14,279 research outputs found

    Control theoretic models of pointing

    Get PDF
    This article presents an empirical comparison of four models from manual control theory on their ability to model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating not only movement time, but also pointer position, velocity, and acceleration on a moment-to-moment basis. We describe an experimental framework for acquiring pointing actions and automatically fitting the parameters of mathematical models to the empirical data. We present the use of time-series, phase space, and Hooke plot visualisations of the experimental data, to gain insight into human pointing dynamics. We find that the identified control models can generate a range of dynamic behaviours that captures aspects of human pointing behaviour to varying degrees. Conditions with a low index of difficulty (ID) showed poorer fit because their unconstrained nature leads naturally to more behavioural variability. We report on characteristics of human surge behaviour (the initial, ballistic sub-movement) in pointing, as well as differences in a number of controller performance measures, including overshoot, settling time, peak time, and rise time. We describe trade-offs among the models. We conclude that control theory offers a promising complement to Fitts’ law based approaches in HCI, with models providing representations and predictions of human pointing dynamics, which can improve our understanding of pointing and inform design

    Do That, There: An Interaction Technique for Addressing In-Air Gesture Systems

    Get PDF
    When users want to interact with an in-air gesture system, they must first address it. This involves finding where to gesture so that their actions can be sensed, and how to direct their input towards that system so that they do not also affect others or cause unwanted effects. This is an important problem [6] which lacks a practical solution. We present an interaction technique which uses multimodal feedback to help users address in-air gesture systems. The feedback tells them how (“do that”) and where (“there”) to gesture, using light, audio and tactile displays. By doing that there, users can direct their input to the system they wish to interact with, in a place where their gestures can be sensed. We discuss the design of our technique and three experiments investigating its use, finding that users can “do that” well (93.2%–99.9%) while accurately (51mm–80mm) and quickly (3.7s) finding “there”

    Effects of feedback, mobility and index of difficulty on deictic spatial audio target acquisition in the horizontal plane

    Get PDF
    We present the results of an empirical study investigating the effect of feedback, mobility and index of difficulty on a deictic spatial audio target acquisition task in the horizontal plane in front of a user. With audio feedback, spatial audio display elements are found to enable usable deictic interac-tion that can be described using Fitts law. Feedback does not affect perceived workload or preferred walking speed compared to interaction without feedback. Mobility is found to degrade interaction speed and accuracy by 20%. Participants were able to perform deictic spatial audio target acquisition when mobile while walking at 73% of their pre-ferred walking speed. The proposed feedback design is ex-amined in detail and the effects of variable target widths are quantified. Deictic interaction with a spatial audio display is found to be a feasible solution for future interface designs

    Refining personal and social presence in virtual meetings

    Get PDF
    Virtual worlds show promise for conducting meetings and conferences without the need for physical travel. Current experience suggests the major limitation to the more widespread adoption and acceptance of virtual conferences is the failure of existing environments to provide a sense of immersion and engagement, or of ‘being there’. These limitations are largely related to the appearance and control of avatars, and to the absence of means to convey non-verbal cues of facial expression and body language. This paper reports on a study involving the use of a mass-market motion sensor (Kinect™) and the mapping of participant action in the real world to avatar behaviour in the virtual world. This is coupled with full-motion video representation of participant’s faces on their avatars to resolve both identity and facial expression issues. The outcomes of a small-group trial meeting based on this technology show a very positive reaction from participants, and the potential for further exploration of these concepts

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance
    corecore