6 research outputs found

    Multi-Connectivity Management and Orchestration Architecture Integrated With 5g Multi Radio Access Technology Network

    Get PDF
    The significant growth in the number of devices and the tremendous boost in network/user traffic types and volume as well as the efficiency constraints of 4G innovations have encouraged industry efforts and also financial investments towards defining, developing, and releasing systems for the fifth generation. The 5G of mobile broadband wireless networks with multiple Radio Access Technologies (Multi-RATs) have actually been designed to satisfy the system and service requirements of the existing as well as the coming applications. The multi-RAT access network is considered the key enabling technology to satisfy these requirements based on low latency, high throughput. To utilize all available network resources efficiently, research activities have been proposed on multi-connectivity to connect, split, steer, switch, and orchestrate across multiple RATs. Recently, multi-connectivity management and orchestration architecture standardization has just started; therefore, further study and research is needed. This project proposed a multi-connectivity management and orchestration architecture integrated with 5G, Long-Term Evolution (LTE), and Wireless LANs (WLAN) technologies. The simulations experiments conducted to measure the Quality of Experience (QoE) by provisioning network resources efficiently, which are: data rate, latency, bit error rate. The results show that the 5G requirements have been achieved with latency and throughput around 1ms and 200 Mbps, respectively

    Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network

    Get PDF
    In this paper, fault tolerance in a multi-radio network is discussed. Fault tolerance is achieved using the BeeHive routing algorithm. The paper discusses faults added to the system as random fluctuations in hardware radio operation. The multi-radio nodes are designed using WiMAX and WiFi Radios that work in conjunction using traffic splitting to transfer data across a multi-hop network. During the operation of this network random faults are introduced by turning off certain radios in nodes. The paper discusses fault tolerance as applied to multi radio nodes that use traffic splitting in the transmission of data. We also propose a method to handle random faults in hardware radios by using traffic splitting and combining it with the BeeHive routing algorithm

    Performance Evaluation of Bonding Techniques at Wireless 802.11n

    Get PDF
    Demands for high throughput bandwidth, encourage Point to Point wireless to serve more bandwidth for many kind application such as real-time multimedia services. We conduct research with testbed experimental at Point to Point topology use wireless 802.11n in LAB environment. The aim is to studying the performance that would be achieved by Interface Bonding and Channel Bonding techniques. We proposed experiment process and design to evaluate the performance of those techniques. Several parameters such as delay, jitter, data loss rate and throughput applied on TCP/UDP protocols with different Packet Sizes and Directional Traffic Flows. The results experiment showed that Channel Bonding has significant throughput improvement. However, the Interface Bonding results are far from expectation, we found that the performance is least than single normal link. As our finding we analyze it caused by Media Independent Interface (MII), and Scheduling Algorithm unable to work properly at wireless 802.11n using Point to Point connection

    Analysis of Throughput in Infrastructure based Multi-Radio Network

    Get PDF
    This paper deals with the design of an infrastructure based network consisting of Multi-radio Hybrid mobile nodes that perform traffic splitting over the network. The multi- radio mobile nodes have a WiMAX and a WiFi Radio that are used in transmitting data traffic over two different radio channels. Data traffic is split statically over a node and transmitted over the two radio channels. We analyse the Throughput and End-to-End delay for data transmission in the network

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    Concurrent multipath transmission to improve performance for multi-homed devices in heterogeneous networks

    Get PDF
    Recent network technology developments have led to the emergence of a variety of access network technologies - such as IEEE 802.11, wireless local area network (WLAN), IEEE 802.16, Worldwide Interoperability for Microwave Access (WIMAX) and Long Term Evolution (LTE) - which can be integrated to offer ubiquitous access in a heterogeneous network environment. User devices also come equipped with multiple network interfaces to connect to the different network technologies, making it possible to establish multiple network paths between end hosts. However, the current connectivity settings confine the user devices to using a single network path at a time, leading to low utilization of the resources in a heterogeneous network and poor performance for demanding applications, such as high definition video streaming. The simultaneous use of multiple network interfaces, also called bandwidth aggregation, can increase application throughput and reduce the packets' end-to-end delays. However, multiple independent paths often have heterogeneous characteristics in terms of offered bandwidth, latency and loss rate, making it challenging to achieve efficient bandwidth aggregation. For instance, striping the flow's packets over multiple network paths with different latencies can cause packet reordering, which can significantly degrade performance of the current transport protocols. This thesis proposes three new solutions to mitigate the effects of network path heterogeneity on the performance of various concurrent multipath transmission settings. First, a network layer solution is proposed to stripe packets of delay-sensitive and high-bandwidth applications for concurrent transmission across multiple network paths. The solution leverages the paths' latency heterogeneity to reduce packet reordering, leading to minimal reordering delay, which improves performance of delay-sensitive applications. Second, multipath video streaming is developed for H.264 scalable video, where the reference video packets are adaptively assigned to low loss network paths to reduce drifting errors, thus combatting H.264 video distortion effectively. Finally, a new segment scheduling framework - which carefully considers path heterogeneity - is incorporated into the IETF Multipath TCP to improve throughput performance. The proposed solutions have been validated using a series of simulation experiments. The results reveal that the proposed solutions can enable efficient bandwidth aggregation for concurrent multipath transmission over heterogeneous network paths
    corecore