characterized all of the IP pricing models that we considered. The cause, common to all

of them, was the presence of an imbedded matching problem containing N 2 binary

variables, in which xij represents the decision to place component type i in sleevej.

Although this allowed us to capture the exact time of PCB processing, it resulted in a

16

very large number of binary variables. Due to their impact on the objective function,

fractional values for these variables were very common, resulting in a large branch-and-

bound tree.

In practice, we found that these matching variables often created a computational

bottleneck. In other words, the IP pricing problems were spending an enormous amount

of time determining the configuration of the pick-and-place machine. This is particularly

vexing, given that it is trivial to compute an optimal configuration and processing time

for a cluster of board types - this is simply the pipe organ problem! Based on this

observation, we decided to instead take a combinatorial approach to the pricing problem.

Rank-Cluster-and-Prune (RCP) - A Combinatorial Approach

RCP is a combinatorial algorithm that leverages the simplicity of the pipe organ

configuration in order to identify a column with the most negative reduced cost. By

employing sorting, an easy computational task, RCP obviates the need for a polyhedral

representation of component-to-sleeve matching. This algorithm is basically a smart

enumeration of all possible clusters, and consists of three operations - ranking the board

types, computing the cluster processing time, and pruning the tree.

Rank As we build and evaluate clusters in our combinatorial tree, we want to identify

clusters with negative reduced cost as quickly as possible. Therefore, we would like to

begin by considering those board types that seem most likely to be part of a negative

reduced cost cluster.

Recall from (3) that the reduced cost of cluster c is + Z (fc (i) - Ir). Based on
is the only negative cntribution to a cluster's

the fact that the subtraction of the duals xi is the only negative contribution to a cluster's

17

Depth 1

Depth 2

Figure 3. The Cluster Building Tree.

reduced cost (given that a and fc are necessarily positive), we rank the board types in

decreasing order by dual value.

Cluster. Given this ranking, we then begin to construct a search tree in which

each node represents a cluster of board types. The decision of whether to include the

board type of rank I is made at depth of the tree. The root node of this tree corresponds

to the empty cluster, with reduced cost zero. We first consider whether to include the

highest ranked board type. For the purpose of illustration, suppose that board type 3 is

highest ranked, and board type 1 next highest. The cluster containing board type 3 has

reduced cost + f (3)- r 3. At the next level we create two new clusters, {3,1} and { 1},

with reduced costs o + f (3)- (1)- + (1) - and + fH* (1) - zl . Figure 3 depicts

this stage of the tree.

18

If we proceed in this fashion until the tree is fully constructed, then we can

identify the most negative reduced cost cluster. Furthermore, given that the simplex

method does not require the most negative reduced cost column, but simply a pivot

variable with a reduced cost less that zero, we can abort our construction of the clustering

tree as soon as we find any negative reduced cost cluster. Alternatively, we might choose

to continue constructing the tree either until some specified number of negative reduced

cost clusters has been found or until the tree has been completely enumerated. We can

then add multiple columns to the restricted master. The simplex algorithm may in turn

make several pivots, resulting in more accurate dual values for the next pricing problem.

The fact that we can generate multiple columns in one iteration of the pricing

problem is a clear advantage over an IP approach. Furthermore, we leverage the simple

pipe organ method for identifying optimal machine configurations. However, a full

enumeration of the tree at each instance of the pricing problem would render the column

generation approach intractable. In order to avoid computing the reduced cost of all 2K1

clusters, we need to utilize a pruning operation.

Prune. Consider a node representing some cluster c with non-negative reduced

cost, and denote the set of remaining board types yet to be considered in this part of the

tree by R. If we can prove that for any subset r cR the reduced cost of c ur is non-

negative, then we do not need to investigate this portion of the tree any further and we

can prune this node.

How can we establish this fact? Consider the ways in which adding new board

types to a given cluster can affect the cluster's reduced cost: (i) the processing time for

the new board types is strictly non-negative and therefore increases the total processing

19

time; (ii) the new optimal configuration of the pick-and-place machine may also increase

the processing time for the original board types; (iii) the reduced cost decreases by the

dual value of the additional boards. Based on these three facts, we first prune the tree by

observing that we can disregard any board typej for which j is non-positive, because all

three components of the reduced cost will increase.

