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Developing and Deploying Electronics Assembly Line

Optimization Tools: A Motorola Case Study

Thomas M. Tirpak∗

Abstract. The assignment of workloads to production equipment is one category of planning
decision for an electronics assembly factory. In practice, line balancing requires not only
selecting machines with sufficient placement accuracy and feeder capacity, but also address-
ing a host of other operational objectives and constraints. Motorola Labs led a multi-year
effort to apply mathematical programming to balance a variety of production mix and vol-
ume scenarios. By representing the optimization problem as a specially structured, mixed
linear-integer program, we were able to incorporate a high degree of reality in the model,
simultaneously optimizing fixed setups, handling custom parts, maximizing machine uptime,
and mitigating secondary bottlenecks. This paper presents the story of how we developed
and deployed a software solution that significantly improved assembly cycle times, setup
changeovers, and overall factory productivity, saving the company tens of millions of dollars.
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1. INTRODUCTION

Line balancing for surface mount technology (SMT) lines involves distributing the
assembly workload for a collection of board designs across a set of machines, so as to
optimize the utilization of available production capacity. This task is one of several
interrelated decisions for Design-to-Manufacturing (DTM) Information Management
as defined in Tirpak (2000). After balancing the line, one can perform setup opti-
mization, placement sequence optimization, and machine program generation. The
decision hierarchy for SMT assembly processes is discussed in (McGinnis, Ammons,
Carlyle, Cranmer, DePuy, Ellis, Tovey and Xu, 1992), (Rothhaupt, 1995) and (Van
de Vall, 1998). SMT assembly optimization itself fits within the larger scope of plan-
ning and scheduling for electronics manufacturing, as addressed in (Sawik, Schaller,
Tirpak, 2002) and (Kaczmarczyk, Sawik, Schaller, Tirpak, 2004).
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Automated SMT assembly lines include process stations that perform the fol-
lowing steps. First, solder paste is applied to a printed wiring board, which is the
substrate for the electronic circuit design being manufactured. Next, glue is dispensed
at the locations on the board where heavy parts are to be placed. (This step is only
necessary for double-sided boards.) Next, electronic components are placed at the
desired locations on the board. Several configurations of robotic assembly equipment
are available for placing small parts, e.g., resistors, capacitors, and inductors, large
parts, e.g., integrated circuits, and odd-shaped parts, e.g., connectors, as described in
Tirpak, et al. (2002). SMT lines are typically configured to make the part placement
equipment the bottleneck, because of the cost of acquiring and operating this equip-
ment. After all the SMT parts have been placed on the board, it travels through a
conveyor oven in which the solder is reflowed, establishing the electrical and mechan-
ical contact between the components and board. SMT lines may also include stations
for manual assembly tasks and for inspecting boards.

SMT placement machines are capable of assembling a wide variety of board de-
signs. Typically, a bar code on the board is read as it enters the placement machine,
automatically selecting one of the available placement programs. A limiting factor
to the flexibility of these placement machines is, however, their part feeder capacity.
Depending on the type of equipment, the size of the parts, and the number of available
feeder slots in the feeder carriages/banks, only a certain number of different parts can
be loaded on a machine at any given time. Feeder setup changes may be made to
swap-out “standard parts” and insert “custom parts” for a given board or group of
boards, per the production schedule; however, such feeder changes may result in lost
production capacity. For further details about the SMT assembly process, the reader
is referred to Tirpak (2000).

Tools are available from SMT equipment vendors and third-party Computer In-
tegrated Manufacturing (CIM) vendors to assign the part placement workload for
a board design to the available equipment, and to subsequently generate machine
program files in the necessary formats. However, at the start of this Motorola Labs
project, it was widely known among factory engineers that better tools were needed.
Cycle time studies had identified station-to-station imbalances of up to 60% for cer-
tain board designs in high-mix factories. Motorola’s Community of Practice for elec-
tronics manufacturing identified equipment optimization as their first-priority tactic
for minimizing cycle times and capital expenditures. SMT placement machines cost
about $500,000, and the total equipment cost for one assembly line typically exceeded
$5,000,000.

