2,145 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    A source-destination based dynamic pricing scheme to optimize resource utilization in heterogeneous wireless networks

    Get PDF
    Mobile wireless resources demand is rapidly growing due to the proliferation of bandwidth-hungry mobile devices and applications. This has resulted in congestion in mobile wireless networks (MWN) especially during the peak hours when user traffic can be as high as tenfold the average traffic. Mobile network operators (MNOs) have been trying to solve this problem in various ways. First, MNOs have tried to expand the network capacity but have still been unable to meet the peak hour demand. Focus has then shifted to economic and behavioral mechanisms. The widely used of these economic mechanisms is dynamic pricing which varies the MWN resources' price according to the congestion level in the MWN. This encourages users to shift their non-critical traffic from the busy hour, when the MWN is congested, to off-peak hours when the network is under-utilized. As a result, congestion of the MWN during the peak hours is reduced. At the same time, the MWN utilization during the off-peak hours is also increased. The current dynamic pricing schemes, however, only consider the congestion level in the call-originating cell and neglect the call-destination cell when computing the dynamic price. Due to this feature, we refer the current dynamic pricing schemes as source–based dynamic pricing (SDP) schemes in this work. The main problem with these schemes is that, when the majority of the users in a congested cell are callees, dynamic pricing is ineffective because callers and not callees pay for network services, and resources used by callers and callees are the same for symmetric services. For example, application of dynamic pricing does not deter a callee located in a congested cell from receiving a call, which originates from a caller located in an uncongested cell. Also, when the distribution of prospective callees is higher than that of callers in an underutilized cell, SDP schemes are ineffective as callees do not pay for a call and therefore low discounts do not entice them to increase utilization. In this distribution, dynamic pricing entices prospective callers to make calls but since their distribution is low, the MWN resource utilization does not increase by any significant margin. To address these problems, we have developed a source-destination based dynamic pricing (SDBDP) scheme, which considers congestion levels in both the call-originating and calldestination cells to compute the dynamic price to be paid by a caller. This SDBDP scheme is integrated with a load-based joint call admission control (JCAC) algorithm for admitting incoming service requests in to the least utilized radio access technology (RAT). The load-based JCAC algorithm achieves uniform traffic distribution in the heterogeneous wireless network (HWN). To test the SDBDP scheme, we have developed an analytical model based on M/M/m/m queuing model. New or handoff service requests, arriving when all the RATs in the HWN are fully utilized, lead to call blocking for new calls and call dropping for handoff calls. The call blocking probability, call dropping probability and percentage MWN utilization are used as the performance metrics in evaluating the SDBDP scheme. An exponential demand model is used to approximate the users' response to the presented dynamic price. The exponential demand model captures both the price elasticity of demand and the demand shift constant for different users. The matrix laboratory (MATLAB) tool has been used to carry out the numerical simulations. An evaluation scenario consisting of four groups of co-located cells each with three RATs is used. Both SDP and the developed SDBDP schemes have been subjected under the evaluation scenario. Simulation results show that the developed SDBDP scheme reduces both the new call blocking and handoff call dropping probabilities during the peak hours, for all callercallee distributions. On the other hand, the current SDP scheme only reduces new call blocking and handoff call dropping probabilities only under some caller –callee distributions (When the callers were the majority in the HWN). Also, the SDBDP scheme increases the percentage MWN utilization during the off-peak for all the caller-callee distributions in the HWN. On the other hand, the SDP scheme is found to increase the percentage MWN utilization only when the distribution of callers is higher than that of callees in the HWN. From analyzing the simulations results, we conclude that the SDBDP scheme achieves better congestion control and MWN resource utilization than the existing SDP schemes, under arbitrary caller-callee distribution

    Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network

    Get PDF
    In this paper, fault tolerance in a multi-radio network is discussed. Fault tolerance is achieved using the BeeHive routing algorithm. The paper discusses faults added to the system as random fluctuations in hardware radio operation. The multi-radio nodes are designed using WiMAX and WiFi Radios that work in conjunction using traffic splitting to transfer data across a multi-hop network. During the operation of this network random faults are introduced by turning off certain radios in nodes. The paper discusses fault tolerance as applied to multi radio nodes that use traffic splitting in the transmission of data. We also propose a method to handle random faults in hardware radios by using traffic splitting and combining it with the BeeHive routing algorithm

    Emerging Technologies and Research Challenges for 5G Wireless Networks

    Get PDF
    As the take-up of Long Term Evolution (LTE)/4G cellular accelerates, there is increasing interest in technologies that will define the next generation (5G) telecommunication standard. This paper identifies several emerging technologies which will change and define the future generations of telecommunication standards. Some of these technologies are already making their way into standards such as 3GPP LTE, while others are still in development. Additionally, we will look at some of the research problems that these new technologies pose.Comment: Accepted for publication in IEEE Wireless Communications April 201

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels
    corecore