A second way to prune the tree is based on the fact that when we add board typej

to cluster c, we not only subtract its dual value from the reduced cost of the original

cluster, but also must add its processing time (as well as potentially increasing the

processing time of the existing board types in c as well). Thus, if f (j) - ri > ,then

the reduced cost of any set c uj will always exceed the reduced cost of c, because the

optimal processing time ofjobj is a lower bound on its processing time within cluster c.

Therefore, we can disregard any board typej for which f (j) - r 0.

Although these two approaches can decrease the problem size by eliminating

some of the board types from consideration, in our computational experience the

remaining tree still required excessive examination. To further prune the tree, we

introduce the concept of node potentials. As noted above, when we add board typej to

subset c, we modify the reduced cost of the cluster by at least f, (j) - rj . Given that we

disregard all board types for which f; (j) - ri 2 0, it is clear then that the following is

true:

a + Z(fc r(,) ZI(fc r(if-.)>
iec ier

+ E (fc (i) - ,i) + E (fg (i)- ;i)
ifc iEr

a + (fc () - i) + Z(fi (i) -i)
irC icR

20

Thus, the reduced cost of any cluster found on the branch stemming from cluster c can be

bounded from below by o + (fc (i)- zi) + (fi*(i) - ;i).
iec ieR

If this lower bound is non-negative, then the node can be pruned.

From a computational standpoint, it is important to note that this bound does not

depend on the given choice of cluster, but only on the depth of the tree, i.e. the set of

board types remaining to be considered. At the beginning of the algorithm, we can

compute node potentials in the following way. Letp 0) denote the potential associated

with depthj. Then p(I K I) = ft (I K) - ;rjKj and p(j) = p(j + 1) + f (j) - zi j for all

others. Thus, the node potentials can be computed efficiently.

Additional, more complex pruning techniques were also used to enhance the

performance of RCP. We direct the reader to Cohn and Polak (2000) for a more detailed

discussion.

4.2.2 The ICMS Branching Strategy

To solve ICMS with branch-and-price, we also need to determine a branching

strategy. An effective strategy in this case is to branch on pairs of board types. That is, we

branch on dichotomies such as "board types ks and k, are/are not} in the same cluster."

This is the branching rule developed by Ryan and Foster (1981); see Barnhart et al

(1998), Wolsey (1998) and Mehrotra, Natraj and Trick (2001) for other applications of

this strategy.

We can easily incorporate these constraints in the pricing problem. First consider

the branch in which k and k, are in the same cluster. To enforce this, we simply replace

board types ks and k, by a composite board type, denoted k, for which the total number

of components of type i is (bS r) + (b' · ri), update the restricted master accordingly,

21

and re-solve for the next set of dual values. Note that in doing so, we also decrease the

depth of the pricing tree by one.

We next consider the branch in which ks and k, are not in the same cluster. It is

also easy to ensure that at most one of these board types is included in the newly

generated column. Assume without loss of generality that ks is ranked higher than k,, that

is, ks is considered before k, in the combinatorial pricing tree. In branches of the tree for

which ks has been rejected, clearly the separation is enforced. In branches for which ks

has been accepted, we simply remove k, from the list of pending board types yet to be

considered.

5. Numerical Study

5.1 Problem Instances

We based our computational experiments on the test set devised by Norman

(2000), considering seven production scenarios in all. For each scenario the number of

board types Al was chosen from the set { 10,32,60} and the number of components E

from { 16,100}. Additionally, there are three possible component profiles: a uniform

profile indicates that all component requirements were sampled from a single uniform

distribution; a 60/40 profile indicates that 60% of the component requirements were

sampled from one uniform distribution and 40% from another; and an 80/20 profile

indicates that 80% of the component requirements were sampled from one uniform

distribution and 20% from another. In all cases the number of machine sleeves is

identical to the number of component types, and the time, measured in nominal units we

call seconds, required to retrieve a component from sleevej and insert it into the substrate

22

is simply dj =j seconds. (These are features of the test set, neither of which is required by

our model.)