This paper tells the story of how a Motorola Labs team, working together with
Manufacturing Operations and Computer Integrated Manufacturing (CIM) Teams
around the company, developed a state-of-the art toolkit for balancing SMT lines.
Sections 2.0 through 9.0 describe stages in the evolution of SMTBAL, from research
software that rarely ran as expected, to being an integral part of Motorola’s DTM
system in multiple factories, with diverse equipment and production scenarios. Section
10.0 discusses some lessons learned and areas for further R&D work.
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2. SCENARIO I: “HELP! WE’RE ALWAYS CHANGING SETUPS”

In 1988, the Corporate Manufacturing Research Center (now part of Motorola Labs)
began its R&D program in the area of SMT manufacturing technology, which was
still fairly new at the time. One of the first successes was the application of Traveling
Salesperson Problem (TSP) solution algorithms to optimize placement sequences for
revolving-turret type machines, known as “chip shooters”. Rothaupt (1995), Sawik
(2000), and Tirpak, Mohapatra, Nelson, and Rajbhandari (2002), describe in detail
the available equipment types and optimization approaches.

We had recently completed placement sequence optimization for the Fuji CP-III
machine in the Advanced Reflow Factory in Schaumburg, Illinois, when the manager
noted that cycle times had improved, but the factory still had a large bottleneck,
namely setup changeovers, which took 1–3 minutes per part. This factory prototyped
and manufactured a large number of low-volume communications products, and had
more than 350 board designs on its active list. The available part feeder capacity
on the machines was less than 25% of what would be required for all active parts;
therefore, a single fixed setup was clearly out of the question.

Our first approach was to develop a heuristic that incrementally constructed a
standard setup starting with the most-used parts for the highest-volume board de-
signs. A key decision variable was the number of feeder slots to reserve for custom
setups, namely, those parts that did not fit within the standard (common) setup.
Tirpak (1993) presents a simulation approach to evaluate scenarios, and select the
one with the best overall production time (assembly plus setup changeover) for the
anticipated board mix. Many candidate scenarios did not reserve enough feeder space
for additional custom setup parts for low-volume board designs, and thus required
breaking into the standard setup. Although our heuristic generated feasible solu-
tions, i.e., with enough feeder capacity for every board design, we felt the incremental
method of adding parts to the standard setup generated suboptimal solutions, i.e.,
with excess setup changeover time.

In January 1992, we discussed this problem with the Manufacturing Research
Center at Georgia Institute of Technology. They proposed extending a mixed
linear-integer programming model for balancing placements across multiple machines,
to include custom parts that are added to the standard setup on a product-by-product
basis, as discussed in (DePuy, 1995). The approach seemed promising for our factory
scenario; however, the resulting mathematical program had more than ten times the
number of constraints and variables than the line balancing models previously solved
with the MINTO mixed-integer optimizer. Our initial job was to write a translator
from the machine program file formats to the lists of part ID numbers used by the
Georgia Tech software. Likewise, we needed to interpret the MINTO solution and
create lists of actual parts in the optimized feeder setups, i.e., the Motorola part ID
numbers of the parts to be loaded on each of the machines in the line. After several
months of work with initial factory scenarios – including several cases where MINTO
did not return a solution – we concluded that the method had merit; however, it
would take a lot of work to incorporate other factory constraints, while maintaining
a high level of confidence that we could generate a solution within a reasonable time.
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At this point, Motorola Labs began work on SMTBAL Version 1.0, a test bed for
large-scale, mixed linear-integer programming applications for SMT line balancing.
The initial goals were to (1) include a high degree of realism in the optimization model,
(2) tune the model to obtain good solutions in one day or less, (3) use the model in
as many factories as possible, and (4) develop a tool that can be used by people who
know little or nothing about mathematical programming. After benchmarking three
commercially available Mixed Linear-Integer Program solvers, we selected the XA
Callable C Libraries from Sunset Software Technologies. To ensure modularity and
maintainability, should we wish to switch to a different solver in the future, we adopted
the Mathematical Programming System (MPS) format for representing optimization
problems.

Appendix A describes the basic problem structure. For each production lot, i.e.,
production order consisting of multiple boards with the same board design, the as-
sembly cycle time is given by the cycle time on the bottleneck station, which includes
the time for placement and load/unload operations. By moving parts to the feeder
setup(s) on the alternate station(s), a portion of the placement workload can be
off-loaded from the station with the longest cycle time, subject to various constraints.

