7,920 research outputs found

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Geocoder: An Efficient Backscatter Map Constructor

    Get PDF
    The acoustic backscatter acquired by multibeam and sidescan sonars carries important information about the seafloor morphology and physical properties, providing valuable data to aid the difficult task of seafloor characterization, and important auxiliary information for a bathymetric survey. One necessary step towards this characterization is the assemblage of more consistent and more accurate mosaics of acoustic backscatter. For that, it is necessary to radiometrically correct the backscatter intensities registered by these sonars, to geometrically correct and position each acoustic sample in a projection coordinate system and to interpolate properly the intensity values into a final backscatter map. Geocoder is a software tool that implements the ideas discussed above. Initially, the original backscatter time series registered by the sonar is corrected for angle varying gains, for beam pattern and filtered for speckle removal. All samples of the time series are preserved during all the operations, ensuring that the full data resolution is used for the final mosaicking. The time serie s is then slant-range corrected based on a bathymetric model, in the case of sidescan, or based on beam bathymetry, in the case of the multibeam. Subsequently, each backscatter sample of the series is geocoded in a projected coordinate system in accordance to an interpolation scheme that resembles the acquisition geometry. An anti-aliasing algorithm is applied in parallel to the mosaicking procedure, which allows the assemblage of mosaics at any required resolution. Overlap among parallel lines is resolved by a priority table based on the distance of each sample from the ship track; a blending algorithm is applied to minimize the seams between overlapping lines. The final mosaic exhibits low noise, few artifacts, reduced seams between parallel acquisition lines and reduced clutter in the near-nadir region, while still preserving regional data continuity and local seafloor features

    A Cosmic Watershed: the WVF Void Detection Technique

    Get PDF
    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of Kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low noise and high noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are succesfully retrieved. WVF manages to even reproduce the full void size distribution function.Comment: 24 pages, 15 figures, MNRAS accepted, for full resolution, see http://www.astro.rug.nl/~weygaert/tim1publication/watershed.pd

    An Automatic Digital Terrain Generation Technique for Terrestrial Sensing and Virtual Reality Applications

    Full text link
    The identification and modeling of the terrain from point cloud data is an important component of Terrestrial Remote Sensing (TRS) applications. The main focus in terrain modeling is capturing details of complex geological features of landforms. Traditional terrain modeling approaches rely on the user to exert control over terrain features. However, relying on the user input to manually develop the digital terrain becomes intractable when considering the amount of data generated by new remote sensing systems capable of producing massive aerial and ground-based point clouds from scanned environments. This article provides a novel terrain modeling technique capable of automatically generating accurate and physically realistic Digital Terrain Models (DTM) from a variety of point cloud data. The proposed method runs efficiently on large-scale point cloud data with real-time performance over large segments of terrestrial landforms. Moreover, generated digital models are designed to effectively render within a Virtual Reality (VR) environment in real time. The paper concludes with an in-depth discussion of possible research directions and outstanding technical and scientific challenges to improve the proposed approach
    corecore