For each of these seven scenarios, we looked at a wide range of setup times in

order to assess the impact of c on the model's performance. We began by arbitrarily

setting ca to 10,000 seconds. After solving this problem instance, we then repeatedly

divided c by two and re-solved, until the setup time became small enough that an optimal

solution was to process each board type under its own optimal machine configuration.

Similarly, we repeatedly doubled a and re-solved until the setup time was large enough

that an optimal solution was to cluster all boards together for a single machine setup.

Computational results for these problem instances are provided in section 5.3.

5.2 Implementation Issues

We implemented the branch-and-price algorithm in C++ with CPLEX 7.0. It was

run on a desktop PC with a Pentium III processor running at 800 MHz with 384

megabytes of RAM.

For the initial restricted master problems, we included columns representing all

clusters of size 1, 2, 3, IK, Kl-1, K!-2, and KI-3. We used CPLEX's dual simplex

function to solve the LP's and in the pricing problem, we attempted to generate multiple

columns. This parameter was normally set at either 100 or 500 columns with negative

reduced cost per iteration, along with a number of neighboring columns. However, given

that the number of available negative reduced cost columns decreases as the quality of the

dual values improves, we also limited the size of the pricing tree. Typically, we would

not allow the tree to exceed 2 x 106 nodes unless no new columns had yet been identified;

23

in this case, we terminated the pricing problem as soon as the first new column was

found.

For those problem instances in which the root node had a fractional solution, we

implemented branch-and-bound. To create the branching dichotomy discussed in Section

4.2.2 required several steps. First, the 0-1 matrix comprised of the fractional columns of

the restricted master problem was arranged in totally reverse lexicographical (TLR) order

using a polynomial algorithm described in Nemhauser and Wolsey (1988). Within this

TRL matrix, we then identified an instance of the so-called "F-matrix" [I as a

submatrix, the row indices of which correspond to two board types we denote s and t. On

one branch, the pricing problem is modified to require boards s and t to belong to the

same cluster; on the other branch, to belong to different clusters.

5.3 Computational Results

Table 1 displays results for the root node (i.e. the initial LP relaxation) for

instances of the seven planning scenarios. The first two columns display the number of

board types and number of components for each scenario. The next column displays the

setup time; note that multiple setup times are considered for each scenario. This is

followed by the run time, in seconds. For those instances in which the solution to the LP

relaxation was integral, we next display the number of clusters in an optimal solution.

Otherwise, F* is used to indicate a fractional solution. We next indicate how many times

the pricing problem was called. Finally, we indicate how many of those calls occurred

after an optimal solution was found, i.e. how many pricing problems were required to

prove optimality.

24

Table 1. Root node reults for instances of ICMS in seven PCB planning scenarios. A

cell marked by a double asterisk (**) indicates that the corresponding LP relaxation

could not be solved within the time limit of 5 x10 6 CPU seconds.

Num... :- -Num.,:- . :Setup C: uaime Optimal, Number of
: iBoards -: Com,.'r :Time (econds) . -Number of .Calls to

(type of profile)- -- -: . :Clusters : Pricing
,:. - -- -:- : ..- :-".~i - : : P: : Problem

Scenario 1-
10 16

(60/40 profile)

10 .100

(uniform profile)

Scenario 3
32 16

(uniform profile)

Scenario 4
32 16
(60uniform profile)

Calls
Beyond LP

Optimal

10,000 1 10 1 C
20,000 1 9 1
40,000 1 F* 1
80,000 1 3 3 1

160,000 1 2 3 C
320,000 1 1 2 1

80,000 1 10 1 C
160,000 1 9 1 C
320,00C 1 5 1 1
640,000 1 2 2 C

1,280,000 1 1 2 1

40 1 32 1 C
79 1 31 1 C

157 1 30 1 C
313 1 28 1 C
625 1 23 1 C

1,250 1 16 1 0
2,500 2 F* 2 0
5,000 11 F* 3 C

10,000 92 F* 15 C
20,000 1016 3 32 8
40,000 4012 F* 59 C
80,000 68262 1 204 203

5,000 1 32 1 0
10,000 1 25 1 0
20,000 1 1 21
40,000 7 10 4 C
80,000 76 F* 14 C

160,000 2119 F* 51 0
320,000 10229 F* 67 1
640,000 2723 1 27 26

25