3. SCENARIO II: “WE JUST GOT TWENTY MORE PRODUCTS FOR THIS
LINE”

After hearing about results for the Advanced Reflow Factory, engineers in another fac-
tory in the same business unit requested help with line balancing. The Jedi Factory in
Plantation, Florida, produced an assortment of about 30 handheld radios. Individual
board designs had 200-400 parts. The line configuration included two high-speed chip
shooters and one large-part placement machine for the first side assembly. Boards
were flipped, and continued through the second side with two high-speed chip shooters
and two large-part machines. The line had been in operation for several years, during
which time the parts for many new board designs had been added to the feeder se-
tups. Thus, production cycle times were not balanced for most boards. We loaded the
placement programs for each board into SMTBAL, and generated an optimized setup.
The simulation report indicated a significant improvement over current cycle times
and a good workload balance, in which the predicted cycle time were within 10-20% of
each other (across the Jedi140, 144, and 148 machines) for most products. However,
factory engineers raised concerns about the accuracy of our placement time estimates,
which were based on machine manufacturers’ specifications. Figure 1 presents a sam-
ple report. To increase the level of confidence in the optimization results, we decided
to load the current feeder setups into SMTBAL and generate simulation reports, i.e.,
without optimizing the setups. We then used a linear regression model to adapt
per-part placement time estimates for six categories of parts, based on the types of
parts and the measured cycle time for each product. We generated simulation reports
and candidate setups, which passed the sanity test and subsequently received the go
ahead to install them for the line.
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No Assembly/Lot Name S LotSize Lots RunTime SetTime One Lot Total

=== ==================== = ======= ==== ======== ======== ======== ========

1 NUE7240B.148 T 200 30 380.00 0.00 380.00 11400.00

2 NUF6394B.148 T 100 112 124.07 0.00 124.07 13895.47

3 NUF6395C.148 T 100 18 124.07 0.00 124.07 2233.20

RunTime: Placement, replenish, and load/unload time for one lot. (minutes)

SetTime: Flex/custom setups for one lot. (minutes)

Estimated total placement time (sec.) per board:

No Assembly/Lot Name S LotSize jedi140 jedi144 jedi148

=== ==================== = ======= ========== ========== ==========

1 NUE7240B.148 T 200 72.56 90.16 88.00

2 NUF6394B.148 T 100 39.44 56.88 48.00

3 NUF6395C.148 T 100 39.44 56.88 48.00

Fig. 1. Simulated assembly reports from SMTBAL provided vital information for tuning
the optimization model parameters and justifying the effort to change to a new feeder setup.

A team of engineers and operators made the setup change during the third shift,
so as to minimize the impact on production. I received a call at 10:00 a.m. that day.
The tired voice said, “The line is up and running, and looks balanced for the product
we’re running now, but guess what. . . we just found out we need to build twenty new
products on this line! We can’t expect the team to go through this early morning
exercise again. What can we do?” We started thinking about ways to incrementally
adjust the existing setup, but knew that tweaking a setup for products one at a time
could result in a significantly imbalanced line, as it had done in the past. What
we needed was a way to rebalance the line for the new (expanded) set of products,
while minimizing the effort to change from the existing setup. We accomplished this
by including setup change time as a secondary factor in the objective function, as
explained in Appendix B. The tweaked setup report indicated that the line could
be rebalanced by moving about fifteen parts, and adding some unique parts for the
twenty new products. Overall, we achieved a 34% improvement in production time
for the Jedi Line across the new product mix.

4. SCENARIO III: “WE NEED TO BUILD TWO PRODUCT FAMILIES ON
THE SAME LINE.”

The next application was to balance the Jedi Line in Dublin, Ireland, which consisted
of a pair of Sanyo TCM 1000 chip shooters in double-pass mode, where boards were
cycled through the same machines to assemble the top and bottom sides of nineteen
different kits. Each kit belonged to one of two product families, i.e., Jedi or Renais-
sance, which shared many common parts. The TCM 1000s had six banks of feeders,
as shown in Figure 2. We decided to use the middle banks on both machines for
high-usage parts common to both the Jedi and Renaissance families. The left and
right banks would be used for additional parts required by individual product families.
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101-179

Device Location Numbers:

201-279 301-379 401-479 501-579 601-679

Left Banks 
(Jedi Parts)

Middle Banks 
(High-usage Parts)

Right Banks 
(Renaissance Parts )

Fig. 2. The feeder banks of the Sanyo TCM 1000 can be used in split-mode, i.e., with the
middle two banks and either the right or the left two.

