331 research outputs found

    Semiconductor optical amplifiers: performance and applications in optical packet switching [Invited]

    Get PDF
    Semiconductor optical amplifiers (SOAs) are a versatile core technology and the basis for the implementation of a number of key functionalities central to the evolution of highly wavelength-agile all-optical networks. We present an overview of the state of the art of SOAs and summarize a range of applications such as power boosters, preamplifiers, optical linear (gain-clamped) amplifiers, optical gates, and modules based on the hybrid integration of SOAs to yield high-level functionalities such as all-optical wavelength converters/regenerators and small space switching matrices. Their use in a number of proposed optical packet switching situations is also highlighted

    Node design in optical packet switched networks

    Get PDF

    Parallel Desynchronized Block Matching: A Feasible Scheduling Algorithm for the Input-Buffered Wavelength-Routed Switch

    Get PDF
    The input-buffered wavelength-routed (IBWR) switch is a promising switching architecture for slotted optical packet switching (OPS) networks. The benefits of the IBWR fabric are a better scalability and lower hardware cost, when compared to output buffered OPS proposals. A previous work characterized the scheduling problem of this architecture as a type of matching problem in bipartite graphs. This characterization establishes an interesting relation between the IBWR scheduling and the scheduling of electronic virtual output queuing switches. In this paper, this relation is further explored, for the design of feasible IBWR scheduling algorithms, in terms of hardware implementation and execution time. As a result, the parallel desynchronized block matching (PDBM) algorithm is proposed. The evaluation results presented reveal that IBWR switch performance using the PDBM algorithm is close to the performance bound given by OPS output buffered architectures. The performance gap is especially small for dense wavelength division multiplexing (DWDM) architectures.This research has been funded by the Spanish MCyT grant TEC2004-05622-C04-02/TCM (ARPaq). Authors would like to thank also the COST 291 action and the e-Photon/ONe+ European Network of Excellence

    Optical packet switching using multi-wavelength labels

    Get PDF

    Towards all-optical label switching nodes with multicast

    Get PDF
    Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Optical performance monitoring in optical packet-switched networks

    Full text link
    Para poder satisfacer la demanda de mayores anchos de banda y los requisitos de los nuevos servicios, se espera que se produzca una evolución de las redes ópticas hacia arquitecturas reconfigurables dinámicamente. Esta evolución subraya la importancia de ofrecer soluciones en la que la escalabilidad y la flexibilidad sean las principales directrices. De acuerdo a estas características, las redes ópticas de conmutación de paquetes (OPS) proporcionan altas capacidades de transmisión, eficiencia en ancho de banda y excelente flexibilidad, además de permitir el procesado de los paquetes directamente en la capa óptica. En este escenario, la solución all-optical label switching (AOLS) resuelve el cuello de botella impuesto por los nodos que realizan el procesado en el dominio eléctrico. A pesar de los progresos en el campo del networking óptico, las redes totalmente ópticas todavía se consideran una solución lejana . Por tanto, es importante desarrollar un escenario de migración factible y gradual desde las actuales redes ópticas basadas en la conmutación de circuitos (OCS). Uno de los objetivos de esta tesis se centra en la propuesta de escenarios de migración basados en redes híbridas que combinan diferentes tecnologías de conmutación. Además, se analiza la arquitectura de una red OPS compuesta de nodos que incorporan nuevas funcionalidades relacionadas con labores de monitorización y esquemas de recuperación. Las redes ópticas permiten mejorar la transparencia de la red, pero a costa de aumentar la complejidad de las tareas de gesión. En este escenario, la monitorización óptica de prestaciones (OPM) surge como una tecnología capaz de facilitar la administración de las redes OPS, en las que cada paquete sigue su propia ruta en la red y sufre un diferente nivel de degradación al llegar a su destino. Aquí reside la importancia de OPM para garantizar los requisitos de calidad de cada paquete.Vilar Mateo, R. (2010). Optical performance monitoring in optical packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8926Palanci

    Photonic logic-gates: boosting all-optical header processing in future packet-switched networks

    Full text link
    Las redes ópticas de paquetes se han convertido en los últimos años en uno de los temas de vanguardia en el campo de las tecnologías de comunicaciones. El procesado de cabeceras es una de las funciones más importantes que se llevan a cabo en nodos intermedios, donde un paquete debe ser encaminado a su destino correspondiente. El uso de tecnología completamente óptica para las funciones de encaminamiento y reconocimiento de cabeceras reduce el retardo de procesado respecto al procesado eléctrico, disminuyendo de ese modo la latencia en el enlace de comunicaciones. Existen diferentes métodos de procesado de datos para implementar el reconocimiento de cabeceras. El objetivo de este trabajo es la propuesta de una nueva arquitectura para el procesado de cabeceras basado en el uso de puertas lógicas completamente ópticas. Estas arquitecturas tienen como elemento clave el interferómetro Mach-Zehnder basado en el amplificador óptico de semiconductor (SOA-MZI), y utilizan el efecto no lineal de modulación cruzada de fase (XPM) en los SOAs para realizar dicha funcionalidad. La estructura SOA-MZI con XPM es una de las alternativas más atractivas debido a las numerosas ventajas que presenta, como por ejemplo los requisitos de baja energía para las señales de entrada, su diseño compacto, una elevada relación de extinción (ER), regeneración de la señal y el bajo nivel de chirp que introducen. Este trabajo se ha centrado en la implementación de la funcionalidad lógica XOR. Mediante esta función se pueden realizar diversas funcionalidades en las redes ópticas. Se proponen dos esquemas para el reconocimiento de cabeceras basados en el uso de la puerta XOR. El primer esquema utiliza puertas en cascada. El segundo esquema presenta una arquitectura muy escalable, y se basa en el uso de un bucle de realimentación implementado a la salida de la puerta. Asimismo, también se presentan algunas aplicaciones del procesado de cabeceras para el encaminamiento de paquetes basadas en el uso dMartínez Canet, JM. (2006). Photonic logic-gates: boosting all-optical header processing in future packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1874Palanci

    All-optical tree-based greedy router using optical logic gates and optical flip-flops

    Get PDF
    Due to ever-increasing throughput demands, the lookup in conventional IP routers based on longest prefix matching is becoming a bottleneck. Additionally, the scalability of current routing protocols is limited by the size of the routing tables. Geometric greedy routing is an alternative to IP routing which replaces longest prefix matching with a simple calculation employing only local information for packet forwarding. For the first time, in this paper we propose a novel and truly all-optical geometric greedy router based on optical logic gates and optical flip-flops. The circuit of the router is constructed through the interconnection of SOAs and directional couplers. The successful functionality of the proposed router is verified through simulation. The circuit enables high data rate throughput

    Optical label-controlled transparent metro-access network interface

    Get PDF
    corecore