We divided the line balancing problem into two phases. First, it was necessary
to construct a list of the parts used most frequently by Jedi and Renaissance kits
that can fit in the middle banks (320 feeder slots), while ensuring an even workload
distribution across the two machines. The build plan for this phase included all top
and bottom side kits, with a total of 363 unique parts. The feeder capacity in the
SMTBAL software was set to 160 for each machine, but an unlimited number of
custom/flex parts were allowed. The additional custom/flex parts, however, were
subject to a setup time penalty.

The second phase considered the Jedi and Renaissance kits separately. The
part-to-machine assignments for the high-use (middle bank) parts identified in the
first phase were considered fixed. Namely, if a given part is assigned to the first
machine’s middle bank, it remains on the first machine. The SMTBAL software
appended the remaining lower-usage parts required by the kit family, e.g., Jedi, to
the feeder setups on each machine. In this case, the feeder capacity was set to 320,
which is the number of slots in four banks, as shown in Figure 2. Feeder setups were
constructed and implemented, resulting in a 17% net reduction in assembly cycle
times across the Jedi and Renaissance product families.

5. SCENARIO IV: “WILL THIS MODEL EVER GIVE US AN ANSWER?”

By this time, news of SMTBAL had spread to other Motorola business units. Our next
application was in Mansfield, Massachusetts, assembling ten families of networking
products. The required number of feeders to hold all 292 parts exceeded the available
feeder capacity by about 20%. Setup changeover time was a major concern, since
factory schedules were generated for each two-day time horizon, and any mix of current
products was possible. Thus, we decided to optimize setups with both standard and
custom parts, using the model in Appendix A, with the addition of a set of variables to
specify whether parts are included in custom setups for each product lot. Nevertheless,
there were concerns about the computational complexity of this optimization problem.
Enabling custom parts increased the number and size of the constraints and, more
importantly, resulted in nearly 10 X the number of integer variables.

Although we had solved similar-sized optimization problems for other factory sce-
narios, this particular problem ran for several days without a solution. The enthusiasm
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of the factory engineers quickly turned to pragmatism, asking “Will this model ever
give us an answer? We’re going to miss the window of opportunity to change the
setup.” We tested different branching strategies with the XA Solver, which improved
the quality of the working solution but did not achieve convergence. After examining
the problem formulation, we hypothesized that it was not the number of variables or
constraints that was causing the problem, but rather the structure of the problem.
The line consisted of two identical chip-shooters, followed by a large-part placement
machine. Thus, the solver had no preference between the first two machines. Exam-
ining the branching tree of the integer programming algorithm indeed showed that
some parts were assigned to the first machine and then to the second machine, and
then changed to the first machine.

We decided to break this symmetry by providing an artificial preference for as-
signing certain parts to certain machines. Specifically, we adjusted the cycle time by
a random small amount, e.g., 0.2 sec. became 0.0205 on machine A and 0.1998 on
machine B. Overall, the calculated workload still reflected the true workload balance.
We were happy to see the solver finally converge to a balanced setup, which was sub-
sequently installed on the line. Several weeks of tracking via the Computer Integrated
Manufacturing (CIM) System indicated that the actual throughput had increased by
8.5% including both production and setup time.

6. SCENARIO V: “THE REAL BOTTLENECK IS SOMEWHERE ELSE”

At this point, there was significant interest in SMTBAL, especially high-volume fac-
tories around the world. Work began on integrating the software into the standard
program generation and download processes. One line balancing scenario for the fac-
tory in Libertyville, Illinois, resulted in a near-perfect match of the cycle times between
two machines. The production engineer was proud of the result but worried that the
line was still not balanced, because one machine required feeder replenishments four
times more often than the other machine. We subsequently included an option in
SMTBAL to provide part feeder capacity data, calculate replenishment frequencies,
and include replenishment time in the overall production time minimization.

In a Swindon, U.K., factory, statistics for a “balanced” line indicated that operator
assists (stopping the production flow) occurred almost fifteen times more frequently
on one machine than another. The line was assembling boards for cellular network
infrastructure products, some of which included large integrated circuits surrounded
by small capacitors and resistors. For some designs, one part was used more than
eighty times; therefore, the feeder reels for such parts would be depleted rapidly. We
addressed this scenario by not only including reel replenishment time in the production
time calculation, but also enabling parts to appear multiple times on the same machine
and/or multiple machines.

A common problem was that, as additional products were added to a line’s setup,
feeder banks gradually ran out of space on the machine(s) with the popular parts for
a given product family. Thus, it became more and more difficult to balance the line,
and at some point the line became imbalanced. By reserving feeder capacity on all
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machines, new parts required by new products or engineering changes notices (ECNs)
can be accommodated more efficiently. We implemented this option in SMTBAL
by enhancing the objective function to include a term reflecting the fraction of the
available spaces in each feeder carriage that are filled.

One of the lessons of Factory Physics (Hopp and Spearman, 2000) is that it is
easier to manage lines with distinct bottlenecks, as they provide a natural buffer for
variability in the process flow. We frequently encountered this principle in practice
in SMT assembly factories. Whereas the theoretical cycle time (including placement,
setup, and replenishment times) for a given machine was lower than that of the
bottleneck machine in the line, it limited the production rate of the entire line due
to unplanned downtime, e.g., mis-picked parts, errors with the vision system, and
jammed feeder reels. Furthermore, the work in queue between machines could cause
blocking and/or starving in the line. In Figure 3, the maximum cycle time for a line
with machines A-B-C is the same in Cases 1 and 2; however, the actual throughput is
likely to be higher in Case 2. Appendix C explains how we adapted the optimization
problem formulation to reduce the impact of secondary bottlenecks.

CASE1 CASE2

M
ac

hi
ne

 c
yc

le
 ti

m
e

A
B

C

A

B
C

Fig. 3. Avoiding secondary bottlenecks and arranging workloads in decreasing order can
mitigate the effects of unplanned downtime.

7. SCENARIO VI: “SOME PARTS REQUIRE SPECIAL CARE”

Line balancing applications in 1995–1997 involved a wide array of production scenar-
ios, including machines and lines with more flexibility in the types of parts they could
assemble. Although this flexibility created opportunities for better balancing, it also
forced us to explicitly address assembly precedence constraints in our formulation of
the line balancing problem. For some operations, a strict precedence must be kept,
e.g., the placement of parts before the metal shield that is to cover those parts. As ex-
plained in Appendix D, precedence constraints for these operations may be expressed
with respect to a particular station in the line or with respect to the assembly of a
particular part.
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When running SMTBAL for a high-volume line in Boynton Beach, Florida, we
encountered preferences and constraints that reflected not only the feasibility and cy-
cle time of placements, but also the ease of assembly and likelihood of a high-quality
result. One example is that large parts (and heavy parts) should be placed as late
as possible to minimize the opportunities for vibrating them off of their proper posi-
tion on the printed wiring board during subsequent placement operations. Working
with factory engineers, we developed a syntax for representing these constraints, e.g.,
“chip 12345, BEFORE, shield 1”. Typically, fewer than five parts in the board design
required special precedence constraints. However, it was extremely challenging to in-
corporate such constraints, as needed for individual parts, into the MPS formulation
of the optimization problem. We decided to reorganize the software routines that
generated the ROWS, COLUMNS, RHS (Right Hand Side), and BOUNDS sections
of the MPS file, and structure them as independent code modules that could be
toggled on or off, depending on the model options for the given scenario. Within
each section of the MPS file, the data were generated, sorted accordingly, and finally
written to an MPS file that was input to the XA Solver.

8. SCENARIO VII: “WHAT SETUP STRATEGY SHOULD WE USE?”

Within the first four years, we had used SMTBAL for more than a dozen factories,
adding new functionality to handle a wide variety of production mix and volume
scenarios, as well as equipment configurations. SMTBAL 2.0 was very flexible and well
documented. However, the task of configuring it for a new production line typically
required working with one of three experts in the company. Thus, we decided to
develop an expert system to consolidate the knowledge gained through trial-and-error
and factory applications to-date, and assist with the selection of a good setup strategy.
As shown in the left column of Table 1, a key metric was the ratio of the number of
feeder slots required to hold all the parts for all the board designs, divided by the
number of available feeder slots.

For the Blue Line in Mansfield, MA, with fifty-four boards, 352 unique parts, and a
total of 320 feeder slots available on two machines, the Feeder Ratio was approximately
1.7. Thus, we developed the following strategy. Board designs were assigned to one
of four family groups. Each board design utilized a fixed setup (thirty-nine parts
occupying fifty-three slots), plus one of four flex setups. For individual, low-runner
board designs, which were not prioritized by the line balancing model, a couple parts in
the flex setup were identified as candidates for tweaking for better balance. Benefits
included: 15-20% faster cycle times, consolidation of thirty-eight individual setups
into a single fixed setup and four flex setups, reduction in the number of feeders
moved for setup changes, and reduction of blocking and starving of the machines due
to parts replenishment.
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Table 1. SMTBAL defaults to specific setup strategies, based on the expected utilization
of feeder capacity.

Feeder

Ratio

Recommended Setup Strategy

< 0.45 Construct a single fixed setup with all parts. Use only
half of the available feeder banks. Reduce downtime
by using the other half for off-line feeder replenish-
ment.

< 0.95 Construct a single fixed setup with all parts. Use all
of the available feeder banks.

< 1.25 Construct a fixed setup occupying part of the feeder
banks, and append custom parts for individual prod-
ucts, as necessary.

< 2.00 Construct a fixed setup occupying a small portion of
the feeder banks. Group the products into families,
based on part similarity. Construct individual flex
setups for each family.

≥ 2.00 Group the products into families, based on part sim-
ilarity. Construct individual setups for each family.

9. SCENARIO VIII: “WE NEED TO MINIMIZE ENGINEERING TIME TOO”

The first applications of SMTBAL typically resulted in both celebration and trep-
idation. The former was the natural response to seeing a line running faster and
smoother. The latter reflected the learning-curve to use SMTBAL for the first time
and the desire to minimize the effort to maintain a balanced line. In many of the
high-volume factories that successfully piloted SMTBAL, the factory’s IT Group de-
cided to integrate the software into their standard Design to Manufacturing (DTM)
process flow, which began with Computer Aided Design (CAD) files and generated
optimized machine setups and programs. For a given line and product family, consist-
ing of a given set of board designs, many line balancing options, e.g., the feeder setup
strategy, were hard coded, and most of the DTM process was automated. We also
developed file import-export capabilities for common DTM tools, such as Cimbridge
/ Unicam, which maintained part geometry libraries and other process information.

A complementary approach, and one targeted at high-mix factories, was to de-
velop an intuitive Graphical User Interface (GUI) and intelligent default settings for
the full range of SMTBAL functionality. Although SMTBAL was a breakthrough
for multicriteria optimization of high-mix setups, previously considered impossible
or prohibitively expensive, i.e., 1–3 weeks of manual effort, we still needed to pro-
vide a tool that factory engineers could use at their desktop computers to generate
such setups in less than a day. In 1997, Motorola Labs began work on Factory and
Line Optimization (FLO) Tools, Windows based software that interfaced with the
SMTBAL problem formulation and interpretation methods and the XA Solver via
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Dynamically Linked Libraries (DLLs). The process was organized into a series of five
screens: Setup, Feeder, Strategy, Results, and Machine. FLO Tools also included
modules for: Board Grouping, Board-to-Line Assignment, and a Rule-Based Expert
System for balancing lines with revolver-head placement machines (involving not only
workload balancing but also optimization of nozzles for each revolver-head). Input
data and incremental solutions, e.g., board-to-line assignments, were shared between
the four modules in FLO Tools. A Web interface was also developed for FLO Tools.
In 2002, the Motorola Software Group added Manufacturing BalanceTMto its suite of
commercially available process planning and control tools.

Using the line balancing software and placement optimization tools integrated
into its DTM process flow, the Wireless Data Group factory in Schaumburg, Illinois,
eliminated the time to create custom setups for each new board design, achieved a
50% reduction in setup changeover time, and increased throughput by 13%. Because
this factory prototyped new board designs, the improvement in both engineering
time and setup time was particularly important. Management considered these to
be critical factors in terms of time-to-market for new products. In addition to the
benefits accrued from being first-to-market, the following impact was estimated over
the typical product lifecycle:

(HSe + HSs)/WHD ∗ PCPP = Time-To-Market-Reduction(days)

Time-To-Market-Reduction ∗ NP ∗ UNITS ∗ ASP = INCREASED REVENUE

Where:
HSe: Average number of engineering hours saved per prototype build,
HSs: Average number of setup hours saved per prototype build,

WHD: Work hours per day,
PCPP: Average number of prototype cycles per board design,

NP: Number of board designs supported,
UNITS: Average number of units expected to be produced per day,

ASP: Average selling price of the products.

10. CONCLUDING REMARKS

The line balancing project discussed in this paper successfully applied Mathemati-
cal Programming to improve throughput, quality, and costs, for more than twenty
SMT assembly factories. The linear-integer programming formulation proved to be
a sufficiently flexible and powerful platform for addressing a variety of goals and con-
straints, representing actual operating conditions. Compared with rule-based expert
systems, as in (Csaszar, Nelson, Rajbhandari, Tirpak, 2000) our approach has the
advantage of globally optimizing feeder setups with respect to multiple simultaneous
objectives. From the beginning, we knew that we were pushing the computational lim-
its of existing linear-integer program solvers. Nevertheless, with some trial-and-error,
we succeeded in formulating and solving a mathematical program yielding a usable
solution for a variety of high/low mix/volume production environments.
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During the initial development and deployment of SMTBAL software, factory en-
gineers participated in the design and testing of this toolset. We relied heavily on their
inputs regarding factory operating constraints. These led to multiple enhancements,
such as those discussed in Appendices A-D, and multiple incremental releases of the
software. The simulation report in SMTBAL enabled us to perform “what if” studies
for a variety of scenarios, and together with factory management select the best course
of action. The software was supported initially by Motorola Labs, and then later by
an internal technology transfer organization within Motorola Corporate.

We learned that good results with an initial pilot typically led to requests for
testing the software in other factories, especially in Motorola’s high-volume factories.
SMTBAL was considered to be an expert tool; however, after the first major cycle time
savings were measured, factories typically simplified things by automating SMTBAL
in their standard DTM information management process. Though one of our goals
was to hide the complexity of mathematical programming, we frequently received
questions about how the balancing method works. Thus, we presented small-scale
examples with the MS Excel Solver in a two-day SMT Manufacturing Optimization
taught through Motorola University. This led to several other applications in factory
layout optimization, production flow routing, supplier selection, and design optimiza-
tion.

Across a wide range of factory scenarios, we achieved cycle time improvements
of 8–34%, resulting in typical cost savings on the order of several hundred thousand
dollars per line per year. Net savings to Motorola were in the tens of millions of dol-
lars. Significant improvements in DTM cycle time (time-to-production-release) and
engineering time were also observed. The feeder replenishment model and secondary
bottleneck balancing in SMTBAL increased the actual production up time of the ma-
chines and thereby reduced variability in production lines. For example, by preparing
backup reels for the ten most frequently used parts, engineers were able to increase
the throughput of SuperCell Line 3 in Arlington Heights, Illinois, by approximately
30%.

The design and manufacture of electronic products involves many interrelated deci-
sions during the life cycle of multiple product families. Speed and efficiency are crucial
in both fast-paced consumer markets, where fashion trends quickly shape demand,
and in established markets, where it is necessary to support a mix of legacy board
designs. Decision-support systems, such as SMTBAL, play a crucial role in achieving
the high levels of operational efficiency needed to compete within the manufacturing
scope of a supply chain.
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Appendixes

A. THE BASIC MODEL

The three main sets of entities in the optimization formulation are Parts, Lots, and
Stations. For the scenarios described in this paper, the number of Parts was typically
200–300. For some scenarios it was more than 1,000. The number of Lots was 1–350,
depending on whether the line was a dedicated production line, a low-mix line, or
a high-mix line. The number of Stations was 1–5 for the actual lines; however,
some experimental line configurations with 16–32 stations were also studied using
this model.

There are several input parameters used to compute coefficients and bounds in
the optimization model:

• Panel Quantj=The quantity of panels of printed wiring boards assembled for lot j.
• Feeder Slotsik= Number of feeder slots required for part i on stationk.
• Can Placeik = 1, if part i can be assembled by station k. 0, otherwise.
• Part Quantij = Number of part i that are used on each panel of boards in lot j.
• Part Timeik = Time required for station k to place one part i.
• Total Feedersk = Total number of feeder slots available at station k.
• Load Timek=Time required for load/unload operations for each panel at station k.

Among the following variables, the first two reflect actual decisions, i.e., the assign-
ment of a part to the feeder setup on a particular placement station. The remaining
three assist in formulating the objective function and constraints.

• Xik = 1, if part i is located in the feeder setup at station k. 0, otherwise. (Binary
variable)

• Yijk = Number of part i placed by station k for lot j.
• Timejk = Production time (part placement and board load/unload) for one panel

in lot j on station k.
• CTimej = Total cycle time for lot j, i.e., the maximum production time, i.e.,

Timejk, multiplied by the quantity of panels in lot j.
• Feedk = Number of feeder slot locations used at station k.

For the scenarios described in this paper, the total number of variables was typ-
ically 2,000-4,000. For some scenarios, it was nearly 16,000. The number of binary
variables was typically 300-800. For some scenarios, it was 8,000. The number of
constraints was typically 2,000-4,000. For some scenarios, it was nearly 18,000.
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The objective function is to minimize the sum of the assembly times for each
production lot:

∑

j∈Lots

CT imej.

Let Parts(k) be the set of all parts that can be assembled by station k. Constraint
(A.1) states that the total cycle time to complete each product lot is given by the
cycle time of the longest station, multiplied by the quantity of panels in the lot. The
assembly time for each panel consists of the time for board transport operations plus
the sum of all part placement operations (A.2). The total number of feeder locations
at a station is the sum of the feeder slots required for each part assigned to the
station (A.3). The number of feeder slots utilized at a station may not exceed the
total number available at that station (A.4). Each part on a panel must be assembled
(A.5). A part cannot be assembled on a machine that does not contain that part in
its feeder setup (A.6):

CTimej ≥ Panel QuantjTimejk (A.1)

Timejk =
∑

i∈Parts(k)

Part QuantijPart TimeikYijk + Load Timek (A.2)

Feedk =
∑

i∈Parts(k)

Feeder SlotsikXik (A.3)

Feedk ≤ Total Feedersk (A.4)
∑

i∈Parts(k)

Yijk = Part Quantij (A.5)

Yijk ≤ Part QuantijXik (A.6)

B. MINIMIZING CHANGES TO AN EXISTING SETUP

Let the variable on stationjk ∈ {0, 1} be a flag indicating if part k is on station j
in an existing setup. Let delta plusjk ∈ {0, 1} indicate if part k is in the existing
feeder setup on station j but not in the new feeder setup, as given in Xjk. Let
delta minusjk ∈ {0, 1} indicate if part k is not in the existing feeder setup on station
j but in the new feeder setup, as given in Xjk. n is the number of allowed part
changes from the existing feeder setup to the new feeder setup. Then, the additional
constraints for limiting changes to the existing setup are:

delta plusjk − delta minusjk = on stationjk − Xjk (B.1)

∑

j ∈ Lots
k ∈ Stations

(

delta plusjk + delta minusjk

)

≤ n (B.2)
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The objective function for the optimization model includes the summation, as
shown on the left side of the (B.2) inequality, multiplied by a weighting factor char-
acterizing the time to move a single feeder from one machine to another machine.

C. BALANCING SECONDARY BOTTLENECKS

Secondary bottlenecks can be balanced by adding a term to the objective function that
reflects the assembly time differences (BT) between the stations in the line, where:

BT = BT weight
∑

j ∈ Lots
r, s ∈ Stations

BT diffjrs (C.1)

In which, BT weight is the weight for the assembly time difference, as one of the
multiple terms in the overall objective function. BT diffjrs is the assembly time
difference between station r and station s for lot j, which is defined as:

BT diffjrs ≥ Timejr − Timejs (C.2)

BT diffjrs ≥ Timejs − Timejr (C.3)

D. ASSEMBLY PRECEDENCE CONSTRAINTS

The set of constraints enforcing part A to be placed at or before the station N can be
expressed as:

XjA = 0 for all j > SN (D.1)

Given that MaxStation is the total number of stations in the line, the set of con-
straints enforcing part A to be placed at a station before the station where part B is
placed can be expressed as:

MaxStation XjB +
∑

r ∈ Station
r ≥ j

XjA ≤ MaxStation (D.2)

Let PT weight be the time penalty for placing a part one station earlier than
desired. Let MaxStation be the number of elements in set Stations. The effect of
placing part A earlier than absolutely necessary can be characterized as:

PTA =
∑

j∈Lots

(MaxStation − j)XjA (D.3)

Thus, the total time penalty for all parts that are not placed as late as possible is:

PT = PT weight
∑

i∈Parts(k)

PTi (D.4)

Equation (D.4) can be added to the overall objective function for the optimization
problem, thereby characterizing the goal of placing certain parts as late as possible.
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